
Bandits with Costly Reward Observations

Aaron D. Tucker Caleb Biddulph* Claire Wang* Thorsten Joachims

Department of Computer Science, Cornell University, Ithaca NY USA
*Equal contribution, authors listed alphabetically

Abstract

Many machine learning applications rely on large
datasets that are conveniently collected from ex-
isting sources or that are labeled automatically as
a by-product of user actions. However, in settings
such as content moderation, accurately and reliably
labeled data comes at substantial cost. If a learn-
ing algorithm has to pay for reward information,
for example by asking a human for feedback, how
does this change the exploration/exploitation trade-
off? We study this question in the context of bandit
learning. Specifically, we investigate Bandits with
Costly Reward Observations, where a cost needs
to be paid in order to observe the reward of the
bandit’s action. We show that the observation cost
implies an Ω(c1/3T 2/3) lower bound on the regret.
Furthermore, we develop a general non-adaptive
bandit algorithm which matches this lower bound,
and we present several competitive adaptive learn-
ing algorithms for both k-armed and contextual
bandits.

1 INTRODUCTION

Machine learning has proven extremely successful on tasks
where accurately labeled data is readily available and abun-
dant, such as in speech recognition or online advertising.
However, there are many crucial settings such as content
moderation of ephemeral messages, where latency con-
straints force decisions to be made without human assess-
ment, and yet obtaining accurate reward information neces-
sarily involves some costly interaction which would not au-
tomatically happen otherwise. For example, while a search
or ad engine can rely on users’ clicks as a sufficiently accu-
rate feedback signal, accurately labeling policy violations
in content moderation is still based on human feedback. In
these situations, there is a tradeoff between collecting more

labels to achieve better performance and collecting fewer
labels to avoid the labeling cost.

We first study this exploration/exploitation tradeoff in the
k-armed bandit setting, then extend our results to a setting
where the algorithm can decide that it needs additional over-
sight in some contexts but not in others. This problem is
highly relevant to scalable oversight [Amodei et al., 2016],
and more generally to modeling human preferences by learn-
ing from explicit human feedback [Hendrycks et al., 2021].

We refer to the specific setting studied in this paper as Ban-
dits with Costly Reward Observations (BwCRO) (spoken
bwick-roh). In this setting, the bandit problem is modified
by adding a decision at each time step t to pay or not to pay
a known cost c to observe the otherwise unknown reward
rt [Krueger et al., 2016]. As in standard bandit problems,
at is the arm chosen at time t, and rt depends on at. There
are many different types of bandits that can be extended to
the BwCRO setting, and their definitions are deferred to the
relevant sections.

This setting can be used to analyze tradeoffs in a variety
of domains. For example, an internet-of-things (IOT) de-
vice needs to account for its limited power supply during
learning. Specifically, sensing the reward for an action can
require substantial power, and the device needs to decide
when to pay this updating cost. In chatbot optimization the
chatbot needs to respond to questions in real-time, with an
action space over possible utterances. However, observing
the quality of an utterance can only be done through human
assessment. Finally, in holistic recommendation we seek to
maximize the value to a user according to a more holistic
criterion than engagement metrics such as clicks. In this
case, we would like to choose when it is worth it to get
feedback from human assessors.

In this paper, we provide the following contributions.
First, we prove an information-theoretic Ω(c1/3T 2/3) lower
bound on the regret in the BwCRO setting. Second, we
derive a novel algorithm for simple multi-armed BwCRO
which provably matches these lower bounds up to a log-

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<aarondtucker@cs.cornell.edu>?Subject=Your UAI 2023 paper

arithmic factor. Third, we develop a general method for
turning any suitable O(T 1/2)-regret bandit algorithm into
an O(c1/3T 2/3)-regret BwCRO algorithm. And, fourth, we
propose a novel heuristic algorithm for linear contextual
BwCRO which can adaptively choose when to query for a
label depending on the context. Beyond the derivation of the
new learning methods and their theoretical characterization,
we also present experiments which validate and compare
the empirical performance of the different algorithms.

2 SETTING DESCRIPTION

We first recap basic bandit settings and relevant related
work, leading to a formal definition of the Bandits with
Costly Reward Observations setting.

2.1 SETTING DESCRIPTION

Standard Bandit Settings. The multi-armed bandit set-
ting creates a tradeoff between exploring new actions in
order to understand their performance, and exploiting ac-
tions which have worked well in the past. There is a (some-
times null) set of contexts X , set of actions A and an un-
known mapping from actions to a distribution over rewards
ρ : X ×A → ∆(R). At each timestep t, the policy π : X →
∆(A) chooses an action at ∈ At ⊂ A based on the context
xt ∈ X , and receives a reward rt ∼ ρ(xt, at). However,
the agent does not typically know ρ, and must learn how
to choose high-reward actions over time. If we denote the
optimal action at time t as a∗t = argmaxa∈At

E [r|Xt, a],
then the agent seeks to minimize

Regret =
T∑

t=1

(E [r|Xt, a
∗
t]− E [r|Xt, at]) .

It is also sometimes useful to refer to the regret over
an interval [j, k], in which case we denote Regretj:k =∑k

t=j E [r|Xt, a
∗
t]−

∑k
t=j E [r|Xt, at] .

Bandits with Costly Observations. The previous setting
does not consider that observing labels may incur direct
costs, rather than only having an opportunity cost. Bandits
with costly observations (also studied as a special case of
active reinforcement learning in Krueger et al. [2016]) adds
an additional dimension that the algorithm must request a
reward label and incur a known cost c in order to observe
the reward. In order to add reward observation costs to a
normal bandit setting, the contexts are unchanged and the
new action space is A′ = A×{label, no label}. Define lt =
1 if a label is requested and 0 otherwise, so that a′t = (at, lt),
and rt is sampled as before, but the reward is modified to
be r′t = rt − c if a label is requested or r′t = rt otherwise.

Since the algorithm always gets a higher immediate reward
by not requesting a label, each requested label increases the

regret by c. For the sake of clarity, if there are n labels we
define the regret ignoring label costs as Regret◦

Regret◦ =
T∑

t=1

(
max
a∈At

E [r|Xt, a]− E [r|Xt, at]

)
,

and the regret including label cost as cRegret

cRegret = Regret = Regret◦ + cn.

2.2 BACKGROUND AND RELATED WORK

While the Bandits with Costly Reward Observations setting
has been studied before as a special case of different frame-
works, our paper more thoroughly investigates this specific
setting.

Active Learning. BwCRO is similar to active learning,
but differs in that it pays a reward cost for additional labels
rather than having a fixed labeling budget, and also makes
labeling decisions one at a time in response to contextual
information. There are several more closely related topics.

Partial Monitoring. BwCRO can be seen as a special
case of partial monitoring, which studies sequential decision-
making with imperfect feedback that may or may not in-
clude the reward. Prior work in partial monitoring states
that since you need to take suboptimal actions in order for
an algorithm to know if it is taking the optimal action, we
will incur O(T 2/3) regret rate rather than an O(T 1/2) re-
gret rate [Bartók et al., 2014]. However, our setting has a
more specific structure where the cost between the observed
and unobserved actions are exactly c, and we prove a novel
O(c1/3) component of the regret.

Best Arm Identification. BwCRO is related to best arm
identification, which seeks to choose the arm with the high-
est expected reward in a multi-armed bandit setting with a
fixed number of arms. All multi-armed bandit algorithms
are related to best arm identification in that regret is incurred
every time a suboptimal arm is chosen. Since the only way
to get zero regret on a timestep is to choose the optimal
arm, any algorithm with sublinear regret must eventually
play the optimal arm the most often. Our regret lower bound
proof uses the difficulty of identifying the optimal arm as a
key component of the lower bound on regret, and our pro-
posed Worth-it-Width algorithm can be seen as an ϵ-best
arm identification algorithm. However, our other algorithms
can achieve high performance in settings where the arms
can change every timestep, which is a quite different setting.

Active Reinforcement Learning. BwCRO is closely re-
lated to active reinforcement learning, which adds a cost to
observing the rewards in an RL setting. This work primarily
focuses on MDPs instead of bandits [Krueger et al., 2016,

Schulze and Evans, 2018]. In contrast to this previous work,
we develop new algorithms that not only have empirical
advantages, but also proven regret rates. Furthermore, we
prove the first lower bound for this setting.

3 ALGORITHMS

The core challenge of adding costly observations to bandit
settings is that the algorithm must now decide when to
request a label. We first present an algorithm which analyzes
how to adapt the UCB algorithm to the BwCRO setting, then
show more general algorithms which work in the BwCRO
setting without the need for additional specialized analysis.

