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Summary. We set out a modal logic for reasoning about connections to other processes provided by shared memory,
multilevel security of probabilistic systems. This logic con- and processes executing on a multiprocessor with connec-
tains expressions for time, probability, and knowledge. Mak-tions to other systems provided by an interprocess commu-
ing use of the Halpern-Tuttle framework for reasoning aboutnication (IPC) mechanism.
knowledge and probability, we give a semantics for our logic e There is a system, calleH, that provides services to
and prove it is sound. We give two syntactic definitions of the other systems. For example, in the case of a multiuser
perfect multilevel security and show that their semantic inter-relational database’’ would store and control access to a
pretations are equivalent to earlier, independently motivatedet of relationsX' is the system with respect to which we
characterizations. We also discuss the relation between thesdill be reasoning about multilevel security.
characterizations of security and between their usefulness in e There is a set of systems (label&d S,, ..., S; in the
security analysis. figure), called the “covert senders”, that have access to secret
information. These systems are called “covert senders” be-
cause they may attempt to covertly send secret information,
via X, to other systems that are not authorized to see the in-
formation. It is these attempts with which we are concerned.
As is commonly done in the literature, we will often refer to
the covert senders &sgh systems (referring to the situation
1 Introduction where the covert senders have accedsigbly classifiedn-
formation). We will also refer to the set of covert senders
Multilevel securityis the aspect of computer security con- collectively as the highrenvironment denoted.77. These
cerned with protecting information that is classified with re- systems are part of “the environment” in the sense that they
spect to a multilevel hierarchy (e.g., UNCLASSIFIED, SE- are in the environment of the central system,
CRET, TOP SECRET). Arobabilistic systenis a hardware e There is a second set of systems (labelad Ry, . . .,
or software system that makes probabilistic choices (e.g., byz; in the figure), called the “covert receivers”, that are not
consulting a random number generator) during its executionauthorized to see the secret information that is available to
Such probabilistic choices are useful in a multilevel securitythe covert senders. We will often refer to the covert receivers
context for introducing noise to reduce the rate of (or elim-aslow systems, or collectively as the lognvironment de-
inate) illicit communication between processes at differentnoted %
classification levels. In this paper, we are concerned with If the covert senders are able to uSeto communicate
definitions of perfect (information-theoretic) multilevel se- information to the covert receivers, we will say th8thas
curity in the sense that the definitions rule ailtillicit com- a covert channelor equivalently, for our purposes, that
munication without relying on any complexity-theoretic as- is insecure A few notes are in order.
sumptions. That is, our model allows the system penetrators
to have unlimited computational power; yet, our definitions 1. It is important to bear in mind that the threat that we
are sufficient to ensure there can be no illicit communication.  are concerned with igot that the users (i.e., thbu-

The systems we address can be depicted in the form manusers) of the covert sender systems are attempting
shown in Fig. 1. This general form is intended to represent to send secret information to the covert receivers. We
systems including physical hardware with hard-wired con-  assume that if they wanted to, they could more easily
nections to other systems, an operating system kernel with pass notes in the park and entirely bypdssRather,

* Supported by grant HKUST 608/94E from the Hong Kong Research We. are Concer.ned that the covert senders ".’“e actually
Grants Council. trojan horses (i.e., they appear to be sor_nethlng that the
** Supported by ONR. user wants, but actually contain something else that is
Correspondence tdP.F. Syverson entirely undesirable to the user) and that these trojan
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Fig. 1. The general form of a system

horses are attempting to send secret information to the
covert receivers. This is a legitimate concern since sys-
tem developers do not want to incur the cost of veri-

fying every component of a conglomerate system with

respect to multilevel security requirements. Ideally, only

a small number of components in the system (e.g., in our
case onlyX)) have security requirements and thereby re-

quire verification; while the remaining components can

be implemented by off-the-shelf hardware and software
that are unverified with respect to security (and therefore
may be trojan horses).

We assume a worst case scenario, wradleof the

covert senders and covert receivers are trojan horses.

Indeed, we assume thatl of the trojan horses are co-
operating in an attempt to transmit information from the
covert senders to the covert receivers.

. Itis also important to bear in mind that in our intended

this is not the case. In a more general setting, informa-
tion is classified (users are cleared, resp.) according to a
finite, partially ordered set (see, e.g., Denning’s [9]); that
is, there is a finite set of classification levels (clearance
levels, resp.) that is ordered by a reflexive, transitive,
and anti-symmetric relation, which we calbminates

(In fact this set forms a finite lattice.) A given user is
permitted to observe a given piece of information only
if the user’s clearance dominates the classification of the
information. In the case where there are more than two
levels, a separate analysis would be performed for each
level, z; in each analysis, the set of levels would be parti-
tioned into those that are dominated byi.e., the “low”
partition) and the set of levels that are not dominated
by x (i.e., the “high” partition). Thus, we have lost no
generality by restricting our attention to two levels.

application, the covert senders will not be able to com-The motivation for reasoning about the probabilistic behav-
municate directly to the covert receivers (i.e., by by- ior of systems has appeared in examples and discussions of
passingX). Typically, there are software, hardware or many authors (cf. [4, 17, 26, 28, 30, 42]). Essentially, the
other physical controls to prevent this. For example, non-motivation is that it is possible for a probabilistic system
bypassability is one of the well-known principles of a to satisfy many existing definitions of security (e.g., Suther-
“reference monitor” (see [13]), which is one of the typ- land’s Nondeducibility[40], McCullough’s Restrictiveness

ical applications we have in mind.

. Our model contrasts sharply with much other work on

[29], etc.) and still contain probabilistic covert channels.

Our long term goal is to develop a logic that can be

security (e.g., [31], [11]) in that we consider a set of un- used to reason about the multilevel security of a given sys-
trusted agents (viz, the covert senders and receivers) tha&m X'. The logical definition of security in this paper de-
are connected via a trusted agent, whereas these othéneatesideal security for probabilistic systems. As such it
works consider a set ofrusted agents connected via does not apply to real systems, which are too complex to
anuntrustedagent. This difference in our model reflects be simultaneously ideally secure and adequately functional.
the difference in the respective applications. The work ofNonetheless, it is important to establish the ideal in order to
Meadows in [31] and Dolev et al. in [11] is intended for know what is possible. Further, we view the present work as
the analysis of a set of legitimate (and trusted) agentsa step in the direction of practical verification of multilevel
that are attempting to establish secure communicatiorsecurity of real probabilistic systems (presumably based on
over an untrusted network. In that work, the assumptiondefinitions of security that allow some limited information
is that the penetrator is able to subvert the network (i.e.flow).

the central component of the system), but not the trusted
(lateral) agents.

In prior work ([18]), we gave a logic in which an

information-theoretic definition of security—the first au-

In contrast, our work is intended to be used to analyzethor’'s Probabilistic Noninterference (PNI) ([17])—was ex-
a centralized server that serves a set of untrusted entitiepressed as

Correspondingly, our assumption is that the penetrator

may be able to subvert the untrusted (lateral) agents, buf2(9) = Ri(p)

. where K (p) is intuitively regarded as I knowsy” and
. The fact that we have partitioned the set of systems eXR, (¢) is intuitively regarded asF is permitted to knowp.”

not the central server.

@)

ternal toX into two sets, high and low, may seem to indi- 15" Formula 1 is intuitively interpreted as “If knows

cate that we are limiting ourselves to two levels of infor- {han 7 is permitted to knowy”, or in other words, “what.
mation (e.g., SECRET and UNCLASSIFIED). However, \nows is a subset of what is permitted to know”.
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This intuitively-appealing formula was proposed by Glas-2.1 General system model
gow, MacEwen, and Panangaden [14] and further developed
by Bieber and Cuppens [1, 2]. In other work [19] we ex- We have a set of agent®;, P, ..., P,, each with its own
tended their approach to a probabilistic framework, retaininglocal state. Theglobal stateis ann-tuple of the local agents’
the syntactic form of their definition of security, viz For- states: A run of the system is a mapping of times to global
mula 1. However, the knowledge operatdt ) proposed states. We assume that time is discrete because we are deal-
by Bieber and Cuppens (and its probabilistic analog pro-ing with security at the digital level of the system. We are
posed by us) is nonstandard and rather unnatural. For exanmot, for example, addressing security issues such as analog
ple, what a subject “knows” does not change over time. Inchannels in hardware. Therefore, we will assume that times
particular, in our probabilistic framework, subjects “know” are natural numbers.
the probability distribution over all of their future interac- The probabilities of moving among global states are rep-
tions, including all future outputs they will receive. This is resented in the model by means of labeled computation trees.
in contrast with the intuitive notion of knowledge (as well as The nodes of the trees represent global states. For any given
the standard formalizations of knowledge such as by Chandyode in a tree, the children of that node represent the set of
and Misra [6] or Halpern [21]) wherein a subject can acquireglobal states that could possibly come next. Each arc from a
knowledge as it interacts with its environment. node to one of its children is labeled with the probability of
Another disadvantage of the prior work of Glasgow et moving to that state. Thus, from any given node, the sum of
al., Bieber and Cuppens, and the present authors is that Fothe probabilites on its outgoing arcs must be one. We also
mula 1 makes use of a “permitted knowledge” operatey’) assume the set of outgoing arcs is finite and that all arcs are
Such an operator has no standard semantics and seems, lapeled withnonzeroprobabilities. This final assumption can
its very nature, to be application specific. For example, sede viewed as @onventionthat if the probability of moving
[8] wherein “permitted knowledge” is essentially formalized from statex to statey is zero, then statg is not included
as "knowledge that is permitted, as defined in the presenas a child of state:.
application”. Certain events in a system may be regardedagrob-
In the present work, we develop a new formalization abilistic, while still being nondeterministic. The typical ex-
of PNI using the framework of Halpern and Tuttle [22]. In ample occurs when a user is to choose an input, and in the
this framework, the knowledge operator is given the stan-analysis of the system we do not wish to assign a proba-
dard semantics. Also, our new formalization does not makebility distribution to that choice; in such cases, we regard
use of a “permitted knowledge” operator; it is therefore freethat choice as nonprobabilistic. All nonprobabilistic choices
of the nonstandard operators that were used in our previin the system are lumped into a single choice that is treated
ous formalization. Thus, the present paper can be viewed ass being made by an “adversary” prior to the start of execu-
superseding our prior work. tion. Thus, after this choice is made, the system’s execution
In another sense, the present work can be viewed as & purely probabilistic. In Halpern and Tuttle’s words, the
novel application of Halpern and Tuttle’s framework, since nonprobabilistic choices have been “factored out”.
we instantiate their framework with an adversary (see Def- In the model of computation, each possible choice by
inition 2.1) fundamentally different from those described in the adversary corresponds to a labeled computation tree. In
[22]. other words, a system is represented as a set of computation
The remainder of the paper is organized as follows. Intrees, each one corresponding to a different choice by the
Sect.2 we set out our model of computation. In Sects. 3adversary. There is no indication how the adversary’s choice
and 4, we set out the syntax and semantics of our logic anis made, just that it is made once and for all, prior to the
in Sect. 5, we prove its soundness. In Sect. 6 we state our prstart of execution.
mary definition of security and prove that it is equivalent to
Probabilistic Noninterference. In Sect. 7 we state our verifi-
cation condition and show that it is equivalent to the Applied 2.2 Application-specific system model
Flow Model. Finally, in Sect. 8, we give some conclusions
of this work. In this section, we impose some additional structure on the
general model described in the previous section. We fix the
set of agents, fix our model and intuitions regarding com-
munication, place some (environmental) constraints on the

