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ABSTRACT
Ranking items by their probability of relevance has long been the

goal of conventional ranking systems. While this maximizes tradi-

tional criteria of ranking performance, there is a growing under-

standing that it is an oversimplification in online platforms that

serve not only a diverse user population, but also the producers of

the items. In particular, ranking algorithms are expected to be fair

in how they serve all groups of users — not just the majority group

— and they also need to be fair in how they divide exposure among

the items. These fairness considerations can partially be met by

adding diversity to the rankings, as done in several recent works.

However, we show in this paper that user fairness, item fairness

and diversity are fundamentally different concepts. In particular,

we find that algorithms that consider only one of the three desider-

ata can fail to satisfy and even harm the other two. To overcome

this shortcoming, we present the first ranking algorithm that ex-

plicitly enforces all three desiderata. The algorithm optimizes user

and item fairness as a convex optimization problem which can be

solved optimally. From its solution, a ranking policy can be derived

via a novel Birkhoff-von Neumann decomposition algorithm that

optimizes diversity. Beyond the theoretical analysis, we investigate

empirically on a new benchmark dataset how effectively the pro-

posed ranking algorithm can control user fairness, item fairness

and diversity, as well as the trade-offs between them.
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1 INTRODUCTION
We consider ranking problems that involve two-sided markets of

producers and consumers. Such two-sided markets are widespread

in online platforms — movie producers and audiences in a stream-

ing platform, job seekers and employers in a resume database, or

news agencies and information seekers in a news-feed app. In these

two-sided markets, the items compete with each other for exposure

to the users, while the users gain utility from the recommender

system by finding items they like. The platform mediates this mar-

ket through the ranking algorithm, with great influence on which

users get exposed to which items.

Conventional ranking algorithms maximize the average utility to

the users by following the probability ranking principle (PRP) [52].

However, there is growing understanding that this is an oversim-

plification in online platforms that mediate a two-sided market.

First, the objective of maximizing the average utility can unfairly

marginalize minority user groups, decreasing how useful the rank-

ing system is to them in order to better serve a majority user group

[65]. Second, the items compete with each other for exposure to

the users, and there is the need to divide the exposure between

the items in a fair way. It was shown that maximizing the average

utility to the users can be unfair to the items, and that it can lead

to winner-takes-all dynamics that amplify existing inequities [56].

Violating user and/or item fairness is not only ethically fraught

for many applications, it may also drive users and items from the

platform [25], or violate anti-discrimination law [44], anti-trust

law [55], or freedom of speech principles [28].

Diversification of search results has often been employed to

address these concerns, as well as related issues like super-star

economics [41], perpetuation of stereotypes [8, 34], ideological

polarization [6] and spread of misinformation [62, 64]. However,

while diversification appears related to fairness at first glance, it

is not clear whether standard formalizations of diversity [39, 50]

actually achieve fairness and vice versa.

In this paperwe provide the first theoretical study of the interplay

between user fairness, item fairness and diversity for rankings in

two-sided markets. To enable this theoretical analysis, we quantify

the three desiderata in an intent-aware setup [3, 21, 23] where users

have different intents and items have varying relevance to different

intents. In particular, we formalize user fairness as an economic

social-welfare objective where user groups differ in their intent

distributions, and relate this to submodular diversity objectives.

For item fairness, we adapt the disparate treatment constraints

proposed in [56] for the intent-aware setup to ensure the exposure

is fairly allocated to the item groups based on their merit.

https://doi.org/10.1145/3471158.3472260
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Through this theoretical analysis, we show that user fairness,

item fairness and diversity are independent goals. Specifically, al-

gorithms that optimize any one of the desiderata can fail to satisfy

and even harm the other two.

To address this problem, we present the first ranking algorithm

that explicitly enforces all three desiderata — called TSFD Rank for

Two-Sided Fairness and Diversity. The algorithm optimizes user

and item fairness as a convex optimization problem which can be

solved optimally. From its solution, a ranking policy can be derived

via a novel Birkhoff-von Neumann decomposition [11] algorithm

that optimizes diversity.

In addition to the theoretical analysis, we constructed the first

benchmark dataset with annotations for intents, user groups and

item groups. On this dataset, we empirically evaluate the proposed

TSFD Rank with ablation studies quantifying the dependencies

between user fairness, item fairness and diversity.

2 RELATEDWORK
As algorithmic techniques, especially machine learning, are increas-

ingly used to make decisions that directly impact people’s life, there

is growing interest in understanding their societal impact. Many

works proposed mathematical desiderata to test algorithmic fair-

ness in binary classification [2, 22, 29, 37]. These desiderata often

operationalize definitions of fairness from political philosophy and

sociology. We study the societal impact of the less explored problem

of ranking which, unlike binary classification, is a structured output

prediction problem with an exponentially large output space. Since

users have different preferences and items compete for exposure in

the rankings, the fairness definitions from binary classification do

not directly translate to ranking problems.

Unfairness in rankings typically comes from two sources. Some

works focus on the endogenous design of the fair ranking sys-

tems [56, 67]. They answer what a fair ranking system is and how

to achieve fairness assuming all the system information such as

the relevance and the position bias is known. The second source of

unfairness are the exogenous factors such as biases in the data [12,

31, 51, 68] and biases during relevance estimation [16, 69]. Some

works take both into consideration [66, 72]. We focus on the en-

dogenous design of fair and diverse rankings in two-sided markets,

which is orthogonal to exogenous factors.

Most existing works on fairness in rankings consider item fair-

ness. They can be classified into three types: (1) composition-based

item fairness which ensures statistical parity of where the items are

ranked [5, 19, 20, 27, 60, 67, 71]; (2) pairwise-comparison-based item

fairness which aims for statistical parity of pairwise ranking errors

between item groups [9, 33, 43]; and (3) merit-exposure-based item

fairness which explicitly quantifies the amount of exposure an item

gets in a ranking and allocates exposure to the items based on their

merit [10, 41, 42, 54, 56, 57]. We adopt the third type of item fairness

since (1) unlike composition-based item fairness, it can allocate ex-

posure based on merit; (2) unlike pairwise-comparison-based item

fairness, it takes position bias into consideration; and (3) it explicitly

quantifies the amount of exposure an item gets in a ranking which

enables the quantifiable study of the relationship of item fairness

to user fairness and diversity.

Fewer works consider user fairness in rankings and they often

consider user unfairness problems that result from achieving item

fairness across different queries. Some works [7, 45] propose to

fairly share the utility drop among the user groups when achieving

item fairness across queries. Patro et al. [46] regard the drastic

change of exposure to the items during the policy updates to be

unfair, and propose an online update algorithm to smoothly update

the policy so that the exposure to the items changes gradually while

ensuring a minimum utility for the users during the policy updates.