3.1 ALGORITHM FOR MULTI-ARMED BWCRO

For non-contextual bandits, the question of when to request
labels can be simplified to the question of when to stop re-
questing labels. Consider any algorithm that decides whether
or not to request a label based on a deterministic function
f(Ot) → {no label, label} of its observations Ot up to
time t. Without contextual information, if the algorithm
does not request a label at time t, then Ot+1 = Ot. There-
fore, f(Ot) = no label implies that f(Ot+1) = no label,
and once an algorithm stops requesting labels it will never
request labels again. This means that many algorithms can
be designed by focusing only on when to stop requesting
labels, which forms the basis of Algorithms 1 and 2.

The key idea is to stop requesting labels by tracking whether
or not it is still plausible that the bandit instance that it is
observing is one where it will be worth it to collect enough
data to disambiguate between the arms. If the difference
between two arms’ average rewards ∆ is small enough, then
it is cheaper to simply mistakenly commit to an arm than to
pay for enough labels to figure out which arm is better. In the
one-armed bandit case, it is possible to compute the range
of ∆s where it is better to request labels than to commit,
and then check if the upper bound on ∆ is such that it is still
plausible that it is worth it to request labels. This idea can
then be extended to the multi-armed case.

3.1.1 One-armed Bandit Setting and Algorithm

We first consider the simplified one-armed bandit setting
where there is only one stochastic arm with unknown av-
erage reward. This allows us to analyze only the question
of when to stop requesting labels compared to committing
to a known alternative. In this setting, there are two op-
tions. The first is to choose an arm with a reward rt ∈ [0, 1]
drawn stochastically from an unknown distribution with
an unknown mean µ∗. The second is to choose a holdout
arm with a known average reward ν. The per-step regret of
choosing the wrong arm is ∆ = |µ∗ − ν|.

Our goal is to decisively claim that one arm is better than
another. If we know (with probability at least 1− δ) that the
stochastic or fixed arm is better, then there is no need for
further labels. More formally, we define disambiguation.

Definition 3.1 (Disambiguate). Two arms a and a′ with
means µ∗

a and µ∗
a′ are disambiguated if with probability at

least 1− δ it can be said that either µ∗
a > µ∗

a′ or µ∗
a < µ∗

a′ .

How many labels does it take to disambiguate between the
stochastic and the fixed arm? To help the analysis, define
µn to be the empirical mean of the rewards of the stochastic
arm based on n samples, and define ∆̂n = |µ̂n − ν|.

Remark. The stochastic and fixed arms are disambiguated
after n stochastic arm labels if n > 2 log(2T/δ)/∆̂2

n. For
a fixed µ∗, this occurs by at most n ≤ 8 log(2T/δ)/∆2.

Proof. The Azuma-Hoeffding inequality [Azuma, 1967,
Hoeffding, 1963] bounds the true average reward µ∗ based
on the observed rewards µ̂n with probability at least 1− δ
for all timesteps [Agarwal et al., 2023]:

|µ∗ − µ̂n| ≤
√

2 log(2T/δ)/n

If µ∗ ≤ ν, then ν ≤ un = µ̂n +
√

2 log(2T/δ)/n can only
hold while n ≤ 2 log(2T/δ)/∆̂2

n. This further implies that
µ∗ ≤ ν, since µ∗ ≤ un with probability 1 − δ. Similarly,
if ν ≤ µ∗, then µ̂n −

√
2 log(2T/δ)/n = ℓn ≤ ν can

only hold while n ≤ 2 log(2T/δ)/∆̂2
n. Therefore, with

high probability the two arms will be disambiguated once
n > 2 log(2T/δ)/∆̂2

n.

Bounding µ̂n with the Azuma-Hoeffding inequality |µ∗ −
µ̂n| ≤

√
2 log(2T/δ) shows that this will happen within at

most n < 8 log(2T/δ)/∆2 steps. If ν < µ∗, then applying
Azuma-Hoeffding we have µ∗−2

√
2 log(2T/δ)/n ≤ ℓn =

µ̂n −
√
2 log(2T/δ)/n, and so ℓn ≤ ν can only hold until

n > 8 log(2T/δ)/∆2. Similarly, ν < µ∗, then applying
Azuma-Hoeffding we have µ̂n+

√
2 log(2T/δ)/n = un ≤

µ∗ + 2
√

2 log(2T/δ)/n, and so ℓn ≤ ν can only hold until
n > 8 log(2T/δ)/∆. Therefore, with high probability the
arms will be disambiguated by n < 8 log(2T/δ)/∆2.

Note that the smaller the gap ∆ between the fixed and
stochastic arms, the less regret is accumulated by choos-
ing the wrong arm. If ∆ is small enough, then it is better to
pay the regret of choosing the wrong arm than to pay the
labeling cost needed to disambiguate between the two arms.

Remark. Disambiguating between the stochastic and fixed
arms is not worth it if the regret of choosing the wrong arm
is lower than the labeling cost, which happens when

∆̂n +
√
2 log(2T/δ)/n < 3

√
8c log(T/δ)/T .

Proof. Simply choosing an arm at the beginning yields an
expected regret of T∆. The cost for requesting n labels is
cn. For a given ∆, it takes n < 8 log(2T/δ)/∆2 labels until
ν < ℓn or un > ν. This means that for a given ∆, the label-
ing cost to disambiguate arms is at most 8c log(2T/δ)/∆2.

If a ∆ is always worth it to request enough labels that ν < ℓn
or un > ν, then the maximum labeling cost must be less
than the regret of simply choosing the wrong arm. Namely,
it must satisfy 8c log(T/δ)/∆2 ≤ T∆. Therefore it will
not always be worth it to collect labels until either ν < ℓn
or un > ν if ∆ < 3

√
8c log(2T/δ)/T .

However, the algorithm does not have access to ∆ =
|µ∗ − ν|. We can apply the triangle inequality and Azuma-
Hoeffding inequality to bound ∆ with probability 1− δ.

∆ = |ν−µ| ≤ |ν−µ̂n|+|µ̂n−µ| = ∆̂n+
√
2 log(2T/δ)/n.

Combining this bound on ∆ and the definition of when
it is always worth it to collect labels yields an expres-
sion usable by the algorithm: ∆̂n +

√
2 log(2T/δ)/n <

3
√
8c log(2T/δ)/T .

This tells us when to stop requesting labels – when the arms
are disambiguated so we can confidently commit, or when
an upper bound on ∆ is small enough that committing to the
wrong arm is cheaper than labeling until disambiguation.

3.1.2 Multi-armed Bandit Algorithm

In the multi-armed bandit setting there are multiple stochas-
tic arms, and no arm has a known reward ν. However, the
key idea from the single-armed case holds. If two arms a
and a′ have close enough expected values µa and µa′

, then it
is better to pick one than to pay the cost of learning which is
better. For this setting, the algorithm uses a time-dependent
holdout reward νt which represents an expected reward that
the algorithm can expect to get by committing now.

First, we set up notation to define νt. Define arm a’s ex-
pected reward µa = E[rt|at = a], the empirical average at
time t as µ̂a

t , and na
t as the number of times arm a was ob-

served at time t. Define ua
t and ℓat as the Azuma-Hoeffding

upper/lower bounds from |µa− µ̂a
n| ≤

√
2 log(2kT/δ)/na

t ,
using the union bound to distribute the failure probabil-
ity δ over all timesteps t ∈ [T] and all k arms. Then if
νt = maxa∈A ℓat = maxa∈A

(
µ̂a
t −

√
2 log(2kT/δ)/na

t

)
and aνt = argmaxa∈A ℓat , the algorithm can commit to the
arm aνt , and get at least reward νt. For convenience, denote
the expected reward of arm aνt as µν

t = µaν
t .

Now, we extend the one-armed case by defining the stop
conditions analogous to those of the one-armed case. Define
the gaps gat as gat = ua

t − νt, which are upper bounds on the
per-step regret for choosing the holdout arm aνt instead of a,
since with high probability both µa ≤ ua

t and νt ≤ µaν
t =

µν
t . Define the maximum gap ḡt = maxa∈A gat and the

arm with the maximum gap aḡt = argmaxa∈A gat . Finally,
define the worth-it-width

w = 3
√
8c log(2kT/δ)/T .

Since ḡt is an upper bound on the per-step regret of choosing
the holdout arm aνt once ḡt ≤ w committing to the holdout
arm aνt is better than gathering enough labels to conclude
with high probability that some other arm a′ has a higher
average reward.

Algorithm 1 Worth-it-Width (WiW) Algorithm
At each time step t, compute the upper/lower bounds ua

t &
ℓat , holdout value νt, and max gap gt.
If gt ≤ w = 3

√
8c log(2kT/δ)/T , commit to arm aνt .

