
Fast Active Exploration for Link-Based
Preference Learning using Gaussian Processes

Zhao Xu1, Kristian Kersting1, and Thorsten Joachims2

1 Fraunhofer IAIS, Schloss Birlinghoven, 53754 Sankt Augustin, Germany
{zhao.xu,kristian.kersting}@iais.fraunhofer.de

2 Department of Computer Science, Cornell University, Ithaca, NY 14853, USA
tj@cs.cornell.edu

Abstract. In preference learning, the algorithm observes pairwise rela-
tive judgments (preference) between items as training data for learning
an ordering of all items. This is an important learning problem for appli-
cations where absolute feedback is difficult to elicit, but pairwise judg-
ments are readily available (e.g., via implicit feedback [13]). While it was
already shown that active learning can effectively reduce the number of
training pairs needed, the most successful existing algorithms cannot gen-
eralize over items or queries. Considering web search as an example, they
would need to learn a separate relevance score for each document-query
pair from scratch. To overcome this inefficiency, we propose a link-based
active preference learning method based on Gaussian Processes (GPs)
that incorporates dependency information from both feature-vector rep-
resentations as well as relations. Specifically, to meet the requirement
on computational efficiency of active exploration, we introduce a novel
incremental update method that scales as well as the non-generalizing
models. The proposed algorithm is evaluated on datasets for information
retrieval, showing that it learns substantially faster than algorithms that
cannot model dependencies.

1 Introduction

Preference learning is a natural and widely successful problem formulation for
applications in search engines, information retrieval, and collaborative filtering
[7, 3, 12, 8]. The learning algorithm receives pairwise preferences that compare
two entities, such as documents, webpages, products, songs etc. The goal is to
learn a general ordering function that also ranks unobserved pairs correctly. Since
collecting preference pairs is expensive (i.e. manual judgment effort, or presen-
tation of inferior rankings for implicit feedback), designing learners that actively
collect the most informative training preferences promises to reduce training
cost. While some approaches for active learning with preferences exist(e.g., [21,
6, 19, 27, 26]), most assume the entities to be independent of each other and they
do not take into account relations between the entities [1]. However, such link
structures among entities are very informative [24, 9, 10, 17]. For example, as-
sume that there are n papers related to a query q, and these papers are linked

2 Zhao Xu, Kristian Kersting, and Thorsten Joachims

together into a network with co-author relations. Generally, the papers written
by the same authors represent some similarity on research topics. If a user gives
a judgement that a paper ei is more relevant to the query q than another paper
ej (ei Â ej), then a co-authored paper ei′ of ei is more likely to have simi-
lar relevance. In particular, it is likely to be preferred to ej (ei′ Â ej) as well.
More generally, known preference information on papers propagates through the
network providing useful evidence about unknown preferences and in turn de-
creasing our uncertainty about them. For active learning, this means that the
search space is reduced.

Most of the active preference learning methods to date, however, have re-
mained relatively agnostic to this rich structure. In fact, the most successful
existing algorithms cannot model dependencies. For instance, Saar-Tsechansky
and Provost [21] considered class-based ranking problems and proposed to use
bootstrap samples of existing training data to examine the variance in the prob-
ability estimates for not-yet-labeled data. Brinker [2] proposed an SVM-based
method which converts preference learning into a binary classification problem.
[5, 25] also ignore the link structure. In the model proposed by Radlinski and
Joachims [19], the lack of dependencies manifests itself in a diagonal covariance
matrix. Each entity is associated with a latent variable representing its utility
(score) and all latent variables are independent of each other and follow Gaus-
sian distributions. The entities are ranked according to these utilities: an entity
ei is ranked above another one ej (ei Â ej), if and only if the utility of ei is
larger than that of ej . For active exploration, Radlinski and Joachims propose
to select an entity pair for which a preference label promises the largest expected
reduction of uncertainty about the latent utilities. Specifically, for a user-defined
loss function, the selection criterion optimizes the expected reduction of loss due
to the variability of the utility estimates.

The method proposed in this paper overcomes the key limiting assumption
of [19], namely that all document-query utilities have zero covariance. Specifi-
cally, we propose a link-based active preference learning method using Gaussian
processes. It is based on the relational Gaussian process model for preference
learning, called XPGP, recently introduced by Kersting and Xu [14]. Like in
Radlinski and Joachims’ model, associated with each entity is a continuous la-
tent variable ξi that represents the latent utility (score) of the entity. The key
difference from Radlinski and Joachims’ model is that the latent utility (score)
of each entity consists of two function values: f(xi) and g(ri). With each entity
ei described by a vector of entity attributes xi, f(xi) is a function value of these
attributes. The {f(x1), f(x2), . . .} share a common Gaussian process prior GPa.
The term g(ri) denotes a function value of entity relations ri between ei and
other entities, and {g(r1), g(r2), . . .} share another common Gaussian process
prior GPr. The utility ξi of ei is then modeled as the weighted sum of the two
components: ξi = ω1f(xi) + ω2g(ri). Unlike [19], it is obvious that this XPGP-
based model exploits attribute and relational information in preference learning,
enabling score propagate through the network.