2 System model agents, and fix the set of choices available to the adversary.

eAgents.As indicated in Fig.1 and the surrounding discus-

In this section, we describe our system model. This is th Sion, we can limit our model to three agents: (1) the system

model by which we will (in Sect.4) give semantics to our
logic. First, we describe the general system model, which 1 yapem and Tuttle also include the state of the environment as part of
is taken from Halpern and Tuttle [22]. The framework of the global state. In their usage of the term, the “environment” is intended “to
Ha|pem and Tuttle builds on the work of Fagin and Ha|pem capture everything relevant to the state of the system that cannot be deduced
in [12]_ It also encompasses earlier work of Ruspini in [35]_ from the_ agents’ local stat_es”_[22, Sec_t. 2]. This typically includes messages
After giving the general system model, we tailor the model™ transit on the communication medlum. However, we model such thlngs_

. . - as part of the covert senders’ and receivers’ local states; we therefore omit
to our needs by Imposing some additional structure on th(?what they call the environment from our model. In contradistinction, we

model and ('n Halpern _anq Tuttle’s t_erm_in()lOQY)_QhOOSing refer to everything external t& as “the environment’; viz, the covert
the “adversaries”, resulting in our application-specific model.senders and receivers constitute the environment.
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under consideration, denotex, (2) the covert senders (or  O: representing the set of output values.

alternatively, the high environment), denoted’, and (3) N*: representing the set of positive natural numbers. This

the covert receivers (or alternatively, the low environment),  set will be used as our set of “times”.

denoted#. In the remainder of the paper, we will tacitly

assume that the global system is comprised of these threBince there is one input per channel at each time, we will

agents. be talking about the vector of inputs that occurs at a given

time. We will denote the set of all vectors of inputs Hy].

Typical input vectors will be denoted, a’, ay, ... € I[C].
Similarly, we will denote the set of all output vec-

ors by O[C] and typical output vectors will be denoted

Model of communicationOur model of communication is
similar to those of Bieber and Cuppens, Millen, and the first
author (cf. [2], [32], and [17], respectively). We view’s
interface as a collection of channels on which inputs and, ;

0, b1,... € O[C].

outputs occur. Since_we consjder the.ag@ﬁt((esp.r%) 0 Now, to talk about the history of input vectors up to a
consist ofall processing that is done n the high (resp., low) iven tir’ne we introduce notation for traces. We will de-
environment, including any communication mechanism tha® ’ . :
delivers messages 10, we will not need to model messages hote the set of input traces of length by Ic,. Mathe-
in transit or, in Halpern and Tuttle’s terminology, the state maf?alllyz, Icykkli E)SIhO_IELhearg?OI(;I’ ]Egre:?rtaz;fuenﬁtlonsv\zom
of the environment; rather, these components of the globa\f\;iII den’ot;a. t.He sin Ie.in ut on Cﬁanrtelz C at timeck’:’f’< X
state will be included as part o#%’s and.4’s state. by alc. k') 9 P =

In many systems of interest, the timing of events is of P Lo :

, ’ g We will also need to talk about infinite traces of inputs.
concern. (See I__ampson s [25] for an early deSC.I’Ip.tIOH OfFor this we use the analogous notatifn,., which is shgrt
covert communication channels that depend on timing.) | and for the set of functions froifi x Nfcté 7
particular, some covert communication channels depend o Similarly, we will denote the set of ou.tput traces of
a clock being shared between the covert senders and res ’ S

; . o ength k£ by O and the set of infinite output traces b
ceivers. Such channels are typ|cally caltqdlng channels 9 Nat)[ual(ljyk for an output trace, A(c k)p representsy
see Wray's [43] for examples and discussion. To handle suc goc?ﬁt ut on cr;annei at time k ' ’
cases, we take the set of times (i.e., the domain of the runs TheFr)e will be situations wHere we want to talk about
to be the ticks of the best available shared clodkvents .
occurring between two ticks are regarded as occurring Ol’\lé ﬁ;fgzlggriceg Ornlnspuu(:tﬁ %ragg;plxz c\),a”scl)Jr:ee tshuebsriattuoraflhe
the latter tick. This is sufficient for the purposes of our anal- L=

ysis because, as far as the covert senders and receivers %%nerahzatmns of the above notations, VIgy], /s, s,
concerned, this is the most accurate information available.”™

Also note that if the timing of certain events (wrt the best

available shared clock) is nonprobabilistic, we can conside e the inputs and outouts on a subset of the svstem’s 1/0
the various possibilities to be choices that are made by thé p P . " T Y
(awannels. We make this precise by “restricting” vectors and

adversary and factor out that nondeterminism as discusse X i
by Halpern and Tuttle [22]. traces to subsets @f. Given an input vector € I[C] and

Since the mechanisms of high-le¥dlO routines may a set of channels ¢ C, we defines [ 5 € I[S]_to be the
introduce covert channels (see, e.g., McCullough's [28,MPUt VECtor on channels iff such thata | S(c) = a(c) for
Sect. 2.3]), we take a very low-level view of 1/O. In par- all CS.G SI | . . I d f
ticular, we assume one input and one output per channel perh |m||a}gryc, g(;ven ag 'f'i‘p“t tragey i C;[k ?)n tr? set Ot
unit time (where times are chosen according to the abovf annfes ha ,Iw_e e lnﬁahF € Sv’“k, 0_ € ) 2, |r}pu
considerations). That is, for each time we have a vector o race for ¢ anne/s I such thaio [ S(c, &) = a(c, &) for
inputs (one for each channel) and a vector of outputs (oné‘II c€ S and allk’ < k.

for each channel). If a given agent produces no new dat% Sl\j\éeseisgg,m?n,fg%:/g'e SLe;{sOtfhEvgefho?ncnhealilngfzsnﬁzﬁhe
value at a given time, it may in fact serve as a signal in : y:

o w ow environment, %, is able to directly see. In particular,
cpvert channel epr0|tat|0n: Hence, we treat such no ne\i]%. is able to see goth the inputs and){he outpu?s that occur
signal” events as inputs. Similarly, we do not consider the’

o . on channels in_.
possibility that the system can prevent an input from occur In practice, there will be some type of physical or proce-

ring. Rather, the system merely chooses whether to mak : - . ,
use of the input or ignore it. Any acknowledgement that anaura! constraints on the agef to prevent it from directly
viewing the inputs and outputs on channelsCin- L. For

Input has been received is considered to be an output. example, those channels may represent wires connected to
Given these considerations, we fix our model of Com_worksriati,ons that are used fory roFéessin secret data. In this
munication as follows. We assume the following basic sets . P 9 A,
) case, the secret workstations might be located inside a locked
of symbols, all nonempty: o S .
and guarded room. In addition, periodic checks of the wires
C: a finite set of input/output channel names,. .., ¢, might be made to ensure that there are no wiretaps on them.
I: representing the set of input values, In this way, % is prevented from directly viewing the data
T2 A snared clock b licit clock lied thesvst that passes over the channelsiin- L.
shared clock may be an explicit clock supplied bye.g, thesystem On the other hand, we place no constraints on the set of
clock, or it may be a clock manufactured by the covert senders and receivers h Is that? i | icul ke th
for their own purposes; see [43] for examples and discussion. channels that’Z' is a_b € tOy Se_e' In particular, W_e make the
3 In this context, “high-level” means highlgbstractrather than highly ~ WOrst-case assumption tha¥’ is able to see all inputs and
classified outputs on all channels.