Else if g(a
′)

t ≤ w for all a′ ̸= aḡt and the maximum gap gat
is such that aḡt = aνt , then commit to arm aνt .
Otherwise, label arm a = argmina′∈{aḡ

t ,a
ν
t }

n
(a′)
t .

The next theorem establishes the regret of this algorithm.

Theorem 1 (Regret Rate for WiW Algorithm). Algorithm 1
has a regret rate of Õ(kc1/3T 2/3) with high probability.

Proof. Since it takes at most 8 log(2kT/δ)/∆2 labels
to disambiguate between two arms with a given ∆, we
can play an arm at most n = 3

√
8 log(2kT/δ)(T/c)2/3

times before concluding that µa or µν
t is greater or

that |µa − µν
t | = ∆ ≤ w. Since we always play an

arm associated with the largest gap we can only gather
k 3
√
8 log(2kT/δ)(T/c)2/3 labels before terminating, which

incurs a regret of k 3
√
8c log(2kT/δ)T 2.

Further, with high probability, gat bounds the regret of
committing to the holdout arm aνt instead of arm a since
µa − µaν

t ≤ ua
t − ℓ

aν
t

t = gat . At termination gat <
3
√
8c log(2kT/δ)/T , so our regret thereafter is bounded

by 3
√
8c log(2kT/δ)T 2 with high probability. Adding these

two terms, the regret is Õ(c1/3T 2/3).

Algorithm 1 (WiW) directly exploits the insight that as arms
have more and more similar expected rewards it gets harder
to disambiguate between them while becoming cheaper to
mistakenly commit. So, it commits if it disambiguates the
arms or if the reward difference upper bound is less than w.

3.2 GENERAL ALGORITHM FOR BWCRO

The previous algorithm showed how to adapt to the UCB
algorithm to the BwCRO setting, but required a detailed
analysis of the algorithm to prove its regret rate. Is there a
more general approach that does not require detailed analy-
sis for each additional setting?

The affirmative answer is given by the following Fixed-N
Algorithm, which is in fact very general and can also work in
contextual bandit settings. Its key idea is to use a universally
valid stopping criterion for requesting labels that is primarily
a function of the horizon T and the label cost c.

Algorithm 2 Fixed-N Algorithm for Multi-armed Bandits
Given: Algorithm A that satisfies Assumption 3.1 with
E [Regret◦1:n] ≤ K

√
n,

Phase 1: Play according to A while observing the first
n =

(
TK
2c

)2/3
labels.

Phase 2: Play according to A without more labels.

In order to analyze the performance of the algorithm, we first
make an assumption that relates the regret of the algorithm
after no longer requesting labels to its earlier performance.

Assumption 3.1 (Uniform Regret Rate). An algorithm A
meets the uniform regret assumption if, for all n ≤ T and
with randomness taken over the algorithm’s choices and
environment, a) playing according to A while observing
labels for the first n timesteps results in E [Regret◦1:n] ∈
O(n1/2) and b) with randomness taken over the algorithm’s
choices and environment, and if requesting no further labels
after the first n timesteps results in

1

T − n
E
[
Regret◦n+1:T

]
≤ 1

n
E [Regret◦1:n] .

Part b of this assumption essentially states that average re-
gret does not get worse with more labels. In particular, we
can stop the algorithm after n labels at any time and expect
an O(n−1/2) per-timestep regret rate in retrospect and go-
ing forward. Part a states that the algorithm does not have
any distinct phases that have qualitatively different regret
evolutions. This excludes most explore-then-commit algo-
rithms, but includes popular algorithms such as UCB and
Thompson sampling. This assumption allows us to prove
Theorem 2, which shows that Algorithm 2 achieves a regret
rate of O(c1/3T 2/3). If instead the base algorithm instead
has an Õ(T 1/2) regret rate, then Algorithm 2 has the corre-
sponding Õ(c1/3T 2/3) regret rate.

Theorem 2 (Regret Rate for Fixed N Algorithm). Assuming
that A satisfies the uniform regret assumption, the Fixed N
algorithm based on A has cRegret ∈ O(c1/3T 2/3).

PROOF SKETCH. Assume that A satisfies the Uniform
Regret assumption, so that E [Regret◦1:n] ≤ K

√
n for all

n > n0 for some n0. In the BwCRO setting, receiving n
labels incurs a regret of cn, so the total regret of using A

while labeling the first n > n0 can be bounded as follows:

cRegret1:T = cn+ E [Regret◦1:n] + E
[
Regret◦n+1:T

]
≤ cn+

n

n
E [Regret◦1:n] +

T − n

n
E [Regret◦1:n]

= cn+ T E [Regret◦1:n] /n

≤ cn+ TKn−1/2

The first inequality follows from the Uniform Regret as-
sumption, and the second from the definition of O(

√
n).

As shown in Appendix A.3, cn + TKn−1/2 is mini-
mized by n = (TK/2c)

2/3. Plugging this value of n
into the original bound cn + TKn−1/2 yields the regret
O(c1/3K2/3T 2/3) ⊂ O(c1/3T 2/3).

Algorithm 2 generalizes any bandit algorithm meeting As-
sumption 3.1 into a corresponding BwCRO algorithms. This
provides a generic mechanism for constructing BwCRO
algorithms, establishing a natural baseline for any special-
purpose designed BwCRO algorithms.

3.3 LINEAR CONTEXTUAL BWCRO

While the Fixed-N algorithm is very general and can be used
to handle costly reward observations in many bandit settings,
it is entirely non-adaptive and does not use fewer labels
in easier instances, or request labels in more interesting
states. We conjecture that this is a substantial miss in many
applications (such as healthcare, self-driving cars), where it
is useful to request labels or oversight in the right states. The
Worth-it-Width Algorithm (Algorithm 1) is adaptive, but has
no notion of context or state. Is there a method for designing
BwCRO algorithms that is both adaptive and general?

We combine the idea of keeping track of upper bounds on
the per-step regret, and the idea of requesting labels only
when it is worth it, to propose the following ∆ Max Regret
Heuristic for general BwCRO learning.

3.3.1 ∆ Max Regret Heuristic

We can reinterpret the proof of the Fixed-N Algorithm
regret rate (Theorem 2) to arrive at a more general algo-
rithm. The proof places an upper bound on E [cRegret1:T]
as cn + TKn−1/2, then minimizes that lower bound by
selecting n = (TK/2c)2/3 labels. However, we can inter-
pret these mechanics instead as upper bounding the future
E [Regret◦t:T] as TKn−1/2 (by Assumption 3.1), then re-
questing labels as long as the marginal labeling cost c ex-
ceeds the marginal decrease on our Regret◦t:T upper bound.

This suggests a new heuristic: request a label if the decrease
in an upper bound on E [Regret◦t:T] is greater than the label-
ing cost c. Denote the observation at time t as ot, such that
Ot+1 = Ot ∪ {ot} if a label is requested and Ot+1 = Ot

otherwise, and let Φ(Ot) be an upper bound on the per-step

Regret◦ given the observations Ot. Then, request a label if

c ≤ (T − t)Φ(Ot)− (T − t)Φ(Ot ∪ {ot}). (1)

The Fixed-N algorithm can be exactly fit into this heuristic,
while the Worth-it-Width algorithm can be seen as a refine-
ment which stops slightly sooner. To recover the Fixed-N
algorithm, then note that if A satisfies the Uniform Regret
assumption, then we know that there exists a K such that

E
[
Regret◦n+1:T

]
T − n

≤ E [Regret◦1:n]
n

≤ K
√
n

n
=

K√
n
,

and therefore there exists a per-step Regret◦ upper bound
Φ(Ot) = K/

√
n. We loosen this bound to TK/(

√
n(T−t))

then bound (T − t)Φ(Ot) − (T − t)Φ(Ot ∪ {ot}) by
TK/(2

√
n3), then choose n such that c = TK/

√
n3,

which recovers the previous stopping condition of n =
(TK/2c)2/3.

This heuristic is more adaptive in two ways. First, by using
an adaptive upper bound Φ (such as ḡt in the Worth-it-
Width Algorithm) instead of the non-adaptive upper bound
Kn−1/2 of the Uniform Regret Assumption, we can use
instance-specific information to choose whether or not to
label something. Second, this formulation allows us to take
advantage of state-specific and not just instance-specific
information in making our labeling decisions. We will con-
cretely demonstrate this property by applying the heuristic
to linear contextual bandits.

