LEARNING CONTROL KNOWLEDGE FOR PLANNING

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by
Yi-Cheng Huang
January 2003

©2003 Yi-Cheng Huang

LEARNING CONTROL KNOWLEDGE FOR PLANNING
Yi-Cheng Huang, Ph.D.
Cornell University 2003

Planning is a notoriously hard combinatorial search problem. Re-

cently, new planning paradigms, such as constraint-based and heuris
tic search based planning techniques have significantly extended the
range of practically feasible planning tasks. To obtain a better under-
standing of their relative strengths and weaknesses, we will present
a detailed comparison of the performance of the various recent plan-
ning techniques on multi-agent tasks. Our analysis shows that, in
a multi-agent setting, heuristic and constraint-based planners often
complement each other.

An interesting aspect of these planners is that they do not incorpo-
rate domain-specific control knowledge, but instead rely on efficient
data representations and search techniques. An alternative approach
has been proposed in the TLPLAN system which incorporates declar-
ative control specified in temporal logic formulas. We will show how
these control rules can be parsed into the constraint-based planner
BLACKBOX so as to greatly improve the system performance.

A motivating question is how to automatically acquire these search
controls from the application domain. Despite the long history of re-
search in using machine learning to speed up state-space planning,

the techniques that have been developed are not yet in widespread

use for practical planning systems. One limiting factor is that tra-
ditional domain-independent planning systems scale so poorly that
extensive learned control knowledge is required to raise their perfor-
mance to an acceptable level. We will present the first positive results
on automatic acquisition of such high-level, purely declarative con-
straints for constraint-based planners using machine learning tech-
niques. In particular, we will show that a new heuristic method for
generating training examples, together with a rule induction algo-
rithm, can learn useful control rules in a variety of domains and boost

system performance significantly.

ACKNOWLEDGMENTS

I would like to greatly express my appreciation to my advisor, Bart
Selman, for his guidance and kindness during the past four years. It
was from him I learned to identify and tackle interesting problems, a
skill I believe will be a valuable asset in my later career development.
He has also been a source of great support for my research, and I
therefore am able to complete my dissertation under his advice. Most
especially, I am deeply indebted to him for his valuable time given to
review and edit my writing. It has been a privilege and an honor to
work with him at Cornell. I would also like to thank Professor Claire
Cardie and Professor Stephen B. Wicker for their useful suggestions
and for serving on my committee.

I also wish to thank Henry Kautz, my mentor when I worked at
AT&T research laboratory as a summer intern, for his hard work on
the research we have done together and for his many valuable sug-
gestions.

Finally, and most importantly, I would like to thank my parents
and my sister for their generosity in relieving me of my responsibility

to the family during my academic pursuits.

TABLE OF CONTENTS

Introduction
1.1 Thesis Outline i v v v oo,

A Brief Overview of Planning

2.1 Constraint-Based Planning
2.1.1 Graphplan.
2.1.2 Blackbox L .
2.1.3 Other Constraint-Based Planning Systems

2.2 Heuristic Search Planning

2.3 Summary e e e e e e e e e e

Single-Agent vs. Multi-Agent Planning

3.1 Performance on Single-Agent Problems
3.2 Multi-Agent Problems
3.3 Restriction on the Feature Action
3.4 Complexity Analysis
3.5 Summary e e

Control Knowledge in Planning

4.1 Temporal Logic for Control
4.1.1 Control by Pruning the Planning Graph
4.1.2 Control by Adding Constraints
4.1.3 Rules With No Compact Encoding

4.2 Empirical Evaluation

4.3 SUMMATY v v v vt e e e e e e e e e e e e e

11
11
15
17
18
19

21
23
26
30
34
41

5 Learning Control Knowledge for Planning
5.1 Learning Framework

5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6

Target Concepts for Actions
Heuristics for Identifying Training Examples
Rule Induction
Backtracking 0oL,
Rule Simplification
Forming and Using Learned Control Rules

52 AnExampleo
5.3 Experimental Results

5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6

Logistics Domain
Briefcase Domain
Grid Domain
Gripper Domain
Mystery Domain
Tireworld Domain

5.4 Plan Completeness with Learned Control.
5.5 RelatedWork

6 Conclusions and Future Work

Logistics Domain Definition in PDDL

B Hand-Coded Logistics Control Rules

C Learned Logistics Control Rules

Bibliography

110

115

118

121

126

2.1
2.2
2.3
2.4

3.1
3.2

3.3

4.1
4.2
4.3

5.1
5.2

5.3
5.4

5.5

5.6

5.7
5.8

LIST OF FIGURES

A simple logistics problem £.
A plan P for planning problem £.
Partial planning graph for logistics problem £.
Planning as a satisfiability framework.

A sokoban example game., ..
General outline of a modified feature action and problem
instance. 0 0 oo o
Comparisons for problem rocket-2 using different num-
bers of flights.

Rule 1 (category I) in a logistics domain.
Rule 2 (category II) in a logistics domain.
Rule 1 in propositional control form.

The basic learning framework.
Outline of the rule induction algorithm, based on Quin-
lan’s FOIL. e
Outline of the rule simplification procedure.
Learned static reject rule for the action Unload-Airplane
output in extended PDDL.
Logistics run time for BLACKBOX without and with (c)
learned control rules from the BLACKBOX distribution. . .
BLACKBOX run time on randomly generated hard logis-
tics problems. oo
Briefcaseruntime.
Grid domain run time.,

3.1

3.2

3.3

3.4

4.1
4.2
4.3

4.4
4.5

5.1

5.2
5.3
5.4
5.5
5.6

5.7

LIST OF TABLES

Comparison between BLACKBOX, HSP, and FF on single-

agent problems. Lo 25
Comparison between BLACKBOX, HSP, and FF on multi-
agentproblems. 0 0 oL 27
Comparison between BLACKBOX, HSP, and FF on multi-
agent problems with restrictions on feature actions. . . . 32

Comparison between BLACKBOX, HSP, and FF on multi-
agent rocket problems with restrictions on feature ac-

tons. e 36
Actions and facts pruned by Rule 1 in Problem £. 50
The effect of graph pruning (category I rules). 52
Comparison between graph pruning and propositional

control of category I controlrules. 55
BLACKBOX with control knowledge. 60
Comparison between BLACKBOX and TLPLAN. 62

Types of actions used in training sets for the static and

dynamic varieties of the select and reject rules. 74
Predicates in logistics domain. 76
A simple logistics problem and its solution. 85

Learning static rejectrules for the action “Unload-Airplane.” 86
Learning time (in seconds) and number of rules acquired. 88
Comparison between BLACKBOX and TLPLAN with differ-

ent controlrulesets. 94
Gripper Domain: BLACKBOXwithout and with (c) learned
control knowledge. 0. 99

5.8

5.9

BLACKBOX without and with (c) learned control knowl-
edge on mystery problems.
BLACKBOX without and with (c) learned control knowl-
edge on tireworld problems.

Chapter 1

Introduction

Imagine a hypothetical housekeeping robot sometime in the future.
When the robot receives an order to deliver a cup of coffee to the
study room, it will need to find a route to the kitchen from its current
location, turn on the coffee maker, get a cup and fill it with coffee,
pick up the cup, and finally find a route from the kitchen to the study
room. Finding a sequence of actions for the robot to accomplish its
“coffee delivery task” is a form of planning.

In general, a planning system is expected to analyze the situation
in which an agent finds itself and then find a strategy for achieving the
agent’s goals. In addition to planning for physical robots, planning
techniques have been used in many practical artificial intelligence
systems; for example, software protocol verification, spacecraft as-
sembly at the European Space Agency (Aarup et al., 1994), and obser-
vation planning at NASA for the Hubble space telescope (Johnson and
Adorf, 1992). In its full generality, planning is a hard combinatorial
search problem. Stated more formally, planning is PSPACE-complete
(Bylander, 1991; Erol et al., 1992). Therefore, a key challenge in field-

ing applications is to keep the computational cost of the planning task
under control. Efficiency is achieved in current systems by carefully
tailoring the planning algorithms for the application under consider-
ation. However, such tailoring requires a significant effort for each
application domain. Therefore, what is currently needed are more ef-
ficient general planning systems and declarative approaches to apply
domain-specific knowledge in the systems. Furthermore, planning
methods that automatically acquire knowledge or “learn” about their
application domain during operation would be very useful.

In fact, we have recently seen exciting advances in general-purpose
planning systems. First, there has been a burst of activity in the plan-
ning community with the introduction of a new generation of graph-
based and constraint-based methods, such as GRAPHPLAN (Blum and
Furst, 1995) and BLACKBOX (Kautz and Selman, 1992, 1996, 1999;
Weld, 1999). These planners are domain independent and outper-
form more traditional planners on a range of benchmark problems.
Then, at the AIPS 2000 planning competition, another generation of
planning systems based on heuristic search techniques surpassed
the performance of the constraint-based planners (Bacchus, 2001).
Both HSP (Bonet and Geffnet, 1997) and FF (Hoffmann, 2000) are
examples of such efficient heuristic search planning systems.

Current heuristic search and constraint-based planners can ef-
fectively synthesize plans consisting of several hundreds of actions,
which is far beyond the capability of traditional planning systems.

The work in this area has greatly benefited from a common set of

benchmark problems. Many of these benchmark domains consist of
essentially single-agent planning tasks. However, many real-world
planning domains involve settings with multiple agents. We will pro-
vide a detailed comparison of the performance of the various re-
cent planning techniques on multi-agent tasks. Our analysis shows
that depending on the underlying problem domain, in a multi-agent
setting, heuristic search and constraint-based planners often nicely
complement each other. Our work also provides a new set of chal-
lenging benchmark problems, emphasizing multi-agent settings.

An interesting aspect of the recent search- and constraint-based
planners is that they do not incorporate domain-specific knowledge
but instead rely on efficient graph-based or propositional representa-
tions and advanced search techniques. Another approach has been
proposed in the TLPLAN system, an example of a powerful planner
incorporating declarative control specified in temporal logic formu-
las. We will demonstrate how these control rules can be parsed into
BLACKBOX, leading to an overall speedup of up to one order of magni-
tude. We also provide a detailed comparison with TLPLAN, and show
how the search strategies in TLPLAN lead to efficient plans in terms of
the number of actions but with little or no parallelism. The BLACKBOX
formalisms, on the other hand, do find highly parallel plans but are
less effective in sequential domains. Our results enhance our under-
standing of the various tradeoffs in planning technology and extend
earlier work on control knowledge in the SATPLAN framework by Ernst

et al., (1997) and Kautz and Selman (1998). The next natural ques-

tion to ask is whether this kind of declarative control knowledge can
be learned.

Machine learning is a rapidly developing subfield of artificial intel-
ligence. Machine learning methods attempt to uncover general struc-
ture in a domain from a set of training cases. A good example of a
learning system is the TD-gammon system (Tesauro, 1992) for playing
backgammon. TD-gammon used a general learning strategy, called
reinforcement learning, to train itself by playing a very large num-
ber of games against itself, continuously improving during play. After
more than 300,000 training games, combined with some minor hand-
crafted heuristics, TD-gammon reached world-level play, comparable
to the top three human players worldwide. No hand-coded backgam-
mon program has even come close to the level of performance of TD-
gammon. The TD-gammon system is therefore a clear example of the
potential of machine learning techniques.

There has been earlier work on improving the performance of tra-
ditional planning systems using machine learning strategies. For ex-
ample, the PRODIGY system (Minton, 1988a; Carbonell et al., 1990)
learns domain-specific control rules that guide the planner search
algorithm by making it branch first on the most promising actions.
Unfortunately, despite the long history of research in using machine
learning to speed up state-space planning, the techniques that have
been developed are not yet in widespread use in practical planning
systems. One limiting factor is that traditional domain-independent

planning systems scale so poorly that extensive learned control is re-

quired to raise their performance to an acceptable level. Therefore,
work in this area has focused on learning large numbers of control
rules that are specific to the details of the underlying planning algo-
rithms, which can be extremely costly.

In this dissertation, we introduce a general methodology for au-
tomatically acquiring high-level, purely declarative constraints using
machine learning techniques. In particular, we will present a new
heuristic method for extracting training examples from plans gener-
ated by the BLACKBOX planner together with a constraint learning
system based on an inductive learning programming approach. Our
system can learn useful control knowledge in a variety of benchmark
domains from small training problems. Only a small number of con-
straints are needed to reduce solution times by two orders of magni-
tude or more on larger problems. Training times are short. Moreover,
given the declarative form of the constraints, they should be relatively

easy to incorporate in other constraint-based planning systems.

1.1 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2, we
provide an overview of recent state-of-the-art planning techniques:
constraint-based planning and heuristic search planning. Then we
give a detailed comparison of both approaches on multi-agent tasks
in Chapter 3. In Chapter 4, we show the kinds of declarative control

knowledge that can be used effectively in constraint-based planning.

In Chapter 5, we present our planning control knowledge learning
system and evaluate its effectiveness on various benchmark domains.

Finally, we conclude our work in Chapter 6.

Chapter 2

A Brief Overview of Planning

A planning problem consists of a description of an initial state, a goal
state, and a set of actions in some formal language. Most planners
we use today accept the STRIPS planning language to describe states
and actions (Fikes and Nilsson, 1971). In STRIPS, an action is de-
scribed using preconditions and effects that define the transition from
states to states. An action can be performed only when the precon-
ditions hold in the current state. There are two kinds of effects for
an action. An add effect is represented by a predicate, and a delete
effect is represented by the negation of a predicate. A state is defined
by the set of facts that holds in the state. The execution of an action
is defined by a state change, where each new state is obtained by
adding or deleting facts from the previous state description. In other
words, instantiated facts of add effects are added into the current
state and facts of delete effects are removed from the current state.
The planning task is to find a sequence of actions that leads from a

given initial state to the goal state.

Initial: (at pkgl NYC), (at pkg2 SYR),
(at pln NYO, ...
Goal: (at pkgl ITH), (at pkg2 ITH)

Action: (Load-Airpl ane
. paraneters (?obj ?airplane ?loc)
- precond (and (at ?obj 2l oc)
(at (?airplane ?loc))...)
effect (and (in ?0bj ?airplane)
(not (at 7?obj ?loc)))

Figure 2.1: A simple logistics problem L.

To be more specific, supposing the prediction for an action A is de-
noted as pre(A) and the add and delete effects are specified as add(.A)
and delete(A), respectively, an action A can only be performed in the
current state S if pre(A) C S. The state &’ after the execution of an

action A from state S is defined as follows:

S =A(S) = (S \ delete(A)) U add(A).

Then the planning task is to find a sequence of actions A4; - -- A4,,

which leads from a given initial state 7 to the goal state G such that
G=A, (- (A(T)--).

Figure 2.1 gives a simple example problem £ in a logistics domain
(Veloso, 1992). In this logistics domain, the task is to deliver a set
of packages from different locations to their goal destinations using
various vehicles. In the problem £, we see that the initial and goal

state are encoded by a set of ground facts. For example, predicate

1 Load-Airplane (pkgl pl n NYC)
2 FHy-Airplane (pl ane NYC SYR)

3 Load-Airplane (pkg2 pl n SYR)
4 Fy-Airplane (pl ane SYR | TH)

5 Unload-Airplane (pkgl pln I TH)

5 Unload-Airplane (pkg2 pln I TH)
Figure 2.2: A plan P for planning problem L.

(at pkgl NYO) in the initial state means that package pkgl is ini-
tially at New York City. The figure gives one example of an operator
or action, called Load-Airplane. It takes an object, an airplane and a
location as parameters. The precondition for the action to be applica-
ble requires, among a number of other facts, that the plane be in the
actual location. One of the effects of Load-Airplane is, for example,
that the object is on board the plane after the action is executed.

Figure 2.2 shows one possible plan to achieve the goal state for
problem L. The figure gives a number with each action denoting the
time slot in which the action takes place. Note that more than one ac-
tion can take place at a given time. For example, two Unload-Airplane
actions are performed at time step 5.

The task of a planning system is to find a plan leading from the
initial state to the goal state or to determine that no such plan ex-
ists. Planning systems generally search for the shortest possible plan,

where length is either defined in terms of the total number of time

10

steps or in terms of the total number of actions. As we noted before,
planning is a PSPACE-complete problem and therefore a worst-case
intractable computational problem (assuming P#NP; Bylander, 1991;
Erol et al., 1992; Backstrom, 1992).

Traditional planning systems generate plans by performing sys-
tematic search methods through either the state space or through the
space of partial plans. For example, PRODIGY performs a state-space
search by a backward-chaining planning algorithm (Carbonell et al.,
1990) and UCPOP employs a plan-based search method (Penberthy
and Weld, 1992; Barrett et al., 1993).

Recent progress in planning algorithms has shown that heuristic
search and constraint-based planners outperform more traditional
plan search approaches. Heuristic search planning systems, such
as HSP and FF, employ forward-chaining search algorithms and a
heuristic function is derived from the specification of the planning in-
stance and used for guiding the search through the state space. In
a constraint-based approach, the planning problem is formulated as
a large constraint-satisfaction problem and the search is performed
using constraint-satisfaction techniques. The resulting search is a
hybrid of a state-based and a plan-based search approach. Such
a hybrid search strategy can be quite efficient. For example, the
constraint-based planner, BLACKBOX, is able to find a plan with 74
actions within 14 time steps for a logistics planning problem in less
than eight seconds on a 450 MHz Sparc Ultra machine. The state

space explored by BLACKBOX for this planning instance contains ap-

11

proximately 10'¢ distinct states. No traditional planners have been
able to solve logistics planning problems of this size, even when given
days of computational time.

In the following sections, we will provide a brief overview of recent

progress on constraint-based and heuristic search planning systems.

2.1 Constraint-Based Planning

Constraint-based planning systems formulate the planning task as
the solving of a large constraint-satisfaction problem (CSP). GRAPH-
PLAN and its descendents encode a CSP in a data structure called a
plan graph, while SATPLAN and its descendent BLACKBOX explicitly

convert planning problems into Boolean satisfiability.

2.1.1 Graphplan

The GRAPHPLAN planner (Blum and Furst, 1995) is based on a com-
pact structure called a planning graph. A planning graph encodes
the planning problem such that many useful constraints inherent in
the problem can be used by various search algorithms to reduce the
search time. In addition, planning graphs have polynomial size and
can be constructed in polynomial time.

A planning graph is a directed graph with two types of nodes:
propositional nodes (“facts”) and action nodes, arranged into levels
and indexed by time. The first level of a planning graph is a proposi-
tional level and consists of propositional nodes from the initial state.

The next level is an action level and consists of possible actions at

12

time 1. Then a propositional level containing possibly true proposi-
tions at time 2 and an action level containing possible actions at time
2 follows. That is, the levels in a planning graph alternate between
propositional levels and action levels.

The planning graph is constructed from the initial state. The ini-
tial facts are placed in the first propositional level of the graph. To
extend a graph at level i, each possible instantiation for every action
is inserted into the action level i, provided its preconditions hold at
time i. A NO-OP action for every fact in the previous propositional
level is inserted as well. These special NO-OP actions are needed to
deal with those facts that do not change from time slot to time slot.
In other words, the use of these NO-OP actions is an approach to han-
dle the frame problem (McCarthy and Hayes, 1969). For each action
node, the facts in the effects list are inserted into the next layer of
propositional nodes at level i + 1. An edge is also established between
an action node and each of its effect nodes. Each edge is labeled as
either an add edge or a delete edge. An add edge indicates the propo-
sitional node is an add effect of the action and a delete edge indicates
the propositional node is a delete effect of the action. Moreover, as
shown in Blum and Furst (1995), the time taken to create the plan-
ning graph and the size of the planning graph are both polynomial in
the length of the problem’s description and the number of time steps.