IEnvironmental constraintsAny given agent will be able to
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The above considerations are consistent with what we'vaised to construct the corresponding computation fee
called the “Secure Environment Assumption” in previous Since there is one tree for each possible adversary, we can
work [17, 18]. In the present paper, this assumption is madéhink of the set of trees as being indexed by the adversaries.
precise in terms of our definition of the adversary to be givenTherefore, we will often writel’ ,, T », T’ ,,, etc.
next. It is clear that for an adversaryZ that satisfies the Se-

. : , cure Environment Assumption (wi), the conditional prob-
The adversaryAs discussed above, in Halpern and Tuttle’s ability functions.7 and.# are unique. Further, gived#

framework, all nonprobabilistic choices are factored out Ofandr%/, there is a unique adversary¢, for which.7 and

tsr;:rtegfgzgggtigl; tk_]reo ?%/jtkeensjsbey;flﬁlk?ig sgn?gv\\//gia\r}\;ea:ngf% are the probability functions that satisfy the correspond-
X ' ﬁng constraint. There is therefore no ambiguity in writing

define the set of possible adversaries from which this choiceTW . T v, etc. when we want to refer to the compo-

° rr']I'arl1dee‘.‘adversar " in our application is the pair of agents nents of the adversary individually.
Y bp P 9 '’ Note that our definition of an adversary is not meant to be

o7 % . .
ié\/iﬁgr?rhiﬁtﬂ;itroasr: tﬁte}esmsﬂg’r%ot?hzelg(\?v ((je?:\(/a}rgr?metr?te'lt]olghas general as the adversary discussed by Halpern and Tuttle.
Y ) In fact, Halpern and Tuttle give no structure at all to their

?iﬁ f[l;léy g:rggﬁé\évﬁat?gos:rl]stg)es_?_hfﬁeigtsa"tise;z'fdois;iaitne%e dversary.) Rather, our adversary is application-specific; in
9 : ’ P articular, it is for reasoning about multilevel security of

execution of the system the strategy gives the probabilit probabilistic systems and is not designed to be used outside
distribution over the set of next possible inputs, cond|t|onedthat domain

OPe;heen?grt]og(;r?] t?et?:r%%t[:\?gttepfr:gth:aneglhfo?iﬁt(:ﬁecgr?g;e\fl\{te On the other hand, this particular adversary represents
P P 9 Y% novel application of Halpern and Tuttle’'s framework. In

Etlalfov:/?ndotlvl?/g ;cjhafx;chi\t/;/enmake the adversary precise with thq-|alpern and Tuttle’'s examples, the adversary represents one
ofiowing two definitions. or both of two things:

Definition 2.1 An adversaryis a conditional probability
function . 4(a | «, 8) (wherea € I[C] and for some time,

a € Ic andg € O¢ ). Intuitively, the adversary describes
the environment’s conditional distribution on the next input . )
vector, given the previous history of inputs and outputs. Byln contrast, our adversary does not represent a given input to

saying that #(a | «, 3) is a conditional probability function the system. Rather, it represents a mixed strategy for choos-
we require that ing the inputs to the system. In some sense, we can think of

) this as a generalization on the first item above; however, our
-0<.4(a|a,p) <1 and application still fits within the framework set out by Halpern
=D Malaf=1

— the initial input to the system; and
— the schedule according to which certain events (e.g., pro-
cessors taking steps) occur.

and Tuttle.

o ) N - The state of the systerit any given point,P, in any given
In fact, it is trivial to define a conditional probability mass computation tre€]’ ,, there should be a well-defined state of

function corresponding to< wherea, a, and3 are replaced  the system. For our purposes, the state includes the following
with the values of the corresponding random variables [33]. information.

Such a conditional probability mass function can be defined
in terms of the probability measure , given in definition 4.4
below. O

1. Allinputs and outputs that have occurred on all channels
up to the current time.

2. The adversary. In [22], Halpern and Tuttle make the as-
sumption that all points in all trees are unique. They
suggest (and we adopt) the following idea to ensure that
this is true. The state encodes the adversary. That is, all
nodes in tre€el’ , encode 4. Note that we daot as-
sume that any given agent knows the adversary; just that
it is somehow encoded in the state. We can think of the
high part of the adversary7Z, as being encoded in the
high environment and the low par¥;, as being encoded

[ in the low environment.

3. Additional components of the global state represent the
internal state of}. For example, in describing”, it
is often convenient to use internal state variables. The

Definition 2.2 We say that an adversary? satisfies th&e-
cure Environment Assumption with respect to a set of chan-
nels L C C iff there exists a pair of conditional probability
functions. 7% and & such that for alla € I[C], all k£ € N*,

all a € Ic, and all g € O¢ i,

Aa|o,f)=F ] (C—L)|af)
L@l L|alLA1L)

(where- denotes real multiplication).

The Secure Environment Assumption can be intuitively
understood as saying that the input on channel<in-(L)

at time & is (conditionally) statistically independent of the
input on channels i at timek, and the input on channels

in L at timek depends only on previous inputs and outputs

on channels inL. For the remainder of this paper, we will

assume that all adversaries from which the initial choice is
Computation treesNow that we have set out the possible

made satisfy the Secure Environment Assumption.

state of these variables can be thought of as a vector
of values, one value for each state variable. Thus, the
internal state, when it exists, will be denotedand the
history of internal states will be denoted

Later in this section, we describe how a given adver-states of the system (i.e., the points of computations), we

sary. ¢ and the description of a particular systei, are

can talk about the construction of the computation trees.
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For each reachable poin®, we assume thal’s proba- add a modal operataPr;(p) that allows us to specify and
bility distribution on outputs is given. For example, this can reason about the probabilistic behavior of the system.
be given by a conditional probability distributior;'(b, ¢ | From the previous section, we assume the following ba-
a, 3,7), wherea, 8, andy give the history (up through some sic sets of symbols, all nonempty, I, O, andR. Members
time k) of inputs, outputs, and internal states, respectively, of R will have the usual representation—e.g.,%8 R.
is a vector of internal state variables (i.e., the internal system We will also be talking about the subjects (or agents) of
state at timek + 1), andb is the vector of outputs produced the system. Formally, aubject S C C, is identified with
by the system (at timé + 1). the process’s view of the system, i.e. the set of channels on
Given @'(b,c | a,3,v) and the adversary-#4, we can  which it canseethe inputs and outputs.
construct the corresponding computation tree by starting Formulae in the language are built up according to the
with the initial state of the system (i.e., the point at the following rules.
root of the tree with empty histories of inputs, outputs, etc.)

and iteratively extending points as follows. — constants from the set of basic symbols are terms.

Let P be a point in the tree with internal system history — state variables (representing the value of that variable in
~, input history«, and output history3. We will make P’ the current state) are terms. Among the state variables,
a child of P iff there are two reserved for each communication channel.

For eachc € C, we have a state variablg, that takes
values fromI, and another state variabig,; that takes
values fromO. Note that, implicitly, inputs are from
the covert senders and receivers into the systEjraphd
outputs are from the system to the covert senders and

1. P’ is formed fromP by modifying the internal system
state tac and extendingP’s input history (output history,
resp.) witha (b, resp.); and

2. both@(b,c | o, 8,7) and. 4(a | «, 5) are positive.

In such cases, we Iab_el the arc fratto P’ with ﬁ‘(b,_c | receivers. This is becausE is the system under con-
a,f,7) - - 4(a |, p), i.e., the systemy, and the environ- sideration (i.e., with respect to which we are reasoning
ment,. -4, make their choices independently. about security). We have no mechanism (and no need)

to specify communication between agents not including

the system under consideration.

primed state variables (e.g{,) are terms. (These repre-

sent the value of the variable in the next state.)

— We use standard operators among terms (e.g., + &rd
addition and multiplication, respectively), with parenthe-
ses for grouping subterms, to form composite terms.

— an atomicformula is an equation or inequality among

terms.

For any formulay, Oy is a formula (to be read intu-

itively as always ¢).

We build up composite formulae, in the usual recursive

fashion usingh, v, -, and—.

for any nonmodal formufay, and for any subjec C

C, Prg(p) is a real-valued term. IntuitivelyPrg(p)

represents theubjective probabilitythat S assigns to

Runs of the systenf run of the system is an infinite se-
guence of states along a path in one of the computation
trees. When we want to talk about the particular runand -
time, k, at which a pointP occurs, we will denote the point
by the pair p, k). Further, if we wish to talk about the var-
ious components of the run, i.e., the trace of the inputs,
outputs,3, or other variablesy, we will denote the run by
(o, 8,7) and denote the poin®?, by (o, 5, v, k).

For a given treeT’, we denote the set of runs (i.e., infinite
sequences of states), formed by tracing a path from the root,”
by runs(T).

For security applications we are concerned with informa- —
tion flow into and out of the system rather than with infor-
mation in the system per se. Thus, though our system model™
is adequate to represent internal states and traces thereof, in
subsequent sections it will be adequate to represent systems ) A, .
entirely in terms of input and output. In particular, system  the formulap, that is, the probability ofp, given the

havi ' rather th previous history of inputs and outputs on channels in
‘b(ef(svclo‘rac%nvt))’(.a represented by (b | o, §)' rather than S. We refer toPrc(p) (whereC' is the set of all com-

munication channels) as ttabjective probabilityof ¢,
since it represents the probability pfgiven all available
3 Syntax information, i.e., the unbiased probability of

In this section we set out our formal language and use it to  To specify and reason about our security properties of

describe two simple systems. Then we give the axioms anéhterest, we also add a set of modal operators on formulae:

rules of our logic. Ky, ..., K,, representing knowledge for each subject (rep-
resented by the subscript of the operator). Therefore, we add
the following additional formation rule to our syntax.

