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ABSTRACT
Automatically judging the quality of retrieval functions
based on observable user behavior holds promise for making
retrieval evaluation faster, cheaper, and more user centered.
However, the relationship between observable user behavior
and retrieval quality is not yet fully understood. We present
a sequence of studies investigating this relationship for an
operational search engine on the arXiv.org e-print archive.
We find that none of the eight absolute usage metrics we
explore (e.g., number of clicks, frequency of query reformu-
lations, abandonment) reliably reflect retrieval quality for
the sample sizes we consider. However, we find that paired
experiment designs adapted from sensory analysis produce
accurate and reliable statements about the relative qual-
ity of two retrieval functions. In particular, we investigate
two paired comparison tests that analyze clickthrough data
from an interleaved presentation of ranking pairs, and we
find that both give accurate and consistent results. We con-
clude that both paired comparison tests give substantially
more accurate and sensitive evaluation results than absolute
usage metrics in our domain.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval.

General Terms: Measurement, Human Factors.

Keywords: Implicit feedback, retrieval evaluation,
expert judgments, clickthrough data.

1. INTRODUCTION
While the traditional Cranfield methodology has proven

itself effective for evaluating the quality of ranked retrieval
functions, its associated cost and turnaround times are eco-
nomical only in large domains such as non-personalized Web
search. Instead, retrieval applications from Desktop Search,
to searching Wikipedia, to Intranet Search demand more
flexible and efficient evaluation methods. One promising di-
rection is evaluation based on implicit judgments from ob-
servable user behavior such as clicks, query reformulations,
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and response times. The potential advantages are clear.
Unlike expert judgments, usage data can be collected at es-
sentially zero cost, it is available in real time, and it reflects
the values of the users, not those of judges far removed from
the users’ context at the time of the information need.

The key problem with retrieval evaluation based on usage
data lies in its proper interpretation – in particular, under-
standing how certain observable statistics relate to retrieval
quality. In this paper, we shed light onto this relationship
through a user study with an operational search engine we
deployed on the arXiv.org e-print archive. The study fol-
lows a controlled experiment design that is unlike previous
evaluations of implicit feedback, which mostly investigated
document-level relationships between (expert or user anno-
tated) relevance and user behavior (e.g. [1, 8, 10]). Instead,
we construct multiple retrieval functions for which we know
their relative retrieval quality by construction (e.g. a stan-
dard retrieval function vs. the same function with some re-
sults randomly swapped within the top 5). Fielding these
retrieval functions in our search engine, we test how implicit
feedback statistics reflect the difference in retrieval quality.

Specifically, we compare two evaluation methodologies,
which we term “Absolute Metrics” and “Paired Compari-
son Tests”. Using absolute metrics for evaluation follows
the hypothesis that retrieval quality impacts observable user
behavior in an absolute sense (e.g. better retrieval leads to
higher-ranked clicks, better retrieval leads to faster clicks).
We formulate eight such absolute metrics and hypothesize
how they will change with improved retrieval quality. We
then test whether these hypotheses hold in our search en-
gine. The second evaluation methodology, paired compari-
son tests, was first proposed for retrieval evaluation in [12,
13]. They follow experiment designs from the field of sen-
sory analysis (see e.g. [17]). When, for example, studying the
taste of a new product, subjects are not asked to indepen-
dently rate the product on an absolute scale, but are instead
given a second product and asked to express a preference
between the two. Joachims [12, 13] proposed a method for
interleaving the rankings from a pair of retrieval functions
so that clicks provide a blind preference judgment. We call
this method Balanced Interleaving. In this paper, we evalu-
ate the accuracy of Balanced Interleaving on the arXiv, and
also propose a new Team-Draft Interleaving method that
overcomes potential problems of Balanced Interleaving for
rankings that are close to identical.

The findings of our user study can be summarized as fol-
lows. None of the eight absolute metrics reflect retrieval
performance in a significant, easily interpretable, and reli-
able way with the sample sizes we consider. In contrast,



both interleaving tests accurately reflect the known differ-
ences in retrieval quality, inferring consistent and in most
cases significant preferences in the correct direction given
the same amount of user behavior data.

2. RELATED WORK
The Cranfield evaluation methodology commonly applied

in TREC (see e.g. [23]) uses relevance judgments provided
manually by trained experts. For each query, a label spec-
ifies the relevance of each document on a graded relevance
scale. Given a ranking produced in response to a query, the
judgments for the top ranked documents can be aggregated
to assess the quality of the ranking. Averaging over many
queries yields average performance scores such as NDCG,
Mean Average Precision and Precision at K (see e.g. [19]).

However, the process of obtaining expert relevance judg-
ments is time consuming [7] and thus expensive. For in-
stance, when designing Web search systems for subgroups
of the general population (for example, academic audiences)
or specialized document collections (for instance, digital li-
braries), the cost of obtaining relevance judgments for eval-
uation can be prohibitive. Moreover, it can be difficult for
expert relevance judges to infer the intent of user queries.
Consequently, there is a danger that the resulting annota-
tions are not representative of the true distribution of in-
formation needs. Finally, even when expert judgments are
available for computing standard performance metrics, some
of the metrics have been shown to not necessarily correlate
with user-centric performance measures [22].