In addition to the planning graph itself, GRAPHPLAN also derives a
set of mutual exclusion constraints among nodes. Two propositional

nodes are mutually exclusive if no valid plan could make both true

13

at the same time. For example, a package cannot be loaded on two
different airplanes during the same time slot. Two action nodes are
mutually exclusive if no valid plan could contain both. For example,
an airplane cannot fly and be loaded during the same time slot. These
mutual exclusion constraints can be derived by propagating them
through the planning graph using a few simple rules and can be of
enormous help in reduing the search time.

To search for a plan, GRAPHPLAN alternates between two stages:
planning graph extension and plan extraction. The planning graph is
a compact representation of all valid action sequences up to a fixed
number of time slots, starting from the initial state. In the extraction
phase, this graph is searched for a sequence that leads to the goal
state. At stage i, GRAPHPLAN extends the planning graph from stage
¢ — 1 and then starts to search for a plan on the extended planning
graph when all of propositional facts in the goal state appear in the
final layer of propositional level. In other words, each planning graph
extension stage extends a new time slot into the planning graph and a
plan extraction phase follows to find a plan on the extended planning
graph. GRAPHPLAN’s systematic search either finds a plan or shows
that no valid plan exists in the current planning graph. The planning
graph extension and plan extraction continues either until a plan is
found or until GRAPHPLAN proves there exists no plan of any length
that leads from the initial state to the goal state. An interesting aspect
of the GRAPHPLAN system is that the system can be shown to be com-

plete. That is, after a finite number of planning graph extensions, the

14

Fly-Airplane (pinNYCSYR) ~——— (apInSYR)
Fly-Airplane (pInNYCITH) ~ ——~—— (atpInITH)
(at pinNYC) no-op (at pin NYC) % (apinNYQ)
propositions actions propositions

time 1 timel time 2

Figure 2.3: Partial planning graph for logistics problem L.

system will either have found a valid plan or it will have shown that
the goal is unreachable, no matter how many time steps are allowed.
Although the full details of the planning graph approach are rather
involved, Figure 2.3 should give the reader at least some idea of how
a planning graph is constructed. We see that (at pln NYC) is a
precondition for the three actions given at time 1. The effects for each
action at time 1 are given in the propositional layer at time 2. Finally,
the dotted lines show deleted facts. For example, Fly-Airplane (pl n
NYC SYR) deletes the fact (at pl n NYC) in the propositional layer at
time 2. Not explicitly represented in the figure, but part in the actual
planning graph, are the exclusionary relations. We have established
that actions Fly-Airplane (pl n NYC SYR) and Fly-Airplane (pl n NYC
| TH) at time 1 are mutually exclusive. Similarly, propositions (at
pln SYR) and (at pln I TH) at time 2 are also mutually exclusive.
After each planning graph extension phase, GRAPHPLAN enters a
plan extraction phase, in which the graph is searched for a plan that
reaches all goal conditions. If no such plan is found, the planning

graph is extended.

15

GRAPHPLAN has been shown to outperform traditional planners,
such as PRODIGY and UCPOP, on a variety of interesting planning
problems and its algorithm has been adopted in several recent plan-

ners.

2.1.2 Blackbox

Given a propositional encoding of the planning task, the BLACKBOX
planning system uses fast Boolean satisfiability procedures to search
for plans (Kautz and Selman, 1992, 1996, 1999). The general plan-
ning “as satisfiability framework” is shown in Figure 2.4. At first, the
system compiles the planning problem into a propositional formula in
conjunctive normal form (CNF), which represents all possible action
sequences up to a fixed number of time steps. The formula encodes
information in a manner similar to that of the planning graph dis-
cussed above. The formula also contains a set of logical clauses that
capture the initial state and the goal state. This encoding is such
that there is a one-to-one correspondence between valid plans up to
the given time bound and satisfying assignments. State-of-the-art
Boolean satisfiability procedures (“SAT Solvers”), such as WALKSAT
(Selman et al., 1996) or CHAFF (Moskewicz et al., 2001), are used to
search for satisfying assignments. If a solution can be found, the as-
signment can be translated back into a valid plan; otherwise, the time
bound will be relaxed and another formula will be generated.

The original implementation of the planning as a satisfiability ap-

proach, called SATPLAN, uses a state-based encoding designed by

16

extend time step

Planning l Plan CNF | SsAT Plan
Problem Compiler Solver Formation

—— Plan

Figure 2.4: Planning as a satisfiability framework.

hand (Kautz and Selman, 1992). The MEDIC (Ernst et al., 1997) plan-
ner automatically translates a STRIPS-style planning problem into a
range of different encodings according to the choice of action repre-
sentation and the choice of classical or explanatory frame axioms.

The BLACKBOX planner (Kautz and Selman, 1999) is the latest ver-
sion of SATPLAN. It uses GRAPHPLAN as a front end to construct a
planning graph. The system then compiles the planning graph into
a CNF formula. The formula is simplified using a polynomial time
Boolean simplification procedure. Finally, the simplified formula is
fed to a range of SAT solvers.

The GRAPHPLAN-based compilation procedure in BLACKBOX is
straightforward. If a proposition node p has add actions a4, -,a,,

it forms a logical clause

(i.e., p — a1 V... Va,). This clause represents the fact that when p is
true, it has to have been added by at least one of the actions a;, - - -, a,.
If an action node a has preconditions py, ..., p,, the following clauses

are added into the CNF formula:

17

If two nodes p and ¢ are mutually exclusive (note that p and ¢ can

be action or fact nodes), the following clause is added:

(=pV —q)

Finally, facts in the initial state and goal state are added to the CNF
formula as unit clauses.

The BLACKBOX planner is competitive with the GRAPHPLAN plan-
ner, and both outperform traditional planners. One advantage of the
BLACKBOX planner is that because of the logical intermediate rep-
resentation it is straightforward to add additional domain-specific
knowledge to the planner. Basically, one can add additional clauses
to the formula before giving it to the SAT solver. Those new clauses
lead to additional pruning and can dramatically speed up the SAT

solver. We will return to this issue in Chapter 4.

2.1.3 Other Constraint-Based Planning Systems

Since the introduction of GRAPHPLAN and SATPLAN, their algorithms
have been applied in many other planning systems, built to extend
their capability or improve their performance. For example, IPP
(Koehler et al., 1997) is an extended version of GRAPHPLAN that can
deal with a subset of more express ADL planning language (Pednault,
1989). In addition, it also introduces a goal orderings technique to
derive a total ordering for subsets of goals by performing a static and
heuristic analysis of the planning problem at hand. The goal order-

ings method has been shown to significantly improve the performance

18

of the IPP planning system in most cases (Koehler and Hoffmann,
2000). The same goal orderings technique is exploited in the heuris-
tic search planner FF as well.

The STAN (Fox and Long, 1999) planning system improves the
graph construction in two ways. First, the planning graph is repre-
sented as a single pair of layers called a spike, which is built upon bit
vectors and logical operations to accelerate the graph construction.
Second, it uses a wave front technique to avoid the explicit construc-
tion of the graph beyond the fixed point. Both techniques reduce the
graph construction time and the memory usage of a planning graph.

GPG (Gerevini and Schubert, 1998) is a planning system that uses
combined stochastic local search and tabu list (Glover and Laguna,
1993) techniques to improve GRAPHPLAN’s plan search time.

CPlan (Beek and Chen, 1999) is a planning approach that models
planning problems as constraint-satisfaction problems (CSPs). CSPs
in CPlan are solved by a backtracking algorithm that performs gener-
alized arc consistency propagation and conflict-directed backjumping

(Prosser, 1993).

2.2 Heuristic Search Planning

Recent planning systems based on the idea of heuristic search have
been shown to be efficient on sequential domains. At the AIPS 2000

planning competition, heuristic planners, FF and HSP, eclipsed the

19

performance of the constraint-based planners (Bacchus and Nau,
2001).

Both HSP and FF are forward-chaining planners. They use either
a breadth-first, best-first, or greedy search algorithm. The heuristic
functions in HSP and FF rely on a relaxed plan graph, in which delete
effects of actions are not considered. In HSP, the distance from the
current state s, to the goal state s, is approximated by using the sum
of the weights of the propositions that need to hold in s,. The weight

of a proposition p is defined as follows:

0 Jfpes,
MiNgetion « adds pl1 T weight(precond(a)] , otherwise

weight(p) = {

In other words, the weight of a proposition p is O if it is in s,. Oth-
erwise, it is one more than the minimal weight of the preconditions of
actions that add p. In FF, the distance from the current state to the
goal state is approximated by the plan length for achieving the goal in
the relaxed plan graph.

2.3 Summary

We have presented a brief overview of current state-of-the-art plan-
ning approaches: constraint-based planning and heuristic search
base planning. Constraint-based planning systems formulate plan-
ning tasks as the solving of constraint-satisfaction problems. Heuris-
tics search planners perform searches based on the heuristic func-

tions computed from relaxed plan graphs. Both planning methods

20

have been shown to outperform most of traditional planners. In or-
der to obtain a better understanding of their relative strengths and
weaknesses, in the next chapter we will present a detailed compari-
son of the methods through both experimental results and theoretical

analysis in a multi-agent setting.

Chapter 3

Single-Agent vs. Multi-Agent
Planning

We have recently seen exciting advances in practical planning sys-
tems. First, it was discovered that constraint-based planning tech-
niques, such as those used in GRAPHPLAN (Blum and Furst, 1995)
and BLACKBOX (Kautz and Selman, 1999), can significantly extend
the range of practically feasible planning tasks compared to the more
traditional planning approaches (Weld, 1999). The effectiveness of
constraint-based techniques was apparent at the AIPS 1998 plan-
ning competition (Long et al., 2000). Perhaps somewhat surprisingly,
at the AIPS 2000 competition, yet another generation of planning sys-
tems — this time based on heuristic search techniques — eclipsed
the performance of the constraint-based planners (Bacchus and Nau,
2001).

A common set of benchmark domains, as used for example in the
AIPS planning competitions, has been an important driving force be-

hind the rapid improvements we have seen in recent years. These

21

22

benchmarks mostly involve single-agent planning tasks. However,
many real-world planning problems involve multiple agents. Much of
the research in the area of multi-agent planning considers distributed
solution strategies, where each agent plans its actions locally either
in collaboration or in competition with the other agents (desdardins et
al., 1999). An interesting alternative to explore is whether a central-
ized domain-independent planner can uncover global plans involving
multiple agents working together. If interesting global multi-agent
plans could be computed effectively, it would open up a wide range
of applications in which groups of cooperative autonomous agents
would follow a global plan or strategy to reach a set of common ob-
jectives. Such global plans would also provide a useful framework for
comparison with plans that are computed in a distributed fashion.
In this section, we will introduce a set of multi-agent planning
problems and analyze the performance of the most recent heuristic
and constraint-based planners on these problem instances. In or-
der to obtain interesting multi-agent plans, we have to add special
additional requirements onto our final plans. Intuitively speaking,
we have to require that each agent actively participates in the final
plan, or, more precisely, that each agent meets some minimal level of
participation. The reason for this is straightforward: without the par-
ticipation requirement, a single-agent solution often also provides as
solution of the multi-agent planning task (i.e., the actions to achieve
the overall goals are executed by a single agent, while the other agents

remain idle). We will show how it is possible to encode the participa-

23

Figure 3.1: A sokoban example game.

tion requirements as part of the planning problem instances. A key
advantage of such an approach is that it does not require us to modify
the existing planners.

Our experiments show that current planners can find interesting
global multi-agent plans. Moreover, in the multi-agent setting, we
find that heuristic search and constraint-based planners have highly

complementary strengths.

3.1 Performance on Single-Agent Problems

The testbed used in this section includes problems obtained from
the miconic domain, the rocket domain, the grid domain, and the
sokoban domain. The grid domain was first introduced in the AIPS
1998 planning competition (Long et al., 2000). The miconic domain
is based on an elevator control problem, and was part of the AIPS
2000 benchmarks. The rocket domain is from Veloso (1992). Finally,

our most challenging domain is based on the Sokoban game invented

24

in Japan in the early 1980s. In this game, a warehouse keeper, or
sokoban in Japanese, pushes boxes to their correct destinations in a
crowded warehouse. The boxes are too heavy to lift. Figure 3.1 shows
an example game. There are three boxes in the game; the small circle
dots specify the goal locations for the boxes. The boxes can be moved
around via “pushes” by either one of the two sokoban agents in the
domain. The game looks easy but is in fact remarkably difficult. A
key challenge is to avoid getting any of the boxes stuck in a corner.
First, we provide a comparison between two heuristic planners,
HSP (Bonet and Geffner, 1997) and FF (Hoffmann, 2000), and one
constraint-based planner BLACKBOX(Kautz and Selman, 1996, 1999).
We generated problem instances with a single agent each and ran all
our experiments on a 400 Mhz SUN Ultra-80 machine. Note that in
each domain there is a natural concept of “agent” (or key player). In
the miconic domain, an elevator is an agent; in the rocket domain,
each rocket is an agent; in the grid domain, a robot is an agent; and
in the sokoban domain, a sokoban is an agent. To track the activities
of each agent, we identify a so-called feature action for each agent in
each domain. A feature action is the most characteristic action exe-
cuted by an agent. For example, for the sokoban agent, it is the “Push”
action. The feature actions for other domains are as follows: the “Up”
action in the miconic domain, the “Fly” action in the rocket domain,
and both “Pickup” and “Pickup-and-Loose” actions in the grid domain.
The main function of the feature actions is to provide us with a mea-

sure of activity for each agent in terms of solving the overall goal.

25

Table 3.1: Comparison between BLACKBOX, HSP, and FF on single-
agent problems.

problem BLACKBOX HSP
time | #action | #feature | time | #action | #feature
action action
grid-1 12610 23 4 0.83 29 5
grid-2 - - - 0.49 28 4
grid-3 - - - 2.5 18 2
miconic-1 73.6 23 4 0.36 27 5
miconic-2 15.5 26 6 0.22 33 5
miconic-3 22.1 32 3 0.30 45 5
rocket-1 0.54 19 3 0.30 25 9
rocket-2 0.48 24 4 0.13 35 15
rocket-3 6.88 21 5 1.01 27 11
sokoban-1 2.47 17 7 0.78 21 7
sokoban-2 | 5.11 21 9 0.96 25 9
sokoban-3 || 5.25 23 9 1.13 27 9
problem BLACKBOX FF
time | #action | #feature || time | #action | #feature
action action
grid-1 12610 23 4 0.06 25 4
grid-2 - - - 0.04 29 4
grid-3 - - - 0.14 22 3
miconic-1 73.6 23 4 0.03 23 6
miconic-2 15.5 26 6 0.02 26 4
miconic-3 22.1 32 3 0.04 32 4
rocket-1 0.54 19 3 0.03 19 3
rocket-2 0.48 24 4 0.02 24 4
rocket-3 6.88 21 5 0.05 21 5
sokoban-1 2.47 17 7 0.06 21 7
sokoban-2 || 5.11 21 9 0.08 25 9
sokoban-3 || 5.25 23 9 0.10 27 9

26

This function will become clearer in our multi-agent setting. Note,
however, that the choice for feature actions is somewhat subjective
and in most cases we could have chosen another action, which would
also have provided us with a good measure for the activity level of an
agent.

Table 3.1 gives the solution times for our planners on a range
of single-agent test problems. It is clear that both HSP and FF are
very efficient on all problems. BLACKBOX is slower and cannot find

solutions on certain problems in the grid domain.

3.2 Multi-Agent Problems

Many practical planning applications, such as job or airline schedul-
ing, involve multiple agents. In addition to the preference of shorter
plans for multi-agent problems, another desirable property for such
plans is that each agent actively participates in solving the problem.
Plans with such a property usually have a shorter total time span and
avoid the cost associated with idling agents.

In order to obtain a better understanding of how heuristic search
and constraint-based planners perform on multi-agent environments,
we added more agents into the testbed problem instances. Table 3.2
shows the run time on multi-agent problems. It also shows the num-
ber of feature actions used by each agent in the plan. More precisely,
feature actions (3, 2, 4) for problem sokoban-1 means that the first

sokoban performed 3 pushes, the second 2 pushes, and the third 4

27

Table 3.2: Comparison between BLACKBOX, HSP, and FF on multi-
agent problems.

problem | #agent BLACKBOX
time | #action | #feature action
grid-1 3 13.2 25 (1,1, 2)
grid-2 3 13.9 31 (1,1, 2)
grid-3 3 149 43 (1,1, 1)
miconic-1 3 9.24 27 (3, 3, 2)
miconic-2 3 9.45 30 (3, 3, 3)
miconic-3 4 32.6 37 2,2, 2,2
rocket-1 2 0.39 20 (2, 2)
rocket-2 2 0.72 26 (3, 3)
rocket-3 2 2.53 22 (3, 3)
sokoban-1 3 1.42 19 (3,2, 4)
sokoban-2 3 1.98 17 (3,2, 2)
sokoban-3 3 3.2 16 5,1, 3)
problem | #agent HSP
time | #action | #feature action
grid-1 3 6.86 25 0,3, 1)
grid-2 3 3.41 28 (0, 2, 2)
grid-3 3 7.15 35 0, 1, 2)
miconic-1 3 2.14 29 (2,2, 4)
miconic-2 3 0.82 33 (3,4,1)
miconic-3 4 1.69 40 2,1, 2, 2)
rocket-1 2 0.30 25 (4, 5)
rocket-2 2 0.16 36 (8, 8)
rocket-3 2 1.53 26 (3, 7)
sokoban-1 3 38.4 17 (5,1, 3)
sokoban-2 3 21.6 16 (3,1, 5)
sokoban-3 3 37.4 20 (7, 2, 2)

Table 3.2 (Continued).

problem | #agent BLACKBOX
time | #action | #feature action
grid-1 3 13.2 25 (1,1, 2)
grid-2 3 13.9 31 (1,1, 2)
grid-3 3 149 43 (1,1, 1)
miconic-1 3 9.24 27 (3, 3, 2)
miconic-2 3 9.45 30 (3, 3, 3)
miconic-3 4 32.6 37 2,2, 2,2
rocket-1 2 0.39 20 (2, 2)
rocket-2 2 0.72 26 (3, 3)
rocket-3 2 2.53 22 (3, 3)
sokoban-1 3 1.42 19 (3,2, 4)
sokoban-2 3 1.98 17 (3, 2, 2)
sokoban-3 3 3.2 16 5,1, 3)
problem | #agent FF
time | #action | #feature action
grid-1 3 0.17 27 (4, 0, 0)
grid-2 3 0.11 29 (3,1, 0)
grid-3 3 1.44 48 (3,2,0)
miconic-1 3 0.05 23 (6, 0, 0)
miconic-2 3 0.04 26 4, 0, 0)
miconic-3 4 0.06 32 4, 0, 0, 0)
rocket-1 2 0.04 20 (4, 0)
rocket-2 2 0.02 26 (6, 0)
rocket-3 2 0.06 22 (7, O)
sokoban-1 3 8.76 19 (5,1, 3)
sokoban-2 3 8.76 19 (5, 1,3)
sokoban-3 3 9.99 18 (7,1, 1)

29

pushes. The reason for tracking the number of feature actions per-
formed by each agent is that we can use it to approximately measure
the relative activity level of each agent in the plan. In other words, we
can use these numbers to identify how actively an agent participates
in the solution plan. A higher number of feature actions executed by
an agent usually indicates that the agent has a higher activity level in
the plan than do agents executing fewer feature actions.

The first observation from Table 3.2 is that BLACKBOX runs more
quicly on most of the multi-agent problems than on the single-agent
problems. In particular, all the multi-agent grid problems are solved,
while only one of the single-agent grid problems can be solved by
BLACKBOX. On the other hand, HSP and FF run slightly more slowly
on most multi-agent problems in comparison to their run times on
single-agent problems. This phenomenon is most obvious on prob-
lems in the grid and sokoban domains.