3.1 Formation rules

. ) ) ~ — For any formulap, and for any subject C C, Ks(p)
To describe the operation of the system under consideration (representing tha$ knows ) is a formula.
(viz, X), we use a variant of Lamport’s Raw Temporal Logic

of Actions (RTLA) [24]* The primary difference is that we Note that this and previous rules are mutually recursive; so,

4 Roughly speaking, Raw Temporal Logic of Actions (RTLA) is the same we can express, €.9., thﬁtalways knows that = 5.

as Lamport’'s Temporal Logic of Actions (TLA) without the treatmentof
stuttering [24]. Since we are not, in this paper, concerned with refinement, 5 A nonmodal formula is a formula that does not contain any knowledge
we omit the considerations of stuttering and use RTLA. or temporal operators.
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3.2 Examples Now note that if the high agent ignores its output, this

) i i system acts exactly as the system from the previous example
We now give two simple examples of how to describe sys-gnqd can be used for perfect encryption). In particular, sup-
tems in our language. Ultimately, we will have sufficient pose we were to model an adversary as an input string—the
formal machinery to show that one of these systems is Semput to be provided by the high agent. Then, it is straight-
cure and the other is not; however, here we simply set themfyrward to prove that for any adversary (i.e., any high input
out formally. These descriptions are meant to give the readegtring) fixed prior to the start of execution, the output to low
an intuitive feel for the meaning of expressions in the lan-y pe uniformly distributed and, in fact, will contain no
guage. Precise meanings will be given in Sect. 4. Also, thgnformation about the high input string.
second of these examples will motivate our choice to model  However, the bit that will be used as the one-time pad at

adversaries as strategies. time & is available to the high agent at tinke- 1. Therefore,

Example 3.1 The first example is a simple encryption box (due to the algebraic properties of “exclusive or”, viz; &
that uses a “one-time pad” [10]. It has two channéigh ¥ = ¥) the high agent can use this information to counteract
andlow. At each tick of the system clock, it inmia 0 or 1 the encryption. In particular, the high agent can employ a
on the high channel and outsu& 0 or 1 on the lovehan- (game-theoretic) strategy to send any information it desires
nel. The low output is computed by taking the “exclusive across the system to the low agent. .
or" (XOR) (denoteds) of the high input and a randomly For example, suppose the high agent wishes to send a se-
generated bit. quence of bitshy, by, . . .. We'll denote the high input (resp.,
Note that we are modeling only the sender’s (encrypting)output) at timek by h;;, (k) (resp..hou¢(k)). The appropriate
side of a one-time pad system. Thus, issues such as how tiférategy for the high agent is as follows.
random bit string is distributed to, and used by, the receiver's  The high agent chooses its input for tinker 1 as
(decryptlng) side are out of the scope of this speC|f|c_at|on. Rin(k + 1) = howt (k) @ by
It is well known that the XOR of a data stream with an ] ]
independent uniformly distributed bit stream results in anThus, the output to low at time + 1, denoted,..(k + 1) is
output stream that is uniformly distributed. Therefore, we cOmputed as follows.

can describe the encryption box as follows. lowt(k + 1)

Let C' = {h,l}, I ={0,1}, andO = {0,1}. Then, the = howt(k) ® hin(k+1)  [by the system description]
system is specified by the following formula. = hout (k) ® hout(k) ® b, [by the high strategy]
O (Pro(l,, =0)=05A Pro(ll,, = 1) = 05) = by [by the properties oft]

In this formula,l,. is a state variable representing the Thus, by employing the correct strategy, the high agent can
output on the low channel, Therefore/’,, is the output on noiselessly transmit an arbitrary message aveo the low

I at thenexttime. Further,Prc(l.,,, = 0) denotes the prob- 2gent. This, of course, motivates our choice to model adver-
ability that the output ori is a O at thenext time. Hence, Saries as strategies, rather than, e.g., input strings.
the entire formula says that at all times, the probability of O

2 producing a one (1) on the next clock tick is equal 10 \e now have some sense of the formal language, with

the probability of producing a zero (0), which is equal 10 e exception of the knowledge operafsk. As previously

0.5. Note that we have not specified the probability distribu-mentioned, this operator will be used to formalize the secu-

tion over inputs, since this constitutes environment behaviotiwy, properties that interest us. We will illustrate that use in a

rather than system behavior. later section. For now we mention that in security analyses it

is typical to assume that system users (and penetrators) know

Example 3.2 The second example is an insecure versionhow the system works (i.e., its specifications are not secret);

of the simple encryption box. Shannon [37] gives an earlywe make such assumptions explicit using our knowledge op-

description of this system. erator, in particular, if the system specification is given by a
As in the first example, the system computes the “exclu-formulayp, we will assume that for every subje§t Ks(y).

sive or” of the current high input and a randomly generated

bit and outputs that value on the low channel at each time. i

However, in this system, the randomly generated bit used a$-3 The Logic

any given tick is actually generated and output on the high ) ) ) )

output channel during therevioustick of the clock. We now give the axioms of our logic. In the following, we
This can be expressed in our formalism as follows. LetWill useé ‘¢" and *)" to refer to formulae of our language.

C = {h,1}, I = {0,1}, and O = {0,1}. The following  Propositional reasoningAll instances of tautologies of pro-

formula specifies the system. positional logic.
Temporal reasoningThe following are standard axioms for
O(Pro(hi,,; =0) =05 A Pre(hy,, =1) =05 temporal reasoning about discrete systems. The logic they
AL = houw @® R, constitute is generally callég4.3Dum (See Goldblatt's [16]

for details.) We have labelled the axioms with their historical

Note that in the third conjuncty,,; is unprimed, indi- names. Lety and+ be formulae of our language.

cating that the output ohat the next time is the “exclusive
or” of the current output onh with the nextinput onh. K (@O(p) AO(p = ) — Oy
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T Op — ¢ The above are all of our axioms. We now give the rules of
4 0p—00¢ our logic, which are both standard.

L O AOp — ) vO@ AOy — )
MP. (Modus P
Dum D(E(e — Hg) = @) = (0D e = ¢) FrorrggaoanudS@ inzez;nisrzfer .

‘O¢’ can be interpreted roughly as saying that at some,

point o is true. Formally, it is viewed as notational short- Nec. (Necessitation) This rule applies to both of our modal

A operators{] and Kg. (It is called ‘necessitation’ because it
hand: for all formulaep, O = - —¢. K guarantees that was originally applied to a necessity operator.)

the temporal operator respects modus ponens. Each of tteromF ¢ infer - Oy

other axioms captures a feature of time that we degigets ~ FromF ¢ infer - Kg(y)

us transitivity. T guarantees that we don’t run out of time . . R
y. 9 dNote that in the above/~ ¢’ indicates a derivation ofp

points (seriality) and that temporal references include th . .
presentL guarantees that all points in time are connected/’o™ the axioms alone, rather than from a set of premises.
(linearity). And,Dum guarantees that time is discrete. (Be- (Derivations are defined below.) Thus, in the case of the
tween any two points in time there are at most finitely manyknowledge operator (and analogously fGy Nec says that
other points; see Goldblatt's [16] for further discussion.) guf)'el,-sctz I(hn%orem (derivable without any premises) then all
Real number axioms&tandard field and order axioms for the \J/\/e can nvffﬁv define formal derivations.

real numbers (to apply to members®dfand function terms

with rangeR.) We will not enumerate these axioms. (See anyDefinition 3.3 Let I' be a finite set of formulae of our lan-
elementary real analysis book for enumeration, e.g., [27] oguage. A finite sequence of formulag, ¢z, ¢s, ..., ¢, is
[34].) called a derivation (ofp,, from I') iff eachyy, (kK =1,...,n)

. . . . isfi f the following:
Epistemic reasoningThe (nonredundant) axioms of the satisfies one of the following

Lewis systemS5 (cf. Chellas, [7], or Goldblatt. [16]) ap- — ¢x €1
ply to the knowledge operatords(s). As for temporal ax- — g IS an axiom.
ioms, we give the axioms their historical names. Kelbe a — iy follows from some theorem Nec
subject, and letp andv be formulae of our language. — For somei, j < k, ¢y, results fromp; and¢; by MP.
K (Ks(p)AKs(p — ) — Ks(¥) (Knowledge respects We write T - ' to indicate a derivation ofp from I", and
modus ponens.) we write + ¢’ to indicate a derivation ofp from the axioms
T Ks(p) — ¢ (What one knows is true.) alone. O
5 -Kg(p) > Ks—Kgs(p) (If you don’t know something, .
then you know that you don’t know it.) This completes our statement of the formal system.

Random variable axiom3he standard requirements for ran- )
dom variables (in the probability theoretic sense). 4 Semantics

PM (Positive Measure) for any formul@, and any subject, | the previous section we presented a syntactic system. So

S, Prs(p) >0 . far we have only intuitive meanings to attach to this formal-
(The probability of any event is greater than or equal t0jgm | this section we provide semantics for our system in

zero.) terms of the Halpern-Tuttle framework and our application-
NM (Normalized Measure) for any channeland any sub- specific model set out in Sect. 2.
ject, S,

> acr Prs(cn = a) = 1 (The probability of all possi-
bilities sums to one.)
Zbeo PTS(Cout = b) =1

Additional axioms.Since our logic contains three different
modalities, we need some axioms to describe the interactionR, +,-, <, W,.7,C, 1,0, v, K1,...,K7c)| )

among them.- The following are not |_ntended 10 be ComIOIeteHere,IR{ and its operations and ordering relation gives us
in any sense; they are merely sufficient for the present PUthe real numbersiV is the set of points (i.e., global states

4.1 Semantic model

A model M is a tuple of the form:

poses. or “worlds”); .7 is the set of labeled computation trees
KO For any formulay and any subject, (with nodes fromWW); C, I, andO are the sets of channels,
Ks(Op) — O(Ksp) possible inputs, and possible outputs, respectivelis the
(If S knows something is always true, theéhalways  assignment function, which assigns semantic values to syn-
knows it's true.) tactic expressions at each point; (valuedcdt a particular

KPr For any formulap, any subjectS, and any real number point P, will be indicated by the projectiorwr’); and the
T, k;s are knowledge accessibility relations, one each for each
Ks(Pro(p) =r) = Kg(Prs(p) =7) subjectS. Essentially, two points are accessible for a given
(If S knows the objective probability @, thenS knows  subject if that subject cannot distinguish between those two
its subjective probability ofp and the two probabilities points. (i.e., the subject does not “know” which of the points
are the same.) he is in.) We describe these accessibility relation precisely
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in the next section. In the remainder of this paper we will As discussed by Halpern and Tuttle, after choosing these
generally denote the accessibility relations corresponding t@ample spaces, assigning meaning to probability formulae
subjectS by ‘kg’. is straightforward. Further, assigning meanings to nonprob-
In assigning meaning to our language, it is of funda- ability formulae will be done in the standard ways, so that
mental importance to associate a probability space with eactoo will be straightforward.
labeled computation tree. In particular, for each labeled com- We denote the sample space for subjgcat point P
putation treel , we will construct a sample space of runs, by .6 p. Our approach in assigning these sample spaces is
72 4, an event space#?’, (i.e., those subsets o#2 , to discussed by Halpern and Tuttle, where they describe it as
which a probability can be assigned), and a probability mea*correspond[ing] to what decision theorists would call an
surey, , that assigns probabilities to members.4f ,. agent’sposterior probability” [22, Sect. 6]. In particular, we
Our construction of this probability space is quite natural choose % p to be the set of points withitree(P) that have
and standard (see, e.g., Seidel's [36] as well as [22] for twahe same history of inputs and outputs on channelS &s
instances). We will not go into detail explaining the basic occur on the path to poirfe. Essentially, this means théts
concepts of probability and measure theory here (cf. [20] omprobability space takes into account all inputs and outputs
[39)). that .S has seen up to the current poirt;does not forget
anything it has seen. More precisely, we have the following