In contrast, we identify user unfairness problems originating from

the user intent difference and uncertainty for an individual query,

which exists even when we do not consider item fairness. Some

works consider user fairness in group recommendation, where a

recommendation needs to satisfy a group of users with different

preferences [65]. They assume the relevance of each item to each

user is known. We model the user preferences and the associated

uncertainty in an intent-aware setup.

Diversity in rankings and recommendations also challenges the

PRP. The key mechanism behind diversity is to model the utility

as a function that is not modular (i.e. linearly additive) in the set

of ranked items, but that exhibits a diminishing-returns property

— most commonly in the form of a submodular set function [21,

50, 70]. In extrinsic diversity [18, 50, 73], this is used to hedge

against the uncertainty about the user’s information need; and in

intrinsic diversity [23, 49] this is used to model complementarity

and substitution in a sense of portfolio optimization. Since we are

dealing with uncertain user intents, our goal is to achieve extrinsic

diversity for the rankings.

Two-sided platforms are modeled as matchmakers that reduce

the friction between the two sides of the market. The key to the

success of two-sided platforms is to ensure a critical mass of partic-

ipants on both sides, since they are in need of each other. Litera-

ture in economics [4, 17, 25, 53] focuses on the effect of business

strategies, primarily about pricing, on the two-sided markets, but

typically does not model the effect that the platform’s ranking al-

gorithm has on the interactions between users and items. Recently,

some works [1, 15, 58] advocate viewing recommendation problem

in the context of two-sided markets and discussed fairness issues

on both sides. But neither mathematical definitions nor theoretical

characterizations of fairness are provided.

The algorithmic study of two-sided matching markets dates back

to the stable matching algorithm analyzed by Gale and Shapley [26].

Some works propose algorithms in this context to select a fair stable

matching from a set of stable matchings [35, 40]. Recently, Sühr

et al. [61] consider fairness concerns in ride-hailing platforms and

propose an online matching algorithm to ensure salary fairness

for the drivers amortized over time. In reciprocal recommendation

problems, the success is measured by the satisfaction on both sides

of the market such as in online dating platforms [47]. We consider

problems where the items have no preferences over the users and

where there are no supply constraints on the items.

One key aspect of fair rankings is the fair division of the exposure

to the users among the items. Fair division [14, 48, 59] has been

studied for decades where the goal is to allocate a set of resources

to the agents. Two of the classic desiderata for fair division are (1)

proportionality i.e. every agent receives its “fair share” of the utility,

and (2) envy-freeness i.e. no agent wishes to swap her allocation



with another agent. In the proposed TSFD Rank, the optimization of

user and item fairness can be thought of as ensuring proportionality

for the users and the items, and the optimization for diversity can

be interpreted as reducing the envy of the users.

3 RANKING IN A TWO-SIDED MARKET
As a basis for our theoretical analysis, as well as the derivation of

the TSFD Rank algorithm, we first formalize the problem of intent-

aware ranking in two-sided markets. This includes definitions of

utility, user fairness, item fairness and diversity.

3.1 Intent-Aware Setup and Utility
We consider the problem of ranking a set of items D𝑞 = {𝑑1, 𝑑2,
𝑑3, ...} to present to a user with query 𝑞. A query can be a text

query (e.g. “Schwarzenegger”) or any other context for ranking

(e.g. “featured movies today”). In the intent-aware setup [3, 21, 23],

each user has an unobserved intent 𝑖 ∈ I that further refines the
query (e.g. preferred movie genre). We denote with IU𝑞 the intent

distribution of the user populationU𝑞
for query 𝑞. Each item has

varying relevance to different intents (e.g. a movie has varying

relevance to different genres), and we denote the relevance of an

item 𝑑 to an intent 𝑖 as 𝑟 (𝑑, 𝑖). A wide range of existing methods can

be used to learn this relevance function, and we merely assume that

relevance estimates 𝑟 (𝑑, 𝑖) are available. A ranking 𝜎 is a permuta-

tion of the set of items and a ranking policy 𝜋 (·|𝑞) is a probability
distribution over all possible permutations, where deterministic

ranking policies are a special case. Focusing on additive ranking

metrics, the utility of a ranking policy 𝜋 is

𝑈 (𝜋 |𝑞) = E𝑖∼IU𝑞 ,𝜎∼𝜋 ( · |𝑞)

[ ∑
𝑑∈D𝑞

𝑒 (𝜎 (𝑑))𝑟 (𝑑, 𝑖)
]
, (1)

where 𝜎 (𝑑) is the rank of the item 𝑑 and 𝑒 maps this rank to the

exposure 𝑑 will receive in the position-based model [24]. Since a

user has limited attention for each ranking, we assume the total

exposure is bounded i.e. 0 <
∑
𝑚 𝑒 (𝑚) < ∞. While (1) involves

an expectation in the exponential space of rankings, 𝑈 (𝜋 |𝑞) can
equivalently be written in terms of a marginal rank probability

matrix Σ𝜋,𝑞 with

Σ𝜋,𝑞
𝑚,𝑛 = E𝜎∼𝜋 ( · |𝑞)

[
1{𝜎 (𝑑𝑚)=𝑛}

]
∀𝑚,𝑛 (2)

where each entry represents the probability of ranking item 𝑑𝑚 at

rank 𝑛 under policy 𝜋

𝑈 (𝜋 |𝑞) =
(
rU

𝑞
)⊤

Σ𝜋,𝑞e. (3)

rU
𝑞
is the vector containing the expected relevance of each item to

the whole user population with rU
𝑞

𝑚 = E𝑖∼IU𝑞 [𝑟 (𝑑𝑚, 𝑖)], and e is

the exposure vector with e𝑛 = 𝑒 (𝑛). The marginal rank probability

matrix is doubly stochastic [11] since the sum of each row and each

column is 1, i.e.

∑
𝑚 Σ

𝜋,𝑞
𝑚,𝑛 = 1 for all 𝑛 and

∑
𝑛 Σ

𝜋,𝑞
𝑚,𝑛 = 1 for all𝑚.