While a number of researchers have considered how to re-
duce the amount of labeling effort necessary for evaluation
(e.g. [21, 5, 3, 6]), or how to obtain evaluation datasets
more representative of realistic usage scenarios (e.g. [20]),
we follow an alternative evaluation methodology: measuring
the quality of ranking functions without expert judgments,
but purely by observing natural user interactions with the
search engine. This is motivated by the simplicity of record-
ing user behavior such as querying and clicking. We ask
whether there are universal properties of user behavior that
can be used to evaluate ranking quality.

Numerous proposals for evaluating ranking quality based
on user behavior have previously been explored. Kelly &
Teevan give an overview [15]. Most of these fall into the
category of Absolute Metrics, which we will evaluate in our
user study. For instance, Fox et al. [10] learned to predict
whether users were satisfied with specific search queries us-
ing implicitly collected feedback. They found a number of
particularly indicative features, such as time spent on re-
sult pages and how the search session was terminated (e.g.,
by closing the browser window or by typing a new Internet
address). However, many of the most informative features
they identified cannot be collected unless users are using a
modified Web browser. Similarly, Carterette & Jones [8]
looked at whether they can identify the better of two rank-
ing functions using clicks. They found that by training a
probabilistic click model, they can predict the probability of
relevance for each result. Aggregating over entire rankings,
they were able to reliably predict the better of two rankings
in terms of NDCG. Others who have studied usage-based
retrieval evaluation include [4, 13, 1, 2, 9, 11, 18].

3. DESIGN OF THE USER STUDY
To evaluate the relationship between implicit feedback

and ranking quality, we implemented a search engine over

the arXiv.org e-print archive1. This archive consists of a
collection of several hundred thousand academic articles. It
is used daily by many thousands of users, predominantly
scientists from the fields of physics, mathematics and com-
puter science. Hundreds of these users use our search engine
on any particular day.

The basic design of our study can be summarized as fol-
lows. Starting with an initial (hand-tuned) ranking func-
tion f1, we derive several other retrieval functions by ar-
tificially degrading their retrieval quality compared to f1.
In particular, we constructed triplets of ranking functions
f1 � f2 � f3, using the notation fi � fj to indicate that
the retrieval quality of ranking function fi is better than that
of fj . For each such triplet of ranking functions, we know by
construction that f1 outperforms f2, and that both outper-
form f3. We then expose the users of arxiv.org to these three
ranking functions as detailed below, and analyze whether,
and under which types of exposure, their observable behav-
ior reflects the known differences in retrieval quality.

Over three one-month periods we fielded triplets of rank-
ing functions in the arXiv.org search engine. Our users were
unaware of the experiments being conducted. As the users
interacted with the search engine, we recorded the queries
issued, and the results clicked on. We then performed ag-
gregate analyses of the observed behavior.

3.1 Constructing Comparison Triplets
We start by describing how we created two sets of ranking

functions with known relative retrieval performance. Given
that our document collection consisted of academic articles
with rich meta-data, we started with an original ranking
function, called Orig, that scores each document by com-
puting a sum of the match between the query and the follow-
ing document fields: authors, title, abstract, full text, arXiv
identifier, article category, article area, article submitter,
any journal reference and any author-provided comments.
The first four fields are usually most important in matching
results to queries. Note that this retrieval function weights,
for example, words in the title more heavily, since these title
words occur in multiple fields (e.g. title and full text). Our
search engine was implemented on top of Lucene2, which
implements a standard cosine similarity matching function.

3.1.1 “Orig�Flat�Rand”-Comparison
To create the first triplet of ranking functions, we first

eliminated much of the meta-data available, then random-
ized the top search results. Specifically, the first degraded
ranking function, Flat, only computes the sum of the mat-
ches in the article full text, author list and article identifier.
Note that while the abstract and title are included in the
full text, by not scoring contributions on each field indepen-
dently, we reduced the weight placed on those (usually par-
ticularly important) fields. Second, ranking function Rand
randomized the order of the top 11 results returned by Flat.
The documents below rank 11 were presented unchanged.
By construction, we now have a triplet of ranking functions
where it is safe to assume that Orig � Flat � Rand.
In fact, our subjective impression is that these three rank-
ing functions deliver substantially different retrieval quality
– especially Orig � Rand – and any suitable evaluation
method should be able to detect this difference.

1Operational at http://search.arxiv.org/
2Available at http://lucene.apache.org/



Figure 1: Screenshot of how results are presented.