3.3.2 Linear Contextual BwCRO Algorithm

We adapt the Delta Max Regret heuristic to the linear con-
textual Bandits setting by building on top of LinUCB, a
well-studied implementation of the “optimism in the face
of uncertainty" principle [Li et al., 2010, Dani et al., 2008,
Abbasi-yadkori et al., 2011]. In the linear contextual ban-
dit setting, at each time step t the algorithm chooses an
action from among k contexts Xt = {xj

t ∈ Rd}kj=1

which are drawn (at each time step) from some distri-
bution D such that ∥xj

t∥ ≤ B. The algorithm receives
reward xt · µ∗ + ηt for the chosen xt ∈ Xt, where
µ∗ is unknown, ∥µ∗∥ ≤ W , and ηt is σ2 sub-Gaussian
noise. Following Agarwal et al. [2023], define Σt =
(σ2/W 2)I +

∑t−1
τ=1 xτx

T
τ , mean µ̂ = Σ−1

t

∑t−1
τ=1 rτxτ ,

βt = σ2
(
2 + 4d log(1 + tB2W 2/d) + 8 log(4/δ)

)
, and

an uncertainty region which contains the true µ∗ at all time
steps with probability 1− δ

Ballt = {µ| (µ̂t − µ)
T
Σ−1

t (µ̂t − µ) ≤ βt}.

LinUCB bounds the difference between our upper bound on
the value of some x and its true value with the width of the
uncertainty region along x. For any µ ∈ Ballt,

|µ · x− µ̂t · x| ≤ width(βt,Σt, x) =

√
βtxTΣ−1

t x.

Since µ∗ ∈ Ballt for all t ≤ T with probability 1 − δ,
it follows that we can upper bound the value of µ∗ · x as
µ∗ · x ≤ µ̂t · x+ width(βt,Σt, x).

We now need a suitable Φ for the Delta Max Regret
heuristic. Agarwal et al. [2023] provides a short proof
that the per-step regret of choosing xt is bounded as
2width(βt,Σt, xt). Define x∗

t = maxx∈Xt
µ∗x, and µ̃ =

argmaxµ∈Ballt maxx∈Xt
µ · x = argmaxµ∈Ballt µ · xt.

Regrett = µ∗ · x∗
t − µ∗ · xt

≤ µ̃ · xt − µ∗ · xt

= (µ̃− µ̂t) · xt + (µ̂t − µ∗) · xt

≤ 2width(βt,Σt, xt)

However, the algorithm does not know what the future Xt

will be, so this bound cannot be applied directly. We instead
consider the maximum width possible for a given covariance
matrix, since this bounds xt for all possible future contexts
Xt. Conveniently, since the width depends on βt and Σt,
and since Σt+1 = Σt + xtx

T
t if a label is requested, we can

compute Φ(Ot ∪ {ot}) using information which is known
at decision time. The max width is computed as

Φ(Ot) = mw(β,Σ) = max
eigenvectors

Bwidth(β,Σ, ei).

Algorithm 3 Delta Max Regret for LinUCB Algorithm
At each time step t, compute the center µ̂t, covariance Σt,
and uncertainty region Ballt.
Play arm xt = argmaxx∈D maxµ∈Ballt µ · x.
Request label if xt is such that

(T−t)
[
mw

(
βt,Σ

−1
t

)
−mw

(
βt+1,(Σt+xtx

T
t)

−1
)]

> c

Otherwise don’t request label

This algorithm is able to determine which states are useful
to label, and our empirical evaluation will demonstrate that
it can do this effectively on both synthetic and real data.

4 LOWER BOUND

We have described several algorithms, but are they close to
optimal? The following proves that the BwCRO setting has
a regret lower bound of Ω(c1/3T 2/3), and that therefore the
Fixed N (Algorithm 2) and WiW (Algorithm 1) algorithms
match the lower bound on the regret, and no algorithms can
achieve a better asymptotic rate. This proves a novel rate
for the labeling cost c, as well as agreeing with the rate
for T from Krueger et al. [2016] and Bartók et al. [2014].
Our information-theoretic proof is based on the regret lower
bound proof by Slivkins [2019].

Theorem 3. The Bandits with Costly Observations setting
has a regret lower bound of Ω(c1/3T 2/3).

The basic idea of the proof is that we randomize over K
instances with different best arms k∗, then show that (on
average) k∗ would not be played that often in a base instance,
and therefore cannot be played that often in instance k∗.

Proof of Theorem 3. Consider a setting which chooses uni-
formly at random from K different multi-armed bandit in-
stances, each with K actions where a coin is flipped with
reward 1 for heads and 0 for tails. Denote the index of the
randomly selected instance as k∗. In each bandit instance
k, coin k is biased with expected reward (1 + ϵ)/2, and all
other K−1 coins are fair. Denote the probability of an event
A in instance k as Prk(a).

Consider an additional hypothetical base instance 0 where
all the coins are fair. Our setting never chooses this instance.
Let QT

k denote the number of times coin k is played in T
timesteps, and note that by linearity of expectation,

K∑
k=1

E0

[
QT

k

]
= E0

[
K∑

k=1

QT
k

]
= E0[T] = T. (2)

How many times do we play k∗ in instance 0? Let
JT = {k : E0

[
QT

k

]
≤ 3T/K} be the set of coins that

the algorithm is not expected to play more than 3T/K times
during the T timesteps in instance 0. For each coin k ∈ JT ,
E0[Q

T
k] ≤ 3T/K so by the Markov inequality

If k ∈ JT , then Pr
0

(
QT

k ≤ 6T/K
)
≥ 1/2. (3)

Further, JT must have at least 2K/3 elements, since its com-
plement JT must have at most K/3 elements, because oth-
erwise the sum of the expectations of QT

k would be greater
than T , which contradicts Equation 2.

∑
k∈JT

E0

[
QT

k

]
>

K∑
k∈JT

3T

K
= |JT |

3T

K

Since the coin k∗ is chosen uniformly at random, and since
JT has at least 2K/3 coins in it, with the randomness over
the setting’s choice of k∗,

Pr(k∗ ∈ JT) > 2/3. (4)

Combining Equations 3 and 4, we can bound the probability
that QT

k∗ ≤ 6T/K in instance 0. Denoting the event QT
k∗ ≤

6T/K as E ,

Pr
0
(E) = Pr

0

(
E
∣∣∣k∗ ∈ JT

)
Pr (k∗ ∈ JT) ≥

1

2

2

3
=

1

3
.

What is the regret in instance k∗? The KL Bound
Lemma (proof in Lemma 1, Appendix A.2), states that
for any event A based n observed coin flips |Pr0(A) −
Prk∗(A)| ≤ ϵ

√
n.

We can bound Prk∗(E) as

Pr
k∗

(E) ≥ Pr
0
(E)− ϵ

√
n ≥ 1

3
− ϵ

√
n. (5)

In instance k∗, arm k∗ is the optimal choice with expected
reward (1 + ϵ)/2 while all other arms have expected reward
1/2. Therefore, every timestep that k∗ is not chosen incurs
an expected regret of ϵ/2. Since QT

k∗ is the number of times
that k∗ is chosen, and since there are T timesteps,

Ek∗
[
Regret◦|QT

k∗

]
= ϵ(T −QT

k∗)/2.

Therefore, if E then the regret in instance k∗

Ek∗ [Regret◦|E] ≥ ϵ(T − 6T/K)

2
=

(K − 6)Tϵ

2K
. (6)

Conclusion. If we collect n labels with a labeling cost c,
then the regret in instance k∗ is

Ek∗ [cRegret] = Ek∗ [Regret◦] + cn

≥ Ek∗ [Regret◦|E] Pr
k∗
(E) + cn

≥ (K − 6)Tϵ

2K

(
1

3
− ϵ

√
n

)
+ cn,

with the first inequality coming from Ek∗ [Regret◦] =
Ek∗ [Regret◦|E] Prk∗(E) + Ek∗

[
Regret◦|E

]
Prk∗(E), and

the second coming from using Equations 6 and 5. Choosing
ϵ = 3

√
c/T for the setting, we have

Ek∗ [cRegret] ≥
(K − 6)T 3

√
c/T

2K

(
1

3
− 3

√
c/T

√
n

)
+ cn

If the algorithm minimizes this expression with respect to n

using
√
n = (k−6)

4k
3
√

T/c, we get a regret of

Ej∗ [cRegretT] ≥
(k − 6)

6k

3
√
cT 2 − (k − 6)2

16k2
3
√
cT 2,

for an Ω(c1/3T 2/3) regret lower bound, as desired.

5 EXPERIMENTS

We first compare the Worth-it-Width (WiW) algorithm (Al-
gorithm 1), the Fixed-N algorithm (Algorithm 2), and the
Delta Max Regret (DMR) algorithm (Equation 1) to a prior
baseline 1 from Krueger et al. [2016], and the Naive UCB
algorithm on a variety of synthetic non-contextual BwCRO
problems. Then, we demonstrate the performance of the
DMR algorithm (Algorithm 3) compared to Fixed-N and
Naive UCB on both real and synthetic contextual problems.