Fast Active Exploration for Link-Based Preference Learning 3

Algorithm 1: The AXPGP algorithm for link-based active preference
learning

Input: X (entity attributes), R (links), A (the set of active pairs, one random
pair at the beginning)

1 m0 = 0; K0 is computed with Eq. (6).
2 for t = 1 to T do
3 Approximate the likelihood distribution of the new active pair ot (i.e.,

compute Σ̃t and µ̃t with Eq. (22));
4 Update the posterior distribution of utilities for all entities given ot (i.e.,

compute Kt and mt with Eq. (24));
5 Compute expected loss for each candidate entity pair with Eq. (28) and pick

the entity pair with the largest loss based on Eq. (29);
6 Label the chosen entity pair and add it to A;

Output: mT (mean) and KT (covariance matrix)

However, using XPGPs naively for active exploration would scale as O(t3),
where t is the number of actively selected points so far. Say we have t− 1 active
data points. After selecting an additional data point, we have to invert the new
covariance matrix among all t data points, which takes O(t3) time. To meet the
requirement on computational efficiency of active exploration, we propose an
incremental update method for the XPGP model – the main contribution of the
current paper. The incremental inference approach has scaling behavior com-
parable to the diagonal covariance method in [19]. We empirically evaluate the
method using LETOR [18] benchmark datasets. The results show that AXPGP
learns substantially faster than algorithms that cannot model dependencies.

The rest of the paper is organized as follows. We start off by introducing the
link-based active preference learning method AXPGP in Sec. 2. We then discuss
the model, incremental inference, and active learning. Before concluding, we
present our experimental analysis.

2 Probabilistic Framework for Link-based Active
Preference Learning

The active exploration model we assume can be outlined as follows. Denote with
T the set of all possible entity preferences. Starting with an empty training
set A = ∅, we perform the following steps at each iteration: (1) a score (i.e.
expected loss) is computed for all pairs in J = T \ A based on the current
distribution of the utilities; (2) the pair with the largest score is picked and
added to the training set A with its true preference; (3) the distribution of the
utilities is updated based on the new A. Note that the number of all possible
entity preferences, i.e., the size of T is O(n2) — much larger than the number
n of entities.

The procedure simulates the interactions between users and information-
retrieval systems and is summarized in Alg. 1. Before providing more details, let

4 Zhao Xu, Kristian Kersting, and Thorsten Joachims

us introduce some notations. We assume that there are (1) a set of n entities
E = {e1, . . . , en} with attributes X = {xi : xi ∈ RD, i = 1, . . . , n}, (2) relations
R = {ri,j : i, j ∈ 1, . . . , n} among the entities, and (3) a set of m observed
preferences (i.e., pairwise rankings) among entities, O = {eis

Â ejs
: s =

1, . . . , m; is, js ∈ 1, . . . , n} (is and js are entities involved in the s-th observed
preference). With ri, we will denote all relations in which entity ei participates.

2.1 Link-based Preference Learning with Gaussian Processes

Gaussian process3 (GP) models [20] are powerful nonparametric tools for Bayesian
supervised learning. In contrast to other kernel machines such as support vector
machines, GPs are probabilistic models, which means that they yield “error bars”
on predictions and allow standard Bayesian model selection to be used. They
generalize multivariate Gaussian distributions over finite dimensional vectors to
infinite dimensionality. Specifically, a GP defines a distribution over functions,
i.e. each draw from a Gaussian process is a function, and it is completely char-
acterized by its mean function m(x) := [f(x)] and covariance (kernel) function
C(x, x′) := [(f(x)−m(x))(f(x′)−m(x′))]. One attractive property of GPs is
that any finite set of function values f = {f(x1), . . . , f(xn)} follow a multivari-
ate Gaussian distribution so that mean and covariance can be computed based
on the corresponding attribute vectors x = {x1, . . . , xn} with respect to the
mean function and covariance functions.

Following the link-based GP (XPGP) model, the utility of each entity is mod-
eled as a continuous latent variable, consisting of two latent function values f(xi)
and g(ri) (shortened as fi and gi). f(·) and g(·) are functions of attributes and
links, respectively. We define GP priors for the attribute-wise and for the link-
wise latent function values. Specifically, we assume an infinite number of latent
function values {f1, f2, . . .} follow a Gaussian process prior with mean function
ma(xi) and covariance function ka(xi, xj). Without loss of generality, we assume
zero mean [20] so that the GP is completely specified by the covariance function
only. Here we used the subscript a to emphasize that they are attribute-wise.
In turn, any finite set of function values {fi : i = 1, . . . , n} has a multivariate
Gaussian distribution with mean zero and covariance matrix defined in terms
of the covariance function of the GP. Formally, for the set of n entities, the
prior distribution of the attribute-wise function values f = (f1, . . . , fn)T can be
represented as

P (f |X) =
1

(2π)
n
2 |K| 12 exp

(
−fT K−1f

2

)
. (1)

3 Several GP models for preference learning have been proposed. For example Chu
and Ghahramani [4] also considered the entity ranking problem (i.e. the setting
discussed here) by introducing a novel likelihood function to express the entity-wise
ordinal information. As another example, Guiver and Snelson [11] recently presented
a sparse GP model for soft ranking problem for large-scale datasets. All previous GP
models are reported to provide good performance on real-world datasets but they
do not consider relational information.

Fast Active Exploration for Link-Based Preference Learning 5

Here, K denotes the n × n covariance matrix whose ij-th entry is computed
in terms of the covariance function with the corresponding attributes xi and
xj . The covariance function can be any Mercer kernel function, e.g. squared
exponential (SE)

k(xi, xj) = κ2 exp(−ρ2

2

∑D

d
(xi,d − xj,d)2), (2)

where κ and ρ are parameters of the covariance function, and xi,d denotes the
d-th dimension of the attribute xi.