Definition 4.1 For a labeled computation tre@ ,, the as- definitions

sociatedsample space72_, is the set of all infinite paths
starting from the root ofl’ ;. L Definition 4.5 LetS C C be a subject and lgt, = (o, f1,

Definition 4.2 For any sample space” ,, the sete C 1) @ndpz = (az, B2, 72) be two runs (not necessarily in the
7, ,, is called agenerator iff it consists of the set of all Sa@me ree). We say thag and p; have the samé-history

i i i£6
traces with some common finite prefix. Intuitively, genera-Up to timek if and only if

tors are probability-theoretic events corresponding to finite v; 1 < i < k, Ve € S, a'(c, i) = alc, i) A B'(c, ) = B(c, 9)
traces. O -
Definition 4.3 For any sample space#_,, we define the

event space.?,, to be the (unique) field of sets generated Definition 4.6 Let.S C C be a subject and leP; = (p1, k1)

by the set of all generators. That is¢, is the smallest and P, = (p2, k2) be two points (not necessarily in the same
subset of(.72,_,) that contains all of the generators and is tree). We say thaP;, and P, have the sam&-history if and
closed under countable union and complementation. [J only if the following two conditions hold.

Definition 4.4 We define th@robability measure, p,_,, on 1. k1=kp.

.2, in the standard way. Supposeis a generator corre- 2. p; and p; have the samg-history up to timek;.
sponding to the finite prefix given [y, k). Then,u,_4(e) is

defined as the product of the transition probabilities from the

root of the tree, along the path, up to timek. Further, it pefinition 4.7 Since points are unique even across trees, for
is well known that there is a unique extensioruof to the 5 given pointP, there is no ambiguity in referring to “the

entire event space (cf. [20]). L' tree that contains””. In the following, we will usetree(P)
We will be rather abusive in the use of our probability mea-t0 denote that tree. 0

suresy, 4. In particular, when we have a finite set of points, Definition 4.8 Let S C C be a subject and® be a point:

x, we will write p_»(x) to denote the probability (as as- . o
signed by, ,) of passing through one of the points in the sample space fd¥ at point P is given by

Technically, this is wrong, sincg, , is defined fqr sets of S p A { P'| tree(P') = tree(P)

runs; not for sets of points. However, the mapping between ) .

the two is extremely natural; the set of runs corresponding A P’ and P have the samé-history}

to a set of points is the set of all runs thaass through 0

those points. Further, by the construction of our probability

spaces, all sets of runs corresponding to finite sets of points Now, for a given pointP, we will assign truth values

are measureable. Therefore, there is no danger in this abuse temporal formulaep at that point. In addition, we assign

of notation and it greatly simplifies our presentation. values to variables, for example the input on a channel, at
that point. The assignment function that does both of these

] ) is denoted by p.
4.2 Assignment function To definevp, we will need to assign truth values to

Gi the ab i del. th in technical i formulae containing primed variables. Therefore we will also
Ivén the above semantic modet, the maintechnical qUeStiOfefine functionsyp, p, (WhereP, and P; are points and we
we need to address in assigning meaning to formulae in our '

logic is: 6 In other settings, we might also consider the possibility that a subject

For a given subject ata given point in its execution S has internal state variables and could use these to make finer distinctions

. . de i . . between points. However, in our application, all of the internal processing
(l'e" at a given node In a given computation tree)’ of the relevant subjects (vizZZ and %) is encoded in the adversary and

what Sf_imple space 5h0U|d_ be used ir_‘ evaluating the s thus factored out of the computation tree. We therefore do not lose any
probability that subject assigns to a given formula? needed generality in making this definition.

O



82

think of P, as being a child ofP, in some tree) to assign — To interpret theprobability of a nonmodal formula at

truth values to formulae over a pair of points. a point P, we will take the set of all pairs of points,
We definevp and vp,, p,) mutually recursively below. (P1, P,) where Py is in.%6 p and P, emanates fronf;.

First we present some additional notation. Restricting to this set, we compute the probability of

Notation. Since there is a one-to-one correspondence from

those pairs such thagp, p,)(v) evaluates to true. More
precisely, for any nonmodal formula, and for any sub-

trees to adversaries, we can refer to “the adversary corre- jectS C C
sponding totree(P)”. We denote that adversary byZ(P). =

We use the notationucc(P) to denote the set of nodes D A % o
that immediately succeeB in tree(P) (i.e., the children of vp(Prs(p)) = wop)(S.p(¢) | 5.p)
P). . . where
We use the notatioextensionéP) to denote the set of
infinite sequences of states startingfatn tree(P). O 7 L (p 1 3P €.% » such thatP P,
We now definevp andv(p, p,). Let P be a point at time Splp) = (P | 3P € % p ~ 2 € suce(P)
k in the executiorp = («, 3, ) in computation tred’ ,. andyp,, ;) () = true }
— Numbers are assigned to number names. — An atomic formula,p, is true at a pointp, iff it is true
— Members off andO are assigned to their syntactic iden-  for all pairs of points emanating froft. More precisely,

tifiers. _ ; / -
For any channet € C, vp(p) = true iff VP € succ(P), vp,py(p) = true
A i (Since we have not needed to include quantification in
vp(cin) = ale, k) our language we are free to usé and ‘3’ as metalin-
For any channet € C, guistic shorthand.)
A — For any formulap,
vp(Cout) = Blc, k)

For any variable nameX, excluding channel variables
(such asip Or o)

vp(dp) = true iff V p € extensiongP),
Y v, (p) = true

A — Composite formulae are assigned truth values at points
vp(X) = (X, k) in the natural way.

Members ofR, I, andO are assigned values at a pair ~ FOr example,

of points by referring to their values in the first of the

points, e.q., vp(p A1) = true iff vp(p) = true

A andvp(y) = true
05) = 0.5
v p) (0.5) = vp, (0.9) — Our knowledge operator is &5 modal operator and is

In contrast, variables may change their value from one given semantics in terms of the accessibility relation (on
point to the next, so unprimed variables are evaluated by  points) in the standard way; viz, for any two poinfg,

referring to the first point, e.g., for a state variable andP; (not necessarily in distinct trees) and any subject,
A S C C, we say thatP; is accessiblefrom P;, denoted
v(py, Py (X) = vp (X) ‘kg(P1, P, if and only if P, and P, have the samé-

history; further, we use these accessibility relations to
assign truth values to formulae of the forkig(y) as
follows.

whereas primed variables are evaluated by referring to
the second point, e.g.,

A
v, Py (X) = vpy(X) vp(Ks(p) = true iff VP!, ks(P, P')
Composite terms are assigned values at a pair of points implies vp/(p) = true
by evaluating the constituent parts at the same pair of
points and applying the corresponding semantic operator,  |n the remainder of the paper, for a modél= (R, +, -, <

€.g., W7 ,C,1,0,v, k1,...,K ¢ ) formulay, and set of
, N , formulae I, we will use ‘M E ¢’ to indicate thaty eval-
v, P (X7 +Y) = vipy, 2y (X) + v, 2y (V) uates to true at the roots of all trees.i# and M £ I' to

at a pair of points by evaluating the constituent parts atof all trees in.7.” Finally, we will use T" [ ¢ to indicate
the same pair of points, e.g., that M  I" implies M [ ¢ for every modell.

up,p)(X <Y) = true it e, p)(X) < vy, py(Y) 7 Typically, semantics for modal logics treat truth in a model as truth in

all possible worlds in that model. Those more familiar with this usage than
with ours should note that on a computational view the primary notion is
v(PlAPZ)(SQ A1) = true iff ”(PLPz)(‘P) = true that of a run rather than a v_vorld (statg). Thus, truth in a model is_mc_)re
' ' _ naturally thought of as truth in all runs in that model (hence, at the initial
andv(p,, py)(¥) = true state of all runs).

and
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5 Soundness vp,(Ks(Pre(p)) =r (6)
In Sect.6 and Sect. 7 below we give two syntactic charac-and show that
terizations of security and show that the semantic interprevp, (Ks(Prs(p))) =r )

tations of our syntactic characterizations are equivalent to . . . . .
certain previously developed definitions. However, the sig-~PPIying the semantic assignment function to Equation 6
nificance of these results is greatly reduced unless the logilMPlies that for allP’, xs(P1, P') implies
is sound. For, without soundness there is no guarantee that wp(Se,p(p) | Sopr) =7 (8)
any formal proof of security implies any independently mo- '

tivated notion of security. A soundness theorem gives us just© Show Equation 7, lef, be a point such thats (P, P).
such a correspondence. By the semantic assignment function, we have the following.