3.2 User Fairness
Overall utility as defined in Eq. (1) reflects an average over all users.

However, different user groups 𝑈𝐺 ∈ UG (e.g. male vs. female

users) can have different intent distributions IUG𝑞 for a query 𝑞,

and suboptimal ranking performance for a minority group may

get drowned out. Since group membership is typically not known

for privacy reasons [30], a ranking policy needs to make sure that

it does not unfairly provide disparate levels of utility to the user

groups. We define the utility of a ranking policy 𝜋 for a user group

𝑈𝐺 as the expected utility for the users in this group

𝑈 (𝜋 |𝑈𝐺,𝑞) = E𝑖∼IUG𝑞 ,𝜎∼𝜋 ( · |𝑞)

[ ∑
𝑑∈D𝑞

𝑒 (𝜎 (𝑑))𝑟 (𝑑, 𝑖)
]

=

(
rUG𝑞

)⊤
Σ𝜋,𝑞e,

(4)

where rUG𝑞

is the vector containing the expected relevance of each

item to the user group 𝑈𝐺 with rUG𝑞

𝑚 = E𝑖∼IUG𝑞 [𝑟 (𝑑𝑚, 𝑖)]. A fair

ranking ensures that each user group gets an equitable amount of

utility. In economics, the goal of providing an equitable amount of

utility across groups is typically formalized through a social-welfare

function [63], which is maximized to optimize fairness. We adopt

𝑈𝐹 (𝜋 |𝑞) =
∑

𝑈𝐺 ∈UG
𝜌
𝑞

𝑈𝐺
𝑓 (𝑈 (𝜋 |𝑈𝐺,𝑞))

(5)

as our class of social-welfare functions, where 𝑓 is an increasing con-

cave function (e.g. log) that models the diminishing return property.

This social-welfare objective provides larger return for increasing

the utility of a user group with little utility compared to increasing

the utility of a user group that already receives a large utility. Thus

it encourages the ranking policy to provide more equal utility to

each user group. 𝑓 can be chosen based on application requirements.

𝜌
𝑞

𝑈𝐺
denotes the group proportion of𝑈𝐺 , i.e. the probability that

a user sampled from the whole user distribution U𝑞
belongs to

user group𝑈𝐺 . Since𝑈𝐹 (𝜋 |𝑞) is a convex combination of concave

functions of Σ𝜋,𝑞 , user fairness is a concave function of Σ𝜋,𝑞 .
Since the intent distribution of the overall user population is a

convex combination of the intent distribution of each user group

IU𝑞 =
∑
𝑈𝐺 ∈UG 𝜌

𝑞

𝑈𝐺
IUG𝑞 , user fairness 𝑈𝐹 (𝜋 |𝑞) is a lower

bound of the overall utility in (1) after transformation through

the inverse of the user fairness function 𝑓 −1

𝑓 −1 (𝑈𝐹 (𝜋 |𝑞))

=𝑓 −1
( ∑
𝑈𝐺 ∈UG

𝜌
𝑞

𝑈𝐺
𝑓 (𝑈 (𝜋 |𝑈𝐺,𝑞))

)
≤𝑓 −1

(
𝑓

( ∑
𝑈𝐺 ∈UG

𝜌
𝑞

𝑈𝐺
𝑈 (𝜋 |𝑈𝐺,𝑞)

))
=𝑈 (𝜋 |𝑞) .

The inequality holds because 𝑓 is concave. This shows that max-

imizing user fairness is maximizing a lower bound of the overall

utility from Eq. (1).

3.3 Item Fairness
Fairness to the items is akin to a fair-division problem. Specifically,

items compete for exposure to the users, since exposure is a pre-

requisite for items to derive utility (e.g. revenue) from the ranking.

We adopt the disparate treatment constraints proposed in [56] for

our theoretical and empirical analysis. The disparate treatment

constraints ensure that each item group 𝐷𝐺 gets an amount of

exposure 𝐸 (𝜋 |𝐷𝐺,𝑞) that is proportional to its merit𝑀 (𝐷𝐺,𝑞) > 0

𝐸 (𝜋 |𝐷𝐺𝑚, 𝑞)
𝑀 (𝐷𝐺𝑚, 𝑞) =

𝐸 (𝜋 |𝐷𝐺𝑛, 𝑞)
𝑀 (𝐷𝐺𝑛, 𝑞)

∀𝑚,𝑛. (6)



Further specifying 𝐸 (𝜋 |𝐷𝐺,𝑞) and𝑀 (𝐷𝐺,𝑞), the average expo-
sure of an item group is defined as

𝐸 (𝜋 |𝐷𝐺,𝑞) = E𝜎∼𝜋 ( · |𝑞)

[
1

|𝐷𝐺 |
∑

𝑑∈𝐷𝐺
𝑒 (𝜎 (𝑑))

]

=

(
l𝐷𝐺

)⊤
Σ𝜋,𝑞e

|𝐷𝐺 | ,

(7)

where l𝐷𝐺 is the label vector that denotes whether an item belongs

to item group 𝐷𝐺 with l𝐷𝐺𝑚 = 1{𝑑𝑚 ∈𝐷𝐺 } . For the empirical evalua-

tion, we adopt the average relevance of the items in the item group

as the merit function

𝑀 (𝐷𝐺,𝑞) = E𝑖∼IU𝑞

[
1

|𝐷𝐺 |
∑

𝑑∈𝐷𝐺
𝑟 (𝑑, 𝑖)

]
. (8)

In practice, the merit function can be chosen based on application-

specific requirements.

Finally, to quantify that items also draw utility from the rankings,

we define the utility of an item group 𝐷𝐺 as

𝑈 (𝜋 |𝐷𝐺,𝑞) = E𝑖∼IU𝑞 ,𝜎∼𝜋 ( · |𝑞)

[ ∑
𝑑∈𝐷𝐺

𝑒 (𝜎 (𝑑))𝑟 (𝑑, 𝑖)
]

=

(
l𝐷𝐺 ◦ rU

𝑞
)⊤

Σ𝜋,𝑞e,

(9)

where ◦ denotes the element-wise product. In the position-based

click model [24], 𝑈 (𝜋 |𝐷𝐺,𝑞) corresponds to the sum of the click-

through rates of the items in item group 𝐷𝐺 under ranking policy

𝜋 .

3.4 Diversity
The original and dominant motivation for diversity in ranking

arises from the uncertainty about the user’s intent [18]. To hedge

against this uncertainty, a diversified ranking aims to provide utility

no matter what the unknown intent of the user is (i.e. extrinsic

diversity [49]). To formalize this goal, we first define the utility of

a ranking 𝜎 for an intent 𝑖 with an additive metric analogous to the

overall utility in Eq. (1) as

𝑈 (𝜎 |𝑖, 𝑞) =
∑

𝑑∈D𝑞

𝑒 (𝜎 (𝑑))𝑟 (𝑑, 𝑖) . (10)

Similar to user fairness, the diversity 𝐷 (𝜎 |𝑞) of a ranking 𝜎 is

typically quantified using an increasing concave function 𝑔 that

encourages each ranking in the ranking policy to cover multiple

intents [3, 21, 50, 70]

𝐷 (𝜎 |𝑞) = E𝑖∼IU𝑞 [𝑔(𝑈 (𝜎 |𝑖, 𝑞))] . (11)

Consequently, for a ranking policy 𝜋 , the expected diversity is

𝐷 (𝜋 |𝑞) = E𝜎∼𝜋 ( · |𝑞),𝑖∼IU𝑞 [𝑔(𝑈 (𝜎 |𝑖, 𝑞))] . (12)

Diversity and user fairness differ in two fundamental ways. First,

user fairness aggregates over user groups, while diversity aggre-

gates over intents. Second, user fairness amortizes over intents and

draws from 𝜋 as input to the concave function, while diversity

takes the expectation over intents after the concave transformation.