We also observed that BLACKBOX tends to find plans where each
agent participates in the solution with a similar activity level. This
is not a surprising result since BLACKBOX will try to find plans with
shorter time spans and allow many agents to participate at the same
time. Therefore, each agent demonstrates similar activity in the plans
found by BLAckBOX. HSP and FF found solutions with a greater vari-
ance in the activity level — on some problems some of the agents re-
mained idle or with relatively low participation activity throughout
the plan. Based on the above observations, the differences shown

by the constraint-based planners and heuristic search planners be-

30

tween single-agent and multi-agent problems raise some interesting
questions. First, are there ways to _force planners, especially heuristic
search planners, to find plans that meet participation requirements?

Second, how will the planners perform in order to find these plans?

3.3 Restriction on the Feature Action

It is not clear how one can modify the planners to find plans for which
each agent meets the participation requirements. Therefore, instead
of modifying planners themselves, we modify the problem instances
so that any plans for the problems ensure minimum participation of
each agent.

We modify the feature action in the domain definition so that it
will consume one resource unit when it is applied. Then, by restrict-
ing the available resource units an agent has in order to execute its
feature actions, we can indirectly push the planners to find plans in
which each agent meets the participation requirements, or at least
participates in the plan at a certain level. This participation can be
achieved because by limiting the resource an agent has for its fea-
ture actions, problems can only be solved by multiple agents rather
than by a single agent. On the other hand, as shown in the previous
section, our testbed problems can be solved by a single agent if no
restrictions are imposed.

The general outline of a modified feature action is shown in Figure

3.2. Two predicates are added to the original domains. Predicate

31

(:action Feature-Action

:paraneters (?agent ?r ...)
- precondition (and (resource ?r)

(ar ?agent ?r) ...)
ceffect (and (not (ar ?agent ?r)) ...)

; probl eminstance
(:init (resource r1)
(resource r2)

(resource rm
(ar agentl rl1l) (ar agentl r2)
(ar agent2 rl1l) ... (ar agent2 rm

Figure 3.2: General outline of a modified feature action and problem
instance.

(resource ?r) is used to represent resource units, and predicate
(ar ?agent ?r) specifies which resource ?r can be used by agent
?agent . Therefore, to be performed, each feature action will need at
least one available resource unit, and it will consume one unit after
the execution. We then limit the number of resource units available
for each individual agent in the problem. The available resource units
for each agent are added into the initial state. For example, if there
are two sokobans in a problem and sokoban s1 and s2 is allowed
two push actions, predicates (resource r1l), (resource r2), (ar
slrl), (ar s1r2), (ar s2 rl), (ar s2 r2) are added into the
problem’s initial state.

Table 3.3 shows the run time for all planners on the multi-agent

problems with restrictions on feature actions. The number of re-

32

Table 3.3: Comparison between BLACKBOX, HSP, and FF on multi-
agent problems with restrictions on feature actions.

problem #restricted BLACKBOX
feature action | time | #action | #feature action
grid-1 2, 2, 2) 33.1 25 2,1,1)
grid-2 2, 2, 2) 1095 34 2, 2, 2)
grid-3 (1,1, 1) 36.4 42 (1,1, 1)
miconic-1 (3, 3, 3) 31.4 24 (3,2, 2)
miconic-2 (3, 3, 3) 21.9 30 (3, 2, 3)
miconic-3 2,2, 2, 2) 69 39 2,2,1, 2)
rocket-1 (2, 2) 0.44 20 (2, 2)
rocket-2 (3, 3) 1.21 26 (3, 3)
rocket-3 (3, 3) 4.02 22 (3, 3)
sokoban-1 4, 4, 4) 4.25 19 (3,2,4)
sokoban-2 (3, 3, 3) 8.22 20 (3, 3, 3)
sokoban-3 (5, 5, 5) 35.2 16 (5,1, 3)
problem #restricted HSP
feature action | time | #action | #feature action
grid-1 2, 2, 2) 19.6 25 (1,2, 1)
grid-2 2, 2, 2) 14.4 33 2,2, 2)
grid-3 (1,1, 1) 18.6 39 (1,1, 1)
miconic-1 (3, 3, 3) 4.6 29 (2, 3, 3)
miconic-2 (3, 3, 3) 1.98 33 (3, 3, 3)
miconic-3 2,2, 2, 2) 2.59 40 2,2,1, 2)
rocket-1 (2, 2) 344 26 (2, 2)
rocket-2 (3, 3) 280 28 (3, 3)
rocket-3 (3, 3) - - -
sokoban-1 4, 4, 4) - - -
sokoban-2 (3, 3, 3) 975 16 (2, 2, 3)
sokoban-3 (5, 5, b) - - -

Table 3.3 (Continued).

problem #restricted BLACKBOX
feature action | time | #action | #feature action
grid-1 2, 2, 2) 33.1 25 2,1,1)
grid-2 2, 2, 2) 1095 34 2, 2, 2)
grid-3 (1,1, 1) 36.4 42 (1,1, 1)
miconic-1 (3, 3, 3) 31.4 24 (3, 2, 2)
miconic-2 (3, 3, 3) 21.9 30 (3, 2, 3)
miconic-3 2,2, 2, 2) 69 39 2,2,1, 2)
rocket-1 (2, 2) 0.44 20 (2, 2)
rocket-2 (3, 3) 1.21 26 (3, 3)
rocket-3 (3, 3) 4.02 22 (3, 3)
sokoban-1 4, 4, 4) 4.25 19 (3,2,4)
sokoban-2 (3, 3, 3) 8.22 20 (3, 3, 3)
sokoban-3 (5, 5, 5) 35.2 16 (5,1, 3)
problem #restricted FF
feature action | time | #action | #feature action
grid-1 2, 2, 2) 0.56 28 2, 2,0
grid-2 2, 2, 2) 0.77 36 (3,1, 0)
grid-3 (1,1, 1) 22.4 39 (1,0, 1)
miconic-1 (3, 3, 3) 0.10 25 (3,3,0)
miconic-2 (3, 3, 3) 0.07 28 (3, 2,0
miconic-3 2, 2, 2, 2) 0.09 32 (2, 0,0, 0)
rocket-1 (2, 2) - - -
rocket-2 (3, 3) - - -
rocket-3 (3, 3) - - -
sokoban-1 4, 4, 4) - - -
sokoban-2 (3, 3, 3) - - -
sokoban-3 (5, 5, b) - - -

33

34

stricted feature actions shows the maximum number of times an
agent can execute its feature actions. To give an example, grid-1 has
restricted feature actions (2, 2, 2), meaning each agent can perform
Pickup actions at most twice. It is apparent that BLACKBOX gener-
ates results comparable to those in Table 3.2. The increased run
time is probably due to the extra overhead incurred with the action
modification. Heuristic search planners HSP and FF also find plans
very efficiently on certain problems, particularly problems in the grid
and miconic domains. In other words, these results do show that
our approach “pushes” heuristic planners to find plans in which the
participation requirements are met without the need to modify the
planners, while still maintaining their efficiency, at least on certain

domains.

3.4 Complexity Analysis

Nevertheless, as Table 3.3 illustrates, heuristic search planners are
not as efficient as BLACKBOX on multi-agent problems in rocket and
sokoban domains. This reduction may be due to the more intricate
combinatorial nature of these domains.

To reach this conclusion, we first experimented with problem
rocket-2 by varying the number of available resource units on each
rocket. Figure 3.3 shows the result. For the same problem, in spite of
the different number of flights available, the run time for BLACKBOX

remained the same despite the tightening of resources. In contrast,

35

time (sec.) rocket-2
100000 . | | |
Blackbox ——
s HSP s |
10000 £ FE o o
1000 | Y
- /x'””// :7‘,’4\\\ y i
100 F |
10 _:
I oo mmmmmm =TT -—-x’ :
X
01b wo o _:
T ¥ -
0.01 L— . . | |
(5,5) (5, 4) (4, 4) 3, 4) 3.3)

number of flights allowed

Figure 3.3: Comparisons for problem rocket-2 using different num-
bers of flights.
we see the run time go up significantly (note the log scale) for heuristic
search planners when fewer resources are available. FF, especially, is
unable to solve problem rocket-2 within the allowed time frame with
3 flights available for both rockets. In fact, on rocket planning in-
stances with restrictions on feature actions, BLACKBOX can now find
plans more quickly than other heuristic planners. We next conducted
a more complete set of experiments on the rocket domain, and the
results are shown in Table 3.4.

It is apparent that the FF planner either solves the problems in a
very short time or cannot solve them at all. On the other hand, HSP
seems more robust on these problems. Moreover, we also observe that

FF tends to be unbalanced in its flight usage, as shown for rocket-1

36

Table 3.4: Comparison between BLACKBOX, HSP, and FF on multi-
agent rocket problems with restrictions on feature actions.

problem | #r.f.a. BLACKBOX HSP
time | len. | #f.a. time |len. | #f.a.
rocket-1 | (3,3) | 0.48| 20 |(2,2)| 2.03 | 22 | (8, 3)
(3,2) | 0.45| 20 | (2,2) 266 21 | (3, 2)
(2,2) [10.44 | 20 | (2, 2) 344 26 | (2, 2)
rocket-2 | (4,3) | 1.26| 26 | (3,3)| 2221 | 33 | (4, 3)
(3,4) [1.29| 26 |(3,3)| 1045 | 27 | (3, 4)
3,3) || 1.21| 26 | (3, 3) 280 28 | (3, 3)
rocket-3 | (5,5) | 4.61 | 22 |(3,3)| 2.88 | 26 | (5, 5)
(5,4) (4.34| 22 |(3,3)] 11189 | 27 | (5, 4)
(5,3) | 4.17 | 22 | (3, 3) - - -
(4,4) | 4.25| 22 | (3, 3) - - -
4,3) | 3.87| 22 | (3, 3) - - -
(3,3) | 4.02| 22 | (3, 3) - - -
rocket-4 | (4,5) | 1.84 | 26 | (3, 3) 13.2 29 | (4, 5)
(3,4) |1.66| 26 |(3,3)| 47.2 | 27 | (3,4)
3,3) | 1.61| 26 |(3,3)| 45.1 28 | (3, 3)
problem | #r.f.a. BLACKBOX FF
time | len. | #f.a. time |len. | #f.a.
rocket-1 | (3,3) | 0.48| 20 |(2,2)| O0.17 | 24 | (3, 1)
3,2) (045 20 | (2,2)] 0.12 | 24 | (3, 1)
(2,2) 044 | 20 | (2,2) - - -
rocket-2 | (4,3) || 1.26 | 26 |(3,3) | 0.18 26 | (4, 2)
(3,4) 129 26 |(3,3)| 0.55 | 29 | (3, 4)
rocket-2 | (3,3) | 1.21 | 26 | (3, 3) - - -
rocket-3 | (5,5) | 4.61 | 22 [(3,3)| 0.61 28 | (5, 5)
(5,4) (4.34| 22 | (3, 3) - - -
(5,3) | 4.17 | 22 | (3, 3) - - -
(4,4) | 4.25| 22 | (3, 3) - - -
4,3) | 3.87| 22 | (3, 3) - - -
(3,3) | 4.02| 22 | (3, 3) - - -
rocket-4 | (4,5) || 1.84 | 26 | (3,3) | 0.05 25 | 4, 1)
3,4) (1.66| 26 |(3,3)| 0.04 | 25 | (4, 1)
3,3) | 1.61| 26 | (3, 3) - - -

37

and rocket-4. Therefore, we suspect that FF may be weaker than
the other planners for problems that require balanced participation
of all agents. We believe the above results support our conjecture that
heuristic search planners are weaker for problems that require more
balanced participation of all agents.

From the theoretical point of view, the sokoban domain has been
shown to be PSPACE-complete (Culberson, 1997). Therefore, it re-
mains PSPACE-complete when the feature actions are restricted.
However, note that with restrictions on the number of flights, the de-
cision of whether there exist plans for problems in the rocket domain
becomes NP-complete. The proof is shown in the following theorem

and corollary:

Theorem 1. Flights restricted rocket problem with single rocket (FR-
ROCKET;) is NP-complete.

Proof. Clearly FR-ROCKET; is in NP. We reduce from the feedback
vertex set problem (Gary and Johnson, 1979) to show that problems
in FR-ROCKET; are NP-hard. We show that a digraph G(V, E) has
a feedback vertex set V', where |V’| < K, iff there exists a plan for
a planning problem with restricted flight number < |V| + K in FR-
ROCKET;.

For each digraph G(V, F), we construct a planning problem with
|V| + |E| passengers and |V| + 1 locations. A rocket is initially located

at vy. For each other locations there is a passenger at v, that needs to

38

be delivered. For each (u,v) € E, there is a passenger at v that needs
to be delivered to v.

(=) For each feedback vertex set V' C V and |V’| < K, the planning
problem can be solved by loading all |V| passengers at v, and flying
the rocket from v, to any vertex in V' first, and then to the vertices
in the subgraph V\V’ in an order that is consistent with the arcs in
V\V’, and finally flying the rocket back to a vertex in V'’ since V' is
a feedback vertex set. The above process can be repeated until all
vertices in V have been visited. Passengers initially at v, are dropped
when it is at the goal and passengers corresponds to (u,v) are picked
at v and dropped at v. This requires |V |+ |V’| flights and the plan can
be solved with bounded flight number of |V |+ K since |V'| < K.

(<) If there exists a plan for the planning problem , those vertices
that are visited more than once form a feedback vertex set V’. Since
every vertex needs to be visited at least once and the number of flights

is less than |V| + K,

V< K. O

Corollary 1. Flights restricted rocket problem with multi-rocket (FR-
ROCKET) is NP-complete.

Proof. This can be shown by simply reducing FR-ROCKETS; to FR-
ROCKET since any problem in FR-ROCKETS; is a problem in FR-
ROCKET. O

On the other hand, we do find polynomial time algorithms to solve
feature action restricted multi-agent problems in grid and miconic

domains. Multi-agent problems in the grid domain include an N x N

39

grid and several robots that can move between connected grid cells.
Each cell in the grid can be either open or locked. Only open adjacent
cells can be reached by a robot. Each cell may also contain keys that
can be used to unlock a cell if the locked cell and the key have the
same shape. Robots can pick up and put down a key. The task for
problems in the grid domain is to use robots to deliver keys to their
goal cells. For the grid domain, the number of required Pickups can
be decided by the number of keys that need to be moved and by the
number of keys required to unlock cells. In the worst case, supposing
that M keys need to be moved and every cell needs to be unlocked,
the maximum number of Pickups is O(N?+ M). If the number of avail-
able Pickup actions for robots is greater than the minimum required
number, then the problem becomes solvable. Plans can be formed by
moving robots in a systematic manner in the grid; for example, from
left to right and from top to bottom. Since the grid can be explored in
O(N?) actions by the robots, unlocking cells takes O(N*) actions and
keys can be delivered in O(MN?) actions. Therefore, feature action
restricted problems in the grid domain can be solved in polynomial
time.

The miconic domain is based on an elevator control problem. El-
evators can move up and down between floors and people can get on
or off an elevator. The task is to carry people from their original floors
to their destination floors by elevators. The restricted miconic prob-
lems can be solved by calculating the required number of “Up” actions

(people whose destination is higher than their original floor). If there

40

are enough Up actions allowed in total, all elevators can move down
to the lowest floor first. Next, elevators move up to deliver people who
need to go up, and then one or more elevators move to the highest
floor and move down to serve people who need to go down.

Our analysis and experiments show that constraint-based plan-
ners appear to be more robust over a range of multi-agent domains.
However, heuristic planners are still highly efficient in certain of our
multi-agent benchmark domains.

In addition, the above results demonstrate that our approach to
modifying problem instances can be used to evaluate the potential
performance for various planners on multi-agent problems. Mean-
while, our encodings allow us to enforce a certain minimal level of
participation for each agent. These instances also provide an inter-
esting multi-agent challenge benchmark for evaluating planning sys-
tems. The results on the testbed problems show that heuristic search
and constraint-based planners complement each other on the test
domains.

However, two even more interesting questions remain. First, are
there ways to make heuristic search planners more robust on multi-
agent problems? Second, are there ways to make constraint-based
planners more scalable? Ideally, planning systems should be able
to find plans in which participation requirements can be met with-
out modifying problem instances. Therefore, a better solution to the
multi-agent problems may be a hybrid system that incorporates both

constraint-based and heuristic search planner techniques.

41
3.5 Summary

We have shown ways of adapting planning benchmark problems to in-
corporate participation requirements for multi-agent instances. Our
proposal for encoding participation requirement into the problem in-
stances has the advantage of maintaining the basic plan search na-
ture of the benchmark problems (solution time provides a good mea-
sure of performance). Moreover, no changes need to be made to the
planners themselves and no special post-processing of the plans is re-
quired. An interesting unanswered question is whether it is possible
to similarly encode other quality measures such as “plan robustness”
into the planning problem instances.

Using the modified multi-agent benchmark problems, we have
given a detailed comparison of constraint-based and heuristic search
based planning techniques. Our results show that these planners
have complementary strengths. More specifically, heuristic planners
are very efficient on certain multi-agent domains, such as grid and
miconic domains, but are less efficient on domains with more in-
tricate multi-agent interactions. Constraint-based planners, on the
other hand, are more robust over a range of multi-agent problems
but are less efficient than heuristic planners on the domains in which
the heuristic planners excel. Although ways to make heuristic search
planners more robust on multi-agent problems and ways to make
constraint-based planners more scalable are still unclear, the com-

plementary nature of these planners suggests that perhaps a hybrid

42

approach would lead to yet a more powerful class of planners. An
investigation of the inherent search topology (Hoffmann, 2001) of the
multi-agent plan space would also be an interesting future research

direction and might provide insights for better solutions.

Chapter 4

Control Knowledge in Planning

In recent years, there has been a burst of activity in the planning com-
munity with the introduction of a new generation of constraint and
graph-based approaches, such as GRAPHPLAN (Blum and Furst, 1995)
and BLACKBOX (Kautz and Selman, 1996, 1999). These planners are
domain independent and outperform more traditional planners on a
range of benchmark problems. The surprising effectiveness of these
planners represents a departure from the long-held belief that the use
of domain-specific planning control knowledge is unavoidable during
plan search. Nevertheless, control knowledge has the potential to
significantly increase the performance of the new planners. In fact,
the constraint-based framework behind GRAPHPLAN and BLACKBOX
allows, at least in principle, the incorporation of control knowledge
in a purely declarative manner by encoding the control as additional
constraints.

A recent example of the effectiveness of declarative control knowl-
edge is the TLPLAN system by Bacchus and Kabanza (2000). In the

TLPLAN system, control knowledge is represented by formulas in tem-

43

44

poral logic. For example, the “next” operator from temporal logic al-
lows specification of what can and cannot happen at the next time
step. The control knowledge is used to steer a forward-chaining plan-
ner. One of the surprises of this system is that, despite the rather
basic search method, with the right control knowledge, the system
is highly efficient on a range of benchmark problems, often outper-
forming GRAPHPLAN and BLACKBOX (Bacchus and Kabanza, 2000).
Of course, in this comparison GRAPHPLAN and BLACKBOX ran with-
out any control; in addition, developing the right control formulas for
TLPLAN is a non-trivial task.

As Bacchus and Kabanza point out, the forward-chaining search
approach is a good match with the declarative control specification.
At each node in the search tree, the control formula is evaluated to
determine what new nodes are reachable from the current state. With
good control knowledge, many nodes are pruned and the search is
“pushed” towards the goal state. To give some intuition as to how this
is achieved, we point out that the control rules can encode informa-
tion about the difference between the current state and the goal state
by using a predicate that states, for example, “package currently not
at goal location.”