Similarly, we place a zero-mean GP over {g1, g2, . . .}. Again, {gi : i =
1, . . . , n} follow a multivariate Gaussian distribution with mean zero and co-
variance matrix Kr. Since entities and links form a graph, we can naturally
employ graph-based kernels to obtain the covariances, see e.g. [23]. The simplest
graph kernel might be the regularized Laplacian

Kr = [β(∆ + I/ι2)]−1, (3)

where β and ι are two parameters of the graph kernel. ∆ denotes the combi-
natorial Laplacian, which is computed as ∆ = D − W , where W denotes the
adjacency matrix of a weighted, undirected graph, i.e., Wi,j is taken to be the
weight associated with the edge between i and j. D is a diagonal matrix with
entries di,i =

∑
j wi,j . Formally, the prior distribution of the link-wise function

values g = (g1, . . . , gn)T is: P (g|R) = N (0,Kr)

=
1

(2π)
n
2 |Kr| 12

exp
(
−gT K−1

r g

2

)
. (4)

The utility ξi of an entity is a linear combination of the two function values:

ξi = ω1fi + ω2gi. (5)

Since fi and gi have GP priors, their weighted sum ξi also follows a GP prior. For
a finite number of entities, the prior is again reduced to a multivariate Gaussian
distribution with mean zero and covariance matrix K, that is

P (ξ|X ,R) = N (0,K); K = ω2
1Ka + ω2

2Kr. (6)

After defining the prior of utilities, we now need to model how the utilities
probabilistically decide the preferences, i.e. the likelihood distribution. For a
preference o involving the entities ei and ej , P (os|ξi, ξj) is defined as [4]

∫ ξi−ξj

−∞
N (t|0, 1)dt ≡ Φ(ξi − ξj) . (7)

The likelihood is a cumulative Gaussian. This encodes the natural assumption:
The larger the difference between the utilities of ei and ej, the more likely is it
that ei is preferred to ej .

6 Zhao Xu, Kristian Kersting, and Thorsten Joachims

Finally, the joint probability of m observed preferences and n utilities ξ =
{ξ1, . . . , ξn} can be written as

P (ξ,O |X ,R) = N (ξ|0,K)
m∏

s=1

Φ(ξis
− ξjs

). (8)

In this link-based GP ranking framework, the utilities are dependent on each
other, meaning that knowing the preference of two entities can not only improve
our utility predictions of the two entities, but also that of other entities which are
not involved in the preference. Thus the ranking of a whole set of entities can be
refined. How to diffuse the preference information among entities is decided by
their dependencies. The probabilistic dependencies between them are captured
with the covariance cov(ξi, ξj), i.e. the entry (i, j) in the covariance matrix K,
which measures to what extent the utilities change together. If two entities are
inter-linked or have similar attributes, then their covariance cov(ξi, ξj) is high.
Roughly speaking, if ξi is high, then so is ξj , and vice versa.

2.2 Incremental Inference Method for AXPGP

Assume that in the first t iterations, we collect t preferences {o1, . . . , ot} and
have learned the posterior distribution P (ξ|X ,R, o1, . . . , ot). At iteration t + 1,
a new preference ot+1 is collected, and we need to compute:

P (ξ|X ,R, o1, . . . , ot+1) =
P (ξ|X ,R)P (o1|ξ) · · ·P (ot|ξ)P (ot+1|ξ)

P (o1, . . . , ot, ot+1|X ,R)
. (9)

That means we have to completely re-compute the posterior based on all prefer-
ences collected so far. Then a question naturally arises: could we exploit the pre-
vious computation and only focus on the new preference. To meet the challenge,
we develop an incremental inference method. Now the posterior distribution is
represented as

P (ξ|X ,R, o1, . . . , ot+1) =
P (ξ|X ,R, o1, . . . , ot)P (ot+1|ξ)

P (ot+1|X ,R, o1, . . . , ot)
, (10)

where the first term in the numerator is obtained from the last iteration, and
can be viewed as the learned prior of the current iteration. It is approximated
with a Gaussian distribution with mean and covariance matrix denoted as mt

and Kt. Thus we have

P (ξ|X ,R, o1, . . . , ot)P (ot+1|ξ) ≈ N (ξ|mt,Kt)Φ(ot+1|ξ) .

Since the likelihood is not conjugate with the prior, an analytical solution is
intractable. To solve the inference problem, the expectation propagation (EP)
algorithm [16] is used. Namely, we use an unnormalized Gaussian distribution

Z̃t+1N (ξit+1 , ξjt+1 |µ̃t+1, Σ̃t+1) (11)

Fast Active Exploration for Link-Based Preference Learning 7

to approximate the likelihood Φ(ot+1|ξ). Note that (11) is a 2-dimensional Gaus-
sian. Now the inference problem (10) is reduced to an optimization problem:

N (ξit+1 , ξjt+1 |µt, Σt)Φ(ot+1|ξit+1 , ξjt+1)

← N (ξit+1 , ξjt+1 |µt, Σt)Z̃t+1N (ξit+1 , ξjt+1 |µ̃t+1, Σ̃t+1), (12)

where µt and Σt denote the entries in mt and Kt corresponding to the entities
eit+1 and ejt+1 involved in the preference ot+1. The product on the right side
equals to N (ξit+1 , ξjt+1 |µ̂, Σ̂) Z̃t+1/C , where

