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Summary. We set out a modal logic for reasoning about
multilevel security of probabilistic systems. This logic con-
tains expressions for time, probability, and knowledge. Mak-
ing use of the Halpern-Tuttle framework for reasoning about
knowledge and probability, we give a semantics for our logic
and prove it is sound. We give two syntactic definitions of
perfect multilevel security and show that their semantic inter-
pretations are equivalent to earlier, independently motivated
characterizations. We also discuss the relation between these
characterizations of security and between their usefulness in
security analysis.
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1 Introduction

Multilevel securityis the aspect of computer security con-
cerned with protecting information that is classified with re-
spect to a multilevel hierarchy (e.g., UNCLASSIFIED, SE-
CRET, TOP SECRET). Aprobabilistic systemis a hardware
or software system that makes probabilistic choices (e.g., by
consulting a random number generator) during its execution.
Such probabilistic choices are useful in a multilevel security
context for introducing noise to reduce the rate of (or elim-
inate) illicit communication between processes at different
classification levels. In this paper, we are concerned with
definitions ofperfect (information-theoretic) multilevel se-
curity in the sense that the definitions rule outall illicit com-
munication without relying on any complexity-theoretic as-
sumptions. That is, our model allows the system penetrators
to have unlimited computational power; yet, our definitions
are sufficient to ensure there can be no illicit communication.

The systems we address can be depicted in the form
shown in Fig. 1. This general form is intended to represent
systems including physical hardware with hard-wired con-
nections to other systems, an operating system kernel with
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connections to other processes provided by shared memory,
and processes executing on a multiprocessor with connec-
tions to other systems provided by an interprocess commu-
nication (IPC) mechanism.

• There is a system, calledΣ, that provides services to
the other systems. For example, in the case of a multiuser
relational database,Σ would store and control access to a
set of relations.Σ is the system with respect to which we
will be reasoning about multilevel security.

• There is a set of systems (labeledS1, S2, . . ., Si in the
figure), called the “covert senders”, that have access to secret
information. These systems are called “covert senders” be-
cause they may attempt to covertly send secret information,
via Σ, to other systems that are not authorized to see the in-
formation. It is these attempts with which we are concerned.
As is commonly done in the literature, we will often refer to
the covert senders ashigh systems (referring to the situation
where the covert senders have access tohighly classifiedin-
formation). We will also refer to the set of covert senders
collectively as the highenvironment, denotedH . These
systems are part of “the environment” in the sense that they
are in the environment of the central system,Σ.

• There is a second set of systems (labeledR1, R2, . . .,
Rj in the figure), called the “covert receivers”, that are not
authorized to see the secret information that is available to
the covert senders. We will often refer to the covert receivers
as low systems, or collectively as the lowenvironment, de-
notedL .

If the covert senders are able to useΣ to communicate
information to the covert receivers, we will say thatΣ has
a covert channel, or equivalently, for our purposes, thatΣ
is insecure. A few notes are in order.

1. It is important to bear in mind that the threat that we
are concerned with isnot that the users (i.e., thehu-
man users) of the covert sender systems are attempting
to send secret information to the covert receivers. We
assume that if they wanted to, they could more easily
pass notes in the park and entirely bypassΣ. Rather,
we are concerned that the covert senders are actually
trojan horses (i.e., they appear to be something that the
user wants, but actually contain something else that is
entirely undesirable to the user) and that these trojan
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Fig. 1. The general form of a system

horses are attempting to send secret information to the
covert receivers. This is a legitimate concern since sys-
tem developers do not want to incur the cost of veri-
fying every component of a conglomerate system with
respect to multilevel security requirements. Ideally, only
a small number of components in the system (e.g., in our
case onlyΣ) have security requirements and thereby re-
quire verification; while the remaining components can
be implemented by off-the-shelf hardware and software
that are unverified with respect to security (and therefore
may be trojan horses).

We assume a worst case scenario, whereall of the
covert senders and covert receivers are trojan horses.
Indeed, we assume thatall of the trojan horses are co-
operating in an attempt to transmit information from the
covert senders to the covert receivers.

2. It is also important to bear in mind that in our intended
application, the covert senders will not be able to com-
municate directly to the covert receivers (i.e., by by-
passingΣ). Typically, there are software, hardware or
other physical controls to prevent this. For example, non-
bypassability is one of the well-known principles of a
“reference monitor” (see [13]), which is one of the typ-
ical applications we have in mind.

3. Our model contrasts sharply with much other work on
security (e.g., [31], [11]) in that we consider a set of un-
trusted agents (viz, the covert senders and receivers) that
are connected via a trusted agent, whereas these other
works consider a set oftrusted agents connected via
anuntrustedagent. This difference in our model reflects
the difference in the respective applications. The work of
Meadows in [31] and Dolev et al. in [11] is intended for
the analysis of a set of legitimate (and trusted) agents
that are attempting to establish secure communication
over an untrusted network. In that work, the assumption
is that the penetrator is able to subvert the network (i.e.,
the central component of the system), but not the trusted
(lateral) agents.

In contrast, our work is intended to be used to analyze
a centralized server that serves a set of untrusted entities.
Correspondingly, our assumption is that the penetrator
may be able to subvert the untrusted (lateral) agents, but
not the central server.

4. The fact that we have partitioned the set of systems ex-
ternal toΣ into two sets, high and low, may seem to indi-
cate that we are limiting ourselves to two levels of infor-
mation (e.g., SECRET and UNCLASSIFIED). However,

this is not the case. In a more general setting, informa-
tion is classified (users are cleared, resp.) according to a
finite, partially ordered set (see, e.g., Denning’s [9]); that
is, there is a finite set of classification levels (clearance
levels, resp.) that is ordered by a reflexive, transitive,
and anti-symmetric relation, which we calldominates.
(In fact this set forms a finite lattice.) A given user is
permitted to observe a given piece of information only
if the user’s clearance dominates the classification of the
information. In the case where there are more than two
levels, a separate analysis would be performed for each
level,x; in each analysis, the set of levels would be parti-
tioned into those that are dominated byx (i.e., the “low”
partition) and the set of levels that are not dominated
by x (i.e., the “high” partition). Thus, we have lost no
generality by restricting our attention to two levels.

The motivation for reasoning about the probabilistic behav-
ior of systems has appeared in examples and discussions of
many authors (cf. [4, 17, 26, 28, 30, 42]). Essentially, the
motivation is that it is possible for a probabilistic system
to satisfy many existing definitions of security (e.g., Suther-
land’s Nondeducibility[40], McCullough’s Restrictiveness
[29], etc.) and still contain probabilistic covert channels.

Our long term goal is to develop a logic that can be
used to reason about the multilevel security of a given sys-
tem Σ. The logical definition of security in this paper de-
lineatesideal security for probabilistic systems. As such it
does not apply to real systems, which are too complex to
be simultaneously ideally secure and adequately functional.
Nonetheless, it is important to establish the ideal in order to
know what is possible. Further, we view the present work as
a step in the direction of practical verification of multilevel
security of real probabilistic systems (presumably based on
definitions of security that allow some limited information
flow).

In prior work ([18]), we gave a logic in which an
information-theoretic definition of security—the first au-
thor’s Probabilistic Noninterference (PNI) ([17])—was ex-
pressed as

KL(ϕ) → RL(ϕ) (1)

whereKL(ϕ) is intuitively regarded as “L knowsϕ” and
RL(ϕ) is intuitively regarded as “L is permitted to knowϕ.”
Thus, Formula 1 is intuitively interpreted as “IfL knowsϕ
thenL is permitted to knowϕ”, or in other words, “whatL
knows is a subset of whatL is permitted to know”.
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This intuitively-appealing formula was proposed by Glas-
gow, MacEwen, and Panangaden [14] and further developed
by Bieber and Cuppens [1, 2]. In other work [19] we ex-
tended their approach to a probabilistic framework, retaining
the syntactic form of their definition of security, viz For-
mula 1. However, the knowledge operator (KL) proposed
by Bieber and Cuppens (and its probabilistic analog pro-
posed by us) is nonstandard and rather unnatural. For exam-
ple, what a subject “knows” does not change over time. In
particular, in our probabilistic framework, subjects “know”
the probability distribution over all of their future interac-
tions, including all future outputs they will receive. This is
in contrast with the intuitive notion of knowledge (as well as
the standard formalizations of knowledge such as by Chandy
and Misra [6] or Halpern [21]) wherein a subject can acquire
knowledge as it interacts with its environment.

Another disadvantage of the prior work of Glasgow et
al., Bieber and Cuppens, and the present authors is that For-
mula 1 makes use of a “permitted knowledge” operator (RL).
Such an operator has no standard semantics and seems, by
its very nature, to be application specific. For example, see
[8] wherein “permitted knowledge” is essentially formalized
as “knowledge that is permitted, as defined in the present
application”.

In the present work, we develop a new formalization
of PNI using the framework of Halpern and Tuttle [22]. In
this framework, the knowledge operator is given the stan-
dard semantics. Also, our new formalization does not make
use of a “permitted knowledge” operator; it is therefore free
of the nonstandard operators that were used in our previ-
ous formalization. Thus, the present paper can be viewed as
superseding our prior work.

In another sense, the present work can be viewed as a
novel application of Halpern and Tuttle’s framework, since
we instantiate their framework with an adversary (see Def-
inition 2.1) fundamentally different from those described in
[22].

The remainder of the paper is organized as follows. In
Sect. 2 we set out our model of computation. In Sects. 3
and 4, we set out the syntax and semantics of our logic and
in Sect. 5, we prove its soundness. In Sect. 6 we state our pri-
mary definition of security and prove that it is equivalent to
Probabilistic Noninterference. In Sect. 7 we state our verifi-
cation condition and show that it is equivalent to the Applied
Flow Model. Finally, in Sect. 8, we give some conclusions
of this work.

2 System model

In this section, we describe our system model. This is the
model by which we will (in Sect. 4) give semantics to our
logic. First, we describe the general system model, which
is taken from Halpern and Tuttle [22]. The framework of
Halpern and Tuttle builds on the work of Fagin and Halpern
in [12]. It also encompasses earlier work of Ruspini in [35].
After giving the general system model, we tailor the model
to our needs by imposing some additional structure on the
model and (in Halpern and Tuttle’s terminology) choosing
the “adversaries”, resulting in our application-specific model.