One interesting research question is whether the same level of con-
trol can be effectively incorporated into the GRAPHPLAN or BLACKBOX
style planner. This is far from a trivial question because TLPLAN’s ef-
ficiency stems from the tight coupling between the control rules and

the forward-chaining search strategy. In addition, TLPLAN allows for

45

almost arbitrary complex control formulas that can generally be eval-
uated efficiently at each node (the process is in general intractable but
in practice appears efficient for control information (Bacchus and Ka-
banza, 2000)). In the GRAPHPLAN or BLACKBOX framework the search
proceeds very differently. The planning task is captured as a set of
constraints mapped out over a fixed number of time steps. In GRAPH-
PLAN, the constraints are captured in a planning graph, which is sub-
sequently searched for a valid plan. In BLACKBOX, the constraints
are translated into a propositional formula, which can be searched
with a satisfiability tester of the user’s choice. In any case, in nei-
ther GRAPHPLAN nor BLACKBOX, dose the search proceed through a
set of well-defined world states. In fact, the search may even involve
intermediate states that are unreachable from the initial state or even
physically impossible to attain. In SATPLAN, especially, the search is
difficult to characterize, because the problem is reduced to a generic
propositional representation without an explicit link to the original
planning problem. The SAT solvers proceed by finding a truth assign-
ment for the encoding (corresponding to a valid plan) without taking
into account the fact that the encoding represents a planning problem
(Baioletti et al., 1998; Ernst et al., 1997; Kautz and Selman, 1998).
One way to incorporate the control knowledge from TLPLAN into
a SATPLAN encoding is to specify additional constraints. We have
extended the PDDL planning input language (McDermott, 1998) of the
BLACKBOX planner to allow for plan control as specified in temporal

logic formulas. The control knowledge is automatically translated

46

into a class of additional propositional clauses, which are added to
the planning formula. We will discuss below the kinds of control that
can be efficiently translated into a set of constraints, as well as the
rules that cannot be captured efficiently.

Using a detailed experimental evaluation, we will show that control
knowledge can indeed speed up the plan search significantly in the
BLACKBOX framework. We also provide a detailed comparison with
TLPLAN. As we will show, our planner becomes competitive with the
TLPLAN performance. Initially, this was somewhat of a disappoint-
ment to us because we assumed that the BLACKBOX framework with
control should be able to outperform TLPLAN with the same control.
However, a closer inspection of the results clarified the difference in
the approaches.

TLPLAN is good at finding plans with a relatively few actions but
it does not do well in domains that allow for parallel actions. In par-
ticular, we studied the logistics planning domain (see Appendix A
for a complete definition of a logistics domain in PDDL). This do-
main involves the task of delivering a set of packages to a num-
ber of different locations using one or more airplanes and vehicles.
When several airplanes are available, one can find parallel plans, in
which different packages are moved using different airplanes simul-
taneously, allowing minimization of the overall time span of the plan.
Much of the combinatorics of the domain arises from the problem of
finding good ways to interleave the movements of packages and air-

planes. The sophisticated control in TLPLAN will dramatically narrow

47

the search. However, combined with the depth-first forward-chaining
strategy, the planner generates highly sequential plans. In fact, on
the larger problems, the plan will use a single airplane to deliver all
packages. (Such plans can actually be found in polynomial time.)
BLACKBOX, on the other hand, naturally searches for the shortest
parallel plan because it operates by searching plans that fit within a
certain number of time steps. So, although both planners with con-
trol find plans in comparable amounts of time, BLACKBOX produces
plans that have a much higher level of parallelism, thereby tackling
the true combinatorial nature of the underlying planning problem. It
is not clear how TLPLAN can be made to generate more parallel plans.
(We describe several attempts to increase TLPLAN’s parallelism be-
low.) Which planner should be preferred will depend on the applica-
tion and the level of inherent parallelism in the domain.

We believe our analysis provides new insights into the relative per-
formance of different state-of-the-art planning methods. We hope that
our findings can be used to further enhance these methods, and in
general deepen our understanding of the design space of planning

systems (Kambhampati, 1997).

4.1 Temporal Logic for Control

In TLPLAN the control knowledge is encoded in temporal logic formu-
las (Bacchus and Kabanza, 2000). The best way to introduce this

approach is by considering an example control formula:

48

O [p:airplane(p)]3[l:at(p I)]V[o:in-wong-city(o)]

in(p)=0Oin(o p))

In temporal logic, O f means f is true in all states from the current
state onwards and () f means f is true in the next state. Therefore,
the above formula can be read as “If a package o is in airplane p, p is
at location [/, and [is not in o’s goal city, then package o should stay
in airplane p in the next time step,” and the above sentence should

“always” hold. Predicate i n- wr ong- ci ty is defined as follows:

in-wong-city(o 1) =

d[g:goal (at (o g))] I[c:in-city(l ¢)] min-city(g ¢

After careful review of the control rules used by Bacchus and Ka-
banza, we found that the rules can be classified into the following

categories:

I Control that involves only static information derivable from the

initial state and goal state;

II Control that depends on the current state and can be captured

using only static user-defined predicates; and

III Control that depends on the current state and requires dynamic

user-defined predicates.

The meaning of these categories may not be immediately obvious.

Hopefully, the detailed examples below will clarify the distinctions.

49

We will focus on two different ways of incorporating control: prun-
ing the planning graph (rules from category I), and adding additional
propositional clauses to the planning formula (rules from categories I

and II). The rules in category III cannot be captured compactly.

4.1.1 Control by Pruning the Planning Graph

GRAPHPLAN constructs a special graph, called the planning graph,
structured from the initial plan specification. GRAPHPLAN uses this
graph to search for a plan leading from the initial state to the goal
state. BLACKBOX translates the graph into a propositional encoding
and then uses various SAT solution methods to search for a satisfying
assignment, which corresponds to a plan. The BLACKBOX strategy
closely mimics the original SATPLAN approach using linear encodings
generated directly from a set of logical axiom schemas. The planning
graph contains two types of nodes, propositional nodes (“facts”) and
action nodes, arranged into levels indexed by time.

Certain control formulas can be used to directly prune nodes in
this planning graph. Consider the following control rule (category I)

in the logistics domain:

Rule 1 Do not unload an object from an airplane unless the object is

at its goal destination.

To illustrate this rule, we consider the problem £ in Figure 2.1
where package pkgl is initially located in NYC and its destination lo-

cation is in | TH. Once pkgl is loaded into an airplane pl ane, it is

50

Table 4.1: Actions and facts pruned by Rule 1 in Problem L.

Pruned Actions Prunded Facts
Unload-Airplane (pkgl pl ane NYC) | (at pkgl SYR)
Unload-Airplane (pkg2 pl ane NYC) | (at pkg2 NYC)
Unload-Airplane (pkgl pl ane SYR)
Unload-Airplane (pkg2 pl ane SYR)

not necessary to unload pkgl at the airports in cities other than | TH.
In other words, action Unload-Airplane (pkgl pl ane SYR) can be
removed from the planning graph at all levels. After pruning these
nodes, one can also prune the fact nodes (at pkgl SYR), since this
cannot be achieved by any other action except for the one we just
pruned. Table 4.1 shows the actions and facts that are pruned by
Rule 1 in the planning graph.

When constructing the planning graph, the planner can be in-
structed to prune action nodes in the plan graph as implied by the
category I rules. In our implementation, Rule 1 is captured by aug-
menting the original PDDL (McDermott, 1998) planning language
used in BLACKBOX as shown in Figure 4.1.

The user-defined predicate “i n-w ong- ci t y” is used to determine
whether a location is the goal location for an object. It is worth
noting that the value for predicate “i n-w ong-ci ty” can be decided
purely based on the information in the goal state. The instantiated
Unload-Airplane actions will not be added to the planning graph when
the predicate (i n-wong-city ?obj ?loc), which is the “excl ude”

condition in the Unl oad- Ai r pl ane rule, is true. The “i n- w ong-

51

(:action Unl oad- A rpl ane
: paraneters (?obj ?airplane ?loc)
:precondition (and (obj ?obj)
(ai rpl ane ?airpl ane)
(l ocation ?loc)
(in ?0bj 7airplane)
(at ?airplane ?loc))
ceffect (and (not (in ?obj ?airplane))
(at ?0bj ?loc)))

(:defpredicate in-wong-city
. paraneters (?obj ?loc)
(exists (?goal-loc) (goal (at ?0obj ?goal-1o0c))
(exists (?city) (in-city ?loc ?city)
(not (in-city ?goal-loc ?city)))))

(:action Unl oad- Airpl ane
:exclude (in-wong-city ?obj ?loc))

Figure 4.1: Rule 1 (category I) in a logistics domain.

ci ty” predicate is purely an auxiliary predicate, and it is not incor-
porated into the final planning graph.

Before an instantiated action is added into the planning graph, it
will be checked against all exclude conditions for that action; if any
of them holds, the action will be pruned and the effects introduced
by that action at the next propositional node level may be pruned as
well.

Table 4.2 shows the planning graph size before and after pruning.
We see that, in the logistics domain, when applying the category I

control rules from TLPLAN, the number of nodes is reduced by ~40%.

52

Table 4.2: The effect of graph pruning (category I rules).

problem | length | #original nodes | #nodes with pruning
logistics-a 11 4246 2825
logistics-b 13 5177 3437
logistics-c 13 6321 3815
logistics-d 14 9842 5135

This approach can be easily applied to the descendants of GRAPH-
PLAN and BLACKBOX. However, pruning of the planning graph does
require that the rules rely solely on information of the goal state and
possibly the initial state. Adding new propositional clauses provides

a more powerful mechanism for adding control.

4.1.2 Control by Adding Constraints

For some domain-specific knowledge that cannot be captured via
pruning of the planning graph, we can often add additional clauses to
the propositional plan formulation as used in BLACKBOX to capture
the control information. Consider the following control rule (category

I):

Rule 2 Do not move an airplane if there is an object in the airplane

that needs to be unloaded at that location.

First, note that this rule cannot be captured using graph prun-
ing. For example, we consider removing the action node Fly-Airplane
(plane aptl apt2) in layer i (i.e., time 7). Whether this can be

done would depend on the truth value of the predicates that indicate

53

(:wifctrl r2
: scope
(forall (?pln) (airplane ?pln)
(forall (?loc) (airport ?loc)
(forall (?obj) (obj ?obj)
(not (in-wrong-city ?0bj ?loc)))))
:precondition
(and (at ?pln ?loc)
(in ?0bj ?pln))
reffect
(next (at ?pln ?loc)))

Figure 4.2: Rule 2 (category II) in a logistics domain.

what is in the pl ane at time ¢, but, of course, those truth values are
not known in advance and are actually different for different plans.
Therefore the node cannot be removed from the planning graph with-
out the risk of losing certain plans. What is needed is addition of
clauses into the planning formula that in effect capture the rule but
also depend on the truth values of the propositions that indicate what
is in an airplane.

Logically, Rule 2 can be illustrated as follows:

Vip:airplane(p)]V[l:airport(l)]V[o: (not
(in-wong-city(ol))) |

(at(p DAin(o p))= Oat(p 1)

Figure 4.2 shows how to translate the above rule in our implemen-
tation. The : scope field defines the domain where the rule applies,
while : precondi ti on and : ef f ect fields represent the antecedent

and consequent for the implication expression that will be added

54

(:wifctrl rlp
: scope
(forall (?pln) (airplane ?pln)
(forall (7?obj) (obj ?o0bj)
(forall (?loc) (airport ?loc)
(in-wong-city ?0bj ?loc))))
: precondi tion
(and (at ?pln ?loc)
(in ?0bj ?pln))
ceffect
(next (in ?o0bj ?pln)))

Figure 4.3: Rule 1 in propositional control form.

to the propositional formula. As mentioned earlier, predicate “i n-
wr ong-ci ty” is only used by the system and will not be added into
the planning formula. In fact, we can also translate Rule 1 into propo-
sitional form as shown in Figure 4.3.

It is worth noting that the predicate “i n-w ong- ci t y” used in the
rules shown in Figures 4.2 and 4.3 is not added to the planning for-
mula. It simply functions as a filter (indicated by the “: scope” key-
word) for adding the clauses defined by : precondi ti on and : ef f ect
part. This limited function ensures that we do not lose any infor-
mation because “i n-wrong-city” is static (independent of current
state) and completely defined by the goal state. For example, if the
goal destination of package pkgl is in city | TH, it follows that both
(in-wong-city pkgl NYC) and (i n-wong-city pkgl SYR) are
true, independent of the current state. In the next section, we will see

that category III rules involve defined predicates that do not have this

property.

55

Table 4.3: Comparison between graph pruning and propositional con-
trol of category I control rules.

before simplification after simplification
problem | len. | graph | propositional | graph | propositioanl
pruning control pruning control
#vars #vars #vars #vars
rocket-a | 7 1004 1337 826 826
rocket-a | 7 1028 1413 868 868
log-a 11 2175 2709 1505 1511
log-b 13 2657 3287 2182 2182
log-c 13 3109 4197 2582 2590
log-d 14 4241 6151 3547 3551
log-e 15 5159 7818 4285 4285
log-1 9 2608 3043 1879 1879
log-2 11 11135 15655 9875 9875
tire-a 12 781 812 269 269
tire-b 30 5875 8504 4985 5114

One reasonable question is how adding category I rules using ad-
ditional clauses compares to the graph pruning approach discussed
earlier. We used the six category I control rules from TLPLAN. In Ta-
ble 4.3, we present the planning formulas created from the planning
graph. The first two columns give the number of variables for the
two different strategies. As might be expected, the planning graph
pruning strategy gives the smallest number of variables. However,
we also include the result of running a polynomial time simplification
procedure (Crawford, 1984). As the last two columns illustrate, the
remaining numbers of variables are identical for most formulas, with
only some small differences for certain instances. When we checked

into the remaining differences, we found that they result from some

56

specialized additional pruning done by BLACKBOX specifically for the
final layer of the planning graph. Overall, Table 4.3 shows that direct
graph pruning or a coding via additional clauses leads to formulas
on essentially the same set of variables. In addition, we also verified
that the variables actually refer to the same planning propositions in
terms of the original planning problem. As a result, the two mecha-
nisms are essentially equivalent for category I rules, although they do
capture the planning problem using a different clause set. Below we

will compare the computational properties of these two approaches.

4.1.3 Rules With No Compact Encoding

We now consider the category III rules. Although these rules can be
translated into additional propositional constraints in principle, they
do lead to an impractical number of large clauses to be added to the

planning formula. Consider the following rule from TLPLAN:

Rule 3 Do not move a vehicle to a location unless (1) the location
is where we want the vehicle to be in the goal, (2) there is a
package at that location that needs to be picked up, or (3) there
is a package in the vehicle that needs to be unloaded at that

location.

The main purpose of Rule 3 is to avoid unnecessary moving of vehi-
cles. First, the rule requires current state information, and therefore
cannot be handled by graph pruning. Secondly, in order to translate

the rule into propositional constraints, we need to introduce extra

57

predicates to represent the fact that there is a package in the desti-
nation location that needs to be loaded or unloaded by the vehicle.
For example, in order to avoid unnecessary moving of airplanes (a
form of vehicle), one way to encode it is to define the predicate “need-

t o- nove- by- ai r pl ane” for each airport first:

V]o,l:in-wong-city (o l)]at(o) =

need-t o- nove- by- ai r pl ane(l)

V[l : need-to-nove-by-airplane(l)]= Jo:in-wong-city (o)]

at (o 1)

We can also define the predicate “need- t o- unl oad- by- ai r pl ane”

in a similar way as follows:

V[p:airplane(p)]V]o,l:=in-wong-city (o)]

i n(o p) = need-to-unl oad- by-airpl ane(p 1)

V[p:airplane(p)] V[l : need-to-unl oad- by-airplane(p [)] =

dlo:in (o p)] min-wong-city(o)
And finally, we will need the following formula to encode Rule 3:

Vp:airplane(p)|V[il1,i2:(not (=11 [2)) |
(at (p I1)A —need-t o-unl oad- by- ai r pl ane(p 2)A

—need-t o- nove- by-ai rpl ane(l2)) = O at (p I1)

Supposing there are n packages, m cities, and k airplanes, the

above encoding will introduce O(mn) predicates and O(mn + km?)

58

propositional clauses in each time step. Furthermore, some of them
are lengthy clauses, containing up to O(mn) number of literals. We
explored adding this kind of control information to our formulas but,
except for the smallest planning problems, the formulas become too
large for our SAT solvers. The key difference with category II rules,
such as Rule 2, is that in this case we also need to add clauses that
capture our defined predicates, e.g., “need-t o- nove- by- ai r pl ane”.
This capture is in contrast with the encoding of, e.g., Rule 2, where,
because of the static nature of the defined predicates, they can simply
be used as a filter when adding clauses (see discussion on : scope
above). This filtering cannot be done for our “need-t o- nove- by-
ai r pl ane” because its truth value depends on where a package is
at the current time. As a consequence, the category III rules are ex-
amples of rules that cannot effectively be captured into a constraint-
based planner such as BLACKBOX. Fortunately, as we will see below,
in terms of computational efficiency the category I and Il rules appear
to do most of the work, at least in the domains we have considered.
Therefore, another interesting research question is whether there is a

more effective way to encode category III rules.

4.2 Empirical Evaluation

The testbed used in this section is a series of problems from the lo-
gistics planning domain and the rocket domain (Veloso, 1992; Blum

and Furst, 1995; Selman and Kautz, 1996; McDermott, 1998), and

59

the tireworld domain from the TLPLAN distribution (Bacchus and Ka-
banza, 1998). In addition, we created two new problem instances:
logistics-1 and logistics-2, which can be solved with highly parallel
plans (up to 20 actions in parallel). All experiments were run on a
300Mhz Sparc-Ultra machine. Times are given in CPU seconds.
Table 4.4 gives the results of BLACKBOX running on problems with
different levels of domain knowledge. We used six category I rules
and four category II rules (see Appendix B for the complete set of
hand-coded control rules used in experiments). Results of random-
ized solvers were averaged over ten runs. The column labeled “BLACK-
BOX” gives the run time without any control knowledge. Subsequent
columns give results for the different control strategies. As a general
observation, we note that the effect of control knowledge becomes
more apparent for the larger problem instances. For example, on
our hardest problem, “logistics-e,” basic BLACKBOX takes almost one
hour, but with category I, and II control, it only takes 60 seconds.
The results on the larger instances are more significant than those
for the smaller problems, because the solution times on the smaller
instances are often dominated by basic I/O operations such as read-
ing the formula from disk, as opposed to the actual computational
time for solving the formulas. Based on the table, we can make the

following observations:

Table 4.4: BLACKBOX with control knowledge.

I,: Category I control knowledge used for pruning planning graph.
I,: Category I control knowledge added in propositional form.
II: Category II control knowledge added in propositional form.

problem | length | BLACKBOX || BLACKBOX || BLACKBOX
(Ia) (1)
time time time
rocket-a 7 2.06 4.20 3.41
rocket-b 7 2.87 2.09 2.46
logistics-a 11 3.80 2.78 3.64
logistics-b 13 4.83 3.46 4.56
logistics-c 13 6.75 3.89 5.64
logistics-d 14 15.85 7.29 10.4
logistics-e 15 3522 151 201
logistics-1 9 4.80 3.68 4.97
logistics-2 11 406 - 270
tire-a 12 1.37 1.34 1.35
tire-b 30 114 93 72
problem | length | BLACKBOX || BLACKBOX | BLACKBOX
(1) (I, &II) (I, &II)
time time time
rocket-a 7 2.10 3.92 3.82
rocket-b 7 3.26 1.85 2.49
logistics-a 11 3.74 2.78 3.63
logistics-b 13 4.75 3.41 4.66
logistics-c 13 6.71 3.94 5.81
logistics-d 14 15.69 6.82 10.23
logistics-e 15 2553 60 148
logistics-1 9 4.83 3.70 4.98
logistics-2 11 360 130 141
tire-a 12 1.36 1.33 1.34
tire-b 30 55 21 23

61

e Control information does reduce the solution time, especially on
the harder problem instances. Consider the data on logistics-e,

logistics-2, and tire-b.

e Category I control rules, encoded via graph pruning and as ad-
ditional clauses (columns I, and [;) lead to roughly the same
speedup on the larger problems. One notable exception is the
logistics-2 problem, where the solution time actually goes up for
strategy I,. This increase is most likely a consequence of the
fact that clauses are eliminated by the pruning, leading to less
propagation in the SAT solver. We do not see this problem when
the knowledge is added via additional clauses (I;), which there-
fore appears to be a more robust strategy. The smaller prob-
lem instances are already solved within a few seconds by ba-
sic BLACKBOX; therefore, not much can be gained from control

(again, partly because I/O dominates the overall times).

e Category I rules are most effective on problems from the logis-
tics domain; category II rules are more effective in the tireworld.
One interesting research issue is whether one can identify in
advance which kinds of rules are most effective for a domain
(measurements such as clause-to-variable ratios and degree of

unit propagation may be useful here).

e The effect of control is largely cumulative. Our category I rules
combined with category II lead to the best overall performance

(see columns I,&II and I,&II).