µ̂ = Σ̂(Σ−1
t µt + Σ̃−1

t+1µ̃t+1), Σ̂ = (Σ−1
t + Σ̃−1

t+1)
−1,

C = 2π|Σt + Σ̃t+1| 12 · exp
(

1
2
(µt − µ̃t+1)T (Σt + Σ̃t+1)−1(µt − µ̃t+1)

)
. (13)

Thus the inference problem is reduced again: optimizing µ̂ and Σ̂ to make the
right side close to the left side, and then deriving µ̃t+1 and Σ̃t+1 based on (13).
To satisfy (12), we only need to match their first and second moments [20]. Since
the product on the right side is an unnormalized Gaussian, we need to impose
an additional condition, i.e. that the zero-th moments should also match. The
zero-th moment of the left side is

∫ N (ξit+1 , ξjt+1 |µt, Σt)Φ(ot+1|ξit+1 , ξjt+1)

=
∫ %T µt

−∞
N (a|0, 1 + %T Σt%)da = Φ

(
%T µt√

1 + %T Σt%

)
, (14)

where % denotes yt+1[1,−1]T . The term yt+1 is 1 if eit+1 Â ejt+1 , and −1 other-
wise. Since the zero-th moments of the two sides are equal, we have

Z̃t+1 = C Φ

(
%T µt√

1 + %T Σt%

)
. (15)

The first moment of the left side is
∂

∂µt

∫
N (ξit+1 , ξjt+1 |µt, Σt)Φ(ot+1|ξit+1 , ξjt+1)

=
∫
N (ξit+1 , ξjt+1 |µt, Σt)Φ

(
χT %

)
(χ− µt)

T
Σ−1

t , (16)

where χT denotes the vector
[
ξit+1 , ξjt+1

]
. The first moment of the right side is

∂

∂µt
Φ(

%T µt√
1 + %T Σt

) =
%T µt√

1 + %T Σt

N
(

%T µt√
1 + %T Σt

)
(17)

Making the two first moments equal, we obtain:

µ̂ = E (χ) = µt +
S

Z
√

1 + %T Σt%
Σt%,

z =
%T µt√

1 + %T Σt%
; Z = Φ (z); S =

1√
2π

exp
(
−z2

2

)
. (18)

8 Zhao Xu, Kristian Kersting, and Thorsten Joachims

Now we compute the second moment of the left side:

∂2

∂µ2
t

∫
N (ξit+1 , ξjt+1 |µt, Σt)Φ(ot+1|ξit+1 , ξjt+1)

= Z E
[
Σ−1

t (χ− µt)(χ− µt)T Σ−1
t

]− Z Σ−1
t . (19)

and that of the right side:

∂2

∂µ2
t

Φ

(
%T µt√

1 + %T Σt

)
= −%%T zS

1 + %T Σt%
. (20)

Since the two moments are equal, we obtain E(χχT) =:

zS

(1 + %T Σt%)Z
Σt%%T Σt + Σt + E(χ)µT

t + µtE(χT)− µtµ
T
t . (21)

Now, the second central moment Σ̂ can be computed with E(χχT)−E(χ)E(χT).
Substituting (18) and (21), we can get Σ̂. In summary, the moment matching
procedure yields the following equations to compute µ̃t+1, Σ̃t+1:

z =
%T µt√

1 + %T Σt%
; S =

1√
2π

exp(−z2

2
); Z = Φ(z);

µ̂ = µt +
SΣt%

Z
√

1 + %T Σt%
; Σ̂ = Σt − zSZ + S2

Z2(1 + %T Σt%)
Σt%%T Σt;

Σ̃t+1 = (Σ̂−1 −Σ−1
t)−1; µ̃t+1 = Σ̃t+1(Σ̂−1µ̂−Σ−1

t µt). (22)

After getting the approximate likelihood, we can compute the posterior dis-
tribution of utilities. Since all entities are dependent on each other in the AXPGP
algorithm, the update of the utility of one entity will change the utilities of all
others. Thus, we need to compute the new distribution of all ξi at the iteration
t+1, i.e., the posterior distribution Eq. (10). The product of two Gaussian is an
unnormalized Gaussian, so P (ξ|X ,R, o1, . . . , ot, ot+1) is approximated with:

N (ξ|mt, Kt)Z̃t+1N (ξit+1 , ξjt+1 |µ̃t+1, Σ̃t+1)
P (ot+1|X ,R, o1, . . . , ot)

=N (ξ|mt+1,Kt+1)

Kt+1 = (K−1
t + [̂ı, ̂] Σ̃−1

t+1 [̂ı, ̂]
T)−1;

mt+1 = Kt+1(K−1
t mt + [̂ı, ̂] Σ̃−1

t+1µ̃t+1). (23)

Here, [̂ı, ̂] denotes the unit vectors, which is one at the entry it+1 (resp. jt+1)
and zero otherwise. Note that this approximate distribution is the learned prior
of the next iteration t + 2. Given a new preference ot+2, we can update the dis-
tribution P (ξ|X ,R, o1, . . . , ot, ot+1, ot+2) via (22) and (23) efficiently. Because
the information from the historical data {o1, . . . , ot} propagates to the new it-
eration t + 1 via the learned prior P (ξ|X ,R, o1, . . . , ot), the new iteration only
needs to re-compute the distribution over utilities by one single new observation

Fast Active Exploration for Link-Based Preference Learning 9

ot+1, rather than to re-compute the distribution conditioned on all observations.
Thus, it implements an incremental inference method.