This adds emphasis on optimizing each individual ranking in the

diversity objective. It also implies that diversity 𝐷 (𝜋 |𝑞) can not

be written as a linear function of Σ𝜋,𝑞 . Furthermore, unlike utility

and user fairness, two ranking policies 𝜋 and 𝜋 ′
that both produce

the same marginal rank probability matrix Σ𝜋,𝑞 = Σ𝜋
′,𝑞

can have

different diversity 𝐷 (𝜋 |𝑞) ≠ 𝐷 (𝜋 ′ |𝑞).
Similar to user fairness, diversity is also a lower bound on the

overall utility from Eq. (1) after transformation with the inverse

function 𝑔−1

𝑔−1 (𝐷 (𝜋 |𝑞)) = 𝑔−1
(
E𝑖∼IU𝑞 ,𝜎∼𝜋 ( · |𝑞) [𝑔(𝑈 (𝜎 |𝑖, 𝑞))]

)
≤ 𝑔−1

(
𝑔

(
E𝑖∼IU𝑞 ,𝜎∼𝜋 ( · |𝑞) [𝑈 (𝜎 |𝑖, 𝑞)]

))
= 𝑈 (𝜋 |𝑞),

where the inequality holds because 𝑔 is concave. This indicates that

maximizing diversity also maximizes a lower bound on the overall

utility. Diversity maximization can be expressed as a submodular

maximization problem with two matroid constraints [38], and we

will optimize it using the standard greedy approximation algorithm

in our experiments. For completeness, the algorithm is detailed in

the appendix.

4 THEORETICAL ANALYSIS
In this section, we analyze the interplay between utility, user fair-

ness, item fairness and diversity. First, we provide worse-case anal-

yses showing that individual user groups, item groups, or intents

can needlessly receive zero utility if their interests are not explic-

itly represented in the ranking objective. This indicates that user

fairness, item fairness and diversity are fundamentally different

objectives and achieving one of them does not automatically sat-

isfy another. Second, we develop a new form of utility-efficiency

analysis to show that achieving one of user fairness, item fairness

and diversity might fail to satisfy the utility efficiency of the others.

This suggests that the utility efficiencies of the three desiderata are

in conflict with each other and achieving one of them might harm

the other two.

4.1 Zero-Utility Analysis
Our zero-utility analysis investigates whether a user group, item

group or intent can receive a utility of zero, even if a non-zero solu-

tion exists. For clarity, we first define a class of non-degenerate rank-

ing problems, to focus our theoretical analysis on non-degenerate

cases where non-zero solutions exist.

Definition 1. (Non-degenerate ranking problem) A ranking prob-
lem represented by a tuple (I, UG, DG, D𝑞 U𝑞, 𝑟 , 𝑒) is non-
degenerate if (1) every user group𝑈𝐺 has positive group proportion
𝜌
𝑞

𝑈𝐺
> 0; (2) every intent 𝑖 has positive probability mass in the user

intent distribution IU𝑞 (𝑖) > 0; (3) for every intent 𝑖 , there exists an
item 𝑑 that has positive relevance for the intent 𝑟 (𝑑, 𝑖) > 0; and (4)
for every item group 𝐷𝐺 , there exists an item 𝑑 ∈ 𝐷𝐺 such that the
expected relevance of the item is positive E𝑖∼IU𝑞 [𝑟 (𝑑, 𝑖)] > 0.

For user groups and item groups, we investigate whether every

group achieves non-zero utility as defined in Eqs. (4) and (9) under

different policies. For the intents, since diversity is a function of

individual rankings and each single ranking might not be able to

provide non-zero utility for every intent due to limited number

of non-zero exposure positions, we define the amount of intent

covered by a ranking 𝜎 as the amount of intent that has non-zero



Table 1: Summary of zero-utility analysis.

The policy

optimizing

Non-zero utility

for every

user group?

Non-zero utility

for every

item group?

Rankings cover

maximum

intent?

Utility × × ×
User fairness ✓ × ×
Item fairness × ✓ ×
Diversity × × ✓
TSFD Rank ✓ ✓ ×

utility ∑
𝑖∈{𝑖 |𝑖∈I,𝑈 (𝜎 |𝑖,𝑞)>0}

[IU𝑞 (𝑖)] ,

and investigate whether each ranking sampled from a ranking pol-

icy covers the maximum amount of intent covered by any ranking

𝑚𝑎𝑥𝜎

∑
𝑖∈{𝑖 |𝑖∈I,𝑈 (𝜎 |𝑖,𝑞)>0}

[IU𝑞 (𝑖)] .

We present two example theorems for this zero-utility analysis.

Theorem 1 shows that there exist ranking problems where maxi-

mizing overall utility needlessly provides zero utility for some user

groups.

Theorem 1. There exist non-degenerate ranking problems such
that any ranking policy 𝜋 maximizing overall utility 𝑈 (𝜋 |𝑞) has
utility𝑈 (𝜋 |𝑈𝐺,𝑞) = 0 for some user group𝑈𝐺 .

Proofs of all theorems are provided in the appendix. The dis-

parate treatment identified in Theorem 1 is not necessary, since the

following Theorem 2 shows that directly maximizing user fairness

can always ensure non-zero utility for every user group.

Theorem 2. For any non-degenerate ranking problem, there exists
a user fairness function 𝑓 such that if a ranking policy 𝜋 maximizes
user fairness 𝑈𝐹 (𝜋 |𝑞), then every user group has non-zero utility
under this ranking policy 𝜋 .

Table 1 summarizes the other formal results, which are detailed

in the appendix. For the sake of brevity, we use “maximize item

fairness” to refer to the more appropriately descriptive “maximize

utility subject to the disparate treatment constraints”. We provide

an intuition of the analysis through the ranking problem in Figure 1.

First, maximizing overall utility can lead to zero utility
for a user group and/or for an item group, and it can fail to
cover the maximum amount of intent. Since items in 𝑑3∗ have
strictly larger expected relevance to the whole user population

than all the other items, a ranking policy that maximizes utility

will rank items in 𝑑3∗ over all the other items. If only 3 positions

have non-zero exposure, items in 𝑑3∗ will occupy all the 3 non-

zero exposure positions and thus leave zero exposure for the other

items. This leads to a ranking policy with zero utility for 𝑈𝐺1,

𝐷𝐺2, 𝑖1 and 𝑖2. We can easily construct a ranking that covers all the

intents by selecting three items that are relevant to the three intents

respectively and putting them in the 3 non-zero exposure positions.