1Note that Schulze and Evans [2018] present another more
recent algorithm, however its much higher computational costs
limit its evaluation to bandits with up to 40 timesteps in the original
paper. As such, we defer its discussion to Appendix A.1.1.

Figure 1: Final average per step regret for varying values of gaps ∆, c = 1, standard error from 20 trials. Dashed red line is at
the predicted worst-case ∆ = 3

√
c/T . Left graph has horizon T = 1000, middle has T = 10000, and right has T = 100000.

Figure 2: Probability of committing to the higher value arm
for varying values of gaps ∆, c = 1, and T = 10000. Stan-
dard error from 20 trials. Dashed red line is at the predicted
worst-case ∆ = 3

√
c/T .

5.1 MULTI-ARMED BANDIT EVALUATION

We first consider a variety of two armed Bernoulli bandit
settings with average reward 0.5 ±∆/2 and labeling cost
c = 1. A more detailed study of cost is in Appendix A.1.4.

Baselines. We compare the performance of the WiW,
Fixed N, and DMR Algorithms against two baselines. The
first baseline is a naive implementation of UCB that always
requests a label. The second baseline is the MCCH (Mind-
changing Cost Heuristic) algorithm presented in Krueger
et al. [2016], using UCB as the underlying algorithm, so
that all algorithms are directly comparable. For Fixed N, the
constant in the UCB algorithm is K = 8

√
k log(Tk/δ).

Results. Figure 1 shows that the Fixed N algorithm consis-
tently has low variance in its performance. Furthermore, its
performance is invariant to different values of ∆, reflecting
the fact that it does not adapt to problem instances at all.
Figure 1 also shows that DMR consistently does at least as
well as WiW, and shows substantial improvement for small
∆. Neither the MCCH nor the DMR algorithm dominates
the other, with DMR having the advantage for larger ∆ and
longer episode lengths. As shown in Figure 2, this is a result
of the fact that MCCH commits earlier, but is much more
likely to commit to the wrong arm. For small arm differ-
ences ∆ and short horizons T , this tradeoff is less costly. As
∆ or T get bigger, the cost of wrongly committing is higher

Figure 3: c = 100, T = 10000. The simpler baseline can
achieve similar performance to the Worth-it-Width algo-
rithm, but does considerably worse when the difference
between arms ∆ is small.

and the DMR and WiW algorithms do better.

Worth-it-Width Ablations. We also perform two abla-
tions on the WiW algorithm to demonstrate the necessity
of each step. “Baseline" simply plays UCB while request-
ing labels until one arm has a higher LCB than any other
arm’s UCB. This baseline performs comparably to always
requesting a label, since it never labels the suboptimal arm
often enough to push its UCB below the optimal arm’s LCB.
“Baseline’" rectifies this problem by playing and labeling
the least played of the arms associated with the highest
UCB and highest LCB, however it does not stop early if the
associated gap is smaller than the "worth-it-width". This al-
gorithm performs comparably to WiW for large differences
∆ between the two arms but substantially worse for small
differences, demonstrating the necessity of the early stop-
ping condition. These results are corroborated over more
parameter settings in Appendix A.1.5.

5.2 LINEAR CONTEXTUAL EVALUATION

We also evaluate the ability of the DMR algorithm to make
state-dependent labeling decisions in contextual bandits.

Baselines. We compare the DMR algorithm to Fixed N
and a Naive LinUCB baseline. The Naive LinUCB algo-
rithm runs LinUCB and always requests a label. For the
Fixed N Algorithm we choose K = 8βT d log(1 +

TB2W 2

dσ2)

Figure 4: Final average per step regret for varying noises σ2,
standard error from 20 trials. Note the logarithmic y scale.
The contexts have dimension d = 5, drawn from N (0, 1)d

and rescaled to size 1. Left has c = 1 and right has c = 10.

Figure 5: Average per-step reward at each timestep for 1000
timesteps rejection sampled using the Yahoo! Frontpage
Dataset. Standard error from 20 trials. Left graph has cost
c = 0.01 and right has c = 0.1. Non-red dashed lines
correspond to using the doubling trick.

as per Agarwal et al. [2023].

Results. We set W and B (the sizes of µ∗ and x) to 1,
set T = 10000, and set the number of arms k = 5. As
shown in Figure 4, increasing noise σ2 forces all non-naive
algorithms to request more labels, though DMR is able to
avoid always requesting labels even with η ∼

√
10∗N (0, 1)

and each rt constrained within [−1, 1].

5.3 EVALUATION ON REAL-WORLD DATA

We also conducted experiments on the Yahoo! Front Page
dataset [Chu et al., 2009] in order to validate the perfor-
mance of the Delta Max Regret Algorithm on real data. This
dataset was collected in an experiment where Yahoo! placed
articles on their front page uniformly at random. Each con-
text in Xt has a D × 5 dimensional matrix with features
for each of the D article available at the time, as well as
a 5-dimensional vector representing information about the
user. For convenience, we only use contexts which have
exactly 20 articles. We create 35-dimensional vectors for
each individual article by concatenating its 5-d vector to the
user’s 5-d vector, along with a 25-d vector containing the
cross-terms of the user and article vectors. The fact that the
articles were selected uniformly at random allows us to run
an unbiased simulation of arbitrary policies using rejection
sampling [Vanchinathan et al., 2014].

Baselines. In addition to the previously mentioned base-
lines, we also add a “Regression" skyline in order to under-
stand the upper limits of performance for linear models in
this setting. This regression model has the unfair advantage
of being trained on all datapoints which could be sampled,
and never paying a labeling cost. For any context, it then
selects the action that has the highest predicted reward.

The Doubling Trick. In pratice, the horizon T may not
be known beforehand. A standard method for handling this
problem is to use the “Doubling Trick", where an initial T0

is used as the horizon, and then the algorithm is rerun with
2T0 if the horizon is exceeded, then 4T0 if that horizon is
exceeded, etc. We use a simpler variant where the horizon
T is initially set to T0, then modified in place by doubling it
whenever it is exceeded. This reuses the old data rather than
restarting, and simply updates the max-regret calculations
of the remaining time and size of the confidence region.

Results. As seen in Figure 5, the DMR algorithm is able
to achieve strong performance, doing as well as the regres-
sion model despite needing to request labels and pay the
associated cost. In comparison, while the Fixed N algorithm
is able to improve its performance over time, it performs
poorly because it requests more labels than necessary. Fur-
ther the doubling trick does not negatively impact the per-
formance for any algorithm in the experiments, and in fact
DMR seems to benefit in early timesteps. This shows that
the doubling trick preserves not just asymptotic rate but
also finite-sample performance in this setting, allowing the
algorithms to easily adapt to unknown horizon lengths. The
DMR algorithm is able to substantially save on labeling
costs by successfully choosing informative contexts to label,
while still attaining high performance and demonstrating
the value of scalable oversight in linear contextual BwCRO.

6 CONCLUSIONS

We develop algorithms for Bandits with Costly Reward Ob-
servations, and provide theoretical guarantees on their regret.
In particular, we develop the Fixed N algorithm for turning
a large class of conventional bandit algorithms into algo-
rithm for BwCRO, the WiW algorithm, and the DMR heuris-
tic which can exploit instance-specific information in sim-
ple and contextual bandits. Finally, we prove Ω(c1/3T 2/3)
lower bounds for BwCRO, matching the Fixed N regret rate.

Acknowledgements

This research was supported in part by NSF Awards IIS-
1901168, IIS-2008139, and scholarship funding from Open
Philanthropy. All content represents the opinion of the au-
thors, which is not necessarily shared or endorsed by their
respective employers and/or sponsors.

References

Yasin Abbasi-yadkori, Dávid Pál, and Csaba Szepesvári.
Improved algorithms for linear stochastic bandits.
In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira,
and K.Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 24. Curran As-
sociates, Inc., 2011. URL https://proceedings.
neurips.cc/paper/2011/file/
e1d5be1c7f2f456670de3d53c7b54f4a-Paper.
pdf.

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun.
Reinforcement learning: Theory and algorithms. 2023.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Chris-
tiano, John Schulman, and Dan Mané. Concrete problems
in ai safety, 2016. URL https://arxiv.org/abs/
1606.06565.

Kazuoki Azuma. Weighted sums of certain dependent ran-
dom variables. Tohoku Mathematical Journal, Second
Series, 19(3):357–367, 1967.

Gábor Bartók, Dean P Foster, Dávid Pál, Alexander Rakhlin,
and Csaba Szepesvári. Partial monitoring—classification,
regret bounds, and algorithms. Mathematics of Opera-
tions Research, 39(4):967–997, 2014.