The computation in (22) only involves operations on two-dimensional matri-
ces which is cheap to compute. (23), however requires to compute the inverse of
a n×n matrix, which scales O(n3). The cost, however, can be reduced by using
the Woodbury, Sherman & Morrison formula yielding a rank-two algorithm:

Kt+1 = Kt −ABAT ; A = Kt [̂ı, ̂]; B−1 =
(
Σ̃t+1 + Σt

)

mt+1 = mt −AB
(
µt + ΣtΣ̃

−1
t+1µ̃t+1

)
+ AΣ̃−1

t+1µ̃t+1, (24)

where A denotes the columns of Kt corresponding to the entities eit+1 and ejt+1

involved in the preference ot+1. In comparison with the Glicko [19] method, the
information of the preference ot+1 is propagated to all the entities based on the
dependencies between them. For example, the change of the covariance matrix is
the product ABAT , where B represents the change of covariances of the entities
eit+1 and ejt+1 introduced by the new observation. A represents the covariances
between the two entities and all other unrelated entities to the new observation,
by which the information propagates.

Here, we consider inference only in a transductive setting. However, the pro-
posed method can also be extended to an inductive setting. The key challenge
is getting the covariance between the new entities and the known ones based on
relations. This can be addressed via several possible methods: Nyström [22] and
similarity matching [28].

2.3 Active Exploration

There are two major characteristics, which distinguish the active exploration for
preference learning from the ones for classification/regression: (1) preferences
are pairwise (or list-wise) rather than entity-wise; (2) the entity property utility
that decides the preference is latent and unobservable. Even if we observe the
preferences of entity pairs, the utilities are still unknown. Now that we are armed
with the posterior distribution of the latent utilities, we can use it to decide which
is the next entity pair to query based on the expected loss.

Let ξ∗ denote the current utility estimates used to produce the predicted
ranking of items in the current iteration. Furthermore, let L(ξ∗, ξ) be the loss
incurred by the estimates ξ∗ compared to the true utilities ξ. Since the true
utilities are unknown and random, the value of the loss function is also random.
We thus use the expectation of the loss functions with respect to the distribution
of the true utilities. Suppose the loss function is pairwise decomposable (i.e. a
sum of independent pairwise losses), then the total expected loss over all pairs
can be factorized to

EP (ξ|O) [L(ξ∗, ξ)] =
∑N

i=1

∑N

j=i+1
EP (ξi,ξj |O)

[L(ξ∗i , ξ∗j , ξi, ξj)
]
. (25)

Based on [19], the mode (i.e., mean µ) of their approximate posterior is used as
the estimate ξ∗. [19] proves that for many loss functions, sorting entities by the

10 Zhao Xu, Kristian Kersting, and Thorsten Joachims

mode results in the ranking that minimizes the expected loss Eq. (25). Radlinski
and Joachims [19] proposed the following loss function for information retrieval
problems, since it (a) models misorderings, (b) takes into account that accuracy
is more important at the top of the ranking, and (c) treats errors on pairs with
almost equal utility different from pairs with large utility gap. In particular, for
a pair of entities ei and ej ,

L(µi, µj , ξi, ξj) = e−γij ((µi − µj)− (ξi − ξj))
2
misordered, (26)

where γij denotes the minimum rank of ei and ej when all entities are ranked
by their estimates. The term e−γij emphasizes the importance of entities ranked
higher in the list. The higher the ranks of the two entities, the larger the loss if
the estimated preference is wrong. The term misordered is a function taking value
one if (µi−µj)(ξi−ξj) < 0, and zero otherwise. Namely, we consider the difference
between the estimations and the true values as loss only when it is substantial
enough to influence the preference of the two entities. The expectation of the
loss function (26) is computed as follows. Let δij denote ξi − ξj . Since ξi and ξj

are Gaussian, their difference δij is still Gaussian,

δij ∼ N(δij |δ̂ij , ν
2
ij) , (27)

with δ̂ij = µi − µj and ν2
ij = var(ξi) + var(ξj)− 2cov(ξi, ξj) , where var(x) and

cov(x, y) denote the variance of x and the covariance between x and y. Permuting
entities in each pair such that δ̂ij is always negative, we have the expectation:

EP (ξi,ξj |O) [L(µi, µj , ξi, ξj)] = e−γij

[
ν2

ij

2

(
1 + erf

(
δ̂ij√
2νij

))
− δ̂ijνij√

2π
exp

(
−δ̂2

ij

2ν2
ij

)]
.

(28)

Radlinski and Joachims [19] introduced several exploration strategies, i.e.,
how to select the most informative entity pair based on the loss function. Here,
we focus on the largest expected loss pair (LELpair), which selects the entity pair
ei and ej that has the largest pairwise expected loss contribution, i.e.,

arg max
i 6=j

EP (ξi,ξj |O) [L(µi, µj , ξi, ξj)] (29)

We select the loss function (28) and the active strategy (29) due to their good
performance and low computational cost. For more details on the theoretical
and empirical analysis we refer to [19].