Thus any ranking sampled from the policy maximizing utility fails

to cover the maximum amount of intent, since the ranking will only

cover intent 𝑖3.
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Figure 1: A ranking problem that illustrates the zero-utility
analysis. The ranking problem consists of 2 user groups, 3 in-
tents and 2 item groups. 6 sets of items are partitioned into
the 2 item groups as indicated by the squares. Each set con-
sists of 3 items with exactly the same relevance to every in-
tent andwe denote with𝑑𝑚∗ the𝑚𝑡ℎ set. The numbers on the
edges between user groups and intents represent the intent
distribution. The numbers on the edges between intents and
items represent relevance. For clarity, we omit edges with 0

probability or 0 relevance.

Second, enforcing item fairness can lead to zero utility for
a user group and fail to cover the maximum amount of in-
tent. Similarly, maximizing item fairness would rank items in 𝑑3∗
over items in 𝑑1∗, 𝑑2∗ and rank items in 𝑑6∗ over items in 𝑑4∗, 𝑑5∗,
since items in 𝑑3∗ and 𝑑6∗ have the largest expected relevance to the
whole user population within each item group. If only 3 positions

have non-zero exposure, items in 𝑑3∗ and 𝑑6∗ will occupy the 3 non-
zero exposure positions. This leads to a ranking policy with zero

utility for 𝑈𝐺1, 𝑖1 and 𝑖2. As discussed in the last paragraph, the

maximum amount of intent that can be covered by a ranking is 1.

Thus maximizing item fairness fails to cover the maximum amount

of intent since the rankings sampled from the policy maximizing

item fairness only cover 𝑖3.

Third, maximizing user fairness can lead to zero utility
for an item group and fail to cover the maximum amount
of intent. Again, any ranking policy that maximizes user fairness

would rank items in 𝑑1∗ over items in 𝑑2∗, 𝑑4∗, 𝑑5∗ and rank items

in 𝑑3∗ over items in 𝑑6∗, since items in 𝑑1∗ and 𝑑3∗ have the largest
expected relevance for the two user groups respectively, and all

the items have positive relevance to only one user group. If only 3

positions have non-zero exposure, then items in 𝑑1∗ and 𝑑3∗ will
occupy all the 3 non-zero exposure positions. This leads to a ranking

policy with zero utility for 𝐷𝐺2 and 𝑖2. Thus the rankings sampled

from the policy maximizing user fairness fail to cover the maximum

amount of intent.

Fourth, maximizing diversity can lead to zero utility for
a user group and/or for an item group. If only 1 position has

non-zero exposure, maximizing diversity will always put one item

from 𝑑3∗ in that non-exposure position since items in 𝑑3∗ have the



largest relevance to 𝑖3, the intent with the largest density. This leads

to zero utility for 𝐷𝐺2 and𝑈𝐺1.

This worst-case analysis indicates that it is necessary to optimize

each of user fairness, item fairness, and diversity, since any one

criterion does not even provide the guarantee of non-zero utility

for the others.

4.2 Utility-Efficiency Analysis
Our utility-efficiency analysis investigates if optimizing for one

of user fairness, item fairness, or diversity can provide a utility-

efficient solution for any of the other desiderata. To answer this

kind of questions, we first introduce the precise meaning of utility

efficiency for user groups, item groups and intents.

For the user groups, we focus on utility Pareto efficiency of rank-

ing policies. We begin by defining a dominance relation between

two policies with respect to a multi-objective optimization prob-

lem. The objectives are the utilities of a ranking policy for the user

groups𝑈 (𝜋 |𝑈𝐺,𝑞) from Eq. (4).

Definition 2. (Dominance of ranking policies for the user groups)
For a non-degenerate ranking problem, a ranking policy 𝜋 dominates
another ranking policy 𝜋 ′ for the user groupsUG if𝑈 (𝜋 |𝑈𝐺,𝑞) ≥
𝑈 (𝜋 ′ |𝑈𝐺,𝑞) for all𝑈𝐺 ∈ UG and there exists𝑈𝐺 ∈ UG such that
𝑈 (𝜋 |𝑈𝐺,𝑞) > 𝑈 (𝜋 ′ |𝑈𝐺,𝑞).

The Pareto efficiency of a ranking policy for the user groups is

then defined as follows.

Definition 3. (Pareto efficiency of ranking policies for the user
groups) For a non degenerate ranking problem, a ranking policy 𝜋 is
Pareto efficient for the user groupsUG if 𝜋 is not dominated by any
ranking policy 𝜋 ′ forUG.

For the intents, since diversity emphasises the performance of

each ranking, we analyze the utility Pareto efficiency of rankings

for the intents.

Definition 4. (Dominance of rankings for the intents) For a non-
degenerate ranking problem, a ranking 𝜎 dominates another ranking
𝜎 ′ for the intents I if 𝑈 (𝜎 |𝑖, 𝑞) ≥ 𝑈 (𝜎 ′ |𝑖, 𝑞) for all 𝑖 ∈ I and there
exists 𝑖 ∈ I such that𝑈 (𝜎 |𝑖, 𝑞) > 𝑈 (𝜎 ′ |𝑖, 𝑞).

Definition 5. (Pareto efficiency of rankings for the intents) For a
non-degenerate ranking problem, a ranking 𝜎 is Pareto efficient for
the intents I if 𝜎 is not dominated by any ranking 𝜎 ′ for I.

For the item groups, utility efficiency is achieved when items are

ranked by their expected relevance to the whole user population

within each item group, since otherwise we can switch the two

items that are not ranked by their expected relevance to get larger

utility for the item group they belong to without changing the

exposure allocation among the item groups.

Definition 6. (Items ranked by expected relevance within each
item group) For a non-degenerate ranking problem and a ranking
policy 𝜋 , the items are ranked by their expected relevance to the
whole user population within each item group under 𝜋 when for
any 𝜎 with 𝜋 (𝜎 |𝑞) > 0 and for all 𝐷𝐺 ∈ DG, 𝑑𝑚, 𝑑𝑛 ∈ 𝐷𝐺 , if
E𝑖∼IU𝑞 [𝑟 (𝑑𝑚, 𝑖)] > E𝑖∼IU𝑞 [𝑟 (𝑑𝑛, 𝑖)], then 𝑒 (𝜎 (𝑑𝑚)) ≥ 𝑒 (𝜎 (𝑑𝑛)).

Achieving utility efficiency can be interpreted as not picking a

solution that could easily be improved upon. Thus, if a procedure

Table 2: Summary of utility efficiency analysis.

The policy

optimizing

Ranking policy

Pareto efficient

for the users?