3.1.2 “Orig�Swap2�Swap4”-Comparison
To create a second triplet of ranking functions that shows

a more subtle difference in retrieval quality, we degrade per-
formance in a different way. Starting again with our retrieval
function Orig, Swap2 randomly selects two documents in
the top 5 and swaps them with two random documents from
rank 7 through 11. This swapping pattern is then replicated
on all later result pages (i.e., swapping two documents be-
tween ranks 11 and 15 with two originally ranked between 17
and 21, etc.). Increasing the degradation, Swap4 is identical
to Swap2, but it randomly selects four documents to swap.
This gives us a second triplet of ranking functions, where by
construction we know that Orig � Swap2 � Swap4. Here
we believe the differences are smaller. In particular, the top
11 results always contain the same set of documents, just in
a different order.

3.2 Users and System Design
Figure 1 illustrates the user interface of the search engine.

It takes a set of keywords as a query, and returns a ranking
of 10 results per page. For each result, we show authors,
title, year, a query-sensitive snippet, and the arXiv ID of
the paper. We register a “click” whenever a user follows a
hyperlink associated with a result. These clicks lead to a
metadata page from where a PDF is available for download.

3.2.1 User Assignment to Experimental Conditions
Given the nature of the document collection, consisting

mostly of scientific articles from the fields of Physics, Math-
ematics, Computer Science, and to a lesser extent Nonlinear
Sciences, Quantitative Biology and Statistics, we suspect
that many of our users are researchers and students from
these disciplines. On average, our search engine received
about 700 queries per day from about 300 distinct IP ad-
dresses, registering about 600 clicks on results.

We identify users by their IP address. Since this defini-
tion of user is primarily used for identifying spammers and
bots, we find it sufficient even though in some cases it may
conflate multiple people working on the same computer or
through a proxy. The IP address is also used to (pseudo)
randomly assign users to various experimental conditions in
our study (e.g. the condition “users who receive the results

from Flat”). In particular, we segment the user popula-
tion based on an MD5-hash of IP address and user agent
reported by the browser. This method of assignment en-
sures that users consistently receive the same experiment
condition. In particular, any time a user repeats a query, he
or she will get exactly the same results.

3.2.2 Data Collection
We recorded queries submitted, as well as clicks on search

results. Each record included the experimental condition,
the time, IP address, browser, a session identifier and a
query identifier.

We define a session as a sequence of interactions (clicks or
queries) between a user and the search engine where less
than 30 minutes passes between subsequent interactions.
When attributing clicks to query results, we only counted
clicks occurring within the same session as the query. This
was necessary to eliminate clicks that appeared to come from
saved or cached search results. Note that it is still possible
for clicks to occur hours after the query, if the user was
continuously interacting with the search engine.

3.2.3 Quality Control and Testing
To test the system and our experiment setup, we con-

ducted a test run between November 3rd and December 5th,
2007. Based on this data, we refined our methods for data
cleaning and spam detection (described below), refined the
system and experiment design, and validated the correct-
ness of the software. For all crucial parts of data analysis,
the first two authors of this paper each independently imple-
mented analysis code then compared their results to detect
potential bugs.

4. EXPERIMENT 1:
ABSOLUTE METRICS

We can now ask: Do absolute metrics reflect retrieval
quality? We define absolute metrics as usage statistics that
can be hypothesized to monotonically change with retrieval
quality. In this paper, we explore eight such metrics that
quantify the clicking and session behavior of users.

4.1 Absolute Metrics and Hypotheses
We measured the following metrics. Many of them were

previously suggested in the literature, as they reflect the
key actions that users can choose to perform after issuing a
query: clicking, reformulating or abandoning the search.

Abandonment Rate The fraction of queries for which no
results were clicked on.

Reformulation Rate The fraction of queries that were
followed by another query during
the same session.

Queries per Session The mean number of queries issued
by a user during a session.

Clicks per Query The mean number of results that
are clicked for each query.

Max Reciprocal Rank† The mean value of 1/r, where r is
the rank of the highest ranked re-
sult clicked on.

Mean Reciprocal Rank† The mean value of
∑

1/ri, sum-
ming over the ranks ri of all clicks
for each query.

tj
Note
Revised 10/05/08: Removed "cross-mark" from Clicks per Query. Clicks per Query is computed over all queries, not only those that have at least one click.



Table 1: Absolute metrics for the “Orig�Flat�Rand” and the “Orig�Swap2�Swap4” comparison (± two
standard errors / 95% confidence intervals). The second column shows the hypothesized change when retrieval
quality is degraded.

Orig�Flat�Rand Orig�Swap2�Swap4
H1 Orig Flat Rand Orig Swap2 Swap4

Abandonment Rate (Mean) < 0.680± 0.021 0.725± 0.020 0.726± 0.020 0.704± 0.021 0.680± 0.021 0.698± 0.021
Reformulation Rate (Mean) < 0.247± 0.021 0.257± 0.021 0.260± 0.021 0.248± 0.021 0.250± 0.021 0.248± 0.021
Queries per Session (Mean) < 1.925± 0.098 1.963± 0.100 2.000± 0.115 1.971± 0.110 1.957± 0.099 1.884± 0.091
Clicks per Query (Mean) > 0.713± 0.091 0.556± 0.081 0.533± 0.077 0.720± 0.098 0.760± 0.127 0.734± 0.125
Max Reciprocal Rank (Mean) > 0.554± 0.029 0.520± 0.029 0.518± 0.030 0.538± 0.029 0.559± 0.028 0.488± 0.029
Mean Reciprocal Rank (Mean) > 0.458± 0.027 0.442± 0.027 0.439± 0.028 0.444± 0.027 0.467± 0.027 0.394± 0.026
Time (s) to First Click (Median) < 31.0± 3.3 30.0± 3.3 32.0± 4.0 28.0± 2.2 28.0± 3.0 32.0± 3.5
Time (s) to Last Click (Median) > 64.0± 19.0 60.0± 14.0 62.0± 9.0 71.0± 19.0 56.0± 10.0 66.0± 15.0

Time to First Click† The mean time from query being is-
sued until first click on any result.