2.4 An Illustration

We have described the link-based active preference learning method AXPGP.
To illustrate the principle behind AXPGP, we visualize the procedure with a
simple example. Assume that there are six papers {a, b, c, d, e, f} ranked as a Â
b Â c Â d Â e Â f . We know that for (a, b) and (d, e) co-author relations

Fast Active Exploration for Link-Based Preference Learning 11

a b c d e f
−3

−2

−1

0

1

2

3

U
til

ity

a b c d e f
−3

−2

−1

0

1

2

3

U
til

ity

a b c d e f

a

b

c

d

e

f

a b c d e f

a

b

c

d

e

f

a b c d e f

a

b

c

d

e

f

a b c d e f
−3

−2

−1

0

1

2

3

U
til

ity

Fig. 1. Illustration of the AXPGP algorithm. Top-left: Three utility functions drawn at
random from a GP prior. The shaded area shows the 95% confidence region. Bottom-
left: the prior covariance matrix. The smaller the covariance is, the darker the cell is.
Top-middle: the posterior utilities learned with the prior and the observed preference
b Â e. The line is the posterior mean. Bottom-middle: The posterior covariance matrix.
Top-right: The expected loss of each entity pair. The smaller the loss is, the darker
the cell is. The blue points specify the pairs with the largest loss. Bottom-right: The
updated posterior utilities given the actively collected preference b Â f .

exists. Intuitively, the utilities of a and b resp. d and e should be correlated.
Formally, we compute the covariance matrix using the graph kernel (3), shown
in Fig 1 bottom-left, which just verifies our intuition. Since there is no preference
information given, the expected utilities are the same for all entities (Fig. 1 top-
left). Assume now that a user tells us that she prefers b to e. Our belief on
the utilities changes, and we compute the posterior distribution based on (23).
Fig. 1 top-middle clearly shows that the expected utilities of b and e reflect this.
Additionally, the expected utilities of a and d also change. Since there is co-
author relation between them, the preference information propagates through
the network to other entities. Now, we compute the loss using (28) and select
the next entity pair to ask for a label using (29). Fig. 1 top-right shows the loss
for each entity pair. One can see that the pairs {(a, d), (a, e), (b, d)} have the
smaller expected losses. The reason is again that a and d are related to b and e.
The interesting fact, however, is the two isolated entities (c, f) do not give the
largest loss. The reason is that, given loss function (26), it is more informative
to find out whether c and f beat the current leader than learning about the
relation between the two. Randomly selecting one pair (b, f) with the largest
loss, the updated utilities are shown in Fig. 1 bottom-right. At this point, the
ranking of the whole set of entities is already very close to the actual one except
for the order of a and b. That is reasonable, because so far there is no explicit

12 Zhao Xu, Kristian Kersting, and Thorsten Joachims

or implicit information available on their preference. The order between a and
{c, d, e, f}, however, can already be accurately estimated.

3 Empirical Analysis

We evaluate the link-based active preference learning method AXPGP on two
real-world datasets, namely OHSUMED and TREC in the LETOR repository [18].
The AXPGP method is compared with the Glicko [19] method to evaluate
whether the relational model speeds up active learning. Furthermore, we com-
pare computational efficiency, and evaluate in how far active learning using the
AXPGP outperforms random sampling.

Mean average precision (MAP) is used as the performance measure [15]. MAP
is defined as the average AP over multiple rankings, AP = 1

N∗
∑N

n=1 prec(n)δ(n),
where N∗ denotes the number of relevant documents for the query. δ(n) equals
to one if the n-th document in the ranking is relevant, and zeros otherwise.
prec(n) = 1

n

∑n
i=1 δ(i) is the precision after observing the first n documents in

the ranking.
In each iteration of the following experiments, the algorithm asks for feedback

on the preference of one entity pair, ei and ej . The feedback label is generated
according to the order of the true utilities ξi and ξj . After observing a preference,
the algorithm updates the model and we compute the MAP over all documents.
To abstract from randomness in breaking ties of the LELpair criterion, each
experiment is repeated 10 times. We used (2) and (3) to capture the feature and
relational information.

3.1 Data Description

LETOR is a benchmark dataset for learning to rank in information retrieval. We
perform experiments on two datasets in LETOR: one is the OHSUMED dataset
about medical articles, the other is the TREC dataset about .gov webpages.

In the OHSUMED dataset, each document consists of title, abstract, MeSH
indexing terms, author, source, and publication type. There are 106 queries for
which manual relevance judgments on the scale ’definitely relevant’ (2), ’partially
relevant’ (1), and ’not relevant’ (0) are available. We follow the experiment setup
in [19]. In particular, since such coarse judgments are unrealistic in many real-
world applications, we break ties by adding uniform noise in the range [−0.5, 0.5]
to the true relevance degrees. Note that this preserves the relative order between
definitely relevant (resp. partially relevant) documents and partially relevant
(resp. not relevant) ones, but breaks ties within each relevance level. The dataset
contains a feature vector for each query-document pair describing the match of
the document to the query. Furthermore, we make use of the same relational
information that was previously exploited in [17]. The relations are based on
similarities, i.e. there is a weighted complete graph between documents. On
average, there are about 152 documents per query.

Fast Active Exploration for Link-Based Preference Learning 13

The TREC dataset was originally collected for a special track on web infor-
mation retrieval at TREC 2004. The goal of the track was to explore the perfor-
mance of retrieval methods on large-scale data with hyperlinked structure such
as the World Wide Web. The data was crawled from .gov domains in January,
2002. In total, there are 1,053,110 html documents with 11,164,829 hyperlinks.
To each query, documents were assigned labels by human experts. Each docu-
ment has two possible states: relevant(1)/irrelevant(0). Qin et al. [18] processed
the TREC dataset and turned it into a benchmark for information retrieval.
Again, we add uniform noise in the range [−0.5, 0.5] to break ties and simulate a
realistic situation in many real-world applications. On average, there were about
1000 documents per query which are linked with about 2387 hyperlinks.