2.1 General system model

We have a set of agents,P1, P2, . . . , Pn, each with its own
local state. Theglobal stateis ann-tuple of the local agents’
states.1 A run of the system is a mapping of times to global
states. We assume that time is discrete because we are deal-
ing with security at the digital level of the system. We are
not, for example, addressing security issues such as analog
channels in hardware. Therefore, we will assume that times
are natural numbers.

The probabilities of moving among global states are rep-
resented in the model by means of labeled computation trees.
The nodes of the trees represent global states. For any given
node in a tree, the children of that node represent the set of
global states that could possibly come next. Each arc from a
node to one of its children is labeled with the probability of
moving to that state. Thus, from any given node, the sum of
the probabilites on its outgoing arcs must be one. We also
assume the set of outgoing arcs is finite and that all arcs are
labeled withnonzeroprobabilities. This final assumption can
be viewed as aconventionthat if the probability of moving
from statex to statey is zero, then statey is not included
as a child of statex.

Certain events in a system may be regarded asnonprob-
abilistic, while still being nondeterministic. The typical ex-
ample occurs when a user is to choose an input, and in the
analysis of the system we do not wish to assign a proba-
bility distribution to that choice; in such cases, we regard
that choice as nonprobabilistic. All nonprobabilistic choices
in the system are lumped into a single choice that is treated
as being made by an “adversary” prior to the start of execu-
tion. Thus, after this choice is made, the system’s execution
is purely probabilistic. In Halpern and Tuttle’s words, the
nonprobabilistic choices have been “factored out”.

In the model of computation, each possible choice by
the adversary corresponds to a labeled computation tree. In
other words, a system is represented as a set of computation
trees, each one corresponding to a different choice by the
adversary. There is no indication how the adversary’s choice
is made, just that it is made once and for all, prior to the
start of execution.

2.2 Application-specific system model

In this section, we impose some additional structure on the
general model described in the previous section. We fix the
set of agents, fix our model and intuitions regarding com-
munication, place some (environmental) constraints on the
agents, and fix the set of choices available to the adversary.

Agents.As indicated in Fig. 1 and the surrounding discus-
sion, we can limit our model to three agents: (1) the system

1 Halpern and Tuttle also include the state of the environment as part of
the global state. In their usage of the term, the “environment” is intended “to
capture everything relevant to the state of the system that cannot be deduced
from the agents’ local states” [22, Sect. 2]. This typically includes messages
in transit on the communication medium. However, we model such things
as part of the covert senders’ and receivers’ local states; we therefore omit
what they call the environment from our model. In contradistinction, we
refer to everything external toΣ as “the environment”; viz, the covert
senders and receivers constitute the environment.
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under consideration, denotedΣ, (2) the covert senders (or
alternatively, the high environment), denotedH , and (3)
the covert receivers (or alternatively, the low environment),
denotedL . In the remainder of the paper, we will tacitly
assume that the global system is comprised of these three
agents.

Model of communication.Our model of communication is
similar to those of Bieber and Cuppens, Millen, and the first
author (cf. [2], [32], and [17], respectively). We viewΣ’s
interface as a collection of channels on which inputs and
outputs occur. Since we consider the agentH (resp.,L ) to
consist ofall processing that is done in the high (resp., low)
environment, including any communication mechanism that
delivers messages toΣ, we will not need to model messages
in transit or, in Halpern and Tuttle’s terminology, the state
of the environment; rather, these components of the global
state will be included as part ofH ’s andL ’s state.

In many systems of interest, the timing of events is of
concern. (See Lampson’s [25] for an early description of
covert communication channels that depend on timing.) In
particular, some covert communication channels depend on
a clock being shared between the covert senders and re-
ceivers. Such channels are typically calledtiming channels;
see Wray’s [43] for examples and discussion. To handle such
cases, we take the set of times (i.e., the domain of the runs)
to be the ticks of the best available shared clock.2 Events
occurring between two ticks are regarded as occurring on
the latter tick. This is sufficient for the purposes of our anal-
ysis because, as far as the covert senders and receivers are
concerned, this is the most accurate information available.
Also note that if the timing of certain events (wrt the best
available shared clock) is nonprobabilistic, we can consider
the various possibilities to be choices that are made by the
adversary and factor out that nondeterminism as discussed
by Halpern and Tuttle [22].

Since the mechanisms of high-level3 I/O routines may
introduce covert channels (see, e.g., McCullough’s [28,
Sect. 2.3]), we take a very low-level view of I/O. In par-
ticular, we assume one input and one output per channel per
unit time (where times are chosen according to the above
considerations). That is, for each time we have a vector of
inputs (one for each channel) and a vector of outputs (one
for each channel). If a given agent produces no new data
value at a given time, it may in fact serve as a signal in a
covert channel exploitation. Hence, we treat such “no new
signal” events as inputs. Similarly, we do not consider the
possibility that the system can prevent an input from occur-
ring. Rather, the system merely chooses whether to make
use of the input or ignore it. Any acknowledgement that an
input has been received is considered to be an output.

Given these considerations, we fix our model of com-
munication as follows. We assume the following basic sets
of symbols, all nonempty:

C: a finite set of input/output channel names,c1, . . . , ck,
I: representing the set of input values,

2 A shared clock may be an explicit clock supplied byΣ, e.g, thesystem
clock, or it may be a clock manufactured by the covert senders and receivers
for their own purposes; see [43] for examples and discussion.

3 In this context, “high-level” means highlyabstract rather than highly
classified.

O: representing the set of output values.
N

+: representing the set of positive natural numbers. This
set will be used as our set of “times”.

Since there is one input per channel at each time, we will
be talking about the vector of inputs that occurs at a given
time. We will denote the set of all vectors of inputs byI[C].
Typical input vectors will be denoteda, a′, a1, . . . ∈ I[C].

Similarly, we will denote the set of all output vec-
tors by O[C] and typical output vectors will be denoted
b, b′, b1, . . . ∈ O[C].

Now, to talk about the history of input vectors up to a
given time, we introduce notation for traces. We will de-
note the set of input traces of lengthk by IC,k. Mathe-
matically, IC,k is a shorthand for the set of functions from
C × { 1,2, . . . k } to I. Therefore, for a traceα ∈ IC,k, we
will denote the single input on channelc ∈ C at timek′ ≤ k
by α(c, k′).

We will also need to talk about infinite traces of inputs.
For this we use the analogous notationIC,∞, which is short
hand for the set of functions fromC × N

+ to I.
Similarly, we will denote the set of output traces of

length k by OC,k and the set of infinite output traces by
OC,∞. Naturally, for an output traceβ, β(c, k) represents
the output on channelc at timek.

There will be situations where we want to talk about
vectors or traces of inputs or outputs on some subset of the
channels,S ⊆ C. In such cases we will use the natural
generalizations of the above notations, viz,I[S], IS,k, IS,∞,
etc.

Environmental constraints.Any given agent will be able to
see the inputs and outputs on a subset of the system’s I/O
channels. We make this precise by “restricting” vectors and
traces to subsets ofC. Given an input vectora ∈ I[C] and
a set of channelsS ⊆ C, we definea � S ∈ I[S] to be the
input vector on channels inS such thata � S(c) = a(c) for
all c ∈ S.

Similarly, given an input traceα ∈ IC,k and a set of
channelsS ⊆ C, we defineα � S ∈ IS,k to be the input
trace for channels inS such thatα � S(c, k′) = α(c, k′) for
all c ∈ S and allk′ ≤ k.

We assume that the set of low channels, denotedL, is
a subset ofC. Intuitively, L is the set of channels that the
low environment,L , is able to directly see. In particular,
L is able to see both the inputs and the outputs that occur
on channels inL.

In practice, there will be some type of physical or proce-
dural constraints on the agentL to prevent it from directly
viewing the inputs and outputs on channels inC − L. For
example, those channels may represent wires connected to
workstations that are used for processing secret data. In this
case, the secret workstations might be located inside a locked
and guarded room. In addition, periodic checks of the wires
might be made to ensure that there are no wiretaps on them.
In this way,L is prevented from directly viewing the data
that passes over the channels inC − L.

On the other hand, we place no constraints on the set of
channels thatH is able to see. In particular, we make the
worst-case assumption thatH is able to see all inputs and
outputs on all channels.
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The above considerations are consistent with what we’ve
called the “Secure Environment Assumption” in previous
work [17, 18]. In the present paper, this assumption is made
precise in terms of our definition of the adversary to be given
next.

The adversary.As discussed above, in Halpern and Tuttle’s
framework, all nonprobabilistic choices are factored out of
the execution of the system by fixing an adversary at the
start of execution. To make use of this framework, we must
define the set of possible adversaries from which this choice
is made.

The “adversary” in our application is the pair of agents,
H andL , that are attempting to send data from the high
environment across the systemΣ to the low environment. To
be fully general, we model these agents as mixed strategies
(in the game-theoretic sense). That is, at each point in the
execution of the system the strategy gives the probability
distribution over the set of next possible inputs, conditioned
on the history up to the current point. In the next section, we
present an example to motivate the need for such generality.
Before doing that, we make the adversary precise with the
following two definitions.

Definition 2.1 An adversary is a conditional probability
function, A(a | α, β) (wherea ∈ I[C] and for some time,k,
α ∈ IC,k andβ ∈ OC,k). Intuitively, the adversary describes
the environment’s conditional distribution on the next input
vector, given the previous history of inputs and outputs. By
saying thatA(a | α, β) is a conditional probability function
we require that

– 0 ≤ A(a | α, β) ≤ 1, and

–
∑

a

A(a | α, β) = 1

In fact, it is trivial to define a conditional probability mass
function corresponding toA wherea, α, andβ are replaced
with the values of the corresponding random variables [33].
Such a conditional probability mass function can be defined
in terms of the probability measureµA given in definition 4.4
below. �

Definition 2.2 We say that an adversaryA satisfies theSe-
cure Environment Assumption with respect to a set of chan-
nelsL ⊆ C iff there exists a pair of conditional probability
functionsH andL such that for alla ∈ I[C], all k ∈ N

+,
all α ∈ IC,k, and allβ ∈ OC,k,

A(a | α, β) = H (a � (C − L) | α, β)

· L (a � L | α � L, β � L)

(where· denotes real multiplication). �

The Secure Environment Assumption can be intuitively
understood as saying that the input on channels in (C − L)
at time k is (conditionally) statistically independent of the
input on channels inL at timek, and the input on channels
in L at timek depends only on previous inputs and outputs
on channels inL. For the remainder of this paper, we will
assume that all adversaries from which the initial choice is
made satisfy the Secure Environment Assumption.