Time to Last Click† The mean time from query being is-
sued until last click on any result.

When computing the metrics marked with †, we exclude
queries with no clicks to avoid conflating this measure with
abandonment rate. For each metric, we hypothesize how we
expect the metric to change as retrieval quality decreases:

Metric Change as ranking gets worse
Abandonment rate Increase (more bad result sets)
Reformulation rate Increase (more need to reformulate)
Queries per session Increase (more need to reformulate)

Clicks per query Decrease (fewer relevant results)
Max recip. rank Decrease (top results are worse)

Mean recip. rank Decrease (more need for many clicks)
Time to first click Increase (good results are lower)
Time to last click Decrease (fewer relevant results)

Even if the hypothesized directions of change are incor-
rect, we at least expect these metrics to change monotoni-
cally with retrieval quality. We now test these hypotheses
for Orig�Flat�Rand and Orig�Swap2�Swap4.

4.2 Experiment Setup
We evaluate the absolute metrics in two phases. Data for

the triplet of ranking functions Orig�Swap2�Swap4 was
collected from December 19th, 2007 to January 25th, 2008
(Phase I); for the ranking functions Orig�Flat�Rand, it
was collected from January 27th to February 25th, 2008
(Phase II). During each phase, each of the three ranking
functions were assigned one experimental condition, receiv-
ing 1/6th of search engine visitors. This means that in
Phase I, 1/6th of the users saw the results from Orig, an-
other 1/6th saw the results from Flat, and yet another
1/6th got the results from Rand. In Phase II, the assign-
ment was done analogously for Orig, Swap2, and Swap4.
The remaining 50% of the visitors were assigned to paired
comparison conditions described in Section 5.

During our test run prior to these evaluations, we noticed
that bots and spammers throw off our results. To compute
the absolute metrics robustly, we processed the raw logs as
follows. First, we eliminated all users who clicked on more
than 100 results on any day of our study. This eliminated
under 10 users in each condition. We then computed each
metric for every user, averaging over all queries submitted
by that user. Finally, we computed the median (for the time
to click metrics) or mean (for the others) across all users.
Even without complicated heuristics for detecting individual

spammers or bots, this per-user aggregation is more robust
than naive per-query aggregation. For instance, suppose
we have 99 users and one spammer (or bot). Suppose the
spammer ran 100 queries and always clicked on all top 10
results, while each of the 99 normal users ran just one query
and clicked on one result. The average number of clicks per
query that we compute is (1× 10 + 99× 1)/100 = 1.09, not
(100× 10 + 99× 1)/199 = 5.5 as in query-based averaging.

4.3 Results and Discussion
The measured values (± two standard errors / 95% con-

fidence interval) are reported in Table 1 for each absolute
metric and each ranking function. The column labeled H1

indicates our hypothesized change in the metric if retrieval
quality is decreased. Upon inspection, one observes that
none of the metrics consistently follows the hypothesized
behavior. The number of pairs A � B where the observed
value follows (X) or opposes ( ) the hypothesized change
is summarized in the “weak” columns of Table 2. It shows
that, for example, the abandonment rate agrees with our hy-
pothesis for four pairs of ranking functions (Orig � Flat,
Flat � Rand, Orig � Rand and Swap2 � Swap4). How-
ever, for the remaining two pairs, it changes in the opposite
direction. Even more strongly, none of the absolute metrics
even changes strictly monotonically with retrieval quality.

The lack of consistency with the hypothesized change could
partly be due to measurement noise, since the elements of
Table 2 are estimates of a population mean/median. The
column “signif” of Table 2 shows for how many pairs A � B
we can significantly (95% one-tailed confidence t-test for
mean, χ2-test for median) reject our hypothesis H1 ( ) or
reject its negation (X). We do not see a significant differ-
ence in the hypothesized direction for more than three out
of the six pairs A � B for any of the absolute metrics. With
the exception of Max Reciprocal Rank, not even the “large
difference” pairs Orig � Rand and Orig � Swap4 are
consistently significant for any of the metrics. This suggests
that, at best, we need substantially more data in order to
use these absolute metrics reliably, making them unsuitable
for low-volume search applications like desktop search, per-
sonalized Web search, and intranet search.