62

Table 4.5: Comparison between BLACKBOX and TLPLAN.

problem BLACKBOX(I, &II) TLPLAN-dfs
length | time | #action | length | time | #action
logistics-a 11 2.78 72 13 0.49 51
logistics-b 13 3.41 71 15 0.4 42
logistics-c 13 3.94 83 17 0.64 51
logistics-d 14 6.82 104 26 2.13 70
logistics-e 15 60 107 24 4.27 89
logistics-1 9 3.70 77 15 0.9 44
logistics-2 11 130 147 29 33.16 93
problem BLACKBOX(I, &II) TLPLAN-rand-dfs
length | time | #action | length | time | #action
logistics-a 11 2.78 72 15 0.66 57
logistics-b 13 3.41 71 15 0.43 46
logistics-c 13 3.94 83 15 0.72 55
logistics-d 14 6.82 104 18 2.43 75
logistics-e 15 60 107 23 4.57 96
logistics-1 9 3.70 77 15 1.01 49
logistics-2 11 130 147 16 | 34.52 100

Next, we compare the performance of TLPLAN and BLACKBOX. Ta-
ble 4.5 gives our results. We note that, in general, TLPLAN is still
somewhat faster than BLACKBOX with similar control. Note that both
planners now use the same control information except for some cat-
egory III rules in TLPLAN. However, the differences are much smaller
than with the original BLACKBOX without control (see Table 3 in Bac-
chus and Kabanza, 2000). We believe these results demonstrate that
we can meet the challenge, proposed by Bacchus and Kabanza, to
effectively incorporate declarative control as used in TLPLAN into a
constraint-based planner. Nevertheless, as noted at the beginning of

this chapter, we were somewhat disappointed that BLACKBOX with

63

control was not faster than the TLPLAN approach, given the more
sophisticated search of the SAT solvers. Therefore, in order to get
a better understanding of the issues involved, we consider the plan
quality, especially, in terms of the parallel plan length, of the gener-
ated plans.

Table 4.5 gives plan length in terms of number of actions and
parallel time steps for the logistics domain. Note that the logistics do-
main allows for a substantial amount of parallelism because several
planes can fly simultaneously. We see that TLPLAN often finds plans
with fewer actions; however, in terms of parallel lengths the plans
are much longer than those found by BLACKBOX. In fact, BLACKBOX
because of its plan representation, can often find the minimal length
parallel plan. On the larger problems, especially, we observe a sub-
stantial difference. For example, on logistics-e, TLPLAN requires 24
time steps versus 15 for BLACKBOX. After a closer look at the plans
generated by TLPLAN, we found plans that only use a single airplane
to transport the packages. Such plans can be found very quickly in
polynomial time but ignore much of the inherent combinatorics of the
domain. The reason TLPLAN finds such plans is a consequence of its
control rules and the depth-first search strategy.

It is not clear how to improve the (parallel) quality of the plans gen-
erated by TLPLAN. Part of the difficulty lies in the fact that the control
knowledge is tailored towards more sequential plans. For example,
rules that keep an airplane from flying if there are still packages to

be picked up at a location prevent a plan where other airplanes can

64

pick up the packages later. In addition, the depth-first style search
in TLPLAN also tends to steer the planner towards more sequential
plans (e.g., always picking ai r pl ane- 1 to move). We experimented
with several different search strategies to try to improve the plans
generated by TLPLAN. First, we checked whether the parallel quality
of plans obtained with breadth-first search was better. This does not
appear to be the case because we could only check this on very small
instances; the TLPLAN search quickly runs out of memory on larger
problems. An approach that does lead to some improvement is to ran-
domize the depth-first search. Table 4.5 shows some improvement in
parallel length but still nothing close to the minimal possible. The
reason for the improvement is that TLPLAN now can pick different
airplanes to move more easily in its branching because the determin-
istic depth-first search repeatedly selects airplanes in the same order.
Interesting questions raised by these observations are how TLPLAN
can be made to find more parallel plans and how this would affect its

performance.

4.3 Summary

Intuitively speaking, the control in TLPLAN attempts to push the plan-
ning problem into a polynomial solvable problem. This attempt is
along the lines of the general focus in planning on eliminating or
avoiding search as much as possible.! TLPLAN achieves its objective

in a very elegant manner because the control rules are quite intuitive

! Austin Tate is reported to have said “If you need to search you're dead.”

65

and purely declarative. In combination with the forward-chaining
planner, the rules do lead to polynomial scaling in a number of in-
teresting domains. Yet, our analysis shows that there is a price to
be paid for this gain in efficiency; namely, the loss of much of the
parallel nature of many planning tasks.?

We have shown it possible to obtain the benefits of the control
rules in terms of efficiency, without paying the price of reduced paral-
lelism, by incorporating the control rules into the BLACKBOX planner.
In a sense, the SAT solvers in BLACKBOX still tackle the combinato-
rial aspect of the task, but the extra constraints provide substantial
additional pruning of the search space.

We implemented the system by enhancing the BLACKBOX planner
with a parser for temporal logic control rules, which are translated
in additional propositional clauses. We also showed that a subset of
the control (category I rules) can also be handled by direct pruning
of the planning graph. Our experimental results show a speedup
due to the search control of up to one order of magnitude on our
problem domains. Given the effectiveness of the control, it would be
interesting to add further constraints, such as state invariants (Fox
and Long, 1998; Gerevini and Schubert, 1998; Kautz and Selman,
1998).

We believe our work demonstrates that declarative control knowl-

edge can be used effectively in constraint-based planners without loss

2Given that these planning problems are NP-complete, it is clear that something
will be lost by solving them in polynomial time.

66

of (parallel) plan quality. Compared to TLPLAN, which is a highly effi-
cient planner in and of itself, the main advantage of our approach is
that we maintain parallel plan quality. Overall, incorporating declara-
tive control into constraint-based planning appears to be a promising
research direction. With more sophisticated control, another order of
magnitude speedup may be achievable.

A natural question to ask is how this search control knowledge
can automatically be acquired by the use of rule-based learning tech-
niques. Learning of control knowledge has been explored previously
for other, more procedural, planners (see, for example, Etzioni, 1993;
Knoblock, 1994; Minton, 1988a; Veloso, 1992).

In the next chapter, we will present the first positive results for
acquisition of such high level, declarative control knowledge using
machine learning techniques by training the planner on a sequence

of small problems.

Chapter 5

Learning Control Knowledge
for Planning

Deterministic state-space planning is a hard combinatorial problem
that arises in tasks such as robot control, software verification, and
logistics scheduling. Although in general planning is PSPACE-com-
plete (Bylander, 1991), for particular domains efficient algorithms —
i.e., polynomial or at worst exponential with a very low exponent —
may exist for finding exact or approximate solutions.

Researchers in explanation-based learning (EBL), inductive learn-
ing, case-based reasoning, and genetic programming have long stud-
ied the problem of automatically creating efficient planners by learn-
ing domain-specific or case-based rules to control a general search
engine (Mitchell et al., 1986; Minton, 1988a; Carbonell et al., 1990;
Veloso, 1992; Etzioni, 1993; DedJong and Mooney, 1986; Bhatnagar
and Mostow, 1994; Kambhampati et al., 1996; Borrajo and Veloso,
1997; Aler et al.,, 1998; Leckie and Zukerman, 1998). However,

the successful practical application of machine learning techniques

67

68

has been limited by at least two factors. First, traditional domain-
independent planning systems (e.g., PRODIGY, SOAR, NONLIN,
UCPOP) scale so poorly that extensive learned control knowledge is
required to raise their performance to an acceptable level. Second,
previous works have focused on learning control rules that are spe-
cific to the details of the underlying general planning algorithms. This
approach leads to a need for the learning and managing of large num-
bers of rules, which can be extremely costly in terms of learning time
and the required number of training examples. Furthermore, the
learned domain-specific rules cannot be reused by other planners,
nor can the learning module itself be ported to other systems without
extensive modifications.

In recent years, a new generation of planning systems with much
improved speed and scalability has become available (Weld, 1999).
These systems formulate planning as the solving of a large constraint-
satisfaction problem: GRAPHPLAN (Blum and Furst, 1995) and its de-
scendents encode a CSP in a data structure called a plan graph, while
SATPLAN and its descendents (Kautz and Selman, 1992, 1996, 1999)
explicitly convert planning problems into Boolean satisfiability. The
constraint-based formulation opens up the possibility that domain-
specific control knowledge can be added to the planner in a purely
declarative manner via a set of additional constraints. These new
constraints do not make explicit reference to the workings of the un-
derlying constraint-satisfaction algorithm; like the constraints that

define the original problem instance, they only refer to the solution

69

(plan) space. In earlier work (Kautz and Selman, 1998; Huang et
al., 1999), we showed that the same set of hand-coded declarative
constraints can provide dramatic reductions in solution time of radi-
cally different constraint-satisfaction algorithms (e.g., local search or
systematic search), and that a large subset of the constraints can
be employed by fundamentally different planning architectures (e.g.,
the forward-chaining planner TLPLAN [Bacchus and Kabanza, 2000]).
The next natural question to ask is whether this kind of declarative
control knowledge can be learned.

In this chapter we present our initial positive results on automatic
acquisition of such constraints using machine learning techniques.
The training set consists of a small number of planning problems (in
the experiments here, ten or fewer) together with their optimal so-
lutions. We will describe how positive and negative examples of the
target concepts used by the control rules are heuristically extracted
from the input data. The rules are generated by an inductive logic
programming approach based on the FOIL algorithm (Quinlan, 1990,
1996); unlike much work in inductive logic programming, however,
explicit background knowledge in the form of defined predicates is
not supplied to the system. Instead, the categorization of the kinds
of predicates, the state information that appears in the justified plan,
and the inferred type information of objects and predicates are all
considered kinds of background knowledge automatically acquired
by the system. Experimental evaluation on different benchmark do-

mains from a recent planning competition is quite promising: training

70

time is very short (on the order of a minute), and the system learned
small sets of high-quality rules. Adding these rules to our constraint-
based planner reduced solution times by two orders of magnitude or
more on large problems while maintaining or improving plan quality.

We will illustrate the details of the system using examples from
the logistics planning domain (Veloso, 1992), which has appeared as
a benchmark in most recent work in planning. In brief, the task in
this domain is to move a set of packages from various initial locations
to various goal locations. Packages can be moved between locations
within a city by truck. Airplanes can transport packages between air-
ports in different cities. The basic actions are loading and unloading
packages from vehicles, driving trucks, and flying airplanes. In the
formulation used by the constraint-based planners considered here,
all actions require one time unit for execution, and any number of
non-conflicting actions may occur at the same time step. The num-
ber of time steps in a plan is its parallel length, and the number of
actions is its sequential length. For example, a plan of parallel length
ten with eight actions occurring at each time step would have sequen-
tial length 80. A plan can be deemed optimal in terms of its parallel or
sequential length, or of some combined measure; in our work, the op-
timality criteria are to minimize parallel length and then to minimize

sequential length.

71

Planning Problem

BLACKBOX Planner

Plan Justification / Type Inference

Learning Module / Verification

Control Rules

Figure 5.1: The basic learning framework.

5.1 Learning Framework

Our general learning framework is shown in Figure 5.1. The process
begins by presenting the planning module with a training problem in-
stance of small to moderate size from the given planning domain. We
use the BLACKBOX planner (Kautz and Selman, 1999), which com-
bines both the GRAPHPLAN and SATPLAN systems mentioned above.
BLACKBOX generates a plan of optimal parallel length. The plan is
then passed through a justification algorithm that minimizes its se-
quential length by removing sets of unnecessary actions (Fink and
Yang, 1992). The justified plan also includes a description of the com-
plete state at each time step, which can be easily extracted from the

planning graph with the plan. Meanwhile, a type inference algorithm

72

computes type information for all actions and objects in the problem
(Fox and Long, 1998). The justified plan and type information are
passed to the learning module.

The learning module uses the input plan in two ways. First, any
previously learned rules are verified against the plan, and inconsis-
tent rules are discarded. Second, a set of positive and negative exam-
ples of target concepts are heuristically extracted from the plan, as
will be described in detail below. This step depends upon the crucial
fact that the plan is optimal or near optimal so that noise introduced
by incorrectly identified examples is reduced. Those examples not
covered by previous rules are used as training data by an inductive
rule learning algorithm, which generates one or more new control
rules. The type information inferred earlier improves the speed and
quality of rule induction. (Note, however, that some induced rules
may be incorrect, thus producing a need for the verification step.)
The process is then repeated for several problem instances and then
the learned rules are verified against all training problems. The final
set of learned rules is output in the form of a set of logical axioms,
which can be used by either the original planner or a variety of other
planning engines.

We next consider aspects of the system in more detail.

5.1.1 Target Concepts for Actions

For each action in the planning domain, the system learns two com-

plementary concepts, select action and reject action. Each concept is

73

defined by a set of logic programming-type rules in a simple temporal
logic. Select rules indicate conditions under which the action must be
performed, and reject rules indicate conditions under which it must
not be performed.

Both kinds of rules can be divided into two categories according to
the information upon which they rely (Huang et al., 1999). A static
rule is one whose body depends only upon the initial and goal states
specified in the planning problem, but not upon the particular time
step at which the action should be selected or rejected. Thus, a static
rule holds for all time steps in the problem instance. A dynamic rule
is one whose body also depends upon what is true at the “current”
time step. Therefore, it is applied only at the time step when its pre-
conditions hold at that state. As described below, static and dynamic
rules are learned separately.

The following are examples of different kinds of rules from the lo-

gistics domain:

static reject: Do not unload a package from an airplane at an airport

if that airport is not in the package’s goal city.

dynamic reject: Do not move an airplane if it currently contains a

package that needs to be unloaded at that city.

dynamic select: Unload a package from a truck at the package’s goal

location if the package is currently in the truck.

The logistics domain does not happen to contain any static select

rules; these would arise in domains where some particular action

74

Table 5.1: Types of actions used in training sets for the static and
dynamic varieties of the select and reject rules.

select rule reject rule
positive ex. | negative ex. positive ex. | negative ex.
static real virtual virtual real
dynamic real mutex virtual | mutex virtual real

must be repeatedly performed at every step of the plan in order to
achieve the goal. In fact, only the actions whose preconditions hold

in every state can appear in static select rules.

5.1.2 Heuristics for Identifying Training Examples

A traditional EBL approach would find examples of the select and
reject concepts by examining a trace of the planner or by re-deriving
the solution to a solved instance. In our approach, by contrast, the
training examples are heuristically derived from the solved problem
instance. The motivation of our heuristics is based on the notion that
there is a good chance that the particular actions that appear in an
optimal solution must be selected, and those that do not appear must
be rejected. In other words, we are using learning to operationalize
the optimality criteria of the planner and justification module. This
method of generating examples is obviously fairly noisy, and we will
describe the techniques we use to minimize the effect of incorrectly
labeled examples.

In particular, we assume that the plan P is found by the planner

for a given problem. We will say an instantiated action is

75

real at time ¢ if it appears in P at time 1,

virtual at time ; if all of its preconditions hold at time ¢ but it does

not belong to plan P at time i,

mutex virtual at time ¢ if it is virtual and there exists at least one

real action that is mutually exclusive with it at time .

Two actions are mutually exclusive if they cannot occur at the
same time, even if their preconditions both hold; for example, loading
an airplane is mutually exclusive with flying that airplane.

Each element of the set of all actions instantiated at all times (up
to the length of the solution) is categorized according to this scheme.
Then the positive and negative examples for learning static and dy-
namic select and reject rules for each action are chosen according
to the scheme specified in Table 5.1. Note that the training set for
learning dynamic rules is a subset of the training set used for learn-
ing static rules, because it contains fewer examples based on actions
that do not appear in the plan.

Why is the training set for dynamic rules restricted in this man-
ner? In short, to reduce the amount of noise it contains. In gen-
eral, learning good dynamic rules is more difficult than learning good
static rules, because there are more dynamic rules that are consis-
tent with the data. Furthermore, examples based on actions that do
not occur are clearly less reliable than those based on actions that
do occur. Therefore, it is visalbe to concentrate on examples of non-

occurring actions that are relevant to the problem instance. Mutex

Table 5.2: Predicates in logistics domain.

static predicate | fluent predicate | action predicate
obj at Load-Truck
truck in Unload-Truck
| ocation Drive-Truck
ai r pl ane Load-Airplane
city Unload-Airplane
in-city Fly-Airplane

76

virtual actions tend to be more relevant than others because their

preconditions and effects overlap with those of actions that do occur.

5.1.3 Rule Induction

Control rules are generated from the training examples by a greedy
general-to-specific search in the space of restricted temporal logic
programs using an algorithm based on the FOIL procedure (Quinlan,
1990, 1996).

The simple temporal logic programs we consider are constructed
as follows. There are three kinds of predicates: static predicates,
which refer to facts whose truth cannot be changed by any action
(e.g., the predicate “i n-ci ty” used to assert that a particular loca-
tion is part of a particular city); fluent predicates, used for facts whose
truth varies over time (e.g., the predicate “at ” which relates a movable
object and a location); and action predicates, used for parameterized
actions (e.g., “Fly-Airplane”). Table 5.2 summarizes the kinds of pred-

icates in logistics domain. A single modal operator “goadl” is used to

assert that its argument is one of the specified goals of the planning

77

problem. A literal is an expression of the following form or its nega-
tion, where P is a predicate, F' is a fluent predicate, and each X; is a

variable:
Xi=X;, P(Xi,...X,), Qodl(F(Xi,.. X,)).

A rule contains a distinguished literal, its head, and a set of lit-
erals that make up its body. An instantiation of a rule is created by
substituting constants for all of its variables. A rule is consistent with
a justified plan iff for all of its instantiations, the head is true at each
time step at which all literals in the body are true. Note that liter-
als and static predicate literals have the same truth value at all time
steps in a justified plan; in particular, “goal” here refers only to final
goals, not intermediate goals. This language can be enriched in var-
ious ways; for example, by including other modal operators such as
“next” or “eventually,” or by allowing a rule to contain explicit con-
stants; we will explore these extensions in future research.

The head of a select control rule must be a positive action pred-
icate literal, and the head of a reject rule must be a negative action
predicate literal. As we have mentioned, static and dynamic rules are
learned separately. These two kinds of rules are distinguished by the

kinds of literals that may appear in their bodies:

Static rules may contain positive or negative equality literals, static
predicate literals, and goal literals. Note that the truth of each

of these kinds of literals does not vary across time steps.

78

Rules = ()
Remaining = examples for the target concept R

while Remaining # ()
rule = R «+— null
while rule covers negative examples
Add a literal L to the body of rule that maximizes gain
Remove from Remaining examples that are covered by rule

Add rule to Rules

Figure 5.2: Outline of the rule induction algorithm, based on Quin-
lan’s FOIL.

Dynamic rules may contain all of the above, but must also contain
at least one negative or positive (non-goal) fluent literal. Note
that when checking the consistency of a dynamic rule, the (non-
goal) fluent literals are evaluated at the same time step used to

evaluate the rule’s head.

It should be noted that all preconditions of the rule head action
are implicitly included in the rule body. They are not used to distin-
guish the type of rules and are not considered as candidate literals in
learning.

The outline of our FOIL-based learning algorithm is shown in Fig-
ure 5.2. As in FOIL, the literals added to the rule at each step are

chosen according the following criteria:

79

the literal with the greatest gain if this gain is close to the maxi-

mum possible; otherwise

all determinate literals found;! otherwise

the literal with the highest positive gain; otherwise

the first literal considered that introduces a new variable.