Later in this section, we describe how a given adver-
sary A and the description of a particular system,Σ, are

used to construct the corresponding computation treeTA.
Since there is one tree for each possible adversary, we can
think of the set of trees as being indexed by the adversaries.
Therefore, we will often writeTA, TA′ , TAi

, etc.
It is clear that for an adversaryA that satisfies the Se-

cure Environment Assumption (wrtL), the conditional prob-
ability functionsH andL are unique. Further, givenH
andL , there is a unique adversary,A, for which H and
L are the probability functions that satisfy the correspond-
ing constraint. There is therefore no ambiguity in writing
TH ,L , TH ′,L ′ , etc. when we want to refer to the compo-
nents of the adversary individually.

Note that our definition of an adversary is not meant to be
as general as the adversary discussed by Halpern and Tuttle.
(In fact, Halpern and Tuttle give no structure at all to their
adversary.) Rather, our adversary is application-specific; in
particular, it is for reasoning about multilevel security of
probabilistic systems and is not designed to be used outside
that domain.

On the other hand, this particular adversary represents
a novel application of Halpern and Tuttle’s framework. In
Halpern and Tuttle’s examples, the adversary represents one
or both of two things:

– the initial input to the system; and
– the schedule according to which certain events (e.g., pro-

cessors taking steps) occur.

In contrast, our adversary does not represent a given input to
the system. Rather, it represents a mixed strategy for choos-
ing the inputs to the system. In some sense, we can think of
this as a generalization on the first item above; however, our
application still fits within the framework set out by Halpern
and Tuttle.

The state of the system.At any given point,P , in any given
computation tree,TA, there should be a well-defined state of
the system. For our purposes, the state includes the following
information.

1. All inputs and outputs that have occurred on all channels
up to the current time.

2. The adversary. In [22], Halpern and Tuttle make the as-
sumption that all points in all trees are unique. They
suggest (and we adopt) the following idea to ensure that
this is true. The state encodes the adversary. That is, all
nodes in treeTA encodeA. Note that we donot as-
sume that any given agent knows the adversary; just that
it is somehow encoded in the state. We can think of the
high part of the adversary,H , as being encoded in the
high environment and the low part,L , as being encoded
in the low environment.

3. Additional components of the global state represent the
internal state ofΣ. For example, in describingΣ, it
is often convenient to use internal state variables. The
state of these variables can be thought of as a vector
of values, one value for each state variable. Thus, the
internal state, when it exists, will be denotedc, and the
history of internal states will be denotedγ.

Computation trees.Now that we have set out the possible
states of the system (i.e., the points of computations), we
can talk about the construction of the computation trees.
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For each reachable point,P , we assume thatΣ’s proba-
bility distribution on outputs is given. For example, this can
be given by a conditional probability distribution,O (b, c |
α, β, γ), whereα, β, andγ give the history (up through some
time k) of inputs, outputs, and internal states, respectively,c
is a vector of internal state variables (i.e., the internal system
state at timek + 1), andb is the vector of outputs produced
by the system (at timek + 1).

Given O (b, c | α, β, γ) and the adversaryA, we can
construct the corresponding computation tree by starting
with the initial state of the system (i.e., the point at the
root of the tree with empty histories of inputs, outputs, etc.)
and iteratively extending points as follows.

Let P be a point in the tree with internal system history
γ, input historyα, and output historyβ. We will makeP ′
a child ofP iff

1. P ′ is formed fromP by modifying the internal system
state toc and extendingP ’s input history (output history,
resp.) witha (b, resp.); and

2. bothO (b, c | α, β, γ) andA(a | α, β) are positive.

In such cases, we label the arc fromP to P ′ with O (b, c |
α, β, γ) · A(a | α, β), i.e., the system,Σ, and the environ-
ment,A, make their choices independently.

Runs of the system.A run of the system is an infinite se-
quence of states along a path in one of the computation
trees. When we want to talk about the particular run,ρ, and
time, k, at which a pointP occurs, we will denote the point
by the pair (ρ, k). Further, if we wish to talk about the var-
ious components of the run, i.e., the trace of the inputs,α,
outputs,β, or other variables,γ, we will denote the run by
(α, β, γ) and denote the point,P , by (α, β, γ, k).

For a given tree,T , we denote the set of runs (i.e., infinite
sequences of states), formed by tracing a path from the root,
by runs(T ).

For security applications we are concerned with informa-
tion flow into and out of the system rather than with infor-
mation in the system per se. Thus, though our system model
is adequate to represent internal states and traces thereof, in
subsequent sections it will be adequate to represent systems
entirely in terms of input and output. In particular, system
behavior can be represented by ‘O (b | α, β)’ rather than
‘O (b, c | α, β, γ)’.

3 Syntax

In this section we set out our formal language and use it to
describe two simple systems. Then we give the axioms and
rules of our logic.

3.1 Formation rules

To describe the operation of the system under consideration
(viz,Σ), we use a variant of Lamport’s Raw Temporal Logic
of Actions (RTLA) [24].4 The primary difference is that we

4 Roughly speaking, Raw Temporal Logic of Actions (RTLA) is the same
as Lamport’s Temporal Logic of Actions (TLA) without the treatment of
stuttering [24]. Since we are not, in this paper, concerned with refinement,
we omit the considerations of stuttering and use RTLA.

add a modal operatorPri(ϕ) that allows us to specify and
reason about the probabilistic behavior of the system.

From the previous section, we assume the following ba-
sic sets of symbols, all nonempty:C, I, O, andR. Members
of R will have the usual representation—e.g., 43.5 ∈ R.

We will also be talking about the subjects (or agents) of
the system. Formally, asubject, S ⊆ C, is identified with
the process’s view of the system, i.e. the set of channels on
which it canseethe inputs and outputs.

Formulae in the language are built up according to the
following rules.

– constants from the set of basic symbols are terms.
– state variables (representing the value of that variable in

the current state) are terms. Among the state variables,
there are two reserved for each communication channel.
For eachc ∈ C, we have a state variablecin that takes
values fromI, and another state variablecout that takes
values fromO. Note that, implicitly, inputs are from
the covert senders and receivers into the system (Σ) and
outputs are from the system to the covert senders and
receivers. This is becauseΣ is the system under con-
sideration (i.e., with respect to which we are reasoning
about security). We have no mechanism (and no need)
to specify communication between agents not including
the system under consideration.

– primed state variables (e.g.,c′in ) are terms. (These repre-
sent the value of the variable in the next state.)

– We use standard operators among terms (e.g., + and· for
addition and multiplication, respectively), with parenthe-
ses for grouping subterms, to form composite terms.

– an atomicformula is an equation or inequality among
terms.

– For any formulaϕ, �ϕ is a formula (to be read intu-
itively as alwaysϕ).

– We build up composite formulae, in the usual recursive
fashion using∧, ∨, ¬, and→.

– for any nonmodal formula5 ϕ, and for any subjectS ⊆
C, PrS(ϕ) is a real-valued term. Intuitively,PrS(ϕ)
represents thesubjective probabilitythat S assigns to
the formulaϕ, that is, the probability ofϕ, given the
previous history of inputs and outputs on channels in
S. We refer toPrC(ϕ) (whereC is the set of all com-
munication channels) as theobjective probabilityof ϕ,
since it represents the probability ofϕ given all available
information, i.e., the unbiased probability ofϕ.

To specify and reason about our security properties of
interest, we also add a set of modal operators on formulae:
K1, . . . ,Kn, representing knowledge for each subject (rep-
resented by the subscript of the operator). Therefore, we add
the following additional formation rule to our syntax.

– For any formulaϕ, and for any subjectS ⊆ C, KS(ϕ)
(representing thatS knowsϕ) is a formula.

Note that this and previous rules are mutually recursive; so,
we can express, e.g., thatS always knows thatx = 5.

5 A nonmodal formula is a formula that does not contain any knowledge
or temporal operators.
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3.2 Examples

We now give two simple examples of how to describe sys-
tems in our language. Ultimately, we will have sufficient
formal machinery to show that one of these systems is se-
cure and the other is not; however, here we simply set them
out formally. These descriptions are meant to give the reader
an intuitive feel for the meaning of expressions in the lan-
guage. Precise meanings will be given in Sect. 4. Also, the
second of these examples will motivate our choice to model
adversaries as strategies.

Example 3.1 The first example is a simple encryption box
that uses a “one-time pad” [10]. It has two channels,high
and low. At each tick of the system clock, it inputs a 0 or 1
on the high channel and outputs a 0 or 1 on the lowchan-
nel. The low output is computed by taking the “exclusive
or” (XOR) (denoted⊕) of the high input and a randomly
generated bit.

Note that we are modeling only the sender’s (encrypting)
side of a one-time pad system. Thus, issues such as how the
random bit string is distributed to, and used by, the receiver’s
(decrypting) side are out of the scope of this specification.

It is well known that the XOR of a data stream with an
independent uniformly distributed bit stream results in an
output stream that is uniformly distributed. Therefore, we
can describe the encryption box as follows.

Let C = {h, l}, I = {0,1}, andO = {0,1}. Then, the
system is specified by the following formula.

�
(
PrC(l′out = 0) = 0.5 ∧ PrC(l′out = 1) = 0.5

)
In this formula,lout is a state variable representing the

output on the low channel,l. Therefore,l′out is the output on
l at thenext time. Further,PrC(l′out = 0) denotes the prob-
ability that the output onl is a 0 at thenext time. Hence,
the entire formula says that at all times, the probability of
Σ producing a one (1) on the next clock tick is equal to
the probability of producing a zero (0), which is equal to
0.5. Note that we have not specified the probability distribu-
tion over inputs, since this constitutes environment behavior
rather than system behavior.

�
Example 3.2 The second example is an insecure version
of the simple encryption box. Shannon [37] gives an early
description of this system.

As in the first example, the system computes the “exclu-
sive or” of the current high input and a randomly generated
bit and outputs that value on the low channel at each time.
However, in this system, the randomly generated bit used at
any given tick is actually generated and output on the high
output channel during theprevioustick of the clock.