Figures 2 and 3 present a more detailed view of these met-
rics, giving some insight into how the estimates developed
over time. The plots show the respective estimate after the
first n distinct users (i.e. distinct IP addresses). Each data-
point represents a different cutoff date on which we com-
puted the metric over all prior data. The error bars indicate
one standard error / 66% confidence interval. First, many
of the curves still cross towards the end, indicating that



Table 2: Comparing the number of correct (“X”)
and false (“ ”) preferences implied by the absolute
metrics, aggregated over the ‘Orig�Flat�Rand”
and the “Orig�Swap2�Swap4” comparison. A pref-
erence is weakly correct/false, if observed value fol-
lows/contradicts the hypothesis. A preference is sig-
nificantly correct/false, if the difference between the
observed values is statistically significant (95%) in
the respective direction.

weak signif
X  X  

Abandonment Rate (Mean) 4 2 2 0
Reformulation Rate (Mean) 4 2 0 0
Queries per Session (Mean) 3 3 0 0
Clicks per Query (Mean) 4 2 2 0
Max Reciprocal Rank (Mean) 5 1 3 0
Mean Reciprocal Rank (Mean) 5 1 2 0
Time (s) to First Click (Median) 4 1 0 0
Time (s) to Last Click (Median) 4 2 1 1

the estimates have indeed not yet converged with sufficient
precision. Second, the plots show that the (Gaussian) er-
ror bars are reasonable as confidence intervals for the mean,
and therefore so is the t-test. In particular, the curves do
indeed terminate within the two standard error interval of
most prior data-points. This also suggests that there are no
substantial temporal changes (e.g. bot or spam attacks that
we do not catch in our pre-processing) within each of the ex-
periments. However, note that in Table 1 the Abandonment
Rate and the Time to First Click of Orig are significantly
different between the data collected over Christmas and the
data collected in February. Our conjecture is that this is
due to differences in user population and context (e.g. break
vs. semester). It appears that the impact of these population
differences on some of the absolute metrics can be of sim-
ilar magnitude as the desirable differences due to retrieval
quality, confirming that only data collected during the same
time period can be meaningfully compared.

5. EXPERIMENT 2:
PAIRED COMPARISON TESTS

Paired comparison tests are one of the central experiment
designs used in sensory analysis. When testing a perceptual
quality of an item (e.g. taste, sound), it is recognized that
absolute (Likert-scale) evaluations are difficult to make. In-
stead, subjects are presented with two or more alternatives
and are asked to identify a difference or state a preference.
In the simplest case, subjects are given two alternatives and
are asked which of the two they prefer. For the evaluation of
retrieval functions, this experiment design was first explored
in [12, 13]. In particular, this work proposed a method for
presenting the results from two retrieval functions so that
clicks indicate a user’s preference between the two. In con-
trast to the absolute metrics discussed so far, paired com-
parison tests do not assume that observable user behavior
changes with retrieval quality on some absolute scale, but
merely that users can identify the preferred alternative in a
direct comparison.

5.1 Balanced Interleaving Method
The key design issue for a paired comparison test between

two retrieval functions is the method of presentation. As
outlined in [13], the design should be (a) blind to the user

Algorithm 1 Balanced Interleaving

Input: Rankings A = (a1, a2, . . . ) and B = (b1, b2, . . . )
I ← (); ka ← 1; kb ← 1;
AFirst← RandBit() . . . .decide which ranking gets priority

while (ka≤|A|) ∧ (kb≤|B|) do . . . if not at end of A or B

if (ka < kb) ∨ ((ka = kb) ∧ (AFirst = 1)) then
if A[ka] 6∈I then I←I+A[ka] . . append next A result

ka ← ka + 1
else

if B[kb] 6∈I then I←I+B[kb] . . append next B result

kb ← kb + 1
end if

end while
Output: Interleaved ranking I

Input Interleaved Rankings
Ranking Balanced Team-Draft

Rank A B Afirst B first AAA BAA ABA ...
1 a b a b aA bB aA

2 b e b a bB aA bB

3 c a e e cA cA eB

4 d f c c eB eB cA

5 g g d f dA dA dA

6 h h f d fB fB fB...
...

...
...

...
...

...
...

Figure 4: Examples illustrating how the Balanced
and the Team-Draft methods interleave input rank-
ings A and B for different outcomes of the random
coin flips. Superscript for the Team-Draft interleav-
ings indicates team membership.

with respect to the underlying conditions, (b) it should be
robust to biases in the user’s decision process that do not
relate to retrieval quality, (c) it should not substantially alter
the search experience, and (d) it should lead to clicks that
reflect the user’s preference. The naive approach of simply
presenting two rankings side by side would clearly violate
(c), and it is not clear whether biases in user behavior would
actually lead to meaningful clicks.

To overcome these problems, [12, 13] proposed a presen-
tation where two rankings A and B are interleaved into a
single ranking I in a balanced way. The interleaved ranking
I is then presented to the user. This particular method of
interleaving A and B ensures that any top k results in I al-
ways contain the top ka results from A and the top kb results
from B, where ka and kb differ by at most 1. Intuitively, a
user reading the results in I from top to bottom will have
always seen approximately an equal number of results from
each of A and B.