Wei Chu, Seung-Taek Park, Todd Beaupre, Nitin Motgi,
Amit Phadke, Seinjuti Chakraborty, and Joe Zachariah. A
case study of behavior-driven conjoint analysis on Yahoo!
Front Page Today module. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1097–1104, 2009.

Varsha Dani, Thomas P Hayes, and Sham M Kakade.
Stochastic linear optimization under bandit feedback.
Conference on Learning Theory, page 355–366, 2008.

Dan Hendrycks, Nicholas Carlini, John Schulman, and Ja-
cob Steinhardt. Unsolved problems in ml safety, 2021.
URL https://arxiv.org/abs/2109.13916.

Wassily Hoeffding. Probability inequalities for sums of
bounded random variables. Journal of the American
statistical association, 58(301):13–30, 1963.

David Krueger, Jan Leike, Owain Evans, and John Salvatier.
Active reinforcement learning: Observing rewards at a
cost. NeurIPS Future of Interactive Learning Machines
(FILM) workshop, 2016.

Lihong Li, Wei Chu, John Langford, and Robert E. Schapire.
A contextual-bandit approach to personalized news ar-
ticle recommendation. In Proceedings of the 19th in-
ternational conference on World wide web - WWW
'10. ACM Press, 2010. doi: 10.1145/1772690.1772758.
URL https://doi.org/10.1145%2F1772690.
1772758.

Sebastian Schulze and Owain Evans. Active reinforce-
ment learning with monte-carlo tree search. CoRR,
abs/1803.04926, 2018. URL http://arxiv.org/
abs/1803.04926.

Aleksandrs Slivkins. Introduction to multi-armed ban-
dits, 2019. URL https://arxiv.org/abs/1904.
07272.

Hastagiri P. Vanchinathan, Isidor Nikolic, Fabio De Bona,
and Andreas Krause. Explore-exploit in top-n recom-
mender systems via gaussian processes. In Proceedings of
the 8th ACM Conference on Recommender Systems, Rec-
Sys ’14, page 225–232, New York, NY, USA, 2014. Asso-
ciation for Computing Machinery. ISBN 9781450326681.
doi: 10.1145/2645710.2645733. URL https://doi.
org/10.1145/2645710.2645733.

https://proceedings.neurips.cc/paper/2011/file/e1d5be1c7f2f456670de3d53c7b54f4a-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/e1d5be1c7f2f456670de3d53c7b54f4a-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/e1d5be1c7f2f456670de3d53c7b54f4a-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/e1d5be1c7f2f456670de3d53c7b54f4a-Paper.pdf
https://arxiv.org/abs/1606.06565
https://arxiv.org/abs/1606.06565
https://arxiv.org/abs/2109.13916
https://doi.org/10.1145%2F1772690.1772758
https://doi.org/10.1145%2F1772690.1772758
http://arxiv.org/abs/1803.04926
http://arxiv.org/abs/1803.04926
https://arxiv.org/abs/1904.07272
https://arxiv.org/abs/1904.07272
https://doi.org/10.1145/2645710.2645733
https://doi.org/10.1145/2645710.2645733

Bandits with Costly Reward Observations Supplementary Material

Aaron D. Tucker Caleb Biddulph* Claire Wang* Thorsten Joachims

Department of Computer Science, Cornell University, Ithaca NY USA
*Equal contribution, authors listed alphabetically

A APPENDIX

A.1 EXPERIMENTAL APPENDIX

A.1.1 Comparison to BAMCP++

Schulze and Evans [2018] presents the BAMCP++ algorithm for the Active RL setting, which is built on top of Bayesian
Monte-Carlo Tree Search, and is applicable to MDP settings as well as bandits. However, it is much more computationally
expensive than the algorithms discussed throughout this paper, and the original publication only evaluated its performance
on bandits up to 40 timesteps. In Figure 6 we show experiments which are directly comparable to the experiment presented
in Figure 3 of Schulze and Evans [2018]. We find that the MCCH heuristic Krueger et al. [2016] is able to achieve higher
performance than BAMCP++, since it also stays close to the line corresponding to requesting 3 labels then performing
optimally, however it also does so in earlier horizons rather than performing at chance until roughly T = 15. All other
algorithms presented perform below chance with their typical hyperparameter settings. While the δ hyperparameter for
the UCB algorithms represents a bound on the probability of the Azuma-Hoeffding bounds failing [Agarwal et al., 2023],
treating it as a freely-chosen hyperparameter and setting δ to higher values causes the DMR and Fixed-N algorithms to
perform comparably to or better than MCCH and BAMCP++.

(a) δ = 0.5 (b) δ = 50 (c) δ = 250

Figure 6: Replication of Figure 3 of Schulze and Evans [2018] with varying settings for the hyperparameter δ. As in Schulze
and Evans [2018], mean and standard error are presented over 100 trials.

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<aarondtucker@cs.cornell.edu>?Subject=Your UAI 2023 paper

(a) d = 5 (b) d = 50 (c) d = 100

Figure 7: Final average per step regret for varying noises σ2, standard error from 20 trials. Note the logarithmic y scale.
T = 10000, k = 5

(a) c = 1 (b) c = 10 (c) c = 100

Figure 11: Final average per step regret for varying noises σ2, standard error from 20 trials. Note the logarithmic y scale.
The contexts have dimension d = 5, drawn from N (0, 1)d and rescaled to size 1.

A.1.2 Impact of Dimension on Linear Contextual Bandit Results

Figure 7 shows that DMR maintains its advantage over the Fixed N algorithm over a variety of context dimensions d and
noise scales. Note that both have lower regret with higher dimensions, likely because the randomly drawn vectors become
more orthogonal with increasing dimension, resulting in smaller differences between the rewards and lower regret.

A.1.3 Hyperparameters

The only hyperparameter for the Fixed N and Worth it Width algorithms is the parameter δ, which is set to 0.5. The MCCH
heuristic from Krueger et al. [2016] also has a single parameter α which is set to 0.1 which appeared to be the best setting in
the paper’s experiments, though they note that the algorithm appears robust to parameter choice.

A.1.4 Impact of Labeling Cost

Figure 12 shows that Fixed-N and WiW have an advantage over MCCH in low cost (c ≤ 1) settings, but that MCCH does
better in higher cost settings. Increasing the episode length generally improves the performance of all algorithms, with more
dramatic impacts for the WiW algorithm in the regime near the predicted worst-case ∆ = 3

√
c/T .

A.1.5 Worth-it-Width Ablations

Figure 13 repeats the Worth-it-Width ablation experiments across a variety of parameter settings, demonstrating that all
steps of the Worth-it-Width algorithm are necessary for best performance.

(a) c = 0.01 (b) c = 0.1 (c) c = 1

Figure 11: Average per-step reward at each timestep for 1000 timesteps rejection sampled using the Yahoo! Frontpage
Dataset. Standard error from 20 trials. Non-red dashed lines correspond to using the doubling trick. Regression skyline
established by training a model on all available data.

A.2 PROOF OF THEOREM 3

Define k bandit problem instances, with each arm being associated with a flip from one of k coins. If the selected coin lands
heads then the agent receives reward 1, and otherwise it receives reward 0. Our bandit problem is then drawn with uniform
probability from these k settings. We additionally analyze a base instance 0 in which all coins are unbiased and have reward
1/2, and in instance j coin j has expected reward (1 + ϵ)/2. Denote the probability of an event A in instance j as Prj(A),
and the expectation of a random variable X in instance j as Ej(X).

We will analyze how often an algorithm plays a given arm j∗ in the base instance 0, then use the fact that the coins have
similar probability distributions to bound the performance in the instance j∗ where the coin is preferred. In order to establish
the bound, we first need to prove a KL divergence lemma. This proof and lemma are again based on Slivkins [2019], and
adapted to the BwCRO setting.

Lemma 1 (KL Bound). For any event A based on n observations of the coin flips, for any j ∈ [1..k],

|Pr
0
(A)− Pr

j
(A)| ≤ ϵ

√
n.