We experimented with a number of different definitions of the gain
function. We obtained the best performance using the “Laplace esti-
mate” used in a number of recent learning systems (CN2 [Clark and
Niblett, 1989], etc.):

_pt+l
p+n+2’

Gain(r) =

where r is the candidate rule, p is the number of positive examples
covered by r, and n is the number of negative examples covered by r.
Because the Laplace estimate penalizes rules with low coverage,

it proved to be more robust against noise in the training set since
the sizes of our training sets are relatively small compared to other
learning tasks (the number of training examples in our experiments
are usually less than a hundred). Noise is also handled, as noted

earlier, by pruning learned rules that turn out to be inconsistent with

future examples of solved planning problems given to the learner.

1A determinate literal is one that introduces new variables so that there is exactly
one binding for each positive example and at most one binding for each negative
example in the partially-constructed rule (Muggleton and Feng, 1992; Quinlan,
1996).

80

We mentioned above that during plan justification, type inference
on all objects and predicates is performed using the algorithm from
TIM (Fox and Long, 1998). This inferred type information serves two
purposes. First, types are used to reduce the number of rules con-
sidered in the learning procedure. For example, when considering
candidate equality literals, the arguments of the equality literal must
be of the same type. Second, when adding a literal that introduces
new variables, inferred types are used to correctly find bindings for
every new variable. For instance, when adding a literal (at o) to a
rule, where the types of o and [associated to the literal are “package”
and “location,” respectively, and o is a new variable, only objects with
type “package” will be considered as bindings for variable o. In other
words, objects with type “truck” or “airplane” that can also be bound
to the first argument of the predicate (at o) will not be considered.
This use of type information is important for correct acquisition of
control rules. In addition, the use of type information also dramati-
cally reduces the number of candidate predicates considered by the
learning system.

It is common in inductive logic programming for the user to pro-
vide explicit background knowledge to the system in the form of ad-
ditional relations or axioms (Quinlan, 1990, 1996). For example, the
user might write a definition for a predicate that holds “packages that
need to be moved.” One might argue, however, that manually defin-
ing good background knowledge is as difficult as defining good control

rules. In our system, by contrast, no additional background knowl-

81

edge is input by the user. The categorization of the different kinds of
predicates, the state information that appears in the justified plan,
and the inferred type information of objects and predicates can all be
considered kinds of background knowledge automatically acquired by

the system.

5.1.4 Backtracking

Since our learning system employs a greedy search approach, incor-
rect rules that only cover a few examples but are not consistent with
the entire plan can be learned. This situation is more likely to happen
in the learning of dynamic control rules. Therefore, we add a limited
chronological backtracking mechanism to the learning system. Each
rule is verified when it is learned. If a rule is not consistent with the
input plan, the learning system removes the latest added literals from

the rule in the previous phase and searches for the next best ones.

5.1.5 Rule Simplification

As shown in the learning procedure outline (Figure 5.2), literals that
introduce new variables, such as determinate literals, are added to
the control rule when necessary. However, it is common for some
new variables to be introduced that are not used to find the control
rule in the later learning phases. Therefore, literals that introduce
unused new variables may become redundant.

Therefore, before a learned rule is generated, it is simplified by

removing unnecessary literals in the rule. This simplification is be

82

L = literals that does not introduce new variables in rule
Mark all literals in L as necessary
Mark all variables in /it as necessary if lit € L
while J variable var ¢ rule head is necessary and
3 lit introduces var is not necessary
Mark /it as em necessary
Mark all variables in /it as necessary

Remove all literals in rule body that are not necessary

Figure 5.3: Outline of the rule simplification procedure.

done by first marking all literals that do not introduce new variables
as necessary, and then by marking the variables in these literals as
necessary as well. If a variable that is marked as necessary does not
appear in the rule head, one must find the literal that introduces the
variable and mark the literal and all variables in the literal as nec-
essary. This process is repeated until no more variables and literals
can be marked as necessary. Finally, literals that are not marked as
necessary in the rule body are discarded. In this way, the output rule
will only contain relevant literals in its rule body and reduce the com-
plexity of learned rule. The outline of the above rule simplification

procedure is shown in Figure 5.3.

83

5.1.6 Forming and Using Learned Control Rules

As shown in Chapter 3 and Huang et al.(1999), we extended the PDDL
planning input language (McDermott, 1998) of the BLACKBOX plan-
ner to allow control knowledge to be specified using temporal logic
formulas. BLACKBOX uses static reject rules to prune the Boolean
SAT encodings from the planning graph it creates of planning prob-
lems All other kinds of rules are converted into propositional clauses
that are added to the SAT encoding.

Therefore, our learning system will generate learned control rules
in the extended PDDL control format, and thus the rules created by
the learning module can be directly fed back to the planner.

All static reject rules are converted into graph pruning control rules
in extended PDDL as shown in Section 4.1.1. The conversion is
straightforward. All literals in the rule body are placed in the “ex-
cl ude” condition in extended PDDL control and variables are exis-
tentially quantified.

When converting dynamic control rules, variables are first classi-
fied as static or dynamic variables according to the predicates that
introduce them. A variable is static if it is introduced by a predicate
with a goal modal operator or static predicate, and it is dynamic if it
is introduced by a dynamic predicate. All predicates that are not dy-
namic are placed in the “scope” condition of extended PDDL control,
where a dynamic variable is universally quantified and a static vari-

able is existentially quantified. The “pr econdi ti on” of the extended

84

PDDL control includes all dynamic predicates in the rule body and
dynamic predicates in the precondition of original action definition.
The “ef fect” of the extended PDDL control rule includes one dy-
namic predicate chosen from any dynamic predicates in the effect of
the original action definition. The predicate in the ef f ect is negated
if the learned control rule is a reject rule; otherwise, it is not changed.

The general effect of the added clauses is to make the encoded
problem easier to solve by increasing the power of the constraint prop-

agation routines used by the system’s SAT engines.

5.2 An Example

We will now step through an example of learning a control rule for
the logistics domain. We consider a problem instance in which there
are three cities (A, B, and C), each containing two locations, an airport
and a post office (e.g., apt - A, po- A, ..., etc.). In each city there is a
truck (trk- A, trk-B, and t rk- C), and there is one airplane (pl ane).
There are two packages (pkgl and pkg2) to be delivered.

The initial and goal states for the problem and the (justified) plan
found by the BLACKBOX planner are shown in Table 5.3.

Suppose we are learning static reject rules for the action “Unload-
Airplane (obj airplane loc),” where the types associated with variable
obj, airplane, and loc are obj ect , ai r pl ane, and ai r por t respectively.

According to the heuristic for generating training examples for

static reject rules, Unload-Airplane (pkgl pl ane apt - A) at time 2 is a

Table 5.3: A simple logistics problem and its solution.

Initial:

Goal;

Plan:

(at pkgl apt-A), (at pkg2 apt-B),
(at pl ane apt-A), (at trk-C apt-0C),
(in-city apt-A A, (in-city po-A A, ...

(at pkgl po-0Q), (at pkg2 po-Q

1 Load-Airplane (pkgl pl ane apt-A)
2 Fly-Airplane (pl ane apt-A apt - B)

3 Load-Airplane (pkg2 pl ane apt - B)
4 Fy-Airplane (pl n apt-B apt-0C

5 Unload-Airplane (pkgl pl ane apt-Q
5 Unload-Airplane (pkg2 pl ane apt-Q)
6 Load-Truck (trk-C pkgl apt-Q

6 Load-Truck (trk-C pkg2 apt-Q

7 Drive-Truck (tr k- C apt-C po-Q

8 Unload-Truck (t r k- C pkgl po-Q

8 Unload-Truck (t r k- C pkg2 po- Q)

85

86

Table 5.4: Learning static rejectrules for the action “Unload-Airplane.”

time obj airplane loc c [
+ 2 pkgl plane apt-A|A po-C
+ 3 pkgl plane apt-B|B po-C
+ 4 pkgl plane apt-B|B po-C
+ 4 pkg2 plane apt-B|B po-C
- b pkgl plane apt-C|C po-C
- b pkg2 plane apt-C|C po-C

positive example because all of its preconditions hold at time 2, e.g.,
(in pkgl plane) and (at pl ane apt-A), but it does not appear in
the plan. On the other hand, Unload-Airplane (pkgl pl ane apt-C
at time 5 is a negative example because it appears in the plan at time
5. The complete set of positive and negative examples are shown in
the first five columns in Table 5.4.

Following the learning procedure outlined above, since no literal
with the maximum possible gain can be found, two determinate liter-
als (in-city loc ¢) and (goal (at obj 1)) are first added to the rule, and
they introduce two new variables ¢ and [(Whose types are “ci t y” and
“| ocat i on” respectively). The bindings of ¢ and [for each example
are shown in the last two columns in Table 5.4.

In the next iteration, a literal —(i n-city [¢) is found to give the
highest possible gain and is added to the rule. Now the rule covers
only positive examples and none of negative examples. Therefore the

procedure terminates with the rule:

87

(:wffctrl unl oad-airplane
: scope
(forall (7?0bj) (obj ?obj)
(forall (7?airplane) (airplane ?airplane)
(forall (?loc) (location ?loc)
(exists (?bbva) (in-city ?loc ?bbva)
(exists (?bbvb) (goal (at 7?obj ?bbvb))
(in-city ?bbvb ?bbva))))))
:precondition
(and (at <airplane ?loc)
(in ?0bj 7?airplane))
ceffect
(next (at 7?obj ?loc))

Figure 5.4: Learned static reject rule for the action Unload-Airplane
output in extended PDDL.

= Unload-Airplane (obj airplane loc) «—

(in-cityloc) A(goal (at obj 1)) A =(in-city !l ¢

The above rule can be read as “Do not unload a package o from
an airplane p at an airport « if ¢ is not in the same city as o’s goal
location.”

The learned static reject rule for action Unload-Airplane is then
generated in the extended PDDL control following the conversion pro-
cedure described in Section 5.1.6. Variable obj, airplane, and loc are
classified as dynamic variables and ¢ and [/ are static variables. Fig-
ure 5.4 shows the learned control output in the extended PDDL con-

trol form.

88

Table 5.5: Learning time (in seconds) and number of rules acquired.

domain | # training problems | learning time | # rules learned
logistics 10 40.97 (22.5) 12 (11)
briefcase 3 1.79 (0.11) 4 (4)
grid 6 19.7 (7.41) 8 (8)
gripper 2 0.54 (0.22) 3 (3)
mystery 6 9.75 (9.01) 2 (2)
tireworld 5 3.34 (1.25) 11 (10)

It is worth noting how the above rule captures the concept of
“a package that is not in its goal city,” which is the crucial part of
forming control rules in the logistics domain and was automatically
acquired by our system. In other recent work on learning control
knowledge for planning — for example, the learning system in Estlin
and Mooney (1996) which blends EBL and inductive learning — similar
concepts can only be learned by introducing hand-coded background
knowledge that explicitly specifies which locations are in the same

city.

5.3 Experimental Results

We have performed an empirical evaluation of our approach on a set
of planning domains (logistics, grid, gripper, and mystery) from the
1998 Planning Systems Competition (AIPS 1998), as well as the brief-
case and tireworld domain from the PDDL (McDermott, 1998) distri-

bution. All experiments were run on a 450Mhz Sparc 420R.

89

Table 5.5 summarizes the learning time and number of control
rules acquired for each domain. Mystery training problems are from
the AIPS 1998 competition. Tireworld training problems are from
PDDL distribution. All other training problems are randomly gener-
ated small instances. Learning time includes time to both generate
and verify rules. Numbers shown in brackets are learning time and
number of rules learned without backtracking. In general, our learn-
ing times are very short compared to other speed-up learning sys-
tems, which typically take from several minutes to several hours to
generate a good set of rules. It is also observed that learning with
backtracking is indeed able to acquire more control rules for certain
domains without increasing the learning time significantly.

In the following, we will present in more details the kinds of rules
that can be acquired for each domain and how much system perfor-

mance improvement can be achieved by learned control rules.

5.3.1 Logistics Domain

As noted earlier, the logistics domain has become a particularly pop-
ular benchmark for recent work in planning. Our training set con-
sists of ten randomly generated problems and their optimal plans
that could be easily found by the BLACKBOX planner. The following
control rules were generated by our learning system after learning on

the training problems:

1. static reject - Do not load a package onto a truck if the package

is at the goal.

10.

90

static reject - Do not load a package onto a truck at an airport if

the package’s goal location is located in a different city.

static reject - Do not unload a package from a truck at a location

if the location is not the package’s goal and not an airport.

static reject - Do not unload a package from a truck at a location

if the location is in the same city as the package’s goal location.

static reject - Do not load a package onto an airplane at an airport

if the location is in the same city as the package’s goal location.

static reject - Do not unload a package from an airplane at an
airport if the airport is not in the same city as the package’s goal

location.

dynamic select - Unload a package from a truck at the package’s

destination.

dynamic select - Unload a package from a truck if the current lo-
cation is an airport and it is not in the same city as the package’s

goal location.

dynamic select - Unload a package from an airplane if the current

airport is in the same city as the package’s goal location.

dynamic reject - Do not move a truck if there is a package in the
truck and the current location is an airport and is the package’s

goal location.

91

time (sec.) Logistics Domain
70

blackbox —+—
blackbox(c) ---<---

logistics problem

Figure 5.5: Logistics run time for BLACKBOX without and with (c)

learned control rules from the BLACKBOX distribution.
11. dynamic reject - Do not move a truck if there is a package in
the truck and the current location is not an airport and is the

package’s goal location.

12. dynamic reject - Do not fly an airplane if there is a package at the
current airport and the package’s goal location is in the different

city.

Appendix C shows the above learned control rules generated in
extended PDDL format. It is apparent from a comparison of the gen-
erated rules with the hand-coded control rules in Appendix B that
the concept of user-defined predicate “i n-w ong-city” is correctly

captured and imbedded in the rule body.

92

In order to measure the effectiveness of the learned control rules,
we perform an experiment on the 30 logistics problems in the BLACK-
BOX distribution. BLACKBOX runs with the new chaff SAT solver
(Moskewicz et al., 2001), which will be the default SAT solver for
BLACKBOX throughout the rest of chapter unless another solver is
identified. The run time for BLACKBOX without and with control are
shown in Figure 5.5. It is apparent that run time for BLACKBOX is re-
duced by the use of learned control rules, especially on the more dif-
ficult problems. To see this, we generate 30 more difficult problems
and perform a similar experiment. In the results shown in Figure 5.6,
it is obvious that the speedup is more significant. For example, the
run time for problem 14 with control is 99.87 times faster than the
run time without control.

It is interesting to compare the rules learned by our system with
the hand-coded ones. We consider the hand-coded rules used in
Huang et al.(1999) and in TLPLAN (Bacchus and Kabanza, 2000).

We found that all the static reject rules used in TLPLAN are cor-
rectly acquired by our learning system. In addition, our system learnt
several useful dynamic select rules that were not used in TLPLAN.
For example, our system learnt the dynamic select rule 7: “Unload
a package from a truck at the package’s destination.” This latter oc-
cured because TLPLAN is a purely sequential planner (unlike BLACK-
BOX, GRAPHPLAN, etc.) and so cannot make use of rules that would
select for a set of actions of equal priority to be executed simultane-

ously. (Instead, it would be necessary to write a much more complex

time (sec.)

100000 ¢

10000 |

1000 [

10

93

Logistics Domain

100f

blackblox —t
blackbox(c) ---<---

35

40

45 50 55 60
logisitcs problem

Figure 5.6: BLACKBOX run time on randomly generated hard logistics

problems.

select rule that enforced some arbitrary temporal ordering between

the unloads).

Our system did fail, however, to learn some of the dynamic reject

rules used in TLPLAN. By carefully investigating the learning process,

we discovered that two dynamic reject rules that are not output in

the final set of control rules are actually learned during the learning

phase but are pruned later by the verification module:

13. dynamic reject - Do not move an airplane if there is a package at

the current airport whose goal is at another city’s airport.

14. dynamic reject - Do not move an airplane if there is a package at

the current airport whose goal is in another city.

94

Table 5.6: Comparison between BLACKBOX and TLPLAN with different
control rule sets.

BLACKBOX(c) runs with rules 1 to 12.

BLACKBOX(c);13.14 Tuns with rule 1 to 12 and adds rule 13 and 14.
TLPLAN runs with original control rule formula.

TLPLAN_,, runs without rule 14.

Times are in seconds. = means the problem cannot be solved in 4
hours.

Problem | BLACKBOX(c) | BLACKBOX(c) 13414 || TLPLAN_y4 | TLPLAN
log-a 1.03 1.11 - 0.33
log-b 1.97 2.40 0.26 0.27
log-c 2.63 2.52 4550 0.43
log-d 4.04 4.42 3.89 1.40

The above rules are discarded because when there are more than
two airplanes but only one package that needs to be moved at the
same airport, the above rules will force all airplanes to stay at the
airport, which will prevent the planner from finding the optimal (the
shortest parallel length) plans in certain circumstances. That is, only
one airplane, not all, needs to stay and load the package, while the
other airplanes can fly to other airports to deliver other packages. As a
result, rules 13 and 14 are discarded, because they are not consistent
with two of the training problems that include a similar scenario in
all of their optimal plans.

Nevertheless, rule 14 is employed in TLPLAN (note that rule 13 is
a subset of rule 14). We conduct an experiment to evaluate the effec-
tiveness of using rule 13 and 14 for both BLACKBOX and TLPLAN on

four traditional logistics problems. The result is shown in Table 5.6.

95

Surprisingly, the performance of BLACKBOX is not raised after adding
rule 13 and 14 (remember that using rule 13 and 14 also excludes
BLACKBOX from finding optimal plans on certain problem instances
as described above). In fact, it runs more slowly on three out of four
logistics problems. The reason for the slowdown is probably the cost
of the extra added constraints. In other words, the overhead of adding
extra clauses introduced by rule 13 and 14 into the CNF is higher
than the gained unit propagations for the SAT solver. Another sur-
prising result is that, without rule 14, the performance of the TLPLAN
is hindered greatly on certain problems. TLPLAN takes more than
75 minutes to find a plan for logistics-c and cannot find a plan for
logistics-a within 4 hours without the help of rule 14. On ther other
hand, both problems can be solved by TLPLAN in less than one second
with rule 14.

The above experiment shows that the effectiveness of control rules
may vary for different planning algorithms and systems. The utility
problem (Minton, 1988b) of how state-of-the-art planners can benefit
from control knowledge should open up another interesting research

direction.

5.3.2 Briefcase Domain

The task in the briefcase domain is to use a briefcase to carry and
transport items between different locations. Our learning system ob-
tains the following control rules from three randomly generated train-

ing problems:

96

time (sec.) Briefcase Domain

blackbox I—»— I I I
1000 - plackbox(c) ---<---

100 |

10 |

0.1 /7

0.01 1 1 1 1
5 10 15 20 25

number of objects

Figure 5.7: Briefcase run time.

1. static reject - Do not put an item into the briefcase if the item is

at the goal.

2. static reject - Do not take an item out of the briefcase at a non-

goal location.

3. dynamic select - Put an item into the briefcase if the item is not

at the goal.

4. dynamic select - Take an item out of the briefcase at the item’s

destination.

Figure 5.7 shows the run time for BLACKBOX with and without
learned control on 25 randomly generated problems. The number

of objects in each problem ranged from 1 to 25 and the number of

97

locations was fixed at seven for all problems. It is apparent that the
run time is greatly reduced when BLACKBOX runs with learned control

rules.

5.3.3 Grid Domain

Problems in the grid domain include an N x N grid and robots that
can move between connected cells in the grid. Each cell in the grid
can be open or locked. Only open adjacent cells can be reached by a
robot. Each cell may also contain keys that can be used to unlock a
cell if the locked cell and key have the same shape. The robots can
pick up a key, put down a key, or pick a key and let loose a key at the
same time. The task in the grid domain is to use the robots to send
keys to their goal cell.