This can be expressed in our formalism as follows. Let
C = {h, l}, I = {0,1}, and O = {0,1}. The following
formula specifies the system.

�(PrC(h′
out = 0) = 0.5 ∧ PrC(h′

out = 1) = 0.5

∧ l′out = hout ⊕ h′
in )

Note that in the third conjunct,hout is unprimed, indi-
cating that the output onl at the next time is the “exclusive
or” of the current output onh with the next input onh.

Now note that if the high agent ignores its output, this
system acts exactly as the system from the previous example
(and can be used for perfect encryption). In particular, sup-
pose we were to model an adversary as an input string—the
input to be provided by the high agent. Then, it is straight-
forward to prove that for any adversary (i.e., any high input
string) fixed prior to the start of execution, the output to low
will be uniformly distributed and, in fact, will contain no
information about the high input string.

However, the bit that will be used as the one-time pad at
timek is available to the high agent at timek−1. Therefore,
(due to the algebraic properties of “exclusive or”, viz,x⊕x⊕
y = y) the high agent can use this information to counteract
the encryption. In particular, the high agent can employ a
(game-theoretic) strategy to send any information it desires
across the system to the low agent.

For example, suppose the high agent wishes to send a se-
quence of bits,b1, b2, . . .. We’ll denote the high input (resp.,
output) at timek by hin(k) (resp.,hout(k)). The appropriate
strategy for the high agent is as follows.

The high agent chooses its input for timek + 1 as
hin(k + 1) = hout(k) ⊕ bk.

Thus, the output to low at timek + 1, denotedlout(k + 1) is
computed as follows.

lout(k + 1)
= hout(k) ⊕ hin(k + 1) [by the system description]
= hout(k) ⊕ hout(k) ⊕ bk [by the high strategy]
= bk [by the properties of⊕]

Thus, by employing the correct strategy, the high agent can
noiselessly transmit an arbitrary message overΣ to the low
agent. This, of course, motivates our choice to model adver-
saries as strategies, rather than, e.g., input strings.

�

We now have some sense of the formal language, with
the exception of the knowledge operatorKS . As previously
mentioned, this operator will be used to formalize the secu-
rity properties that interest us. We will illustrate that use in a
later section. For now we mention that in security analyses it
is typical to assume that system users (and penetrators) know
how the system works (i.e., its specifications are not secret);
we make such assumptions explicit using our knowledge op-
erator, in particular, if the system specification is given by a
formulaϕ, we will assume that for every subjectS, KS(ϕ).

3.3 The Logic

We now give the axioms of our logic. In the following, we
will use ‘ϕ’ and ‘ψ’ to refer to formulae of our language.

Propositional reasoning.All instances of tautologies of pro-
positional logic.

Temporal reasoning.The following are standard axioms for
temporal reasoning about discrete systems. The logic they
constitute is generally calledS4.3Dum. (See Goldblatt’s [16]
for details.) We have labelled the axioms with their historical
names. Letϕ andψ be formulae of our language.

K (�(ϕ) ∧ �(ϕ → ψ)) → �ψ
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T �ϕ → ϕ
4 �ϕ → � � ϕ
L �(ϕ ∧ �ϕ → ψ) ∨ �(ψ ∧ �ψ → ϕ)
Dum �(�(ϕ → �ϕ) → ϕ) → (♦ � ϕ → ϕ)

‘♦ϕ’ can be interpreted roughly as saying that at some
point ϕ is true. Formally, it is viewed as notational short-

hand: for all formulaeϕ, ♦ϕ 4
= ¬ � ¬ϕ. K guarantees that

the temporal operator respects modus ponens. Each of the
other axioms captures a feature of time that we desire.4 gets
us transitivity.T guarantees that we don’t run out of time
points (seriality) and that temporal references include the
present.L guarantees that all points in time are connected
(linearity). And,Dum guarantees that time is discrete. (Be-
tween any two points in time there are at most finitely many
other points; see Goldblatt’s [16] for further discussion.)

Real number axioms.Standard field and order axioms for the
real numbers (to apply to members ofR and function terms
with rangeR.) We will not enumerate these axioms. (See any
elementary real analysis book for enumeration, e.g., [27] or
[34].)

Epistemic reasoning.The (nonredundant) axioms of the
Lewis systemS5 (cf. Chellas, [7], or Goldblatt. [16]) ap-
ply to the knowledge operators (KS). As for temporal ax-
ioms, we give the axioms their historical names. LetS be a
subject, and letϕ andψ be formulae of our language.

K (KS(ϕ) ∧KS(ϕ → ψ)) → KS(ψ) (Knowledge respects
modus ponens.)

T KS(ϕ) → ϕ (What one knows is true.)
5 ¬KS(ϕ) → KS¬KS(ϕ) (If you don’t know something,

then you know that you don’t know it.)

Random variable axioms.The standard requirements for ran-
dom variables (in the probability theoretic sense).

PM (Positive Measure) for any formula,ϕ, and any subject,
S, PrS(ϕ) ≥ 0
(The probability of any event is greater than or equal to
zero.)

NM (Normalized Measure) for any channel,c, and any sub-
ject, S,∑

a∈I PrS(cin = a) = 1 (The probability of all possi-
bilities sums to one.)∑
b∈O PrS(cout = b) = 1

Additional axioms.Since our logic contains three different
modalities, we need some axioms to describe the interactions
among them. The following are not intended to be complete
in any sense; they are merely sufficient for the present pur-
poses.

K� For any formulaϕ and any subjectS,
KS(�ϕ) → �(KSϕ)
(If S knows something is always true, thenS always
knows it’s true.)

KPr For any formulaϕ, any subjectS, and any real number
r,
KS(PrC(ϕ) = r) → KS(PrS(ϕ) = r)
(If S knows the objective probability ofϕ, thenS knows
its subjective probability ofϕ and the two probabilities
are the same.)

The above are all of our axioms. We now give the rules of
our logic, which are both standard.

MP. (Modus Ponens)
Fromϕ andϕ → ψ infer ψ.

Nec.(Necessitation) This rule applies to both of our modal
operators:� andKS . (It is called ‘necessitation’ because it
was originally applied to a necessity operator.)
From ` ϕ infer ` �ϕ
From ` ϕ infer ` KS(ϕ)

Note that in the above, ‘̀ ϕ’ indicates a derivation ofϕ
from the axioms alone, rather than from a set of premises.
(Derivations are defined below.) Thus, in the case of the
knowledge operator (and analogously for�) Nec says that
if ϕ is a theorem (derivable without any premises) then all
subjects knowϕ.

We can now define formal derivations.

Definition 3.3 Let Γ be a finite set of formulae of our lan-
guage. A finite sequence of formulaeϕ1, ϕ2, ϕ3, . . . , ϕn is
called a derivation (ofϕn fromΓ ) iff eachϕk (k = 1, . . . , n)
satisfies one of the following:

– ϕk ∈ Γ
– ϕk is an axiom.
– ϕk follows from some theorem byNec.
– For somei, j < k, ϕk results fromϕi andϕj by MP.

We write ‘Γ ` ϕ’ to indicate a derivation ofϕ from Γ , and
we write ‘̀ ϕ’ to indicate a derivation ofϕ from the axioms
alone. �

This completes our statement of the formal system.

4 Semantics

In the previous section we presented a syntactic system. So
far we have only intuitive meanings to attach to this formal-
ism. In this section we provide semantics for our system in
terms of the Halpern-Tuttle framework and our application-
specific model set out in Sect. 2.

4.1 Semantic model

A modelM is a tuple of the form:

〈R,+, ·,≤,W,T , C, I, O, v, κ1, . . . , κ|P (C)| 〉
Here, R and its operations and ordering relation gives us
the real numbers;W is the set of points (i.e., global states
or “worlds”); T is the set of labeled computation trees
(with nodes fromW ); C, I, andO are the sets of channels,
possible inputs, and possible outputs, respectively;v is the
assignment function, which assigns semantic values to syn-
tactic expressions at each point; (values ofv at a particular
point P , will be indicated by the projection ‘vP ’); and the
κiS

are knowledge accessibility relations, one each for each
subjectS. Essentially, two points are accessible for a given
subject if that subject cannot distinguish between those two
points. (i.e., the subject does not “know” which of the points
he is in.) We describe these accessibility relation precisely
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in the next section. In the remainder of this paper we will
generally denote the accessibility relations corresponding to
subjectS by ‘κS ’.

In assigning meaning to our language, it is of funda-
mental importance to associate a probability space with each
labeled computation tree. In particular, for each labeled com-
putation treeTA we will construct a sample space of runs,
RA, an event space,XA (i.e., those subsets ofRA to
which a probability can be assigned), and a probability mea-
sureµA that assigns probabilities to members ofXA.

Our construction of this probability space is quite natural
and standard (see, e.g., Seidel’s [36] as well as [22] for two
instances). We will not go into detail explaining the basic
concepts of probability and measure theory here (cf. [20] or
[39]).

Definition 4.1 For a labeled computation treeTA, the as-
sociatedsample spaceRA is the set of all infinite paths
starting from the root ofTA. �
Definition 4.2 For any sample spaceRA, the sete ⊆
RA, is called agenerator iff it consists of the set of all
traces with some common finite prefix. Intuitively, genera-
tors are probability-theoretic events corresponding to finite
traces. �
Definition 4.3 For any sample spaceRA, we define the
event space, XA, to be the (unique) field of sets generated
by the set of all generators. That is,XA is the smallest
subset ofP (RA) that contains all of the generators and is
closed under countable union and complementation. �
Definition 4.4 We define theprobability measure, µA, on
XA in the standard way. Supposee is a generator corre-
sponding to the finite prefix given by(ρ, k). Then,µA(e) is
defined as the product of the transition probabilities from the
root of the tree, along the pathρ, up to timek. Further, it
is well known that there is a unique extension ofµA to the
entire event space (cf. [20]). �
We will be rather abusive in the use of our probability mea-
suresµA. In particular, when we have a finite set of points,
x, we will write µA(x) to denote the probability (as as-
signed byµA) of passing through one of the points inx.
Technically, this is wrong, sinceµA is defined for sets of
runs; not for sets of points. However, the mapping between
the two is extremely natural; the set of runs corresponding
to a set of points is the set of all runs thatpass through
those points. Further, by the construction of our probability
spaces, all sets of runs corresponding to finite sets of points
are measureable. Therefore, there is no danger in this abuse
of notation and it greatly simplifies our presentation.