Theorem 5.1 [Soundness] Given a set of formulae of our UP:{I’7s(P)) = toary (SR (9) | %5.7.) (9)
languagel” and a formulagp, By the definition of conditional probability and the additive

property of probability measures, we can expand the right-
If "=, then [ . hand side of Equation 9 to get:

vp,(Prs(p)) =

Proof. In order to prove soundness we must show that the S~ 1 5 (S%.p,(0) | S0 ). o) (-S6.17)
axioms are valid and the rules are truth preserving (except (T )
Nec which need only be theorem preserving). For most of HoAPI LIS, e
the axioms and all of the rules the results are completelwhere the summation is taken over &l such thatP’ is
standard. (Cf. Chellas [7] and Goldblatt [16].) Hence, wein the same tree and has the safistory aspP;).

do not set them out here. We specifically assumed a se- Limiting .% p,() to those points emanating froi¢. p/
mantics in which all the rules and axioms concerning log-results in.%¢ p/(¢), so Equation 10 can be rewritten as:

ical connectives preserve soundness. Since we assume the p _
up,(Prs(e)) =

(10)

real numbers are part of our models, the axioms concerning

them must all be valid. Likewise, because tRe(y) terms
are interpreted as conditional probabilities of events Rkfe
axioms are valid in our semantics since they reflect basi
facts about probability measures. The accessibility relation
set out above in Sect. 4, are clearly equivalence relation
Thus, by a standard result of modal logic, 688 axioms
are all valid and\ec (for the knowledge operators) is theo-

rem preserving (cf. [7]). The temporal reasoning axioms are’

similarly valid andNec for the temporal operator is theo-
rem preserving based on the time structure of our model o
computation (cf. [16]).

All that remains is to show the soundness of our two
additional axioms. To show the validity &(J, let P, be a
point where

v (O(Ksp) = false

Then, by our definition of the semantic assignment func-
tion, there existP;, p,, andk; such that the following three
conditions hold.

ks(Pr, P2) 2
p2 € extensiongP;) 3)
V(ps,kn)(p) = Tfalse 4)

Now, (p2, k2) is @ point in an extension df,. Hence, Equa-
tion 4 implies
vp,(Oyp) = false (5)
which, along with Formula 2, implies

vp, (Ks(dyp)) = false

andK[ is valid.
To show the validity oKPr, we’'ll assumepP; is a point
such that

Yo pr o) (e P (9) | Y6, P )1 opy)(-SE,p1)

— (11)
K. 2(Py) ('%S,Pz)

S(:Since P, and P’ are in the same tree,; () = . ¢(P’).

Also, sincexs(Py, P»), all of the P’ in the above equation

Shave the samé-history asP;. Therefore, by Equation 8,

Y b o) (S )
(Prs(v)) = = =
P s 1. 2(Py) (75, P,)

yvhich, again by the additive property of probability mea-
sures, implies

(12)

(13)
O

vp,(Prs(p)) =r
andKPr is valid, which completes the proof.

This completes our discussion of the logic itself. In the re-
mainder of the paper we focus on security and applications
of the logic thereto.

6 Formal definition of security

In this section, we give our primary definition of security—
which we call theFormal Security Condition(FSC)—and
show that its meaning is equivalent to our owAtoba-
bilistic Noninterference(PNI) [17], which is itself equiv-
alent to Browne’s independently-develop8tbchastic Non-
Interference[3]. As described in [17], PNI is motivated by
previous work on Noninterference by Goguen and Meseguer
[15] and by connections to information theory. In particu-
lar, when the system is modeled asa-way channel with
memory([38]) PNI implies that there is no information flow
over the channel from the covert senders to the covert re-
ceivers ([17]). (See Browne’s [4] for other connections to
classical information theory.)
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In contrast, the intuition for our definition of security him, since he can (in principle) know the entire history of
in the present paper derives from an understanding of whathe low environment, including all low inputs.
the low subjectknowswhen using a secure system versus  On the other hand, the reader may now wonder:
an insecure system. The intuition for our definition is as

follows in what way can a system fail to satisfy FSC? That is,

in what case does the low environmdail to know
The system under consideration is “secure’bffore the probability distribution on its next output?
the low subject receives any given outpbjtWith any
given probability ¢), it will already know that b is
about to occur with probability.

The answer is: in precisely those cases where that probability
distribution is affected by the high environment. That is,
if the high environment can influence the probability with
In essence, since the low subject already knows the probawhich the low environment gets certain outputs, then the
bility distribution over its upcoming outputs, it cannot learn low environment will notknow that probability distribution
any new information when it actually receives those outputs(except, e.g., by statistical inferenedter it has received
To make this precise, we introduce the following shorthand.those outputs). Further, from information theory we know
: N . this is precisely the situation in which the high environment
Not:;tlon. Refca,II that a supjeqt IS fﬁrmahlzgdhas a tS)UbSEt Ofcan send information to the low environment, i.e., this is the
%s:an(isster:eosibs' co,mmunlcz?tur)]n channels; this subset rgp- ?ituation in which the system has a covert channel.

Ject's view of the system. For a given SUBIECL - Now we would like to show that FSC is equivalent to
L={l1,l5,...1,} C C we often require a formula specify- PN

: hat J tout at th i Thi b I. To do so, we will talk about the “meaning” of FSC, or
Isnpgez\ilfi:d a;ecelves as output at the next ime. This can b€, e precisely, thesemantic interpretatiorof FSC, which

we define as follows.
1) s =bi A2, =ba Ao ALy = b - .
(Wour = b1 A (l2)our = b2 (ndous = bn Definition 6.2 We say thatl” satisfies the Semantic Inter-
(whereb; € O for 1 < i < n). We will specify this more  pretation of FSC with respect th if and only if, for every

compactly as by € O[L],
L;ut = bL r ': D(PTL(LZ)ut = bL) =r— KL(PTL(L;ut = bL) = T))
(where L C C is the subject equal tdl;,1l5,...1,} and O

by, € O[L] is the output vector equal tad{, by, ...,b,]). O
. . i To prove the semantic interpretation of FSC is equivalent to
We now define the Formal Security Condition as follows. pNj we also need to recast the latter in terms of our model.

Definition 6.1 Let L C C be a subject. Suppose a systsm e do this as follows.

is described by a set of formulae in our logic, We say that N ) .
I" satisfies the Formal Security Condition (FSC) with respectg glpk:gogegﬁ?;eLEeg;}fénamngBﬁbz\sbsixv%iiﬂvsl\r/za\l/v“iﬁss;hi%?t_
to L if and only if, for evenyb € O[L], the formula ption. ¥

and. 4, agree onL behavior iff there exist?#,, .7%,, and
O(Pro(L,, =br)=r = Kr(Prr(L,,, =br) =7)) £ such that7%; and £ are the unique probability func-
tions that describe 4, (as in Definition 2.2) and7%, and

is derivable from/". % are the unique probability functions that describé,. [J

Note that this definition refers only tb’'s next output. Nev- - .
ertheless, we will see below, in Theorem 6.9, that this jsD€/nition 6.4 LetS € C be a subject and lat be a set of

sufficient to insure that high behavior has no effect on anyruns’{pi}’ (not necgssarily taken.from any one comput_ation
L-events, including all future outputs visible fa tree). We sa+y that is an S-event if and only if there exists
At first glance, this property may appear too strong toat'mek € N* such that for any two rungy and pz, having

be satisfied by useful systems. In particular, the reader maﬂ1e sameS-history up to timek, py € e iff pz € e.
wonder: or an S-evente, we will refer to the leask such that above

condition holds as the length ef O
if users know the probability distribution over their N ) ) ) ) o
outputs before they get them, why would they bother  Intuitively, e is anS-event if and only if there is some finite

to use the system at all? After all, they won't learn time k (i.e., its length) after whictb can always determine
anything by using it. whether or not has occurred.

o ) ) Note that in general, af-event contains runs from more
To see why this is not a concern, we need to keep in mindhan one computation tree. Therefore, such “events” will not
that the low subjecL represents not a single user, but rather,pe measurable in any of our probability spaces. Rather, we
the entire low environment. For example, suppose the systhink of them as meta events and we will be interested in
tem we are analyzing is a two-level database containing Unthe measure of the subset of the runs that are contained in a
classified and secret information. In this cagerepresents given computation tree. To make this precise, we introduce
all users and processes that are operating at the unclassifigge following definition.
level, including the users and processes involved in entering
and updating unclassified data. Thus, an individual low useDefinition 6.5 Given a computation tre€l’ ,, and an S-
may not, in practice, know the answer to his query beforeevent,e, the projection of onto7’ ,, denotece,_,, is given
submitting it, but in principle the information is available to by:



A
e+ =runs(T ;z)Ne

When it is clear from context what is meant, we ignore the

distinction between meta-events and their projections, e.g.l;un ,
il p il

we write ‘u_4(e)’ for * u (e 4)".

Observation 6.6 Every projection of evens-event is mea-
surable. That is, for any-event,e, and any computation
tree, T ,,

e, €Ay
This is due to the restriction aft-events that they be observ-

able within some finite time. In particular, the projection of
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To prove the forward part of the lemma, we start by
showing that it holds for a certain subsetleevents, namely
those L-events corresponding to finite-histories.

Let e be anL-event such that there exists a tinig (the
length of ¢) and a characteristic rum, such that for any

p' € e iff p/ has the samé-history asp up to timek

That is, e corresponds to the finité-history characterized
by p up to timek.

We now prove the forward part of the lemma for this
subclass of_-events by induction on the length of
Base caseThe length ofe is zero.

Since all runs have the saniehistory up to time 0, the

an S-event onto a treel’, must also be observable within a Only two L-events of length 0 are the empty sgtand the
finite time, and so it must be formable from a finite number Set of all runs from all treesz2. In the former case,

of unions and complementations of the generatorg'.of]

poe®.2)=0=p 20 2)

Definition 6.7 Let X be a system with computation trees and in the latter case,

7 (X). We say that satisfies Probabilistic Noninterference
(PNI) with respect to a subjedt C C' iff for any two trees
satisfying the Secure Environment Assumptibn, 7., €
7 (X)) and anyL-eventg, if .2 and. 4’ agree onL behav-
ior, then

p.e(€) = p.z(€)
O

poo( 2 2)=L=p o (S )

Thus, the base case is proved.
Induction case Assume condition 2 holds for all-events
(corresponding to finitd-histories) of lengthk. Let e be an
L-event corresponding to a finite-history of lengthk + 1.
Suppose thap is a run that (up to timé& + 1) characterizes
€.

Now, lete be theL-event characterized by up to time

Now we are in a position to state the main theorem of thisg. Intuitively, & corresponds to the finit&-history obtained

section. Before doing so, we state and prove a lemma.