3.2 Experimental Results

Can the AXPGP Exploit Cross-Document Information? We first compare the
AXPGP to Glicko following [19]. In particular, we evaluate whether the AXPGP
can effectively transfer information between documents by using the features
and the relations, while Glicko needs to learn each utility ξi individually. We run
Glicko and AXPGP with the incremental updates separately for each individ-
ual query in the OSHUMED data. The MAP performance of the two methods
averaged over all single-query experiments is given in the top-left plot of Fig. 2.
The AXPGP does indeed learn significantly (according to both a Wilcoxon rank
sum test and a t-test at each multiple of 100 iterations) faster than Glicko. Fur-
thermore, the variability of the AP across multiple queries is substantially lower
for the AXPGP (Fig. 2, top middle) than for Glicko (Fig. 2, right), especially
for large numbers of iterations. The results on the TREC data, averaged over 10
randomly selected queries, show the similar trends.

How Efficient is the AXPGP Compared to Glicko? The left-hand plots of Fig. 3
show the average CPU time it takes to learn for a certain number of iterations.
While Glicko is the fastest in absolute time, the incremental update shows the
same scaling and is slower only by a constant factor. The incremental update
is substantially faster than the full update and shows better scaling behavior.
It remains to investigate whether the incremental update is less accurate than
the full update. The right-hand plots of Fig. 3 show that the MAP performance
of the incremental update is not substantially lower than the MAP of the full
update.

How Large is the Benefit of Active Learning? Finally, we evaluate in how far the
active selection strategy improves on randomly selecting training pairs under
the GP model. Here, we learn a single model over multiple queries using the
feature-vector representation to define the covariance matrix of the GP. Fig. 4
(left) shows that the MAP grows significantly and substantially faster when
using active learning. Furthermore, variability over multiple runs of the learning
algorithms is much smaller for active learning (Fig. 4, middle) than for random
sampling (Fig. 4, right).

14 Zhao Xu, Kristian Kersting, and Thorsten Joachims

1 200 400 600 800 1000

0.2

0.4

0.6

0.8

1

Iterations

M
A

P

glicko
axpgp

200 400 600 800 1000

0.2

0.4

0.6

0.8

1

V
ar

ia
bi

lit
y

of
 A

P
s

ac
ro

ss
 q

ue
rie

s

Iterations
200 400 600 800 1000

0.2

0.4

0.6

0.8

1

V
ar

ia
bi

lit
y

of
 A

P
s

ac
ro

ss
 q

ue
rie

s

Iterations

1 200 400 600 800 1000

0

0.2

0.4

0.6

0.8

1

Iterations

M
A

P

glicko
axpgp

200 400 600 800 1000

0

0.2

0.4

0.6

0.8

1

V
ar

ia
bi

lit
y

of
 A

P
s

ac
ro

ss
 q

ue
rie

s

Iterations
200 400 600 800 1000

0

0.2

0.4

0.6

0.8

1

V
ar

ia
bi

lit
y

of
 A

P
s

ac
ro

ss
 q

ue
rie

s

Iterations

Fig. 2. MAP on the OHSUMED (top) and TREC (bottom) datasets when learning a
separate model for each query. The average performance (with standard error) is given
in the left-hand plot. The box plots show variability across queries for the AXPGP
(middle) and Glicko (right).

4 Conclusions

In this paper, we explored how to integrate active learning into preference learn-
ing methods that can model dependencies from both feature-vector representa-
tions as well as relations. On real-world datasets for information retrieval, we
have shown that actively learning a link-based Gaussian process ranking model
is substantially faster than algorithms that cannot model dependencies. The key
to the computational efficiency is a novel incremental update method that makes
active exploration of link-based Gaussian process models essentially as fast as
for the traditional models.

The most natural avenue for future work is the adaption of sparse Gaussian
processes techniques to tackle large-scale datasets. In general, one should explore
and develop active learning techniques for other relational models and tasks.

Acknowledgments This work was funded in part by the Fraunhofer AT-
TRACT Fellowship ”Statistical Relational Activity Mining” (STREAM), and
by the German Federal Ministry of Economy and Technology (BMWi) under the
THESEUS project, as well as by the NSF Awards IIS-0905467 and IIS-0812091.

References

1. M. Bilgic and L. Getoor. Link-based active learning. In Proceedings of NIPS
Workshop on Analyzing Networks and Learning with Graphs, 2009.

2. K. Brinker. Active learning of label ranking functions. In Proc. of ICML, 2004.

Fast Active Exploration for Link-Based Preference Learning 15

1 100 200 300 400 500
10

−4

10
−2

10
0

10
2

10
4

Iterations
C

um
ul

at
iv

e
ru

nn
in

g
tim

e
(s

)

full update
incremental update
glicko update

1 100 200 300 400 500

0.2

0.4

0.6

0.8

1

Iterations

M
A

P

full update
incremental update

0 100 200 300 400 500
10

−5

10
0

10
5

Iterations

C
um

ul
at

iv
e

ru
nn

in
g

tim
e

(s
)

full update
incremental update
glicko update

1 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

Iterations

M
A

P

full update
incremental update

Fig. 3. Computational efficiency of the AXPGP with full and incremental updates
compared to Glicko (left). Comparison of MAP for AXPGP with full and incremental
updates (right). The OSUMED (top) and TREC (bottom) results are respectively
averaged over 30 and 10 randomly selected queries for efficiency reasons.