4.2 Assignment function

Given the above semantic model, the main technical question
we need to address in assigning meaning to formulae in our
logic is:

For a given subject at a given point in its execution
(i.e., at a given node in a given computation tree),
what sample space should be used in evaluating the
probability that subject assigns to a given formula?

As discussed by Halpern and Tuttle, after choosing these
sample spaces, assigning meaning to probability formulae
is straightforward. Further, assigning meanings to nonprob-
ability formulae will be done in the standard ways, so that
too will be straightforward.

We denote the sample space for subjectS at point P
by SS,P . Our approach in assigning these sample spaces is
discussed by Halpern and Tuttle, where they describe it as
“correspond[ing] to what decision theorists would call an
agent’sposterior probability” [22, Sect. 6]. In particular, we
chooseSS,P to be the set of points withintree(P ) that have
the same history of inputs and outputs on channels inS as
occur on the path to pointP . Essentially, this means thatS’s
probability space takes into account all inputs and outputs
that S has seen up to the current point;S does not forget
anything it has seen. More precisely, we have the following
definitions.

Definition 4.5 Let S ⊆ C be a subject and letρ1 = (α1, β1,
γ1) andρ2 = (α2, β2, γ2) be two runs (not necessarily in the
same tree). We say thatρ1 and ρ2 have the sameS-history
up to timek if and only if 6

∀i,1 ≤ i ≤ k,∀c ∈ S, α′(c, i) = α(c, i) ∧ β′(c, i) = β(c, i)

�

Definition 4.6 Let S ⊆ C be a subject and letP1 = (ρ1, k1)
andP2 = (ρ2, k2) be two points (not necessarily in the same
tree). We say thatP1 andP2 have the sameS-history if and
only if the following two conditions hold.

1. k1 = k2.
2. ρ1 andρ2 have the sameS-history up to timek1.

�

Definition 4.7 Since points are unique even across trees, for
a given pointP , there is no ambiguity in referring to “the
tree that containsP ”. In the following, we will usetree(P )
to denote that tree. �

Definition 4.8 Let S ⊆ C be a subject andP be a point;
the sample space forS at pointP is given by

SS,P
4
= { P ′ | tree(P ′) = tree(P )

∧ P ′ andP have the sameS-history}
�

Now, for a given pointP , we will assign truth values
to temporal formulaeϕ at that point. In addition, we assign
values to variables, for example the input on a channel, at
that point. The assignment function that does both of these
is denoted byvP .

To define vP , we will need to assign truth values to
formulae containing primed variables. Therefore we will also
define functionsv(P1,P2) (whereP1 andP2 are points and we

6 In other settings, we might also consider the possibility that a subject
S has internal state variables and could use these to make finer distinctions
between points. However, in our application, all of the internal processing
of the relevant subjects (viz,H andL ) is encoded in the adversary and
is thus factored out of the computation tree. We therefore do not lose any
needed generality in making this definition.
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think of P2 as being a child ofP1 in some tree) to assign
truth values to formulae over a pair of points.

We definevP and v(P1,P2) mutually recursively below.
First we present some additional notation.

Notation. Since there is a one-to-one correspondence from
trees to adversaries, we can refer to “the adversary corre-
sponding totree(P )”. We denote that adversary byA(P ).

We use the notationsucc(P ) to denote the set of nodes
that immediately succeedP in tree(P ) (i.e., the children of
P ).

We use the notationextensions(P ) to denote the set of
infinite sequences of states starting atP in tree(P ). �

We now definevP andv(P1,P2). Let P be a point at time
k in the executionρ = (α, β, γ) in computation treeTA.

– Numbers are assigned to number names.
– Members ofI andO are assigned to their syntactic iden-

tifiers.
– For any channelc ∈ C,

vP (cin )
4
= α(c, k)

– For any channelc ∈ C,

vP (cout)
4
= β(c, k)

– For any variable name,X, excluding channel variables
(such ascin or cout)

vP (X)
4
= γ(X, k)

– Members ofR, I, andO are assigned values at a pair
of points by referring to their values in the first of the
points, e.g.,

v(P1,P2)(0.5)
4
= vP1(0.5)

In contrast, variables may change their value from one
point to the next, so unprimed variables are evaluated by
referring to the first point, e.g., for a state variableX,

v(P1,P2)(X)
4
= vP1(X)

whereas primed variables are evaluated by referring to
the second point, e.g.,

v(P1,P2)(X
′)

4
= vP2(X)

– Composite terms are assigned values at a pair of points
by evaluating the constituent parts at the same pair of
points and applying the corresponding semantic operator,
e.g.,

v(P1,P2)(X
′ + Y )

4
= v(P1,P2)(X

′) + v(P1,P2)(Y )

– Similary, nonmodal formulae are assigned truth values
at a pair of points by evaluating the constituent parts at
the same pair of points, e.g.,

v(P1,P2)(X ≤ Y ) = true iff v(P1,P2)(X) ≤ v(P1,P2)(Y )

and

v(P1,P2)(ϕ ∧ ψ) = true iff v(P1,P2)(ϕ) = true
andv(P1,P2)(ψ) = true

– To interpret theprobability of a nonmodal formulaϕ at
a point P , we will take the set of all pairs of points,
(P1, P2) whereP1 is in SS,P andP2 emanates fromP1.
Restricting to this set, we compute the probability of
those pairs such thatv(P1,P2)(ϕ) evaluates to true. More
precisely, for any nonmodal formula,ϕ, and for any sub-
ject S ⊆ C,

vP (PrS(ϕ))
4
= µA(P )(SS,P (ϕ) | SS,P )

where

SS,P (ϕ)
4
= {P2 | ∃P1 ∈ SS,P such thatP2 ∈ succ(P1)

andv(P1,P2)(ϕ) = true }
– An atomic formula,ϕ, is true at a point,P , iff it is true

for all pairs of points emanating fromP . More precisely,

vP (ϕ) = true iff ∀P ′ ∈ succ(P ), v(P,P ′)(ϕ) = true

(Since we have not needed to include quantification in
our language we are free to use ‘∀’ and ‘∃’ as metalin-
guistic shorthand.)

– For any formula,ϕ,

vP (�ϕ) = true iff ∀ ρ ∈ extensions(P ),

∀ iv(ρ,i)(ϕ) = true

– Composite formulae are assigned truth values at points
in the natural way.
For example,

vP (ϕ ∧ ψ) = true iff vP (ϕ) = true
andvP (ψ) = true

– Our knowledge operator is anS5 modal operator and is
given semantics in terms of the accessibility relation (on
points) in the standard way; viz, for any two points,P1
andP2 (not necessarily in distinct trees) and any subject,
S ⊆ C, we say thatP2 is accessiblefrom P1, denoted
‘κS(P1, P2)’ if and only if P1 andP2 have the sameS-
history; further, we use these accessibility relations to
assign truth values to formulae of the formKS(ϕ) as
follows.

vP (KS(ϕ)) = true iff ∀P ′, κS(P, P ′)
implies vP ′ (ϕ) = true

In the remainder of the paper, for a modelM = 〈R,+, ·,≤
,W,T , C, I, O, v, κ1, . . . , κ|P (C)| 〉, formulaϕ, and set of
formulaeΓ , we will use ‘M |= ϕ’ to indicate thatϕ eval-
uates to true at the roots of all trees inT andM |= Γ to
indicate that all members ofΓ evaluate to true at the roots
of all trees inT .7 Finally, we will use ‘Γ |= ϕ’ to indicate
thatM |= Γ impliesM |= ϕ for every modelM .

7 Typically, semantics for modal logics treat truth in a model as truth in
all possible worlds in that model. Those more familiar with this usage than
with ours should note that on a computational view the primary notion is
that of a run rather than a world (state). Thus, truth in a model is more
naturally thought of as truth in all runs in that model (hence, at the initial
state of all runs).
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5 Soundness

In Sect. 6 and Sect. 7 below we give two syntactic charac-
terizations of security and show that the semantic interpre-
tations of our syntactic characterizations are equivalent to
certain previously developed definitions. However, the sig-
nificance of these results is greatly reduced unless the logic
is sound. For, without soundness there is no guarantee that
any formal proof of security implies any independently mo-
tivated notion of security. A soundness theorem gives us just
such a correspondence.

Theorem 5.1 [Soundness] Given a set of formulae of our
languageΓ and a formulaϕ,

If Γ ` ϕ, thenΓ |= ϕ.
�

Proof. In order to prove soundness we must show that the
axioms are valid and the rules are truth preserving (except
Nec which need only be theorem preserving). For most of
the axioms and all of the rules the results are completely
standard. (Cf. Chellas [7] and Goldblatt [16].) Hence, we
do not set them out here. We specifically assumed a se-
mantics in which all the rules and axioms concerning log-
ical connectives preserve soundness. Since we assume the
real numbers are part of our models, the axioms concerning
them must all be valid. Likewise, because thePr(ϕ) terms
are interpreted as conditional probabilities of events, theRV
axioms are valid in our semantics since they reflect basic
facts about probability measures. The accessibility relations,
set out above in Sect. 4, are clearly equivalence relations.
Thus, by a standard result of modal logic, theS5 axioms
are all valid andNec (for the knowledge operators) is theo-
rem preserving (cf. [7]). The temporal reasoning axioms are
similarly valid andNec for the temporal operator is theo-
rem preserving based on the time structure of our model of
computation (cf. [16]).

All that remains is to show the soundness of our two
additional axioms. To show the validity ofK�, let P1 be a
point where

vP1(�(KSϕ)) = false

Then, by our definition of the semantic assignment func-
tion, there existP2, ρ2, andk2 such that the following three
conditions hold.