It can be shown that such an interleaved ranking always
exists for any pair of rankings A and B, and that it is com-
puted by Algorithm 1 [13]. The algorithm constructs this
ranking by maintaining two pointers, namely ka and kb, and
then interleaving greedily. The pointers are set to always
point at the highest ranked result in the respective origi-
nal ranking that is not yet in the combined ranking. To
construct I, the lagging pointer among ka and kb is used to
select the next result to add to I. Ties are broken randomly.
An example of such a combined ranking is presented in the
column “Balanced” of Figure 4, separate for each outcome
of the initial tie-breaking coin toss.

Given an interleaving I of two rankings presented to the
user, one can derive a preference statement from user clicks.
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Figure 2: Measurements of the first four absolute performance metrics, for Orig�Flat�Rand on the left, and
Orig�Swap2�Swap4 on the right. The error bars indicate one standard error / 66% confidence interval.
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Figure 3: Measurements of the last four absolute performance metrics, for Orig�Flat�Rand on the left, and
Orig�Swap2�Swap4 on the right. The error bars indicate one standard error / 66% confidence interval.



In particular, let’s assume that the user reads results from
top to bottom (as supported by eye-tracking studies [14]),
and that the number of links l viewed in I is known and
fixed a priori. This means the user has l choices to click on,
and an almost equal number came from A and from B. So, a
randomly clicking user has approximately an equal chance of
clicking on a result from A as from B. If we see significantly
more clicks on results from one of the two retrieval functions,
we can infer a preference.

More formally, denote A = (a1, a2, ...), B = (b1, b2, ...),
I = (i1, i2, ...), and let c1, c2, ... be the ranks of the clicks
w.r.t. I. To estimate l, [13] proposes to use the lowest
ranked click, namely l ≈ cmax = max{c1, c2, ...}. Further-
more, to derive a preference between A and B, one compares
the number of clicks in the top

k = min{j : (icmax = aj) ∨ (icmax = bj)} (1)

results of A and B. In particular, the number ha of clicks
attributed to A and the number hb of clicks attributed to B
is computed as

ha = |{cj : icj ∈ (a1, ..., ak)}| (2)

hb = |{cj : icj ∈ (b1, ..., bk)}|. (3)

If ha > hb we infer a preference for A, if ha < hb we infer a
preference for B, and if ha = hb we infer no preference.

To further illustrate how preferences are derived from
clicks in the interleaved ranking, suppose the user clicked
on documents b and e in either of the two balanced inter-
leavings shown in Figure 4. Here, k = 2, and the top 3
documents in I were constructed by combining the top 2 re-
sults from A and B. Both clicked documents are in the top
2 of ranking B, but only one (b) is in the top 2 or ranking
A. Hence the user has expressed a preference for ranking B.

Over a sample of queries and users, denote with wins(A)
the number of times A was preferred, and with wins(B)
the number of times B was preferred. Using a binomial sign
test, we can test whether one ranking function was preferred
significantly more often.

5.2 Team-Draft Interleaving Method
Unfortunately, using Eq. 1 to estimate the number of

results seen from each ranking can potentially lead to bi-
ased results for Balanced Interleaving in some cases, espe-
cially when rankings A and B are almost identical up to
a small shift or insertion. For example, suppose we have
A = (a, b, c, d) and B = (b, c, d, a). Depending on which
ranking starts in Alg. 1, interleaving will either produce
I = (a, b, c, d) or I = (b, a, c, d). Note that in both cases,
a user who clicks uniformly at random on one of the results
in I would produce a preference for B more often than for
A, which is clearly undesirable. We now describe an inter-
leaving approach that does not suffer from this problem.

The new interleaving algorithm, called Team-Draft Inter-
leaving, follows the analogy of selecting teams for a friendly
team-sports match. One common approach is to first select
two team captains, who then take turns selecting players for
their team. We can use an adapted version of this algorithm
for creating interleaved rankings. Suppose each document
is a player, and rankings A and B are the preference orders
of the two team captains. In each round, captains pick the
next player by selecting their most preferred player that is
still available, add the player to their team and append the
player to the interleaved ranking I. We randomize which

Algorithm 2 Team-Draft Interleaving

Input: Rankings A = (a1, a2, . . . ) and B = (b1, b2, . . . )
Init: I ← ();TeamA← ∅;TeamB ← ∅;
while (∃i : A[i] 6∈ I) ∧ (∃j : B[j] 6∈ I) do

if (|TeamA| < |TeamB|) ∨
((|TeamA|= |TeamB|) ∧ (RandBit()=1)) then
k ← mini{i : A[i] 6∈ I} . . . . . top result in A not yet in I

I ← I +A[k]; . . . . . . . . . . . . . . . . . . . . . . . . . .append it to I

TeamA← TeamA ∪ {A[k]} . . . . . . clicks credited to A

else
k ← mini{i : B[i] 6∈ I} . . . . . top result in B not yet in I

I ← I +B[k] . . . . . . . . . . . . . . . . . . . . . . . . . . append it to I

TeamB ← TeamB ∪ {B[k]} . . . . . . clicks credited to B

end if
end while
Output: Interleaved ranking I, TeamA, TeamB

captain gets to pick first in each round. The algorithm is
summarized in Algorithm 2, and the column “Team-Draft”
of Figure 4 gives an illustrative example.