Control rules learned by our system over five problems are as fol-

lows:
e static reject - Do not put down a key at a non-goal cell.
e static reject - Do not put down a key at a goal’s neighbor cell.
e static reject - Do not pick up a key at the key’s goal cell.

e static reject - Do not pick up a key k; and let loose a key k; if k;
is at the goal cell.

e static reject - Do not pick up a key k; and let loose a key k; if &

is not at the goal cell.

98

time (sec.) Grid Domain
100000 [

blackblox — I I I I

blackbox(c) ---<---

10000 | .

1000 \ /\/\]
100 | X X 1
AN . AN
X RN ,// /,’
FA X /
SN X N

10 B / N X N Pamnas Y, X--x i
[X X \\\ //)(3¢ \\Y/ .
1 1 1 1 1 1
5 10 15 20 25 30
grid problem

Figure 5.8: Grid domain run time.

We generated 30 more difficult grid problems and ran BLACKBOX
with and without the above learned control rules set. The results are
shown in Figure 5.8. Problems that cannot be solved by BLACKBOX
within the allowed time limit are ssigned no run time in the figure.
It is obvious that the run times for BLACKBOX with learned control is
significantly improved. In fact, BLACKBOX with learned control rules
is able to find plans for all problems in less than 2 minutes while

several problems cannot be solved by BLACKBOX without control.

5.3.4 Gripper Domain

The gripper domain consists of a robot that has two arms and can

move between rooms. The robot can use its arms to pick up or drop

99

Table 5.7: Gripper Domain: BLACKBOXwithout and with (c) learned
control knowledge.

’

Problem | Time Step | BLACKBOX | BLACKBOX(c)
prob0O1 7 0.17 0.10
prob02 11 1.75 0.57
prob03 15 97 1.33
prob04 19 - 1.59
prob05 23 - 169
prob06 27 - 6.85

balls. The task is to transport balls between rooms by using the robot.
Our learning system is able to learn the following control rules

from two training problems taken from AIPS 1998:

e static reject - Do not pick up a ball if the ball is at the goal room.

e static reject - Do not drop a ball if the robot is not at the ball’s

goal room.

¢ dynamic select - Drop a ball if the robot is at the ball’s goal room.

Table 5.7 shows the BLACKBOX run times with and without the
above rules on some problems from AIPS98. Again, several hard in-
stances that cannot be solved by BLACKBOX without control can now

be solved in a very short time by BLACKBOX with control.

5.3.5 Mystery Domain

The task in the mystery domain is to transport packages between net-

worked locations. Only one kind of vehicle, which can move between

100

Table 5.8: BLACKBOX without and with (c) learned control knowledge
on mystery problems.

Times are given in seconds.
'’ in time step: problem has no solution.

‘=’ in run time: problem cannot be solved in 4 hours.

Problem | Time Step | BLACKBOX | BLACKBOX(c)
pl 5 0.17 0.14
P2 5 6.51 1.66
p3 4 0.68 0.51
p4 - 1.88 0.81
PS5 - 17.8 1.79
P6 9 84 13.3
P7 - 1.79 0.48
P8 - 88 6.66
PO 5 1.64 0.64
plO 8 - 29.7
pll 7 0.96 0.41
pl2 - 1.40 0.86
pl3 8 121 7.88
pl4a 10 - 62
pl5 6 23.8 8.28
pl6 - 5.24 1.99
pl7 4 3.47 2.13
pl8 - 19.9 7.25
pl9 6 7.78 2.37
p20 7 25.8 11.8
p21 - 57 2.78
p22 - 302 20.9
P23 - 52 7.38
p24 - 150 8.58
P25 4 0.16 0.15
P26 6 1.88 1.17
P27 4 0.69 0.49
P28 7 0.78 0.36
P29 4 0.59 0.35
p30 6 5.98 2.79

101

two connected locations, is used to transport packages. Furthermore,
each vehicle has limited space for accommodating packages and each
location has limited fuel. Vehicles consume fuel when moving be-
tween connected locations and can only be refueled with the amount
of available fuel at current location.

The following control rules are learned by our system:

e static reject - Do not load a package when it is at the goal.

e static reject - Do not unload a package when it is not at the goal.

Although not many control rules were acquired from learning,
these two rules are actually the only ones that can be written eas-
ily by hand.

Table 5.8 shows the run time on problems used in the AIPS 1998
planning competition. Problems with =" indicated in the time step
mean that the problems have no solution and the run times for these
problems are the time used to prove that no valid plans exist for them.
The two learned control rules can still improve BLACKBOX’s perfor-
mance on all problems. They also help to find a plan for problems

P10 and p1l4, which cannot be solved by BLACKBOX without control.

5.3.6 Tireworld Domain

In tje tireworld domain, the main task is to replace and inflate tires.
In order to accomplish the tire replacement job, the necessary tires

and tools need to be retrieved from a container.

102

Table 5.9: BLACKBOX without and with (c) learned control knowledge
on tireworld problems.

Problem | # wheels | Time Step | BLACKBOX | BLACKBOX(c)
pl 1 12 0.23 0.22
p2 2 18 1.22 0.97
P3 3 24 6.50 4.67
P4 4 30 124 50.7
PS5 5 36 8776 123

Problem p5 is solved by satz with preset plan length and
its run time is averaged over 10 runs.

Our learning system generates the following control rules from the

problems included in the PDDL distribution:

e static reject - Do not remove a wheel if the wheel is at the goal

hub.
e static reject - Do not put on a wheel at a non-goal hub.
e static reject - Do not fetch a wheel if it is not intact.

e static reject - Do not put away a wheel into a container if it is

intact.

e static reject - Do not put away an object into a container if its

goal is not in the container.

e dynamic select - Fetch an intact wheel from a container immedi-

ately.

103

dynamic select - Remove a wheel immediately after it has been

loosened.

dynamic select - Put on a wheel immediately at its goal hub.

dynamic select - Inflate a deflated wheel immediately.

e dynamic select - Open a container immediately if is unlocked.

dynamic reject - Do not close a container if there is an item in it

whose goal is not in the container.

Table 5.9 shows the run time for BLACKBOX on tireworld problems.
It is apparent that the performance on BLACKBOX with control rules
is greatly improved. For example, the run time for problem p5 is 73

times faster compared to the run time without control.

5.4 Plan Completeness with Learned Con-
trol

In general, domain-specific control knowledge raises planning system
performance by reducing the search space the systems explore. This
reduction is along the lines of the general focus in planning on elim-
inating or avoiding search as much as possible. This same kind of
approach has been applied in many real-world applications as well.
However, in spite of the benefit from control knowledge, it is possible
for certain plans to be pruned by the use of incorrect or inappropriate
control. Existing optimal plans can also be discarded due to incorrect

control. In the worst case, all plans are pruned and no solution can

104

be found. This latter, of course, is not a desirable behavior. Ideally,
the system performance should increase without lose of valuable in-
formation in the search space. Therefore, whether the plan complete-
ness is preserved or not with the use of learned control knowledge is
an important issue.

As mentioned previously, our learning approach is based on the
optimality criteria of the BLACKBOX planner and the justification mod-
ule it uses, which is to minimize parallel plan length and then to
minimize sequential length, and the learning system is built to oper-
ationalize these optimality criteria. Therefore, in principal, planners
can benefit from the control rules learned by our system to avoid
non-optimal plans in the search space while preserving the optimal
parallel plan completeness. This is a very important feature because
for certain domains, e.g., the logistics domain, there exist efficient
polynomial algorithms to find non-optimal plans but finding optimal
plans is difficult. Therefore, control learned by our system has the
potential to greatly improve the time required to find optimal plans.
However, this potential also implies that perhaps fewer control rules
will be generated, since certain rules that seem useful would be dis-
carded because they do not preserve the parallel plan completeness.

For instance, in Section 5.3.1 we have shown that rule 14 in the
logistics domain is crucial for TLPLAN to find solutions on logistics
problems (see Table 5.6). However, we also illustrate a simple sce-
nario in which the same rule will prevent BLACKBOX from finding

the optimal parallel plans on certain problems. In fact, we have

105

found that rule 14 was learned by our system but pruned during
the verification phase, becase it is not consistent with certain train-
ing problems. In contrast, other learning approaches or planning
systems that use control knowledge tend to minimize the sequential
plan length or reduce search space as much as possible. In addition,
the plan completeness issue has seldom been mentioned or has been
ignored by previous work on other learning systems.

Nevertheless, unlike EBL approaches (Mitchell et al., 1986; Dejong
and Mooney, 1986), the rules generated by our learning system are
not necessarily logical consequences of the domain. In particular, if
the training set is too small, it is possible in principle for the system to
learn rules that exclude all solutions to a particular problem instance,
although this did not occur in our experiments. On the other hand,
our learning approach requires no domain theory as needed in EBL
systems. In fact, creating a good and correct domain theory is an non-
trivial task. An incomplete or incorrect domain theory often leads to

incorrect, useless, or non-existent control rules.

5.5 Related Work

The learning of planning control knowledge by traditional planners
has been long studied; for example, work on systems such as the
EBL and case-based learning mechanism built upon PRODIGY plan-
ning system (Minton, 1988a; Veloso, 1992). The key idea in these

approaches is for the planner to learn search heuristics in order to

106

increase the efficiency of the plan search. Below we will briefly de-
scribe some of the main approaches.

In the STRIPS planning system (Fikes and Nilsson, 1971), macro-
operators were introduced by a technique called “lifting.” A macro-
operator is a sequence of actions that can be treated as a single opera-
tor. Macro-operators can improve the planner’s performance because
the planner does not need to reason about the intermediate steps
encapsulated by the macro-operators. More sophisticated macro-
operator techniques have since been proposed (Korf, 1985; Minton,
1990). The automatic abstraction of macro-operators can be viewed
as a form of learning. Unfortunately, macro-operators appear to be
effective only in certain rather narrow domains.

The PRODIGY/EBL system (Minton, 1988a) learns control rules
via an explanation-based learning (EBL) technique. Three kinds of
control rules are used in the PRODIGY/EBL system: select, reject,
and prefer rules. A select rule guides the search engine as to which
action to select next at a particular point in the plan; a reject rule
tells it what kind of actions to avoid; and a prefer rule says which ac-
tions to give preference to when exploring several possible actions. It
has been shown that PRODIGY/EBL with control rules outperforms
PRODIGY without any control rules. Moreover, the performance im-
provement of the learned rules is comparable to that of hand-coded
rules used in their system. Some advantages of using EBL methods
are that rules can be learned from a single example and learned rules

can be proved correct.

107

Another contribution of PRODIGY/EBL is that it pays attention
to the utility problem of control rules (Minton, 1988b). The utility
captures the overall effectiveness of a rule. Rules with low or negative
utility are deleted in their system. If a control rule is rarely applicable
or expensive to apply, then the cost of having the rule in the system
may actually outweigh its savings; the rule therefore has a negative
utility. While we have not yet seen this happen with the hand-coded
rules used in TLPLAN and the control rule learned from the BLACKBOX
planner, we are still interested in the problem of quantizing the utility
of learned control rules.

However, a complete and correct domain theory is necessary for
performing explanation-based learning. An incorrect or incomplete
domain theory often leads to incorrect or zero control acquisition.
Furthermore, creating a complete and correct domain theory is not
an easy task; in fact, it is a time-consuming process. For exam-
ple, as pointed out in Minton (1988a), approximately one man-year
was spent writing, rewriting, and debugging the schemas used by the
PRODIGY/EBL system.

The GRASSHOPPER system (Zeckie and Zukerman, 1998) learns
prefer rules for PRODIGY using an inductive learning technique. An
inductive learning approach does not require a complete domain the-
ory and has the potential to find more effective rules by learning from
more than one example at a time. It has been shown that PRODIGY
with rules learned by GRASSHOPPER often outperforms PRODIGY with

rules learned by PRODIGY/EBL. However, the problem within the in-

108

ductive learning method is that the correctness of learned rules can-
not be formally verified.

The control rules acquired in the systems above are closely tied to
the plan search strategy and are generally represented in a procedu-
ral planner-dependent format. Therefore, it is practically infeasible to
share control information between planners. Another practical prob-
lem is that the systems tend to learn too many rules or rules that are
too specific or overly general. This problem is of course a general issue
in machine learning, where the challenge is often to find the correct
level of generalization. In addition, even with control rules, the per-
formance of these “traditional” planners does not approach that of
GRAPHPLAN or BLACKBOX, even without any control knowledge.

In addition to the earlier work mentioned above, there is other
recent works on speed-up learning that, like ours, combines aspects
of supervised learning and rule induction. The systems of Khardon
(1999) and of Martin and Geffner (2000) try to learn very large sets
of production-style rules that replace, rather than improve, a search
engine, and the systems require thousands of training examples and
long training times.

The SCOPE system (Estlin and Mooney, 1996, 1997) uses a combi-
nation of EBL and inductive logic programming (ILP) techniques to ac-
quire effective control rules for the UCPOP planner. It has been shown
that SCOPE achieved a higher success rate and better speedups than
the UCPOP+EBL (Kambhampati et al., 1996) approach. The work by

Estlin and Mooney (1996, 1997) differs from ours in that it requires

109

the user to explicitly supply background knowledge to the learner in
the form of additional predicates and “relational clichés” (Silverstein
and Pazzani, 1991). In addition, the control rules learned by SCOPE
are specific to the UCPOP planner and can not be exploited by other
planning systems without significant modification. Recently Kamb-
hampati (1999) has shown how explanation-based learning tech-
niques can be applied to GRAPHPLAN, but his work does not include

any attempt by the system to learn high-level, declarative rules.

Chapter 6

Conclusions and Future Work

Deterministic state-space planning is a hard combinatorial problem
that arises in tasks such as robot control, software verification, and
logistics scheduling. Research on recent advances in general pur-
pose planning systems has shown such systems to be capable of
outperforming traditional planning systems. Recent planning sys-
tems such as constraint-based and heuristic search based planners
can effectively synthesize plans consisting of several hundreds of ac-
tions, a task far beyond the capability of traditional planning sys-
tems. The work in this area has greatly benefited from a common set
of benchmark problems, which has been an important driving force
behind the rapid improvements we have seen in recent years. Many
of these benchmark domains consist of essentially single-agent plan-
ning tasks. However, many real-world planning domains, such as
airplane scheduling and robot control, involve settings with multiple
agents.

We have shown how it is possible to adapt planning benchmark

problems to incorporate participation requirements for multi-agent

110

111

instances. Our proposal for encoding participation requirements into
the problem instances has the advantage of maintaining the basic
plan search nature of the benchmark problems. Furthermore, no
changes need to be made to the planners themselves and no special
post-processing of the plans is required.

Using the modified multi-agent benchmark problems, we have
given a detailed comparison of constraint-based and heuristic search
based planning techniques. Our results show that these planners
have complementary strengths. More precisely, heuristic planners
are very efficient on certain multi-agent domains, such as the eleva-
tor task, but are less efficient on domains with more intricate multi-
agent interactions. Constraint-based planners, on the other hand,
are more robust over the range of multi-agent problems, but are less
efficient than heuristic planners on the domains where a forward-
chaining search approach with heuristics excels. The complementary
nature of these planners suggests that perhaps a hybrid approach
would lead to yet a more powerful class of planners.

Nevertheless, both recent heuristic search and constraint-based
planning systems are domain independent and rely only on efficient
algorithms and heuristics. Domain-dependent control knowledge, on
the other hand, has the potential to significantly increase the perfor-
mance of the new planners. We have shown it is possible to obtain the
benefits of the control rules in terms of efficiency, without paying the
price of reduced parallelism, by incorporation of control rules into the

BLACKBOX planner. In a sense, the solvers in BLACKBOX still tackle

112

the combinatorial aspect of the task but the extra constraints provide
substantial additional pruning of the search space.

We implemented the system by enhancing the BLACKBOX plan-
ner with extended planning language for temporal logic control rules,
which are translated into additional propositional clauses. We also
showed that a subset of the control rules can be handled by direct
pruning of the planning graph. Our experimental results show a
speedup due to the search control of up to two orders of magnitude or
more on our problem domains. In sum, our work demonstrates that
declarative control knowledge can be used effectively in constraint-
based planners without loss of plan quality.

A fascinating research direction is the possible use of machine
learning techniques for automatic acquisition of control knowledge
by new planners. Although research in machine learning has long
studied the problem of creating efficient planners through the learn-
ing of domain-specific control knowledge, the techniques that have
been developed are not yet in widespread use in practical planning
systems. Consequently, we believe that the field of speed-up learning
for new planning systems is poised to undergo a resurgence.

In this dissertation, we present the first positive results on acquisi-
tion and use of such high-level, purely declarative control knowledge
for constraint-based planning using machine learning techniques.
Our approach blends aspects of explanation-based learning, super-
vised learned, and inductive logic programming. We have introduced

a new heuristic method for extracting training examples from plans

113

generated by the BLACKBOX planner and have built a rule learning
system based on an inductive learning programming approach. Our
system can learn useful control rules in a variety of benchmark do-
mains from small training problems. Only a few number of rules are
needed to reduce solution times by two orders of magnitude or more
on larger problems and training times are short. Unlike previous work
on learning control for planning, control rules learned by our system
are purely declarative in temporal logic form and thus are not specific
to the details of underlying planning algorithms. Therefore, ideally it
is feasible to export the learned rules to other planning systems with
none or little modifications. In addition, control knowledge learned
by our system has the feature to preserve parallel plan completeness.
Overall, our learning architecture is simple and modular, and initial
empirical evaluation on established benchmarks has shown that con-
trol knowledge can be learned that is on a par with that created by
hand.

Our ongoing and future work includes a more careful and detailed
empirical evaluation of the approach: an investigation of the learn-
ing and use of more expressive control rule languages through the
inclusion of more modal operators, such as “next” and “previous,” or
by allowing a rule to contain explicit constants; and a study of ways
to create training problems that will most aid learning. In particu-
lar, we are investigating an active learning approach, in which the
current set of learned control rules is used to influence the creation

of the next training problem. We are also working on applying rule

114

pruning techniques to remove redundancy or simplify rules (Quin-
lan, 1987; Cohen, 1995). Finally, we are investigating how to exploit
EBL approaches to improve the correctness of learned control rules,
a contribution that would create a more powerful learning system for

planning.