Lemma 6.8 If T , andT , are two trees such thatZ and

by truncatinge at time k. By the induction hypothesis,

poe(€.2) = p o€ ) (14)

.-¢' agree onL behavior (and satisfy the Secure Environment ¢ 1. 4(2.4) = 0, theny, ,(e) = 0 = i, (e) and the induction
Assumption) then the following two conditions are equiva-.ase holds tri\}ially S0 we assunde}(é ,) > 0.

lent.

1. For any low output vectorh, € O[L], and any two
pointsP; € T , and P, € T' , such thatkg(Py, P),
1oy (S, P (Lo =bL) | S2.P) =
1. o) (S, P (Lgus = bL) | S2,P,)
2. For anyL-event,e,

poele z) = p (e )
O

Proof. We begin by observing thats p(L,,, = br) and
S%.p(L,,. = br) are projections of the samk-event and

that .%% p, and.%f p, are projections of anothek-event.

Therefore the backward direction of the lemma (i.e., thatu, (e | €) = p. 4(by, |e) - Llar | a,f)

condition 2 implies condition 1) follows easily. In particu-
lar, let P, € T, and P, € T , be two points such that
ks(P1, P2). Then condition 2 implies
ooy (T, ) = poep) (L, P,)
and further—since the intersection of twieevents is again
an L-event—that
1oy (AP (Lo = bL) NS, p) =

1) (S, oLt = bL) 051, )

By Equation 14, we also have that, (e_,) > 0. Thus,
by the definition of conditional probability,

p.2(€) = . 4(e) - p.2(e | €) (15)
and
poe(€)=p (@) pzle|e) (16)

Let o € I, and 8 € O be the low input and output
history, resp., that characterizeand leta; € I[L] and

br € O[L] be the low input and output vectors at tirhe 1

that are needed to additionally characterzé& hen, by the
construction of our probability measures (as described in
Sect. 2.2) and by the Secure Environment Assumption, we
have that

(7)
and
poolel®)=p pbrle) - L] a,f) (18)

whereb,, is the meta-event representing that the low out-
put vector at timek + 1 is b and % and %4’ are the low
environments of Z and. 4, respectively.

Since. # and. 4’ agree onL behavior,
Llar | o, )= L (ar | . ) (19)

Further, since,_,(e) andyu,_, (€) are both greater than zero,

Therefore condition 1 holds by the definition of conditional there are points in both treeB; € T’ , and P € T ,/, each

probability.

of whoseL-histories are ¢, 3). By condition 1,
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1 opy (P (L = b1) | F.p,) =
t Py (AL, P (Lt = 0L) | S2.p,)

But notice that%f p, and.% p, are projections of and
5L, =br) and A p, (L, = br) are projections of
br. Therefore,

Hoolbr | @) = oL | 2) (20)
Thus, by Equations 17, 18, 19, and 20, we have that
poele] e =p sle]e) (21)
and finally, by Equations 14, 15, 16, and 21, we have that
1. 2(e) = p. 2 (€)

and the induction case is proved.

It is therefore sufficient to show thal' satisfies PNI iff
Equation 22 holds. That Equation 22 implies PNI follows
easily from Lemma 6.8. In particular, letZ and. 4’ be
two adversaries that agree drbehavior. From Equation 22,
Lemma 6.8 implies that for anj-evente,

. e(€) = .o (€)
Hence, X' satisfies PNI.

To show the reverse direction, assuthesatisfies PNI,
letby € O[L] be arbitrary, and leP;, P, € W be two points
such thatsy (Py, P»).

Note that we cannot apply PNI immediately, since it
may be the case that4(P;) and.4(P) do not agree on
L behavior. For this reason, for each poitt we construct
a new adversary#(P) as follows. (Note that Z2(P) is an
adversary corresponding to a tree that does not, in general,

Now, we can complete the proof by observing that everyqntain P.)

L-event can be constructed by taking a finite number of

unions and complementations éfevents that correspond
to finite L-histories. That is, thd-events that correspond
to finite L-histories are analogous to tigeneratorsof our
event spaces. Thus, the desired result tha(e) = p, . (e)

for arbitrary L-events follows from the fact that the measures 2 (a [ L [ o/, b)) = {

are equal on all of thé-events that correspond to finife
histories. O

We can now prove the following theorem relating PNI and

FSC.

Theorem 6.9 Let I" be a set of formulae describing and

let . C C be a subject. Then' satisfies PNI with respect
to L iff I" satisfies the semantic interpretation of FSC with
respect tol. O

Proof. Let M = (R,+ - < W,.7,C,I,0,v,
K|y ) be a model such that/ F I'.

I' satisfies the semantic interpretation of FSC (wjtiff
for everyby, € O[L],
M EO(Pri(Lyy,, =br) =r — Kr(Pro(Ly,, =br) =1))
which holds iff for everyb;, € O[L] and every root,P, of
any tree in7",
vp(A(PrL(Lyy; =br) =1 — Kp(Pri(Ly,, =br) =71)))

= true

Rly..oy

which, by applying the semantic assignment function, holds

iff for every by, € O[L] and every two points?, P, € W
such thatk (Py, P»),

’Upl(PTL(Llout = bL) = ’I’) = true
’UPZ(PTL(L/ = bL) = 7’) = true

out

implies

which holds iff for everyb;, € O[L] and every two points
Py, P, € W such thatcr, (P, P,),

VR (PrL(Loy = b)) = v, (Pro(Lyy = b1))

which, again by the semantic assignment function, holds iffwhere ./

for everyby € O[L] and every two pointd, P, € W such
thatx(P1, P2),
22 ’/'/(Pl)(‘%,Pl(Li)ut = bL) | '%;Pl)

= M. K(Pz)(‘%,Pz(Li)ut = bL) | *%,Pz) (22)

SupposeP = (a,3,k) and. 4(P) = (7,%). Then
A(P)=(F, ), where~ is defined as follows.
Fork/ <k,o' €I, andf’ € Op v,

1L ifalL=(,kK)]L;
0, otherwise.

Fork' >k, o' € I, ), and B’ € Oy,

{

(whereag is some constant input on channelslip That is,
< blindly and deterministically followsy [ L up to timek
and then blindly and deterministically inpudg from then
on.

Now, note that according to our construction of the com-
putation trees, there is a poi® = (o, 5,k) in a given
tree T' if and only if at each point leading up t&, say

Farr|ayy={ & TalL=

0, otherwise.

P’ = (o, 8,k (K < k), the following three conditions all
hold.

COBE +1)|alK,B1E)>0 (23)
Tk +1) [ (C—L)|a | K,B1K)>0 (24)
Lk +) I L|alk TL,BTK L)>0 (25)

(wherea | k¥’ and3 | k' are the restrictions oft and 3 to
Ic,» and Oc¢ i, respectively.

Further, since in constructiﬁ%(P) we have retained the
output probability function” and high behavioZ% used in

T 4py and chosertZ to ensure Equation 25 holds appropri-
ately, there is a poinP € T7(p) that has the identical 1/0
history asP € T ,p). Further, for any point?’ € T 4p)
having the samd.-history asP, there is a corresponding
point P’ € T py With the same 1/O history af”.

Finally, note that by our construction of the computation
trees, sincé”’ and P’ have the same /O history, say'(3),
the sum of the probabilities on arcs emanating fréth
Tt = br is equal to the sum of the probabilities
on arcs emanating fron®’, whereL’ , = by, In particular,
they are both equal to

Y. Cbld.p)

bl L=by



Since this is the case for all pointsih,py having the same
L-history asP, we have that

1Py (S, P(Loyy =bL) | Y2, P)
= #7(13)(-9?’?(1?;1@ =br) [ B)
In particular, Equiﬂon 26 hoﬁs for botf and P;.
Now note that -4(P;) and. 4(P,) agree onL behavior.
Therefore, since’s, p(L,,; =br) N p and.f p are L-
events, PNI implies
M7(p1)(y[/)ﬁ(L;ut = bL) | %L)Fl)
= Mj(pz)@%fz(%ut =bL) |7 5)

(26)

(27)

Finally, Equations 26 and 27 imply Equation 22, which com-

pletes the proof. O

The significance of this theorem is that (given soundness}
verifying that a system satisfies FSC is sufficient to show,
that it satisfies PNI, which (as was previously mentioned) is
a necessary and sufficient condition for a system to be fre
of covert channels. In the next section, we discuss the issuProof.Let M = (R, +,-, <, W,.7 ,C, 1,0, v, ky, .

of verifying FSC.

7 Verification
7.1 Syntactic statement

In [30], McLean defines the Flow Model (FM) with the
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Definition 7.2 Let X' be a system with computation trees
7 (X) and letL C C be a subject. We will say that satis-
fies the Applied Flow Model (AFM) with respect kaiff for
any tree, T , € .7 (X)) (satisfying the Secure Environment
Assumption with respect tb), any pointP € T ,, and any
low output vectorpy € O[L],

1. o(S6,p(Ly, = b1) | S6.p)
= p (S, p(Loy: =bL) | -1,P) (28)
O

This definition is, except for notational differences, exactly
the definition of AFM as given in [17]. Now we can prove
the following theorem.

Theorem 7.3 Let I" be a set of formulae describing and

et L C C be a subject. Then), satisfies AFM with respect
to L iff I" satisfies the semantic interpretation of SVC with
respect toL. ([

e

L) H|./’(C)|>
be a model such that/ I

I' satisfies the semantic interpretation of SVC (Mt
iff for every by € O[L],

M ’: D(PTc(L, = bL) =r — KL(Prc(L/

out out

=b) =7))

which holds iff for everyby, € O[L] and every root,P, of
any tree in7",

motivation of providing an abstract, but precise, explication?P(C(Prc(Lyy, =br) =1 = Ki(Pro(Ly,, =br) =1))

of information flow security. McLean’s intent for FM is to

provide a characterization of security against which more
concrete security models can be evaluated. In [17], the firs
of the present authors studies a more concrete version d

FM, called the Applied Flow Model (AFM), and shows that

AFM captures a strictly stronger notion of security than PNI.
In this paper, we have another reason for studying AFM:’UPZ(P’I“C(L/

it is more easily verified than FSC.