Items ranked

by expected

relevance within

each item group?

Each ranking

Pareto efficient

for the intents?

Utility ✓ ✓ ✓
User fairness ✓ × ✓
Item fairness × ✓ ×
Diversity × × ✓

fails the test of utility efficiency, it clearly provides a suboptimal

solution to the user groups, item groups or the intents. We present

two example theorems that characterize the utility efficiency of

optimizing overall utility, user fairness, item fairness, and diversity

on the utility of users, items, and intents. Theorem 3 shows that

maximizing user fairness is Pareto efficient for the user groups.

Theorem 3. For any non-degenerate ranking problem and user
fairness function 𝑓 , if a ranking policy 𝜋 maximizes user fairness
𝑈𝐹 (𝜋 |𝑞), then 𝜋 is Pareto efficient for the user groups.

While the solution is utility-efficient for the user groups, the

following Theorem 4 shows that this solution is not utility-efficient

for the item groups.

Theorem 4. There exists a ranking problem and a user fairness
function 𝑓 such that items are not ranked by the expected relevance
within each item group under any ranking policy 𝜋 that maximizes
user fairness𝑈𝐹 (𝜋 |𝑞).

We summarize the results of our full utility efficiency analysis

in Table 2 and provide the details in the appendix. Maximizing

overall utility is the only criterion that ensures utility efficiency for

all groups, but the solutions may be poor in terms of fairness or

diversity as shown in the zero-utility analysis. Once we explicitly

optimize for any one of the fairness or diversity goals, the ranking

policy is generally not utility-efficient for the other goals (except

that maximizing user fairness ensures utility efficiency for the

intents). This implies that the utility efficiency of the three goals are

in conflict with each other. Optimizing one of the three desiderata

might cause harm or utility drop of the other two. A fair ranking

algorithm should make sure the harm or the utility drop is fairly

shared among different groups.

5 TSFD RANK: OPTIMIZING RANKINGS FOR
FAIRNESS AND DIVERSITY

Driven by the theoretical analysis from the previous section, we

now develop the first ranking algorithm — called TSFD Rank for

Two-Sided Fairness and Diversity — that explicitly accounts for user

fairness, item fairness, and diversity requirements. The algorithm

proceeds in two steps. In the first step, it optimally satisfies user

fairness and item fairness simultaneously through convex optimiza-

tion. In the second step, the algorithm maximizes diversity subject

to the fairness constraints from the first step.



5.1 Step 1: Convex Optimization for Item and
User Fairness

In the first step, we optimize the marginal rank probability matrix

representation Σ of the ranking policy to satisfy both user and item

fairness. As already shown in Section 3, both user fairness and

item fairness can be expressed in terms of Σ, which reduces the

optimization problem from the exponential space of rankings to

the polynomial space of marginal rank probability matrices. This

leads to the following convex optimization problem

argmaxΣ 𝑈𝐹 (Σ|𝑞)
s. t. 1⊤Σ = 1⊤,Σ1 = 1,∀𝑖, 𝑗 0 ≤ Σ𝑖, 𝑗 ≤ 1

Σ satisfies item-fairness constraints

(13)

where𝑈𝐹 is the user-fairness objective expressed in terms of the

marginal rank probability matrix Σ and 1 is the vector of 1s. We

enforce item-fairness in the constraints of the optimization prob-

lem, together with the linear constraints that ensure the marginal

rank probability matrix Σ is doubly stochastic. As long as the user-

fairness objective is concave and the item-fairness constraints are

linear in Σ (e.g. the disparate treatment constraints in (6)), the prob-

lem can be solved efficiently and globally optimally with convex

optimization algorithms [13].

5.2 Step 2: Sampling Diverse Rankings
Since we can not directly sample rankings from Σ, we still need to

compute a ranking policy 𝜋 that has Σ as its matrix of marginal rank

probabilities, and thus the desired user and item fairness. For each

matrix Σ, there are typically many different policies that produce

these marginal rank probabilities. Among those policies, we aim

to choose the one that provides maximum diversity. This can be

formulated as the following optimization problem.

argmax𝜋 𝐷 (𝜋 |𝑞)
s. t. E𝜎∼𝜋 ( · |𝑞)

[
1{𝜎 (𝑑𝑚)=𝑛}

]
= Σ𝑚,𝑛 ∀𝑚,𝑛

(14)

The constraints in this optimization problem correspond to a Birkhoff-

von Neumann (BvN) decomposition [11], for which efficient algo-

rithms exist. We present a novel variant of Birkhoff’s algorithm [11]

to optimize diversity as illustrated in Algorithm 1. For each round

of Birkhoff’s algorithm, we find a permutation (ranking) 𝜎 that

can be sampled from the marginal rank probability matrix Σ. This
corresponds to finding a perfect matching 𝜎 of the bipartite graph

generated from Σ. Then we add this 𝜎 to the ranking policy 𝜋 with

selection probability to be the smallest entry in the permutation

𝜎 . Then we subtract this selection probability from Σ for all the

entries in the permutation. The algorithm is proved to be correct

and we can always find a perfect matching from the bipartite graph

generated from Σ in each round [11]. What is more, the resulting

policy consists of no more than (𝑛−1)2+1 permutations [32] where

𝑛 is dimension of Σ.
With the additional goal in the objective of constructing a policy

that maximizes diversity, we choose the permutation matrices in

each step greedily to maximize diversity as detailed in Algorithm 2.

Since finding the permutation with the largest diversity that is

satisfiable in Σ is NP-hard, we start with the permutation that max-

imizes utility among the ones that satisfy the conditions of the BvN

Algorithm 1: Greedy Algorithm for BvN Decomposition

to Optimize Diversity

input :A ranking problem 𝑅𝑃 , A diversity function 𝑔,

A marginal rank probability matrix Σ
output :A ranking policy 𝜋

initialization: ∀𝜎 𝜋 (𝜎 |𝑞) = 0

while Σ! = 0 do
Construct a bipartite graph 𝐺 with items and positions

as vertices and with non-zero elements of Σ as edges.

𝜎 = Local-Search-Match(RP, g, G)

𝜋 (𝜎 |𝑞) = min𝑚 Σ𝑚,𝜎 (𝑑𝑚)
for each item 𝑑𝑚 do

Σ𝑚,𝜎 (𝑑𝑚) = Σ𝑚,𝜎 (𝑑𝑚) − 𝜋 (𝜎 |𝑞)
end

end
return 𝜋

Algorithm 2: Local-Search-Match(RP, g, G)

input :A ranking problem 𝑅𝑃 , a diversity function 𝑔

A bipartite graph 𝐺

output :A ranking 𝜎

𝜎∗ = find a perfect matching of 𝐺 that maximizes utility.