Proof. First, define p and q to be the probability distributions over n independent (ϵ/2)-biased and fai coin flips respectively,
and let pi be the ith flip from the biased coin and qi be the ith flip from the fair coin. The KL divergence between a coin flip
pi with bias ϵ/2 and a fair coin flip qi is as follows:

KL(pi; qi) =
1 + ϵ

2
log (1 + ϵ) +

1− ϵ

2
log (1− ϵ)

=
1

2
log
(
1− ϵ2

)
+

ϵ

2
log

(
1 + ϵ

1− ϵ

)
±1

2
log (1 + ϵ)

≤ ϵ

2
log

(
1 + ϵ

1− ϵ

)
since

1

2
log
(
1− ϵ2

)
< 0

=
ϵ

2
log

(
1 +

2ϵ

1− ϵ

)
≤ ϵ

2

2ϵ

1− ϵ
since log(1 + x) ≤ x for x > 0

≤ 2ϵ2 since 0 ≤ ϵ ≤ 1/2

(a) c = 0.01, T = 1000 (b) c = 0.01, T = 10000 (c) c = 0.01, T = 100000

(d) c = 0.1, T = 1000 (e) c = 0.1, T = 10000 (f) c = 0.1, T = 100000

(g) c = 1, T = 1000 (h) c = 1, T = 10000 (i) c = 1, T = 100000

(j) c = 10, T = 1000 (k) c = 10, T = 10000 (l) c = 10, T = 100000

(m) c = 100, T = 1000 (n) c = 100, T = 10000 (o) c = 100, T = 100000

Figure 12: Final average per step regret for varying values of gaps ∆, across many different horizons T and costs c. Standard
error from 20 trials. Dashed vertical red line is at the predicted worst-case ∆ = 3

√
c/T . Other dashed lines correspond to

using the doubling trick.

(a) c = 0.01, T = 1000 (b) c = 0.01, T = 10000 (c) c = 0.01, T = 100000

(d) c = 0.1, T = 1000 (e) c = 0.1, T = 10000 (f) c = 0.1, T = 100000

(g) c = 1, T = 1000 (h) c = 1, T = 10000 (i) c = 1, T = 100000

(j) c = 10, T = 1000. Note that Baseline’
tracks performance of Baseline (rather than
WiW) for ∆ ≤ 0.3.

(k) c = 10, T = 10000. Note that Baseline’
tracks performance of Baseline (rather than
WiW) for ∆ ≤ 0.1.

(l) c = 10, T = 100000

(m) c = 100, T = 1000 (n) c = 100, T = 10000 (o) c = 100, T = 100000

Figure 13: Simpler baseline comparisons. Final average per step regret for varying values of gaps ∆, across many different
horizons T and costs c. Standard error from 20 trials. Dashed red line is at the predicted worst-case ∆ = 3

√
c/T . Note

the similar performance of the Baseline algorithm to Worth-it-Width for c < 10, and worse performance in the small arm
difference ∆ regime whenever c ≥ 10.

|Pr
0
(A)− Pr

j
(A)| ≤

√
1

2
KL(p; q) by Pinsker’s inequality

≤
√

1

2

∑
i=1

KL(pi; qi) by KL divergence chain rule for independent draws

≤
√

1

2
(2nϵ2) since KL(pi; qi) ≤ 2ϵ2

≤ ϵ
√
n

Theorem 3 The Bandits with Costly Observations setting has a regret lower bound of Ω(c1/3T 2/3).

Proof. The basic idea of the proof is that for every instance j∗ ̸= 0, we can upper bound how many times we play the
optimal arm j∗ by looking at how many times we play j∗ in instance 0, then using a KL divergence lemma to upper bound
the probability of playing coin j∗ in instance j∗ in terms of the number of observations n. This will establish that we cannot
frequently play the coin j∗ in the appropriate instance j∗ without also playing it in the incorrect instances j′ ̸= j∗, leading
to regret.

How many times do we play j∗ in instance 0? Let Q(t)
j be the number of times that the algorithm flips coin j by time t.

Note that by linearity of expectation

k∑
j=1

E0

[
Q

(t)
j

]
= E0

 k∑
j=1

Q
(t)
j

 = E0 [t] = t.

Let Jt = {j : E0[Q
(j)
t] ≤ 3t/k} be the set of coins that the algorithm has not played more than 3/k of the time over the

first t timesteps in instance 0. As previously shown
∑k

j=1 E0

[
Q

(j)
t

]
= t, so Jt must have at least 2k/3 elements since

t =
k∑

j=1

E0

[
Q

(j)
t

]
≥
∑
j /∈Jt

E0

[
Q

(j)
t

]
≥
∑
j /∈Jt

3t

k
≥ | {j : j /∈ Jt} |

3t

k
implies | {j : j /∈ Jt} | ≤ k/3.

By the Markov Inequality E0[Q
(j)]
t ≤ 3t/k implies that for any coin j ∈ Jt and any a

Pr
0

(
Q

(t)
j ≥ a

)
≤ E0[Q

(j)
t]

a
≤ 3t/k

a
, and therefore Pr

0

(
Q

(j)
t < a

)
> 1− 3t

ka
.

Now, we compute the probability that j∗ is played less than a times in instance 0. Let Ej∗ be the event that a given j∗ ∈ JT

and that Q(j∗)
t < a.

Pr
0
(E∗

j) = Pr
inst

(j∗ ∈ JT) Pr
0

(
Q

(j∗)
t < a|j ∈ JT

)
(Randomness in Pr

inst
is over instances)

=
2

3
Pr
0

(
Q

(j∗)
t < a|j ∈ JT

)
since |JT | > 2k/3

>
2

3

(
1− 3T

ka

)
Markov inequality with E0

[
Q

(j∗)
T

]
≤ 3T

k

=
2

3
− 2T

ka

As a sanity check, note that increasing the number of arms raises the lower bound and makes Ej more likely, as does
increasing the threshold a. Increasing T on the other hand makes it less likely.

Expected regret in instance j∗? Assume that the algorithm observed n rewards for arm j∗ over the entire history. We
know from Lemma 1 that for any event A based on n labels |Pr0(A)−Prj(A)| ≤ ϵ

√
n, which lower bounds the probability

Prj∗(Ej∗) of playing j∗ less than a times as

Pr
j∗
(Ej∗) >

2

3
− 2T

ka
− ϵ

√
n.

If j∗ is the best arm with bias (1 + ϵ)/2 and all other coins are fair, then the regret in instance j∗ if event Ej∗ holds is simply
the difference of the two rewards, plus the cost of acquiring n labels.

Ej∗ [RegretT] = Pr
j∗
(Ej∗)Ej∗

[
RegretT |Ej∗

]
+ Pr

j∗
(Ej∗)Ej∗ [RegretT |Ej∗] + cn (1)

≥ Pr
j∗
(Ej∗)Ej∗ [RegretT |Ej∗] + cn (2)

= Pr
j∗
(Ej∗)

(
T
1 + ϵ

2
− T

1 +Q
(T)
j∗ ϵ

2

)
+ cn (3)

≥ Pr
j∗
(Ej∗)

(
T
1 + ϵ

2
− T

1 + aϵ

2

)
+ cn (4)

= Pr
j∗
(Ej∗)

(T − a)ϵ

2
+ cn (5)

>

(
2

3
− 2T

ka
− ϵ

√
n

)
(T − a)ϵ

2
+ cn (6)

Line 2 holds because Prj∗(Ej∗)Ej∗
[
RegretT |Ej∗

]
is positive, line 3 holds by the definition of regret, line 4 holds since Ej∗

is true and so Q
(T)
j∗ < a and −a < −Q

(T)
j∗ , and line 6 holds from the KL divergence lemmas.

Conclusion. Now we can conclude the proof. Recall that a is from the Markov inequality, and so we are free to choose
a = 6T/k, yielding the bound

Ej∗ [RegretT] ≥
(
2

3
− 2Tk

k6T
− ϵ

√
n

)
(T − 6T/k)ϵ

2
+ cn

=

(
1

3
− ϵ

√
n

)
(k − 6)Tϵ

2k
+ cn

=
(k − 6)Tϵ

6k
− (k − 6)Tϵ2

2k

√
n+ cn.

Now, choose ϵ = 3
√
c/T for the coin expected rewards, for a regret bound of

Ej∗ [RegretT] ≥
(k − 6)

6k

3
√
cT 2 − (k − 6)

2k

3
√
c2T

√
n+ cn.

Now, imagine that the algorithm did as well as possible, and minimized this value with respect to n. This yields
√
n =

(k−6)
4k

3
√
T/c, and a regret of

Ej∗ [RegretT] ≥
(k − 6)

6k

3
√
cT 2 − (k − 6)2

16k2
3
√
cT 2,

for an Ω(c1/3T 2/3) regret lower bound, as desired.

A.3 PROOF OF THEOREM 2

With the uniform regret assumption, the O(c1/3T 2/3) regret rate for the Fixed N algorithm is the result of fairly straightfor-
ward algebraic manipulations.

Assumption 3.1 (Uniform Regret Rate). An algorithm A meets the uniform regret assumption if, for all n ≤ T and with
randomness taken over the algorithm’s choices and environment, a) playing according to A while observing labels for
the first n timesteps results in E [Regret◦1:n] ∈ O(n1/2) and b) with randomness taken over the algorithm’s choices and
environment, and if requesting no further labels after the first n timesteps results in

1

T − n
E
[
Regret◦n+1:T

]
≤ 1

n
E [Regret◦1:n] .