κS(P1, P2) (2)

ρ2 ∈ extensions(P2) (3)

v(ρ2,k2)(ϕ) = false (4)

Now, (ρ2, k2) is a point in an extension ofP2. Hence, Equa-
tion 4 implies

vP2(�ϕ) = false (5)

which, along with Formula 2, implies

vP1(KS(�ϕ)) = false

andK� is valid.
To show the validity ofKPr , we’ll assumeP1 is a point

such that

vP1(KS(PrC(ϕ))) = r (6)

and show that

vP1(KS(PrS(ϕ))) = r (7)

Applying the semantic assignment function to Equation 6
implies that for allP ′, κS(P1, P

′) implies

µA(P ′)(SC,P ′ (ϕ) | SC,P ′ ) = r (8)

To show Equation 7, letP2 be a point such thatκS(P1, P2).
By the semantic assignment function, we have the following.

vP2(PrS(ϕ)) = µA(P2)(SS,P2(ϕ) | SS,P2) (9)

By the definition of conditional probability and the additive
property of probability measures, we can expand the right-
hand side of Equation 9 to get:

vP2(PrS(ϕ)) =∑
P ′ µA(P2)(SS,P2(ϕ) | SC,P ′ )µA(P2)(SC,P ′)

µA(P2)(SS,P2)
(10)

(where the summation is taken over allP ′ such thatP ′ is
in the same tree and has the sameS-history asP2).

Limiting SS,P2(ϕ) to those points emanating fromSC,P ′

results inSC,P ′ (ϕ), so Equation 10 can be rewritten as:

vP2(PrS(ϕ)) =∑
P ′ µA(P2)(SC,P ′(ϕ) | SC,P ′ )µA(P2)(SC,P ′ )

µA(P2)(SS,P2)
(11)

SinceP2 and P ′ are in the same tree,A(P2) = A(P ′).
Also, sinceκS(P1, P2), all of theP ′ in the above equation
have the sameS-history asP1. Therefore, by Equation 8,

vP2(PrS(ϕ)) =
r
∑

P ′ µA(P2)(SC,P ′)
µA(P2)(SS,P2)

(12)

which, again by the additive property of probability mea-
sures, implies

vP2(PrS(ϕ)) = r (13)

andKPr is valid, which completes the proof. �
This completes our discussion of the logic itself. In the re-
mainder of the paper we focus on security and applications
of the logic thereto.

6 Formal definition of security

In this section, we give our primary definition of security—
which we call theFormal Security Condition(FSC)—and
show that its meaning is equivalent to our ownProba-
bilistic Noninterference(PNI) [17], which is itself equiv-
alent to Browne’s independently-developedStochastic Non-
Interference[3]. As described in [17], PNI is motivated by
previous work on Noninterference by Goguen and Meseguer
[15] and by connections to information theory. In particu-
lar, when the system is modeled as atwo-way channel with
memory([38]) PNI implies that there is no information flow
over the channel from the covert senders to the covert re-
ceivers ([17]). (See Browne’s [4] for other connections to
classical information theory.)
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In contrast, the intuition for our definition of security
in the present paper derives from an understanding of what
the low subjectknows when using a secure system versus
an insecure system. The intuition for our definition is as
follows.

The system under consideration is “secure” iffbefore
the low subject receives any given output (b) with any
given probability (r), it will already know that b is
about to occur with probabilityr.

In essence, since the low subject already knows the proba-
bility distribution over its upcoming outputs, it cannot learn
any new information when it actually receives those outputs.
To make this precise, we introduce the following shorthand.

Notation.Recall that a subject is formalized as a subset of
C, the set ofΣ’s communication channels; this subset rep-
resents the subject’s view of the system. For a given subject
L = {l1, l2, . . . ln} ⊆ C we often require a formula specify-
ing whatL receives as output at the next time. This can be
specified as

(l1)′out = b1 ∧ (l2)′out = b2 ∧ . . . ∧ (ln)′out = bn

(wherebi ∈ O for 1 ≤ i ≤ n). We will specify this more
compactly as

L′
out = bL

(whereL ⊆ C is the subject equal to{l1, l2, . . . ln} and
bL ∈ O[L] is the output vector equal to [b1, b2, . . . , bn]). �
We now define the Formal Security Condition as follows.

Definition 6.1 LetL ⊆ C be a subject. Suppose a systemΣ
is described by a set of formulae in our logic,Γ . We say that
Γ satisfies the Formal Security Condition (FSC) with respect
to L if and only if, for everybL ∈ O[L], the formula

� (PrL(L′
out = bL) = r → KL(PrL(L′

out = bL) = r))

is derivable fromΓ . �
Note that this definition refers only toL’s next output. Nev-
ertheless, we will see below, in Theorem 6.9, that this is
sufficient to insure that high behavior has no effect on any
L-events, including all future outputs visible toL.

At first glance, this property may appear too strong to
be satisfied by useful systems. In particular, the reader may
wonder:

if users know the probability distribution over their
outputs before they get them, why would they bother
to use the system at all? After all, they won’t learn
anything by using it.

To see why this is not a concern, we need to keep in mind
that the low subjectL represents not a single user, but rather,
the entire low environment. For example, suppose the sys-
tem we are analyzing is a two-level database containing un-
classified and secret information. In this case,L represents
all users and processes that are operating at the unclassified
level, including the users and processes involved in entering
and updating unclassified data. Thus, an individual low user
may not, in practice, know the answer to his query before
submitting it, but in principle the information is available to

him, since he can (in principle) know the entire history of
the low environment, including all low inputs.

On the other hand, the reader may now wonder:

in what way can a system fail to satisfy FSC? That is,
in what case does the low environmentfail to know
the probability distribution on its next output?

The answer is: in precisely those cases where that probability
distribution is affected by the high environment. That is,
if the high environment can influence the probability with
which the low environment gets certain outputs, then the
low environment will notknow that probability distribution
(except, e.g., by statistical inferenceafter it has received
those outputs). Further, from information theory we know
this is precisely the situation in which the high environment
can send information to the low environment, i.e., this is the
situation in which the system has a covert channel.

Now we would like to show that FSC is equivalent to
PNI. To do so, we will talk about the “meaning” of FSC, or
more precisely, thesemantic interpretationof FSC, which
we define as follows.

Definition 6.2 We say thatΓ satisfies the Semantic Inter-
pretation of FSC with respect toL if and only if, for every
bL ∈ O[L],

Γ |= �(PrL(L′
out = bL) = r → KL(PrL(L′

out = bL) = r))

�

To prove the semantic interpretation of FSC is equivalent to
PNI, we also need to recast the latter in terms of our model.
We do this as follows.

Definition 6.3 LetA1 andA2 be two adversaries that sat-
isfy the Secure Environment Assumption. We will say thatA1
and A2 agree onL behavior iff there existH1, H2, and
L such thatH1 and L are the unique probability func-
tions that describeA1 (as in Definition 2.2) andH2 and
L are the unique probability functions that describeA2. �

Definition 6.4 Let S ⊆ C be a subject and lete be a set of
runs,{ρi}, (not necessarily taken from any one computation
tree). We say thate is anS-event if and only if there exists
a timek ∈ N

+ such that for any two runs,ρ1 andρ2, having
the sameS-history up to timek, ρ1 ∈ e iff ρ2 ∈ e.
For anS-event,e, we will refer to the leastk such that above
condition holds as the length ofe. �

Intuitively, e is anS-event if and only if there is some finite
time k (i.e., its length) after whichS can always determine
whether or note has occurred.

Note that in general, anS-event contains runs from more
than one computation tree. Therefore, such “events” will not
be measurable in any of our probability spaces. Rather, we
think of them as meta events and we will be interested in
the measure of the subset of the runs that are contained in a
given computation tree. To make this precise, we introduce
the following definition.

Definition 6.5 Given a computation tree,TA, and anS-
event,e, the projection ofe ontoTA, denotedeA, is given
by:
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eA

4
= runs(TA) ∩ e

�

When it is clear from context what is meant, we ignore the
distinction between meta-events and their projections, e.g.,
we write ‘µA(e)’ for ‘ µA(eA)’.

Observation 6.6 Every projection of everyS-event is mea-
surable. That is, for anyS-event,e, and any computation
tree,TA,

eA ∈ XA

This is due to the restriction onS-events that they be observ-
able within some finite time. In particular, the projection of
anS-event onto a tree,T , must also be observable within a
finite time, and so it must be formable from a finite number
of unions and complementations of the generators ofT . �

Definition 6.7 Let Σ be a system with computation trees
T (Σ). We say thatΣ satisfies Probabilistic Noninterference
(PNI) with respect to a subjectL ⊆ C iff for any two trees
satisfying the Secure Environment Assumption,TA, TA′ ∈
T (Σ) and anyL-event,e, if A andA′ agree onL behav-
ior, then

µA(e) = µA′ (e)

�

Now we are in a position to state the main theorem of this
section. Before doing so, we state and prove a lemma.

Lemma 6.8 If TA andTA′ are two trees such thatA and
A′ agree onL behavior (and satisfy the Secure Environment
Assumption) then the following two conditions are equiva-
lent.

1. For any low output vector,bL ∈ O[L], and any two
pointsP1 ∈ TA andP2 ∈ TA′ such thatκS(P1, P2),

µA(P1)(SL,P1(L′
out = bL) | SL,P1) =

µA(P2)(SL,P2(L′
out = bL) | SL,P2)

2. For anyL-event,e,

µA(eA) = µA′ (eA′ )

�

Proof. We begin by observing thatSL,P1(L′
out = bL) and

SL,P2(L′
out = bL) are projections of the sameL-event and

that SL,P1 and SL,P2 are projections of anotherL-event.
Therefore the backward direction of the lemma (i.e., that
condition 2 implies condition 1) follows easily. In particu-
lar, let P1 ∈ TA and P2 ∈ TA′ be two points such that
κS(P1, P2). Then condition 2 implies

µA(P1)(SL,P1) = µA(P2)(SL,P2)

and further—since the intersection of twoL-events is again
anL-event—that

µA(P1)(SL,P1(L′
out = bL) ∩ SL,P1) =

µA(P2)(SL,P2(L′
out = bL) ∩ SL,P2)

Therefore condition 1 holds by the definition of conditional
probability.

To prove the forward part of the lemma, we start by
showing that it holds for a certain subset ofL-events, namely
thoseL-events corresponding to finiteL-histories.

Let e be anL-event such that there exists a time,k, (the
length of e) and a characteristic run,ρ, such that for any
run, ρ′,

ρ′ ∈ e iff ρ′ has the sameL-history asρ up to timek

That is, e corresponds to the finiteL-history characterized
by ρ up to timek.

We now prove the forward part of the lemma for this
subclass ofL-events by induction on the length ofe.
Base case.The length ofe is zero.