To derive a preference between A and B from the observed
clicking behavior in I, again denote the ranks of the clicks
in the interleaved ranking I = (i1, i2, ...) with c1, c2, .... We
then attribute the clicks to ranking A or B based on which
team the clicked result is on. In particular,

ha = |{cj : icj ∈ TeamA}| (4)

hb = |{cj : icj ∈ TeamB}|. (5)

If ha > hb we infer a preference for A, if ha < hb we infer
a preference for B, and if ha = hb we infer no preference.
For the example in Figure 4, a user clicking on b and e in
the AAA ranking will hit two members of TeamB (hb = 2)
and none in TeamA (ha = 0). This generates a preference
for B. Note that the randomized alternating assignment of
documents to teams and ranks in I ensures that, unlike for
Balanced Interleaving, a randomly clicking user will always
produce equally many preferences for A as for B in expec-
tation. This avoids the problem of Balanced Interleaving.

5.3 Experiment Setup
We assigned one experimental condition for each pair of

retrieval functions within a triplet. To avoid differences due
to temporal effects, we conducted the evaluation of the Bal-
anced Interleaving test at the same time as the evaluation of
the absolute metrics. This means that data for Balanced In-
terleaving of Orig�Swap2�Swap4 was collected between
December 19th, 2007 and January 25th, 2008 (Phase I);
data for Balanced Interleaving of Orig�Flat�Rand was
collected between January 27th and February 25th, 2008
(Phase II). Data for Team-Draft Interleaving was collected
between March 15th, 2008, and April 20th, 2008 (Phase III),
for both triplets at the same time. In all cases, each exper-
imental condition was assigned 1/6th of the users.

We performed the same data cleaning as for the abso-
lute metrics. However, in addition to user-based aggrega-
tion that was essential for estimating the absolute metrics
robustly, we also evaluate the paired comparison tests in a
query-based fashion. Query-based evaluation simply follows
the methods described above, where each query contributes
a preference (or tie). So, heavy users provide more prefer-
ences. In the user-based evaluation, each user has exactly
one “vote” per condition, and the vote is determined by the
majority of the individual click preferences of that user.



Table 3: Results of the paired comparison tests for the “Orig�Flat�Rand” and the “Orig�Swap2�Swap4”
comparison. Wins and losses are counted on a per-query basis (left) or on a per-user basis (right). We only
consider users and queries with at least one click, and their number is given in the table. The remaining
percentage of queries/users are ties. Pairs where A (the higher-quality retrieval function) wins significantly
(95%) more often than B (the lower-quality retrieval function) are printed in bold.

Comparison Pair Query Based User Based
A � B A wins B wins # queries A wins B wins # users

Balanced Interleaving Orig � Flat 30.6% 21.9% 857 33.3% 23.8% 538
Flat � Rand 28.0% 22.9% 907 31.8% 23.3% 529
Orig � Rand 40.9% 30.1% 930 41.0% 27.1% 553
Orig � Swap2 18.1% 14.6% 1035 23.1% 17.1% 589
Swap2 � Swap4 33.6% 27.5% 1061 35.1% 30.0% 606
Orig � Swap4 32.1% 24.5% 1173 37.7% 26.7% 591

Team-Draft Interleaving Orig � Flat 47.7% 37.3% 1272 49.6% 36.0% 667
Flat � Rand 46.7% 39.7% 1376 46.3% 36.8% 646
Orig � Rand 55.6% 29.8% 1095 58.7% 28.6% 622
Orig � Swap2 44.4% 40.3% 1170 44.7% 37.4% 693
Swap2 � Swap4 44.2% 40.3% 1202 45.1% 39.8% 703
Orig � Swap4 47.7% 37.8% 1332 47.2% 35.0% 697

Table 4: Comparing the number of correct (“X”)
and false (“ ”) preferences implied by the interleav-
ing methods, analogously to Table 2.

weak signif
X  X  

Balanced Interleaving (per query) 6 0 6 0
Balanced Interleaving (per user) 6 0 5 0
Team-Draft Interleaving (per query) 6 0 4 0
Team-Draft Interleaving (per user) 6 0 5 0

5.4 Results and Discussion
Table 3 shows how frequently each ranking functions re-

ceives a favorable preference (i.e. “win”) in each pairwise
comparison for both Balanced Interleaving and Team-Draft
Interleaving. For both interleaving methods and also for
both query-based and user-based aggregation, the sign of
∆AB = wins(A)−wins(B) perfectly reflects the true order-
ing in both Orig�Flat�Rand and Orig�Swap2�Swap4.
As summarized in Table 4, in no case do any of the paired
tests suggest a preference in the wrong direction. More for-
mally, we statistically test whether the number of wins for
the better retrieval function is indeed significantly larger by
using a binomial test against P (A wins over B) ≤ 0.5. The
significant differences are bolded in Table 3, and 20 out of
the 24 pairs are significant. While the remaining four pairs
fail the 95% significance level, they are significant at the 90%
level. This supports our hypothesis that the paired com-
parison tests are able to identify a higher-quality retrieval
function reliably.