Proof. Assume that A meets the uniform regret assumption, so that

1

T − n
E
[
Regretn+1:T

]
≤ 1

n
E [Regret1:n] .

Then, by the definition of O(n1/2) regret there is a constant K and n0 such that for all n > n0

E [Regret1:n] ≤ K
√
n and therefore

1

T − n
E
[
Regretn+1:T

]
≤ 1

n
E [Regret1:n] ≤

K√
n
.

In the BwCO setting, receiving n labels necessarily incurs a regret of cn, so the total regret of using A while labeling the
first n observations is simply

Regret1:T = cn+ E [Regret1:n] + (T − n)
1

T − n
E
[
Regretn+1:T

]
≤ cn+ E [Regret1:n] + (T − n)

1

n
E [Regret1:n]

≤ cn+K
√
n+ (T − n)

K√
n

= cn+ n
K√
n
+ (T − n)

K√
n

= cn+ TKn−1/2

We can now simply minimize this expression with respect to the number of labels n...

d

dn

(
cn+ TKn−1/2

)
= c− TK

2
n−3/2

Solving for c− TKn−3/2/2 = 0, we have

n =

(
TK

2c

)2/3

Since the second derivative 3TKn−5/2/4 is always positive, this is a global minima.

Since the regret Regret1:T is bounded by cn+ TKn−1/2, and since cn+ TKn−1/2 is minimized by setting n =
(
TK
2c

)2/3
,

we can minimize the upper bound on regret by requesting n =
(
TK
2c

)2/3
labels.

Plugging it back into the original expression, we have the desired regret rate

Regret1:T ≤ cn+ TKn−1/2

= c

(
TK

2c

)2/3

+ TK

((
TK

2c

)2/3
)−1/2

= c

(
TK

2c

)2/3

+ TK

(
TK

2c

)−1/3

= c1/3
(
TK

2

)2/3

+ (TK)
2/3

(2c)
1/3

∈ O
(
c1/3K2/3T 2/3

)
.

Note that as c → 0, n → ∞ which makes sense since if the labels are free and always improve performance then the
algorithm should always get the label. In this case, note that n must be less than or equal to T , and therefore we recover the
original regret expression.

Regret1:T ≤ cn+ TKn−1/2 = 0n+ TKn−1/2 = TKT−1/2 = K
√
T

A.4 PROOF OF THEOREM 1

Theorem 1 (Regret Rate for WiW Algorithm). Algorithm 1 has a regret rate of Õ(kc1/3T 2/3) with high probability.

Proof. The proof has two main claims – that we will hit a termination condition within Õ(k(T/c)2/3) labels, and that upon
doing so the regret will be bounded by Õ(kT 2/3).

Termination. We show that the algorithm terminates after Õ(T 2/3) labels by showing that the number of labels necessary
for the algorithm to terminate can be bounded by the number of labels necessary for u(a)

t − ℓ
(a)
t < w to hold for all arms.

First, note that since g
(a)
t = u

(a)
t − νt and νt = max ℓ

(a)
t , an arm’s gap g

(a)
t is bounded above by u

(a)
t − ℓ

(a)
t .

g
(a)
t = u

(a)
t − νt = u

(a)
t −max

a∈A
ℓ
(a)
t ≤ u

(a)
t − ℓ

(a)
t

Therefore, u(a)
t − ℓ

(a)
t ≤ w implies that g(a)t ≤ w. Similarly, if u(a)

t − ℓ
(a)
t ≤ w for all arms a ∈ A then g

(a)
t ≤ w for all

arms a ∈ A and the first termination condition holds.

Now, we solve for how many reward observations for an arm a are necessary for g(a)t ≤ u
(a)
t − ℓ

(a)
t ≤ w.

u
(a)
t − ℓ

(a)
t = µ

(a)
t +

√
log(kT/δ)

n
(a)
t

−

(
µ
(a)
t −

√
log(kT/δ)

n
(a)
t

)
= 2

√
log(kT/δ)

n
(a)
t

=

√
4 log(kT/δ)

n
(a)
t

u
(a)
t − ℓ

(a)
t =

√
4 log(kT/δ)

n
(a)
t

≤ 3

√
4c log(kT/δ)

T
= w

3
√
4 log(kT/δ)(T/c)2/3 ≤ n

(a)
t

Therefore, an arm a needs to be played at most 3
√
4 log(kT/δ)(T/c)2/3 times in order for g(a)t ≤ w to hold.

Second, note that since the arm always plays the least played arm associated with the maximum gap, it takes at most
2 3
√

4 log(kT/δ)(T/c)2/3 labels for a gap for both of the associated arms to have u
(a)
t − ℓ

(a)
t ≤ w hold, and therefore

for g(a)t ≤ w to hold. Further, since the algorithm always plays an arm associated with the maximum gap, it will be
decreasing all of the k gaps until it terminates. Therefore, the algorithm will reach the first termination condition after at
most 2k 3

√
4 log(kT/δ)(T/c)2/3 labels. Note that the second termination condition may be reached sooner than this if all

but the holdout arm have g
(a)
t ≤ w.

Therefore in conclusion, the algorithm will commit to an arm after at most 2k 3
√

4 log(kT/δ)(T/c)2/3 labels. We can upper
bound the regret incurred during this phase by (1 + c) times the length of the labeling phase to represent paying regret for
the largest possible reward difference between the arms as well as the labeling cost c, totaling in a regret of at most

2(1 + c)k 3
√
4 log(kT/δ)(T/c)2/3.

Regret. There are two regret cases to cover, one for if the first termination is reached, and another for if the second
termination condition is reached.

In the first case, we commit to playing the arm aνt associated with νt after g(a)t ≤ w for all arms. Since g
(a)
t = u

(a)
t − νt =

u
(a)
t − νt = u

(a)
t − νt and since with high probability for all arms a ∈ A, ℓ(a)t ≤ µ∗(a) ≤ u

(a)
t , it follows that g(a)t is an

upper bound on the per-turn regret of choosing aνt instead of a.

g
(a)
t ≥ µa − νt Hoeffding bound

= µa − ℓ
(aν

t)
t Definition of νt

≥ µa − µ(aν
t) Hoeffding bound.

Since g(a)t ≤ w for all arms, it then follows that the per-turn regret of committing to aν is at most w =
3

√
c log(kT/δ)

T
. The

regret after committing can be bounded by T times the maximum possible per-turn regret, yielding a regret of at most

T
3

√
c log(kT/δ)

T
= 3
√
c log(kT/δ)T 2/3.

In the second case, the arm a with the maximum gap g
(a)
t is the holdout arm, while every other a′ is such that g(a

′)
t ≤ w. In

this case, w still bounds the per-turn regret of choosing a instead of some other a′, and has the same regret bound.

Conclusion. Adding together the two regret terms, we have 2(1 + c)k 3
√
4 log(kT/δ)(T/c)2/3 + 3

√
c log(kT/δ)T 2/3, for

a total Õ(c1/3T 2/3) regret of

k 3
√
c log(kT/δ)(T/c)2/3 + (1 + 2k) 3

√
4c log(kT/δ)T 2/3 ∈ Õ(c1/3T 2/3).

References

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and algorithms. 2023.

David Krueger, Jan Leike, Owain Evans, and John Salvatier. Active reinforcement learning: Observing rewards at a cost.
NeurIPS Future of Interactive Learning Machines (FILM) workshop, 2016.

Sebastian Schulze and Owain Evans. Active reinforcement learning with monte-carlo tree search. CoRR, abs/1803.04926,
2018. URL http://arxiv.org/abs/1803.04926.

Aleksandrs Slivkins. Introduction to multi-armed bandits, 2019. URL https://arxiv.org/abs/1904.07272.

http://arxiv.org/abs/1803.04926
https://arxiv.org/abs/1904.07272

	Costly_Bandits_UAI (2)
	Introduction
	Setting Description
	Setting Description
	Background and Related Work

	Algorithms
	Algorithm for Multi-armed BwCRO
	One-armed Bandit Setting and Algorithm
	Multi-armed Bandit Algorithm

	General Algorithm for BwCRO
	Linear Contextual BwCRO
	 Max Regret Heuristic
	Linear Contextual BwCRO Algorithm

	Lower bound
	Experiments
	Multi-Armed Bandit Evaluation
	Linear Contextual Evaluation
	Evaluation on Real-World Data

	Conclusions

	Costly_Bandits_UAI (3)
	Appendix
	Experimental Appendix
	Comparison to BAMCP++
	Impact of Dimension on Linear Contextual Bandit Results
	Hyperparameters
	Impact of Labeling Cost
	Worth-it-Width Ablations

	Proof of Theorem 3
	Proof of Theorem 2
	Proof of Theorem 1