Since all runs have the sameL-history up to time 0, the
only two L-events of length 0 are the empty set,∅, and the
set of all runs from all trees,R. In the former case,

µA(∅A) = 0 = µA′ (∅A′ )

and in the latter case,

µA(RA) = 1 = µA′ (RA′ )

Thus, the base case is proved.
Induction case.Assume condition 2 holds for allL-events
(corresponding to finiteL-histories) of lengthk. Let e be an
L-event corresponding to a finiteL-history of lengthk + 1.
Suppose thatρ is a run that (up to timek + 1) characterizes
e.

Now, let e be theL-event characterized byρ up to time
k. Intuitively, e corresponds to the finiteL-history obtained
by truncatinge at timek. By the induction hypothesis,

µA(eA) = µA′ (eA′ ) (14)

If µA(eA) = 0, thenµA(e) = 0 = µA′ (e) and the induction
case holds trivially, so we assumeµA(eA) > 0.

By Equation 14, we also have thatµA′ (eA) > 0. Thus,
by the definition of conditional probability,

µA(e) = µA(e) · µA(e | e) (15)

and

µA′ (e) = µA′ (e) · µA′ (e | e) (16)

Let α ∈ IL,k and β ∈ OL,k be the low input and output
history, resp., that characterizee and let aL ∈ I[L] and
bL ∈ O[L] be the low input and output vectors at timek + 1
that are needed to additionally characterizee. Then, by the
construction of our probability measures (as described in
Sect. 2.2) and by the Secure Environment Assumption, we
have that

µA(e | e) = µA(b̂L, | e) · L (aL | α, β) (17)

and

µA′ (e | e) = µA′ (b̂L | e) · L ′(aL | α, β) (18)

where b̂L is the meta-event representing that the low out-
put vector at timek + 1 is b and L and L ′ are the low
environments ofA andA′, respectively.

SinceA andA′ agree onL behavior,

L (aL | α, β) = L ′(aL | α, β) (19)

Further, sinceµA(e) andµA′ (e) are both greater than zero,
there are points in both trees,P1 ∈ TA andP2 ∈ TA′ , each
of whoseL-histories are (α, β). By condition 1,
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µA(P1)(SL,P1(L′
out = b̂L) | SL,P1) =

µA(P2)(SL,P2(L′
out = b̂L) | SL,P2)

But notice thatSL,P1 and SL,P2 are projections ofe and
SL,P1(L′

out = bL) and SL,P2(L′
out = bL) are projections of

b̂L. Therefore,

µA(b̂L | e) = µA′ (b̂L | e) (20)

Thus, by Equations 17, 18, 19, and 20, we have that

µA(e | e) = µA′ (e | e) (21)

and finally, by Equations 14, 15, 16, and 21, we have that

µA(e) = µA′ (e)

and the induction case is proved.
Now, we can complete the proof by observing that every

L-event can be constructed by taking a finite number of
unions and complementations ofL-events that correspond
to finite L-histories. That is, theL-events that correspond
to finite L-histories are analogous to thegeneratorsof our
event spaces. Thus, the desired result thatµA(e) = µA′ (e)
for arbitraryL-events follows from the fact that the measures
are equal on all of theL-events that correspond to finiteL-
histories. �
We can now prove the following theorem relating PNI and
FSC.

Theorem 6.9 Let Γ be a set of formulae describingΣ and
let L ⊆ C be a subject. Then,Σ satisfies PNI with respect
to L iff Γ satisfies the semantic interpretation of FSC with
respect toL. �

Proof. Let M = 〈R,+, ·,≤,W,T , C, I, O, v, κ1, . . . ,
κ|P (C)| 〉 be a model such thatM |= Γ .

Γ satisfies the semantic interpretation of FSC (wrtL) iff
for everybL ∈ O[L],

M |= �(PrL(L′
out = bL) = r → KL(PrL(L′

out = bL) = r))

which holds iff for everybL ∈ O[L] and every root,P , of
any tree inT ,

vP (�(PrL(L′
out = bL) = r → KL(PrL(L′

out = bL) = r)))

= true

which, by applying the semantic assignment function, holds
iff for every bL ∈ O[L] and every two pointsP1, P2 ∈ W
such thatκL(P1, P2),

vP1(PrL(L′
out = bL) = r) = true implies

vP2(PrL(L′
out = bL) = r) = true

which holds iff for everybL ∈ O[L] and every two points
P1, P2 ∈ W such thatκL(P1, P2),

vP1(PrL(L′
out = bL)) = vP2(PrL(L′

out = bL))

which, again by the semantic assignment function, holds iff
for everybL ∈ O[L] and every two pointsP1, P2 ∈ W such
thatκL(P1, P2),

µA(P1)(SL,P1(L′
out = bL) | SL,P1)

= µA(P2)(SL,P2(L′
out = bL) | SL,P2) (22)

It is therefore sufficient to show thatΣ satisfies PNI iff
Equation 22 holds. That Equation 22 implies PNI follows
easily from Lemma 6.8. In particular, letA and A′ be
two adversaries that agree onL behavior. From Equation 22,
Lemma 6.8 implies that for anyL-evente,

µA(e) = µA′ (e)

Hence,Σ satisfies PNI.
To show the reverse direction, assumeΣ satisfies PNI,

let bL ∈ O[L] be arbitrary, and letP1, P2 ∈ W be two points
such thatκL(P1, P2).

Note that we cannot apply PNI immediately, since it
may be the case thatA(P1) and A(P2) do not agree on
L behavior. For this reason, for each pointP , we construct
a new adversaryA(P ) as follows. (Note thatA(P ) is an
adversary corresponding to a tree that does not, in general,
containP .)

SupposeP = (α, β, k) and A(P ) = (H ,L ). Then
A(P ) = (H ,L ), whereL is defined as follows.

For k′ ≤ k, α′ ∈ IL,k′ , andβ′ ∈ OL,k′ ,

L (a � L | α′, b′) =

{
1, if a � L = (α, k′) � L;
0, otherwise.

For k′ > k, α′ ∈ IL,k′ , andβ′ ∈ OL,k′ ,

L (a � L | α′, b′) =

{
1, if a � L = a0;
0, otherwise.

(wherea0 is some constant input on channels inL). That is,
L blindly and deterministically followsα � L up to timek
and then blindly and deterministically inputsa0 from then
on.

Now, note that according to our construction of the com-
putation trees, there is a pointP = (α, β, k) in a given
tree T if and only if at each point leading up toP , say
P ′ = (α, β, k′) (k′ < k), the following three conditions all
hold.

O (β(k′ + 1) | α � k′, β � k′) > 0 (23)

H (α(k′ + 1) � (C − L) | α � k′, β � k′) > 0 (24)

L (α(k′ + 1) � L | α � k′ � L, β � k′ � L) > 0 (25)

(whereα � k′ andβ � k′ are the restrictions ofα andβ to
IC,k′ andOC,k′ , respectively.

Further, since in constructingT
A(P ) we have retained the

output probability functionO and high behaviorH used in
TA(P ) and chosenL to ensure Equation 25 holds appropri-
ately, there is a pointP ∈ T

A(P ) that has the identical I/O
history asP ∈ TA(P ). Further, for any pointP ′ ∈ TA(P )
having the sameL-history asP , there is a corresponding
point P ′ ∈ T

A(P ) with the same I/O history asP ′.
Finally, note that by our construction of the computation

trees, sinceP ′ andP ′ have the same I/O history, say (α′, β′),
the sum of the probabilities on arcs emanating fromP ′,
whereL′

out = bL is equal to the sum of the probabilities
on arcs emanating fromP ′, whereL′

out = bL. In particular,
they are both equal to∑
b � L=bL

O (b | α′, β′)
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Since this is the case for all points inTA(P ) having the same
L-history asP , we have that

µA(P )(SL,P (L′
out = bL) | SL,P )

= µ
A(P )(SL,P (L′

out = bL) | SL,P ) (26)

In particular, Equation 26 holds for bothP1 andP2.
Now note thatA(P1) andA(P2) agree onL behavior.

Therefore, sinceSL,P (L′
out = bL) ∩ SL,P andSL,P areL-

events, PNI implies

µ
A(P1)(SL,P1

(L′
out = bL) | SL,P1

)

= µ
A(P2)(SL,P2

(L′
out = bL) | SL,P2

) (27)

Finally, Equations 26 and 27 imply Equation 22, which com-
pletes the proof. �

The significance of this theorem is that (given soundness)
verifying that a system satisfies FSC is sufficient to show
that it satisfies PNI, which (as was previously mentioned) is
a necessary and sufficient condition for a system to be free
of covert channels. In the next section, we discuss the issue
of verifying FSC.

7 Verification

7.1 Syntactic statement

In [30], McLean defines the Flow Model (FM) with the
motivation of providing an abstract, but precise, explication
of information flow security. McLean’s intent for FM is to
provide a characterization of security against which more
concrete security models can be evaluated. In [17], the first
of the present authors studies a more concrete version of
FM, called the Applied Flow Model (AFM), and shows that
AFM captures a strictly stronger notion of security than PNI.

In this paper, we have another reason for studying AFM:
it is more easily verified than FSC.

Definition 7.1 Let L ⊆ C be a subject. SupposeΓ is a set
of premises that describe a systemΣ. We say thatΓ satisfies
the Syntactic Verification Condition (SVC) with respect toL
if and only if, for everybL ∈ O[L], the formula

�(PrC(L′
out = bL) = r → KL(PrC(L′

out = bL) = r))

is derivable fromΓ . �

Intuitively, SVC says that at all times, the low environment
knows the objective probability distribution on its next out-
put.

In the next section, we show this statement is equiv-
alent to a statement about conditional statistical indepen-
dence. Namely, conditioned on the previousL-history, the
next output onL is statistically independent of the previous
non-L (i.e., high) history.

7.2 Relationship to AFM

In this section we show thatΓ |= SVC if and only if the
system specified byΓ satisfies AFM (i.e., the relationship
between SVC and AFM is analogous to the relationship be-
tween FSC and PNI).

Definition 7.2 Let Σ be a system with computation trees
T (Σ) and letL ⊆ C be a subject. We will say thatΣ satis-
fies the Applied Flow Model (AFM) with respect toL iff for
any tree,TA ∈ T (Σ) (satisfying the Secure Environment
Assumption with respect toL), any pointP ∈ TA, and any
low output vector,bL ∈ O[L],

µA(SC,P (L′
out = bL) | SC,P )

= µA(SL,P (L′
out = bL) | SL,P ) (28)

�

This definition is, except for notational differences, exactly
the definition of AFM as given in [17]. Now we can prove
the following theorem.