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = 𝑇𝑟𝑢𝑒

while 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 do
𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = 𝐹𝑎𝑙𝑠𝑒

for 𝑑𝑚 , 𝑑𝑛 inD𝑞 ×D𝑞 do
if (𝑑𝑛 , 𝜎∗ (𝑑𝑚)) and (𝑑𝑚 , 𝜎∗ (𝑑𝑛)) ∈ 𝐺 then

Construct 𝜎 ′
by switching 𝑑𝑚 and 𝑑𝑛 in 𝜎∗

if 𝐷 (𝜎 ′ |𝑞) > 𝐷 (𝜎∗ |𝑞) then
𝜎∗ = 𝜎 ′

and 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = 𝑇𝑟𝑢𝑒

end
end

end
end
return 𝜎∗

decomposition. This can be solved by polynomial-time minimum-

cost perfect matching algorithms [36]. We then adopt a local search

strategy that switches two items if the switch increases diversity.

We also tried more expensive search strategies that exhaustively

search up to position 3 and found the difference to be small. We

present the details of the other search strategy in the appendix.

Note that maximizing diversity reduces the utility variance to

the users across the rankings drawn from 𝜋 . This can be seen as

a form of envy reduction [14, 48, 59], where envy measures the

individual reduction in utility that a particular user experiences

by not drawing the user’s optimal-utility ranking from 𝜋 . To show

this, we derive an upper bound 𝐷Σ𝜋,𝑞

𝑈𝐵
of the diversity as a function

of Σ𝜋,𝑞

𝐷 (𝜋 |𝑞) = E𝜎∼𝜋 ( · |𝑞),𝑖∼IU𝑞 [𝑔(𝑈 (𝜎 |𝑖, 𝑞))]

≤ E𝑖∼IU𝑞

[
𝑔

(
E𝜎∼𝜋 ( · |𝑞) [𝑈 (𝜎 |𝑖, 𝑞)]

)]
= E𝑖∼IU𝑞

[
𝑔

((
r𝑖
)⊤

Σ𝜋,𝑞e
)]

= 𝐷Σ𝜋,𝑞

𝑈𝐵 ,

(15)



where r𝑖 is the relevance vector to the intent 𝑖 with r𝑖𝑚 = 𝑟 (𝑑𝑚, 𝑖).
The equality holds when, for each user with a particular intent, the

utility for that intent is the same across the rankings sampled from

the ranking policy — which means that there is no envy of a user

that receives a particular ranking to the other rankings that could

have been sampled from the ranking policy.

Note that the upper bound is determined by Σ𝜋,𝑞 , which is op-

timized in the first step. The second step maximizes diversity to

match this upper bound, which can be interpreted as reducing the

envy of the users. This also illustrates a value judgment in the

design of TSFD Rank, where we optimize user and item fairness

as the primary criteria, and diversity as a secondary one. This is

also reflected in Table 1, where TSFD Rank is shown to guarantee

non-zero utility to the user and item groups, but not necessarily to

cover the maximum amount of intent.

6 EMPIRICAL EVALUATION
In addition to the theoretical characterizations, we now evaluate em-

pirically in how far different ranking algorithms affect utility, user

fairness, item fairness and diversity on a movie recommendation

dataset.

6.1 Dataset
We constructed the first benchmark dataset that provides intent,

user group, and item group annotations. We collected 100 movies

from different genres { Romance (20), Comedy (25), Action (25),

Thriller (15), Sci-Fi (15) } that are lead by actors of different races

{black-lead (20), white-lead (80)}.We treat the genres as the intent set

and the leading-actor races as the item group set. The relevance of

a movie to a genre is the average user rating on IMDB
1
if the movie

belongs to that genre and 0 otherwise. To fully leverage the range of

the ratings, we subtract the minimum rating 6 in the dataset from all

the ratings to obtain the relevance. For the users, we regardmale and

female as two user groups and set the user proportion 𝜌𝑚𝑎𝑙𝑒 ∈ [0, 1]
as 0.6 by default and 𝜌 𝑓 𝑒𝑚𝑎𝑙𝑒 = 1 − 𝜌𝑚𝑎𝑙𝑒 . To enable varying

the intent similarity between the two user groups, we arbitrarily

construct two dissimilar intent distributions I1 = [0.5, 0.5, 0, 0, 0]
and I2 = [0, 0, 0.5, 0.25, 0.25] over the five genres. We use an intent

similarity factor 𝑠 ∈ [0, 1] (0.5 by default) to control the intent

similarity between the two user groups I𝑚𝑎𝑙𝑒 = (1−0.5𝑠)I1+0.5𝑠I2
and I𝑓 𝑒𝑚𝑎𝑙𝑒 = (1 − 0.5𝑠)I2 + 0.5𝑠I1.

6.2 Experiment Setup
All results are averaged over 5,000 samples (50,000 samples for the

results in Table 3), where each sample consists of 15 randomly se-

lected movies to be ranked. To make sure the inputs to the merit and

diversity functions are within their domains for all the algorithms

while there is a clear trade-off between the policies, we set the user

fairness function as 𝑓 (·) = 𝑙𝑜𝑔(· − 0.6) and the diversity function

as 𝑔(·) = 𝑙𝑜𝑔(· + 0.0001). To control the exposure steepness, we set

the exposure function as 𝑒 (·) = ( 1· )
𝜂
where 𝜂 controls the exposure

steepness and we set 𝜂 = 1 by default. For all the experiments,

we use the default parameters introduced in this section unless

explicitly stated otherwise.

1
https://www.imdb.com/

Table 3: performance of different ranking algorithms3

The policy

optimizing

Utility

Item

unfairness

User

fairness

Diversity

Diversity

UB

Utility 1.518 0.186 1.447 1.016 1.016

Item fairness 1.509 0.000 1.437 1.010 1.013

User fairness 1.498 0.193 1.476 1.052 1.062

Diversity 1.428 0.185 1.390 1.214 1.214

TSFD Rank 1.489 0.000 1.466 1.045 1.055

We compare TSFD Rank with 4 other policies that maximize

utility, item fairness, user fairness, and diversity respectively. For

TSFD Rank and the policies that maximize item fairness and user

fairness, we first satisfy the fairness goals through convex optimiza-

tion
2
, and then we optimize the diversity by running the greedy

BvN decomposition algorithm. We use the greedy submodular opti-

mization approximation algorithm with two matroid constraints to

maximize diversity [38]. The algorithm is detailed in the appendix.

To avoid cases where the item-fairness constraints can not be sat-

isfied, we optimize the one-sided disparate treatment constraints

proposed in [57] in the experiments:
𝐸 (𝜋 |𝐷𝐺2)
𝑀 (𝐷𝐺2,𝑞) ≤ 𝐸 (𝜋 |𝐷𝐺1)

𝑀 (𝐷𝐺1,𝑞) with
𝑀 (𝐷𝐺1, 𝑞) ≤ 𝑀 (𝐷𝐺2, 𝑞).