3. C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hul-
lender. Learning to rank using gradient descent. In ICML, 2005.

4. W. Chu and Z. Ghahramani. Preference learning with gaussian processes. In
ICML, 2005.

5. P. Donmez and J. G. Carbonell. Active sampling for rank learning via optimizing
the area under the roc curve. In Proc. ECIR, 2009.

6. N. d. E. Brochu and A. Ghosh. Active preference learning with discrete choice
data. In Advances in Neural Information Processing Systems (NIPS), 2007.

7. Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm
for combining preferences. JMLR, 4:933–969, 2003.

8. J. Fürnkranz and E. Hüllermeier. Preference learning and ranking by pairwise
comparison. In Preference Learning. Springer-Verlag, 2010.

9. F. Geerts, H. Mannila, and E. Terzi. Relational link-based ranking. In Proceedings
of VLDB-04, pages 552–563, 2004.

10. L. Getoor and B. Taskar, editors. An Introduction to Statistical Relational Learn-
ing. MIT Press, 2007.

11. J. Guiver and E. Snelson. Learning to rank with softrank and gaussian processes.
In SIGIR, 2008.

12. E. Hüllermeier, J. Fürnkranz, W. Cheng, and K. Brinker. Label ranking by learning
pairwise preferences. Artificial Intelligence, 172(16–17):1897–1916, 2008.

13. T. Joachims, L. Granka, B. Pan, H. Hembrooke, F. Radlinski, and G. Gay. Evalu-
ating the accuracy of implicit feedback from clicks and query reformulations in web
search. ACM Transactions on Information Systems (TOIS), 25(2), April 2007.

14. K. Kersting and Z. Xu. Learning preferences with hidden common cause relations.
In Preceding of ECML09, 2009.

15. C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Re-
trieval. Cambridge University Press, 2008.

16 Zhao Xu, Kristian Kersting, and Thorsten Joachims

1 1000 2000 3000 4000 5000

0.2

0.4

0.6

0.8

1

Iterations

M
A

P

axpgp
random

1000 2000 3000 4000 5000

0.2

0.4

0.6

0.8

1.0

V
ar

ia
bi

lit
y

of
 A

P
s

ac
ro

ss
 r

er
un

s

Iterations
1000 2000 3000 4000 5000

0.2

0.4

0.6

0.8

1.0

V
ar

ia
bi

lit
y

of
 A

P
s

ac
ro

ss
 r

er
un

s

Iterations

1 500 1000 1500 2000 2500

0

0.2

0.4

0.6

0.8

1

Iterations

M
A

P

axpgp
random

500 1000 1500 2000 2500

0

0.2

0.4

0.6

0.8

1

V
ar

ia
bi

lit
y

of
 A

P
s

ac
ro

ss
 r

er
un

s

Iterations
500 1000 1500 2000 2500

0

0.2

0.4

0.6

0.8

1

V
ar

ia
bi

lit
y

of
 A

P
s

ac
ro

ss
 r

er
un

s

Iterations

Fig. 4. Comparison of MAP (left), as well as variability when learning a single AXPGP
model over multiple queries with active learning (middle) vs. random sampling (right).
The top is the results on the OSHUMED with a random sample of 10 queries. The
bottom is that on the TREC data with a random sample of 5 queries.

16. T. Minka. A family of algorithms for approximate Bayesian inference. PhD thesis,
MIT, 2001.

17. T. Qin, T. Liu, X. Zhang, D. Wang, W. Xiong, and H. Li. Learning to rank
relational objects and its application to web search. In WWW, 2008.

18. T. Qin, T.-Y. Liu, J. Xu, and H. Li. Letor: A benchmark collection for research
on learning to rank for information retrieval. Information Retrieval Journal, 2010.

19. F. Radlinski and T. Joachims. Active exploration for learning rankings from click-
through data. In Proc. SIGKDD, pages 570–579, 2007.

20. C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.
The MIT Press, 2006.

21. M. Saar-Tsechansky and F. Provost. Active sampling for class probability estima-
tion and ranking. Machine Learning, 54(2):153–178, 2004.

22. A. Schwaighofer, V. Tresp, and K. Yu. Learning gaussian process kernels via
hierarchical bayes. In NIPS 17, 2005.

23. A. J. Smola and I. Kondor. Kernels and regularization on graphs. In Annual
Conference on Computational Learning Theory, 2003.

24. B. Taskar, M. Wong, and D. Koller. Learning on the test data: Leveraging unseen
features. In ICML, 2003.

25. H. Yu. Selective sampling for ranking with application to data retrieval. In Proc.
SIGKDD, 2005.

26. Y. Yue, J. Broder, R. Kleinberg, and T. Joachims. The k-armed dueling bandits
problem. In Conference on Learning Theory (COLT), 2009.

27. Y. Yue and T. Joachims. Interactively optimizing information retrieval systems as
a dueling bandits problem. In Proc. ICML, 2009.

28. X. Zhu, J. Lafferty, and Z. Ghahramani. Semi-supervised learning: From gaussian
fields to gaussian processes. Technical Report CMU-CS-03-175, CMU, 2003.