Appendix A

Logistics Domain Definition in
PDDL

(define (domain | ogistics-strips)
(:requirenents :strips)
(:predicates (obj ?obj)

(truck ?truck)
(location ?loc)

(ai rpl ane ?airpl ane)
(city ?city)

(airport 7?airport)
(at ?obj 7l oc)

(in ?0bj 7?o0bj)
(in-city ?0bj ?city))

(:action Load-Truck
:paraneters (?obj ?truck ?loc)
:precondition (and (obj ?obj)
(truck ?truck)
(l ocation ?loc)
(at ?truck ?loc)
(at ?0obj ?loc))
effect (and (not (at ?obj ?loc))
(in ?0bj ?truck)))

115

116

(:action Load-Ai rplane
:paraneters (?obj ?airplane ?loc)
:precondition (and (obj ?obj)
(ai rpl ane ?airpl ane)
(l ocation ?loc)
(at ?obj ?loc)
(at ?airplane ?loc))
effect (and (not (at ?obj ?loc))
(in ?0bj 7?airplane)))

(:action Unl oad-Truck
:paraneters (?obj ?truck ?loc)
:precondition (and (obj ?obj)
(truck ?truck)
(l ocation ?loc)
(at ?truck ?loc)
(in ?0bj ?truck))
ceffect (and (not (in ?o0bj ?truck))
(at ?o0bj ?loc)))

(:action Unl oad- Al rpl ane
. paraneters (?obj ?airplane ?loc)
:precondition (and (obj ?obj)
(ai rpl ane ?airpl ane)
(l ocation ?loc)
(in ?0bj 7?airplane)
(at ?airplane ?loc))
ceffect (and (not (in ?obj ?airplane))
(at ?o0bj ?loc)))

¢

action Drive-Truck

cparameters (?truck ?loc-from?loc-to ?city)

:precondition (and (truck ?truck)

(location ?loc-from

(location ?loc-to) (city ?city)
(at ?truck ?loc-from

(in-city ?loc-from?city)
(in-city ?loc-to ?city))

ceffect (and (not (at ?truck ?loc-from)

(at ?truck ?loc-to)))

caction Fly-Airplane

:paraneters (?airplane ?loc-from?loc-to)
:precondition (and (airplane ?airplane)

(airport ?loc-from
(airport ?loc-to)
(at ?airplane ?loc-from)

ceffect (and (not (at ?airplane ?loc-from)

(at ?airplane ?loc-to0)))

117

Appendix B

Hand-Coded Logistics Control
Rules

(define (control |ogcontrol)
(:domain | ogistics)

(:defpredicate in-wong-city
. paraneters (?obj ?loc)
:body (exists (?goal-loc) (goal (at ?0bj ?goal-loc))
(exists (?city) (in-city ?loc ?city)
(not (in-city ?goal-loc ?city)))))

(:action Load-Truck
:exclude (goal (at ?obj ?loc)))

(:action Load-Truck
:exclude (and (in-wong-city ?obj ?loc)
(airport ?loc)))

(:action Unl oad- Truck
:exclude (and (in-wong-city ?obj ?loc)
(not (airport ?loc))))

118

:action Unl oad- Truck

:exclude (and (not (in-wong-city ?obj ?loc))

(not (goal (at ?0bj ?loc)))))

;action Load-Airplane
:exclude (not (in-wong-city ?0bj ?loc)))

»action Unl oad- Airpl ane
:exclude (in-wong-city ?obj ?loc))

wifetrl wl
:scope (forall (?trk) (truck ?trk)
(forall (?obj) (obj ?obj)
(forall (?loc) (location ?loc)
(and (in-wong-city ?obj ?loc)
(not (airport ?loc))))))
:precondition (and (at ?trk ?loc)
(at ?0obj ?loc))
ceffect (next (at ?trk ?loc)))

wifetrl w2

:scope (forall (?trk) (truck ?trk)

(forall (?obj) (obj ?obj)
(forall (?loc) (airport ?loc)

(in-wong-city ?0bj ?loc))))

cprecondition (and (at ?trk ?loc)

(in ?0bj ?trk))

ceffect (next (at ?trk ?loc)))

119

¢

wifctrl w3

:scope (forall (?trk) (truck ?trk)

(forall (?obj) (obj ?obj)
(forall (?loc) (location ?loc)
(goal (?0bj ?loc)))))

:precondition (and (at ?trk ?loc)

(in ?0bj ?trk))

ceffect (next (at ?trk ?loc)))

(:

wifctrl w4

:scope (forall (?pln) (airplane ?pln)

(forall (?obj) (obj ?obj)
(forall (?loc) (airport ?loc)
(not (in-wong-city ?0bj ?loc)))))

:precondition (and (at ?pln ?loc)

(in ?0bj ?pln))

ceffect (next (at ?pln ?loc)))

120

Appendix C

Learned Logistics Control
Rules

(define (control |earned-control)
(:domain | ogistics-strips)

(:action | oad-truck
: excl ude
(goal (at ?obj ?loc))

(:action | oad-truck
: excl ude
(exists (?bbva) (in-city ?loc ?bbva)
(exists (?bbvb) (goal (at 7?obj ?bbvb))
(exists (?bbvc) (in-city ?bbvb ?bbvc)
(and (airport ?loc)
(not (= ?bbvc ?bbva))))))

(:action unload-truck
: excl ude
(and (not (goal (at ?obj ?loc)))
(not (airport ?loc)))

121

122

:action unl oad-truck
: excl ude
(exists (?bbva) (in-city ?loc ?bbva)
(exists (?bbvb) (goal (at 7?obj ?bbvb))
(and (not (goal (at ?obj ?loc)))
(in-city ?bbvb ?bbva))))

»action | oad-airpl ane
: excl ude
(exists (?bbva) (in-city ?loc ?bbva)
(exists (?bbvb) (goal (at 7?obj ?bbvb))
(exists (?bbvc) (in-city ?bbvb ?bbvc)
(= ?bbvc ?bbva))))

»action unl oad-airpl ane
: excl ude
(exists (?bbva) (in-city ?loc ?bbva)
(exists (?bbvb) (goal (at 7?obj ?bbvb))
(exists (?bbvc) (in-city ?bbvb ?bbvc)
(not (= ?bbvc ?bbva)))))

:wifctrl unload-truck

: scope

(forall (?obj) (obj ?obj)

(forall (?truck) (truck ?truck)
(forall (?loc) (location ?loc)
(goal (at ?obj ?loc)))))

:precondition

(and (in ?0obj ?truck)
(at ?truck ?loc))

ceffect

(next (at ?obj ?loc))

123

(:wffctrl unload-truck
: scope
(forall (?obj) (obj ?0bj)
(forall (?truck) (truck ?truck)
(forall (?loc) (location ?loc)
(exists (?bbva) (in-city ?loc ?bbva)
(exists (?bbvb) (goal (at 7?obj ?bbvb))
(and (airport ?loc)
(not (in-city ?bbvb ?bbva))))))))
: precondition
(and (in ?0obj ?truck)
(at ?truck ?loc))
ceffect
(next (at ?obj 7?loc))

(:wffctrl unl oad-airplane
: scope
(forall (?obj) (obj ?obj)
(forall (?airplane) (airplane ?airplane)
(forall (?loc) (location ?loc)
(exists (?bbva) (in-city ?loc ?bbva)
(exists (?bbvb) (goal (at 7?obj ?bbvb))
(in-city ?bbvb ?bbva))))))
:precondition
(and (at 7?airplane ?loc)
(in ?0bj ?airplane))
ceffect
(next (at ?obj ?loc))

124

(:wffctrl drive-truck
1 scope
(forall (?truck) (truck ?truck)
(forall (?loc-fronm) (location ?loc-from
(forall (?loc-to) (location ?loc-to)
(forall (?bbva) (obj ?bbva)
(and (airport ?loc-from
(goal (at ?bbva ?loc-from))))))
:precondition
(and (in ?bbva ?truck)
(at ?truck ?loc-from)
ceffect
(next (at ?truck ?loc-from)

(:wffctrl drive-truck
: scope
(forall (?truck) (truck ?truck)
(forall (?loc-from) (location ?loc-from
(forall (?loc-to) (location ?loc-to)
(forall (?bbva) (obj ?bbva)
(and (airport ?loc-to)
(goal (at ?bbva ?loc-from))))))
:precondition
(and (in ?bbva ?truck)
(at ?truck ?loc))
ceffect
(next (at ?obj ?loc))

125

(:wffctrl drive-truck
: scope
(forall (?truck) (truck ?truck)
(forall (?loc-from) (location ?loc-from
(forall (?loc-to) (location ?loc-to)
(forall (?bbva) (obj ?bbva)
(and (airport ?loc-to)
(goal (at ?bbva ?loc-from))))))
: precondition
(and (in ?bbva ?truck)
(at ?truck ?loc-from)
ceffect
(next (at ?truck ?loc-from)

(:wffctrl fly-airplane
: scope
(forall (?airplane) (airplane ?airplane)
(forall (?loc-from) (airport ?loc-fron
(forall (?loc-to) (airport ?loc-to)
(forall (?bbva) (obj ?bbva)
(goal (at ?bbva ?loc-from)))))
: precondition
(and (in ?bbva ?airplane)
(at ?airplane ?loc-from)
ceffect
(next (at ?airplane ?loc-from)

)

Bibliography

Aarup, M., Arentoft, M. M., Parrod, Y., Stader, J., and Stokes, I.
(1994). OPTIMUM-AIV: A knowledge-based planning and sched-
uling system for spacecraft AIV. In Fox, M. and Zweben, M.,
editors. Knowledge Base Scheduling. Morgan kaufmann. San
Mateo, California.

Aler, R., Borrajo, D., and Isasi, P. (1988). Genetic programming and
deductive-inductive learning: A multistrategy approach. Pro-
ceedings of the Fifteenth International Conference on Machine
Learning (pp. pages 10-18). Madison, WI: Morgan Kaufmann.

Bacchus, F. and Kabanza, F. (2000). Using temporal logics to ex-
press search control knowledge for planning. Artificial Intelli-
gence, 116.

Bacchus, F. and Nau, D. (2001). The AIPS’00 planning systems com-
petition. AI Magazine, 22(3),47-56.

Backstrom, C. (1992). Computational complexity of reasoning about
plans, Ph.D. Thesis, Linkoping University, Linkoping, Sweden.

Baioletti, M. , Marcugini, S., and Milani, A. (1998). C-SATPlan: a
SATPlan-based tool for planning with constraints. AIPS-98
Workshop on Planning as Combinatorial Search, Pittsburgh, PA.

Barrett, A., Golden, K., Penberthy, J.S., and Weld, D.S. (1993).
UCPOP user’s manual (version 2.0). Technical Report 93-09-06.
Department of Computer Science and Engineering, University of
Washington.

126

127

Beek, P. and Chen, X. (1999). CPlan: a constraint programming ap-
proach to planning. Proceedings of the Sixteenth National Con-
ference on Artificial Intelligence, Orlando, Florida.

Bhatnagar, N. and Mostow, J. (1994). On-line learning from search
failures. Machine Learning, 15, 69-117.

Blum, A. and Furst, M. L. (1995). Fast planning through planning
graph analysis. Proceedings of the Fourteenth International Joint

Conference on Artificial Intelligence (pp. 1636-1642). Montreal,
Canada.

Bonet, B. and Geffner, H. (1997). A fast and robust action selection
mechanism for planning. Proceedings of the Fourteenth National
Conference on Artificial Intelligence (pp. 714-719). Providence,
RI.

Borrajo, D. and Veloso, M. M. (1997) Lazy incremental learning of
control knowledge for efficiently obtaining quality plans. In D.
Aha (Ed.), Lazy learning. Norwell, MA: Kluwer Academic Pub-
lishers.

Bylander, T. (1991). Complexity results for planning. Proceedings of
the Twelfth International Joint Conference on Artificial Intelligence
(pp. 274-279). Sydney, Australia: Morgan Kaufmann.

Carbonell, J., Knoblock, C., & Minton, S. (1990). PRODIGY: An in-
tegrated architecture for planning and learning. In K. VanLehn
(Ed.), Architectures for intelligence. Hillsdale, NJ: Lawrence Erl-
baum.

Clark, P. and Niblett, T. (1989). The CN2 induction algorithm. Ma-
chine Learning, 3, 261-283.

Cohen, W. W. (1995). Fast effective rule induction. In Proceedings of

the Twelfth International Conference on Machine Learning. Lakte
Tahoe, CA.

Crawford, C. (1984). Compact: A fast simplifier of Boolean formulas.
Available via Crawford’s web page.

128

Culberson, J. (1997). Technical Report TR97-02, Department of
Computer Science, University of Alberta, Edmonton, Canada.

Dedong, G. and Mooney, R. J. (1986). Explanation-based learning:
An alternative view. Machine Learning, 1, 145-176.

desJardins, M.E., Durfee E. H., Ortiz, C.L. and Wolverton, M.d.
(1999). A survey of research in distributed, continual planning.
Al Magazine, 20, 13-22.

Ernst, M.D., Millstein, T.D., and Weld, D.S. (1997). Automatic SAT-
compilation of planning problems. Proceedings of the Fifteenth
International Joint Conference on Artificial Intelligence. Nagoya,
Japan.

Erol, K., Nau, D.S., and Subrahmanian, V.S. (1992). On the com-
plexity of domain-independent planning. Proceedings of the tenth
National Conference on Artificial Intelligence (pp. 381-386).

Estlin, T. A. and Mooney, R. J. (1996). Multi-strategy learning of
search control for partial-order planning. Proceedings of the
Thirteenth National Conference on Artificial Intelligence (pp. 843—
848). Portland, OR: AAAI Press.

Estlin T.A., and Mooney, R.J. (1997). Learning to improve both effi-
ciency and quality of planning. IJCAI-97, Nagoya, Japan.

Etzioni, Oren (1993). Acquiring search-control knowledge via static
analysis. Artificial Intelligence, 62(2), 255-302.

Fikes, R. E., and Nilsson, N. (1971). STRIPS: A new approach to
the application of theorem proving to problem solving. Artificial
Intelligence 5(2): 189-208.

Fink, E. and Yang, Q. (1992). Formalizing plan justifications. Pro-
ceedings of the Nineth Conference of the Canadian Society for
Computational Studies of Intelligence (pp. 9-14).

Fox, M. and Long, D. (1998). The automatic inference of state invari-
ants in TIM. Journal of Artificial Intelligence Research, 9, 367-
421.

129

Fox, M. and Long, D. (1999). Efficient implementation of plan graph
in STAN. Journal of Artificial Intelligence Research, 10, 87-115.

Gary, M.R. and Johnson, D.S. (1979). Computers and Intractability:
A Guide to the Theory of NP-complete.

Gerevini, A. and Schubert, L. (1998). Inferring state constraints for
domain-independent planning. Proc AAAI-98, Madison, WI.

Glover, F. and Laguna, M. (1993). Tabu search. In Reeves, C.R.,
Ed., Modern heuristics for combinatorial problems, Oxford, GB:
Blackwell Scientific, 70-150.

Helmert, M. (2001). On the complexity of planning in transportation
domains. Proceedings of the sixth European Conference on Plan-
ning.

Hoffmann, J. (2000). A heuristic for domain independent planning
and its use in an enforced hill-climbing algorithm. Proceedings
of the twelfth International Symposium on Methodologies for Intel-
ligent Systems, Charlotte, NC, USA, October 2000.

Hoffmann, J. (2001). Local search topology in planning benchmarks:
an empirical analysis. Proceedings of the 17th International Joint
Conference on Artificial Intelligence, Seattle, WA, USA.

Huang, Y.-C., Selman, B., and Kautz, H. (1999). Control knowledge
in planning: benefits and tradeoffs Proceedings of the Sixteenth
National Conference on Artificial Intelligence (pp. 511-517). Or-
lando, FL.

Johnson, M. D. and Adrof, H.-M. (1992). Scheduling with neural
networks: the case of the Hubble space telescope. Computers
& Operations Research, 19(3-4):209-240.

Kambhampati, S., Katukam, S., and Qu Y. (1996). Failure driven dy-
namic search control for partial order planners: An explanation
based approach. Artificial Intelligence, 88, 253-315.

Kambhampati, S. (1997). Challenges in bridging plan synthesis par-
adigms. Proc. IJCAI-97, Nagoya, Japan.

130

Kambhampati, S. (1999). Improving graphplan’s search with EBL &
DDB techniques. Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence. Stockholm, Sweden: Morgan
Kaufmann.

Kautz, H. and Selman, B. (1992). Planning as satisfiability. Proceed-
ings of the Tenth European Conference on Artificial Intelligence
(pp- 359-363). Vienna, Austria: John Wiley & Sons.

Kautz, H. and Selman, B. (1996). Pushing the envelope: planning,
propositional logic, and stochastic search. Proceedings of the
Thirteenth National Conference on Artificial Intelligence (pp. 1194-
1201). Portland, OR: AAAI Press.

Kautz, H. and Selman, B. (1998). The role of domain-specific axioms
in the planning as satisfiability framework. Proceedings of the
Fourth International Conference on Artificial Intelligence Planning
Systems. Pittsburgh, PA: AAAI Press.

Kautz, H. and Selman, B. (1999). Unifying SAT-based and graph-
based planning. Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence (pp. 318-325). Stockholm,
Sweden: Morgan Kaufmann.

Khardon, R. (1999). Learning action strategies for planning domains.
Artificial Intelligence, 113, 125-148.

Knoblock, C. (1994). Automatically generating abstractions for plan-
ning. Artificial Intelligence 68(2).

Koehler, J., Nebel, B., Hoffmann, J., and Dimopoulos, Y. (1997). Ex-
tending planning graphs to an ADL subset. Proc. 4th European
Conf. on Planning, S. Steel, ed., vol. 1248 of LNAI, Springer.

Koehler, J. and Hoffmann, J. (2000). On reasonable and forced goal
orderings and their use in an agenda-driven planning algorithm.
Journal of Artificial Intelligence Research, 12, 338-386.

Korf, R.E. (1985). Macro-operator: A weak method for learning. Arti-
ficial Intelligence, 26, 35-77.

131

Leckie, C. and Zukerman, 1. (1998). Learning search control rules for
planning. Artificial Intelligence, 101, 63-98.

Long, D. et al. (2000). The AIPS-98 planning competition. Al Maga-
zine, 21(2), 13-33.

Martin, M. and Geffner, H. (2000). Learning generalized policies in
planning using concept languages. Proceedings of the Seventh
International Conference on Principles of Knowledge Representa-
tion and Reasoning. Breckenridge, CO.

McCarthy, J. and Hayes, P.J. (1969). Some philosophical problems
from the standpoint of artificial intelligence. In Meltzer, B.,
Michie, D., and Swann, M., editors, Machine Intelligence 4, pages
463-502.

McDermott, D., et al. (1998). PDDL — the planning domain defini-
tion language. Department of Computer Science, Yale Univer-
sity, New Haven.

Minton, S. (1988a). Learning effective search control knowledge:
an explanation-based approach. Kluwer Academic Publishers,
Boston, MA.

Minton, S. (1988b). Quantitative results concerning the utility of
explanation-based learning. Proceedings of the Seventh National
Conference on Artificial Intelligence (pp. 564-569). St. Paul, MN:
AAAI Press.

Minton, S. (1990). Issues in the design of operator composition sys-
tems. In Proceedings of the Seventh International Conference on
Machine Learning, pages 304-312. San Mateo, CA.

Mitchell, T., Keller, R., and Kedar-Cabelli, S. (1986). Explanation-
based generalization: A unifying view. Machine Learning, 1, 47—
80.

Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L. and Malik, S. (2001).
Chaff: engineering an efficient SAT solver Proc. DAC-01. Las
Vegas.

132

Muggleton, S., and Feng, C. (1992). Efficient induction of logic pro-
grams. In S. Muggleton (Ed.), Inductive logic programming. Lon-
don: Academic Press Limited.

Pednault, E. (1989). ADL: Exploring the middle ground between
STRIPS and the situation calculus. KR-89, 324-332.

Penberthy, J.S. and Weld, D.S. (1992). UCPOP: A sound, complete,
partial order planner for ADL. In Proceedings of KR-92, pages
103-114.

Prosser, P. (1993). Hybrid algorithms for the constraint satisfaction
problem. Computational Intelligence, 9, 268-299.

Quinlan, J. R. (1987). Simplifying decision trees. International Jour-
nal of Man-Machine Studies, 27:221-234.

Quinlan, J. R. (1990). Learning logical definitions from relations. Ma-
chine Learning, 5, 239-266.

Quinlan, J. R. (1996). Learning first-order definitions of functions.
Journal of Artificial Intelligence Research, 5, 139-161.

Selman, B., Kautz, H., and Cohen, B. (1996). Local Search Strate-
gies for Satisfiability Testing, Dimacs Series in Discr. Math. and
Theoretical Computer Science, Vol. 26, 521-532.

Silverstein, G. and Pazzani, M. J. (1991). Relational clichés: Con-
straining constructive induction during relational learning. Pro-
ceedings of the Eighth International Workshop on Machine Learn-
ing (pp. 432-436). Evanston, IL: Morgan Kaufmann.

Tesauro, G. (1992). Practical issues in temporal difference learning.
Machine Learning, 8(3-4):257-277.

Veloso, M. (1992). Learning by analogical reasoning in general prob-
lem solving. Doctoral dissertation, Department of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh.

Weld, S. D. (1999). Recent advances in Al planning. Al Magazine, 20,
93-123.