For clarity of presentation, we bring the user fairness, the di-

versity and the upper bound on the diversity calculated from the

marginal rank probability matrix (diversity UB) on the same scale

as the overall utility by applying the inverse of user fairness func-

tion and diversity function to each of them to get 𝑓 −1 (𝑈𝐹 (𝜋 |𝑞)),
𝑔−1 (𝐷 (𝜋 |𝑞)), and 𝑔−1 (𝐷Σ𝜋,𝑞

𝑈𝐵
), where 𝑓 −1 (·) = 𝑒 · + 0.6 and 𝑔−1 (·) =

𝑒 · − 0.0001. Item unfairness is the amount of violation of the one-

sided disparate treatment constraints max(0, 𝐸 (𝜋 |𝐷𝐺2)
𝑀 (𝐷𝐺2,𝑞) −

𝐸 (𝜋 |𝐷𝐺1)
𝑀 (𝐷𝐺1,𝑞) )

with𝑀 (𝐷𝐺1, 𝑞) ≤ 𝑀 (𝐷𝐺2, 𝑞).

6.3 Empirical Results
How do different methods trade-off between user fairness,
item fairness, diversity and utility?We show the empirical re-

sults with the default setup in Table 3. As expected, the ranking algo-

rithms that consider only one of the measures excel at that measure

but achieve sub-optimal performance on the other ones. In contrast,

the proposed TSFD Rank explicitly controls all desiderata by sacri-

ficing some utility to achieve perfect item fairness, second-best user

fairness and third-best diversity (very close to the second-best). The

diversity upper bound provides a skyline of how much diversity

TSFD Rank can possibly achieve. So the small difference between

the diversity achieved by the policy that maximizes item fairness,

the policy that maximizes user fairness, the policy produced by

TSFD Rank and their respective diversity upper bound shows that

the greedy BvN decomposition algorithm achieves diversity very

close to the upper bound.

How do user intent similarity, user group proportion, and
exposure steepness affect user fairness? Figure 2 (a) (b) (c) show
the effect of the three factors on the utility ratio between female and

male user groups𝑈𝑓 𝑒𝑚𝑎𝑙𝑒/𝑈𝑚𝑎𝑙𝑒 = 𝑈 (𝜋 |𝑓 𝑒𝑚𝑎𝑙𝑒, 𝑞)/𝑈 (𝜋 |𝑚𝑎𝑙𝑒, 𝑞),
which measures the utility difference between the two user groups.

For the policy that maximizes user fairness, the minority (female)

2
We use MOSEK (https://www.mosek.com/) to solve the convex optimization problem.

3
The standard error of each value presented in the table is smaller than 0.001.
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Figure 2: The effects of user intent similarity, user group proportion, extrinsic bias to an item group, exposure steepness and
number of intents on the item groups, user groups and intents.

group gets a smaller ratio of utility as the intent similarity decreases.

The ratio also decreases as the male group proportion increases,

and it stays flat with varying exposure steepness. This is expected

since the user fairness objective gives larger weight for the majority

group but is oblivious to exposure steepness. The proposed TSFD

Rank achieves almost the same ratio as the policy maximizing only

user fairness, which shows its effectiveness on fairly distributing

the utility drop due to the other desiderata between the two user

groups. The policies that maximize item fairness or overall utility

amplify the utility drop of the minority (female) user group more

than TSFD Rank. The policies that maximize diversity sometimes

amplify the utility drop while sometimes over-correcting it.

How do extrinsic bias and exposure steepness affect item
fairness? Biased relevance estimates, which might come from

biased data, can contribute to unfair exposure allocation to the

items [56]. To simulate the bias, for each black-lead movie 𝑑 of

genre 𝑖 , we set the biased relevance as 𝑟𝑏 (𝑑, 𝑖) = (1 + 𝑏)𝑟 (𝑑, 𝑖)
where 𝑏 is the bias level to the black-lead movies. The results with

varying biases are shown in Figure 2 (d). The policy maximizing

item fairness ensures roughly a linear change in exposure ratio

as the bias increases, which is expected since the exposure ratio

is a linear function of the average relevance of black-lead movies,

which in turn is a linear function of the bias level 𝑏. The proposed

TSFD Rank achieves similar exposure ratio as the policy maximiz-

ing item fairness, while all the other methods lead to undesirable

over-amplifications of the bias towards the less represented black-

lead movies. Figure 2 (e) shows that when the exposure steepness

increases, both TSFD Rank and the policy maximizing item fairness

manage to control the winner-takes-all dynamics while all the other

methods fail to ensure a more equitable amount of exposure to the

less represented black-lead movies.

How do the number of intents and exposure steepness af-
fect diversity? The diversity ratio 𝑔−1 (𝐷)/𝑔−1 (�̂�∗) = 𝑔−1 (𝐷 (𝜋 |𝑞))

𝑔−1 (�̂�∗)

and the user fairness ratio 𝑓 −1 (𝑈𝐹 )/𝑓 −1 (𝑈𝐹 ∗) =
𝑓 −1 (𝑈𝐹 (𝜋 |𝑞))
𝑓 −1 (𝑈𝐹 ∗)

measure how far a policy deviates from the policies that optimize

each desideratum where𝑈𝐹 ∗ is the user fairness achieved by the

policy maximizing user fairness and �̂�∗
is the diversity achieved

by optimizing diversity by the greedy submodular approximation

algorithm. Figure 2 (f) shows that as the number of intents gets

larger, maximizing diversity gets further away from maximizing

user fairness. Figure 2 (g) and (h) show that as the number of in-

tents gets larger and as the exposure distribution gets steeper, the

policies that satisfy other desiderata deviate further from the policy

maximizing diversity. Combined with the other empirical findings,

these results show that maximizing diversity fails to achieve user

or item fairness and vice versa. That TSFD Rank achieves the third-

best diversity is expected, since it prioritizes fairness over diversity

and only considers diversity in the second step when the marginal

rank probability matrix representation Σ𝜋,𝑞 of the ranking policy

with a sub-optimal diversity upper bound is already determined.

7 CONCLUSION
We analyzed the interplay between user fairness, item fairness and

diversity for rankings in two-sided markets and found that they

are three independent and conflicting goals. Driven by the analysis,

we proposed TSFD Rank, the first ranking algorithm that explicitly

enforces user fairness, item fairness and diversity. TSFD Rank can

optimally satisfy user fairness and item fairness through convex

optimization and then optimize diversity subject to the fairness

constraints via a novel BvN decomposition algorithm. Empirical

results on a movie recommendation dataset confirm that TSFD

Rank can effectively and robustly control the three desiderata.
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