Table 3 does not give substantial evidence that one inter-
leaving or data aggregation method is preferable over an-
other. They all seem to be equally accurate and of roughly
equal statistical power. However, note that Team-Draft In-
terleaving forces a strict preference more often than Bal-
anced Interleaving. For example, any query with a single
click always produces a strict preference in Team-Draft In-
terleaving, even if both rankings are identical. While this
does not change the mean, it might lead to larger variability
of the results than in Balanced Interleaving, especially for
retrieval functions that produce very similar rankings. It
appears that the potential problem of Balanced Interleaving
identified in Section 5.1 was not an issue in practice.

Interestingly, not only does the sign of ∆AB correspond to
the correct ordering by retrieval quality, but the magnitude

of this difference appears reasonable as well. In particu-
lar, for all tests of a triplet A � B � C, Table 3 shows
that ∆AC > max{∆AB ,∆BC}, indicating Strong Stochastic
Transitivity [16].

6. DISCUSSION AND LIMITATIONS
As in any controlled experiment, we were able to explore

only a few aspects of the problem while keeping many vari-
ables in the environment fixed. Most obviously, online re-
trieval of scientific documents is only one domain for infor-
mation retrieval and other domains have substantially dif-
ferent properties. In particular, we believe that most of
our users were highly educated researchers and students us-
ing the system in a research context. Web search, intranet
search, personal information search, online purchasing, and
mobile search have a much broader and more diverse user
base, as well as a different distribution of queries. Since our
experiment design is not limited to arXiv.org, it will be in-
teresting to conduct similar studies in those domains as well.
The resulting set of studies would give a more complete view
of the relationship between user behavior and retrieval qual-
ity than the single data point we provide in this paper.

For the sake of simplicity, we focused largely on “raw”
clicks as feedback signal. First, this ignores that some clicks
may be made in error (e.g. due to a misleading abstract).
A more differentiated interpretation of clicks (e.g. based on
dwell-time, use of the back button, etc.) may provide a
cleaner signal. Second, for some queries the desired infor-
mation is already presented in the abstract, which obviates
the need for a click. Analyzing additional actions such as
copy/paste and scan-paths collected via eyetracking may
provide additional information that can be incorporated into
both the absolute metrics, as well as into the paired com-
parison tests.

Meaningful abstracts are also essential for collecting mean-
ingful click data. The success of the paired comparison tests
suggests that users of arXiv.org were able to make some-
what reliable relevance judgments based on the abstracts.
However, generating meaningful abstracts might be more
challenging in other domains (e.g. due to spam web pages).
Furthermore, one has to be careful that abstract genera-
tion is not biased towards any particular retrieval function
(e.g. in terms of abstract length or quality).



Apart from a few bots (and possibly a good number of
vanity searches), arXiv.org is a domain relatively free of
spam. While many domains are similarly free of click-spam
(e.g. personal information search, intranet search), it will be
interesting to see how the paired comparison tests perform
under more substantial click-spam attacks.

While we strove for a set of absolute metrics that covers
the majority of observable user behavior, there may be other
absolute metrics that are more indicative of ranking qual-
ity. For example, there may be sophisticated combinations
of various absolute metrics that are more reliable than any
single metric [10, 8]. Furthermore, for many of the abso-
lute metrics, the observed differences were not statistically
significant given the amount of data we could practically
collect. In domains like general Web search, where orders
of magnitude more data is available, some of these metrics
might indeed make accurate predictions.

Finally, in constructing artificially degraded retrieval func-
tions, we aimed to design both large and small differences.
However, further studies are needed to see how fine a differ-
ence the paired comparison tests can detect. In particular,
it would be interesting to explore whether Strong Stochastic
Transitivity holds in other settings, and with even smaller
quality differences. If some form of (approximate) stochastic
transitivity holds, it is plausible that large numbers of re-
trieval functions can be reliably evaluated with far less than
O(n2) comparisons using methods from tournament design,
which also has implications for automatically learning im-
proved retrieval functions based on paired comparison tests.

7. SUMMARY AND CONCLUSIONS
We explored and contrasted two possible approaches to

retrieval evaluation based on implicit feedback, namely ab-
solute metrics and paired comparison tests. In a real-world
user study where we know the relative retrieval quality of
several ranking functions by construction, we investigated
how accurately these two approaches predict retrieval qual-
ity. None of the absolute metrics gave reliable results for
the sample size collected in our study. In contrast, both
paired comparison algorithms, namely Balanced Interleav-
ing as well as the new Team-Draft Interleaving method we
propose, gave consistent and mostly significant results. Fur-
ther studies are needed to extend these results to other
search domains beyond the arXiv.org e-print archive.
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