Definition 7.1 Let L C C be a subject. Suppodeé is a set

of premises that describe a systémWe say thaf " satisfies

the Syntactic Verification Condition (SVC) with respeci.to
if and only if, for everyb;, € O[L], the formula

D(Prc(Llout = bL) =r — KL(PTc(L/ = bL) = T))

out

is derivable from/". O

Intuitively, SVC says that at f’:\ll times, the low gnvironment = 1wy (S, m (Lo = b1) | .1,
knows the objective probability distribution on its next out-

put.

= true

hich, by applying the semantic assignment function, holds
for every by, € O[L] and every two points?, P, € W
such thaf/iL(Pb Pz),

Vp, (P’I“C (Ll

out

=by)=r)= true
=br)=r)= true

implies
out

which holds iff for everyb;, € O[L] and every two points
Py, P, € W such thatcy, (P1, P),

vp (Pro(Ly,,: = b)) = vp,(Pro(Ly,; =br))

out
which, again by the semantic assignment function, holds iff
for everyby, € O[L] and every two pointd”;, P> € W such
thatkz (P1, P,),

topy (S, (L = b1) | -6,P,)
(29)

Now, to show that the semantic interpretation of SVC im-

In the next section, we show this statement is equiv-PlieS AFM, we assume Equation 29 and show that Equa-
alent to a statement about conditional statistical indepention 28 holds. Consider the right-hand side of Equation 28.

dence. Namely, conditioned on the previalihistory, the
next output onL is statistically independent of the previous
non-L (i.e., high) history.

7.2 Relationship to AFM

In this section we show that’ £ SVC if and only if the
system specified by" satisfies AFM (i.e., the relationship

between SVC and AFM is analogous to the relationship belimiting .4 p(L!

tween FSC and PNI).

t. (S, p(Lys = bL) | 9%.pP)

By the definition of conditional probability and the additive
property of probability measures, this is equal to:

Yop oo FE p(Liyy = b)) | 96, p )1 o(SE.p)
oS, p)

(where the summation is taken over @l such thatP’ is
in the same tree and has the samaistory asP).

tut = br) to those points emanating from
¢ pr results in p: (L, = br), so the above is equal to:

out
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>pr e, pr (L = bL) | 72, )1 o (S 1) 7.3 FSC versus SVC
M. A(a%,P)

Now, by Equation 294, ,(% p/(L.,, = br) | S&.pr) =
w (S p(L,, =br) | % p) for all P’ having the same
L-history asP, so the above is equal to

p o (Se,p(Lous = bL) | S2,P) Yo pr i o(SC,P) _ o _ o _ _
1o ( S p) The primary difficulty with deriving such a formula is that it
' requires us to reason abals subjectiveprobabilities (i.e.,
which, again by the additive property of probability mea- formulae of the formPr (), where L # C). We expect
sures, is equal to systems will typically be described entirely in terms of ob-
Z I ) jective probabilities (i.e., where all probability formulae are
1S, p(Louy = be) | .p) of the form Prc(y)). Therefore, deriving a formula in the
which is precisely the left-hand side of Equation 28 andabove form requires us to reason about how various objec-
therefore, the system satisfies AFM. tive probabilities give rise to other subjective probabilities.
To show that AFM implies the semantic interpretation of This is a topic we have not pursued in any depth in the
SVC, we assume Equation 28, let € O[L] be arbitrary,  present work. (In fact, the reader may note there is only one
and let P, P, ¢ W be such thats (P, P;). We want to  axiom in the present logic addressing the interaction between
show that Equation 29 holds; howevé?, and P, may not  objective and subjective probabilities, viPr.) However,
be in the same computation tree, so we cannot apply Equasur intuition is that the relationship is closely related to the
tion 28 directly. We therefore define an adversa#y such  Secure Environment Assumption.

We introduced SVC by claiming it is easier to formally ver-
ify than FSC. To see why, consider the structure of the for-
mulae that need to be derived in verifying FSC, viz,

D(P?"L(L;ut :bL):T‘%KL(PTL(L/ :bL):T))

out

thatT ,, is guaranteed to contain two poirn®& and Pj such There are two special cases of verifying FSC that are
that P; has the sam€'-history asP; and P, has the same worth pointing out. First, in the case where we can derive
C-history asPs. o _ . T - -

Suppose 4(Py) = (71, 1) and. 4(Py) = (7, ). D ETEow Z0) = v = Pro(loy =bi) =) (32)
We define 4 to be (7, %0), where for allby € I[C'—L], verifying FSC reduces to the problem of verifying SVC.
a € lcy, andp € Oc, That is, if (as part of verifying SVC) we have derived

O (Pro(Liy =bu) =r = KL(Pre(Loy, = br) =) (33)

1 1
Fo(bu | o, B) = 575/1(17}1 | o, B) + §~76/2(bH | o, 3)
then we can use Formulae 32 and 33 in conjuction with
and for allay, € I[C — L], a € I, and§ € Iy, i, Axiom KPr to conclude
D(P?“L(Llout = bL) =r — KL(PTL(L/ = bL) = ’I“))

out

. 1 1

Zolar, | a,B) = ch?fl(bH | o, B) + §=%2(bH | o, B)
and thus prove FSC. Of course, in such cases we can also

Since all arcs leading td’ (resp., P») are labelled with  simply verify SVC and avoid the extra work of verifying

positive probabilities, there will be corresponding positive- Formula 32.

probability arcs inZ’ ,, leading up to a poinP; (resp.,P;) The other special case is when the system behavior can
with the sameC-history. be described without any reference to inputs. In this case, if
Note that the probabilities of reaching, and P, will, SVC is provable, then it will be based on the truth value of

in general, be different than the probabilities of reachitjg  the consequent of SVC without concern for the antecedent.
and Pj, respectively. However, due to our construction of Because of th&KPr axiom, proving FSC (by showing the
the computation trees, from any given point, the conditionaltruth of the consequent) will then be exactly as easy as prov-
probability of receiving a particular output at the next time ing SVC.

step is determined solely by the system (and not by the

adversary). Therefore, we have the following.

, , 7.4 Examples, continued
1 2py (e, P (s = bL) | -S6,P,) P

= 1. 2o(56.p; (Lwy = 1) | S6.7) (30)  We note here that the security of the encryption box of Ex-
wup) (S, p (Lo =b1) | %, p,) ample 3.1 W_lth respect to a subjett C C' is fqrma_lly
= 1y (S (L = br) | o) (31) derivable using SVC. Recall the system specification: If
Mo\ 70, P\ our = OL) | 7C\P; C = {h,l}, I ={0,1}, andO = {0,1}, then, the system

Now, we can apply Equation 28 to the right-hand sidesis specified by the following formula.

of Equations 30 and 31; in particular, sind& and P, , ,

have the samd.-history, both right-hand sides are equal - (PTC(lout =0)=05A Pre(loy =1) = 05)
to u, zo(.%’pl/(L;ut =br) | 4 p;)- Therefore, Equations 28,

Recall also that subjects are assumed to know the system
30, and 31 imply | y

description. Thus,
9 / —_ Z
ey (Fe, P (Loye = bL) | 72,P,) r={K,0(Pre(l,, =0)=05A Pra(l,,, = 1) = 05)}

out out —
= S p, (L., =br)| .S
Hotp)Sr(Lou =) [ A1) The onlyb;, € O[L] are 0 and 1; hence, the only an-
and the proof is complete. d tecedents for the SVC schema that are consistent Witine



Pre(L),,: =0)andPro(LL,; =
to L for this system consists of the following two formulae.
D(Prc(L = 0) =05— KL(PT‘c(L
D(Prc(L = l) =05— KL(Prc(L

out out

out out — 1) = 05))

Each of these is derivable frofl using propositional rea- 5.

soning, Modus Ponens and Necessitation and, axibmg
and K. Further, since SVC is stronger than FSC, such a
proof is sufficient to show this system satisfies FSC. (In the

typical case one would proceed through SVC to prove FSC, 7.

as we have done. As noted above, however, for special cases

such as this it is equally easy to derive FSC directly.) 8.

We also observe that for the insecure encryption box of
Example 3.2I" ¥ F.SC (where " includes those formulae

that describe the system as well as the assumptions abou?'
knowledge thereof). It is obvious that the insecure encryp-g.

tion box fails to satisfy PNI. By the attack described in the

original example, we can easily find two adversaries thatll.

satisfy the Secure Environment Assumption and agree on
low behavior; yet, disagree on the probability of certain low
events. Indeed, the low environment can assigh proba-
bilities to any output sent by the high part of the adversary.
By theorem 6.9, we thus have that | F'SC. And, by
soundness (theorem 5.1), it follows that/ F.SC.

15.

8 Conclusions

=1). Thus, SVC with respect 3.

= 0) = 05)) .

6.

13.

14.
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We have given a logic for specifying and reasoning about

the multilevel security of probabilistic computer systems. We17.

have established connections between information-theoretic
formulations of security and logical formulations of knowl-
edge and probability in distributed systems.

To date, we have only been able to specify and verify toy
systems using our logic. Our SVC takes one small step to-
wards practically verifiable security. However, it is unlikely

that one could ever use FSC, or even SVC, for verifying19.

real systems since real multilevel-secure systems (e.g., as in
Karger et al. [23]) are too complex to be completely free

of covert channels, even at the SpeCIflcatlon level (e.g., asy Halpern JY: Using reasoning about knowledge to analyze distributed

in Browne [5]). Therefore, they cannot satisfy our ideal no-
tions of security. Nevertheless, we feel it is important to

cast ideal security in a precise logical framework. It is our22.

hope that extensions of this work—using less ideal notions
of security allowing some limited information flow—uwiill
ultimately lead to machine checkable proofs of security for
real systems.
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