Theorem 7.3 Let Γ be a set of formulae describingΣ and
let L ⊆ C be a subject. Then,Σ satisfies AFM with respect
to L iff Γ satisfies the semantic interpretation of SVC with
respect toL. �

Proof.LetM = 〈R,+, ·,≤,W,T , C, I, O, v, κ1, . . . , κ|P (C)|〉
be a model such thatM |= Γ .

Γ satisfies the semantic interpretation of SVC (wrtL)
iff for every bL ∈ O[L],

M |= �(PrC(L′
out = bL) = r → KL(PrC(L′

out = bL) = r))

which holds iff for everybL ∈ O[L] and every root,P , of
any tree inT ,

vP (�(PrC(L′
out = bL) = r → KL(PrC(L′

out = bL) = r)))

= true

which, by applying the semantic assignment function, holds
iff for every bL ∈ O[L] and every two pointsP1, P2 ∈ W
such thatκL(P1, P2),

vP1(PrC(L′
out = bL) = r) = true implies

vP2(PrC(L′
out = bL) = r) = true

which holds iff for everybL ∈ O[L] and every two points
P1, P2 ∈ W such thatκL(P1, P2),

vP1(PrC(L′
out = bL)) = vP2(PrC(L′

out = bL))

which, again by the semantic assignment function, holds iff
for everybL ∈ O[L] and every two pointsP1, P2 ∈ W such
thatκL(P1, P2),

µA(P1)(SC,P1(L′
out = bL) | SC,P1)

= µA(P2)(SC,P2(L′
out = bL) | SC,P2) (29)

Now, to show that the semantic interpretation of SVC im-
plies AFM, we assume Equation 29 and show that Equa-
tion 28 holds. Consider the right-hand side of Equation 28.

µA(SL,P (L′
out = bL) | SL,P )

By the definition of conditional probability and the additive
property of probability measures, this is equal to:∑

P ′ µA(SL,P (L′
out = bL) | SC,P ′ )µA(SC,P ′ )
µA(SL,P )

(where the summation is taken over allP ′ such thatP ′ is
in the same tree and has the sameL-history asP ).
Limiting SL,P (L′

out = bL) to those points emanating from
SC,P ′ results inSC,P ′ (L′

out = bL), so the above is equal to:
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∑
P ′ µA(SC,P ′(L′

out = bL) | SC,P ′)µA(SC,P ′ )
µA(SL,P )

Now, by Equation 29,µA(SC,P ′ (L′
out = bL) | SC,P ′ ) =

µA(SC,P (L′
out = bL) | SC,P ) for all P ′ having the same

L-history asP , so the above is equal to

µA(SC,P (L′
out = bL) | SC,P )

∑
P ′ µA(SC,P ′ )

µA(SL,P )

which, again by the additive property of probability mea-
sures, is equal to

µA(SC,P (L′
out = bL) | SC,P )

which is precisely the left-hand side of Equation 28 and
therefore, the system satisfies AFM.

To show that AFM implies the semantic interpretation of
SVC, we assume Equation 28, letbL ∈ O[L] be arbitrary,
and letP1, P2 ∈ W be such thatκL(P1, P2). We want to
show that Equation 29 holds; however,P1 andP2 may not
be in the same computation tree, so we cannot apply Equa-
tion 28 directly. We therefore define an adversaryA0 such
thatTA0 is guaranteed to contain two pointsP ′

1 andP ′
2 such

that P ′
1 has the sameC-history asP1 andP ′

2 has the same
C-history asP2.

SupposeA(P1) = (H1,L1) and A(P2) = (H2,L2).
We defineA0 to be (H0,L0), where for allbH ∈ I[C−L],
α ∈ IC,k, andβ ∈ OC,k,

H0(bH | α, β) =
1
2

H1(bH | α, β) +
1
2

H2(bH | α, β)

and for allaL ∈ I[C − L], α ∈ IL,k, andβ ∈ IL,k,

L0(aL | α, β) =
1
2

L1(bH | α, β) +
1
2

L2(bH | α, β)

Since all arcs leading toP1 (resp.,P2) are labelled with
positive probabilities, there will be corresponding positive-
probability arcs inTA0 leading up to a pointP ′

1 (resp.,P ′
2)

with the sameC-history.
Note that the probabilities of reachingP1 andP2 will,

in general, be different than the probabilities of reachingP ′
1

andP ′
2, respectively. However, due to our construction of

the computation trees, from any given point, the conditional
probability of receiving a particular output at the next time
step is determined solely by the system (and not by the
adversary). Therefore, we have the following.

µA(P1)(SC,P1(L′
out = bL) | SC,P1)

= µA0(SC,P ′
1
(L′

out = bL) | SC,P ′
1
) (30)

µA(P2)(SC,P2(L′
out = bL) | SC,P2)

= µA0(SC,P ′
2
(L′

out = bL) | SC,P ′
2
) (31)

Now, we can apply Equation 28 to the right-hand sides
of Equations 30 and 31; in particular, sinceP ′

1 and P ′
2

have the sameL-history, both right-hand sides are equal
to µA0(SL,P ′

1
(L′

out = bL) | SL,P ′
1
). Therefore, Equations 28,

30, and 31 imply

µA(P1)(SC,P1(L′
out = bL) | SC,P1)

= µA(P2)(SC,P2(L′
out = bL) | SC,P2)

and the proof is complete. �

7.3 FSC versus SVC

We introduced SVC by claiming it is easier to formally ver-
ify than FSC. To see why, consider the structure of the for-
mulae that need to be derived in verifying FSC, viz,

�(PrL(L′
out = bL) = r → KL(PrL(L′

out = bL) = r))

The primary difficulty with deriving such a formula is that it
requires us to reason aboutL’s subjectiveprobabilities (i.e.,
formulae of the formPrL(ϕ), whereL /= C). We expect
systems will typically be described entirely in terms of ob-
jective probabilities (i.e., where all probability formulae are
of the formPrC(ϕ)). Therefore, deriving a formula in the
above form requires us to reason about how various objec-
tive probabilities give rise to other subjective probabilities.
This is a topic we have not pursued in any depth in the
present work. (In fact, the reader may note there is only one
axiom in the present logic addressing the interaction between
objective and subjective probabilities, viz,KPr .) However,
our intuition is that the relationship is closely related to the
Secure Environment Assumption.

There are two special cases of verifying FSC that are
worth pointing out. First, in the case where we can derive

� (PrL(L′
out = bL) = r → PrC(L′

out = bL) = r) (32)

verifying FSC reduces to the problem of verifying SVC.
That is, if (as part of verifying SVC) we have derived

� (PrC(L′
out = bL) = r → KL(PrC(L′

out = bL) = r)) (33)

then we can use Formulae 32 and 33 in conjuction with
Axiom KPr to conclude

�(PrL(L′
out = bL) = r → KL(PrL(L′

out = bL) = r))

and thus prove FSC. Of course, in such cases we can also
simply verify SVC and avoid the extra work of verifying
Formula 32.

The other special case is when the system behavior can
be described without any reference to inputs. In this case, if
SVC is provable, then it will be based on the truth value of
the consequent of SVC without concern for the antecedent.
Because of theKPr axiom, proving FSC (by showing the
truth of the consequent) will then be exactly as easy as prov-
ing SVC.

7.4 Examples, continued

We note here that the security of the encryption box of Ex-
ample 3.1 with respect to a subjectL ⊆ C is formally
derivable using SVC. Recall the system specification: If
C = {h, l}, I = {0,1}, andO = {0,1}, then, the system
is specified by the following formula.

�
(
PrC(l′out = 0) = 0.5 ∧ PrC(l′out = 1) = 0.5

)
Recall also that subjects are assumed to know the system

description. Thus,

Γ = {KL �
(
PrC(l′out = 0) = 0.5 ∧ PrC(l′out = 1) = 0.5

)}
The only bL ∈ O[L] are 0 and 1; hence, the only an-

tecedents for the SVC schema that are consistent withΓ are
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PrC(L′
out = 0) andPrC(L′

out = 1). Thus, SVC with respect
to L for this system consists of the following two formulae.

�(PrC(L′
out = 0) = 0.5 → KL(PrC(L′

out = 0) = 0.5))

�(PrC(L′
out = 1) = 0.5 → KL(PrC(L′

out = 1) = 0.5))

Each of these is derivable fromΓ using propositional rea-
soning, Modus Ponens and Necessitation and, axiomsK , 4,
and K�. Further, since SVC is stronger than FSC, such a
proof is sufficient to show this system satisfies FSC. (In the
typical case one would proceed through SVC to prove FSC,
as we have done. As noted above, however, for special cases
such as this it is equally easy to derive FSC directly.)

We also observe that for the insecure encryption box of
Example 3.2Γ /̀ FSC (whereΓ includes those formulae
that describe the system as well as the assumptions about
knowledge thereof). It is obvious that the insecure encryp-
tion box fails to satisfy PNI. By the attack described in the
original example, we can easily find two adversaries that
satisfy the Secure Environment Assumption and agree on
low behavior; yet, disagree on the probability of certain low
events. Indeed, the low environment can assign 0/1 proba-
bilities to any output sent by the high part of the adversary.
By theorem 6.9, we thus have thatΓ /|= FSC. And, by
soundness (theorem 5.1), it follows thatΓ /̀ FSC.

8 Conclusions

We have given a logic for specifying and reasoning about
the multilevel security of probabilistic computer systems. We
have established connections between information-theoretic
formulations of security and logical formulations of knowl-
edge and probability in distributed systems.

To date, we have only been able to specify and verify toy
systems using our logic. Our SVC takes one small step to-
wards practically verifiable security. However, it is unlikely
that one could ever use FSC, or even SVC, for verifying
real systems since real multilevel-secure systems (e.g., as in
Karger et al. [23]) are too complex to be completely free
of covert channels, even at the specification level (e.g., as
in Browne [5]). Therefore, they cannot satisfy our ideal no-
tions of security. Nevertheless, we feel it is important to
cast ideal security in a precise logical framework. It is our
hope that extensions of this work—using less ideal notions
of security allowing some limited information flow—will
ultimately lead to machine checkable proofs of security for
real systems.
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