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Abstract

The paper describes a case study in combin-
ing di�erent methods for acquiring medical
knowledge. Given a huge amount of noisy,
high dimensional numerical time series data
describing patients in intensive care, the sup-
port vector machine is used to learn when
and how to change the dose of which drug.
Given medical knowledge about and exper-
tise in clinical decision making, a �rst-order
logic knowledge base about e�ects of thera-
peutical interventions has been built. As a
preprocessing mechanism it uses another sta-
tistical method. The integration of numerical
and knowledge-based procedures eases the
task of validation in two ways. On one hand,
the knowledge base is validated with respect
to past patients' records. On the other hand,
medical interventions that are recommended
by learning results are justi�ed by the knowl-
edge base.

1 Introduction

In this paper, we want to present a challenging applica-
tion of machine learning. The learning methods we use
are already well known and theoretically well-founded.
Why then should anybody be interested in our report
on the application of these methods? Our principle
point is that applications are a necessary precondition
for the success of machine learning in several ways. On
the one hand, practitioners who might want to apply
machine learning bene�t from scienti�c exploration of
application �elds. Well investigated application areas
serve as points of reference so that experts of a �eld
realize the impact of machine learning for their actual

problems. The long way from learnability results to an
application is made explicit step by step in the hope
that these steps can easily be transferred to a similar
practical problem. On the other hand, machine learn-
ing bene�ts from the challenge of true applications.
Real world applications require many capabilities that
can be ignored in learnability proofs or performance
measurements with respect to a dataset library. First,
detecting a suitable learning task in an application is
one of the hardest problems when dealing with real-
world applications. This task has been solved already
for the datasets in, e.g. the UCI library. Second, an-
other problem that is solved for the datasets in the
libraries but demands much of the time when apply-
ing a learning algorithm to a new application is the
feature selection or feature construction. Would there
be more scienti�c interest in these topics if applications
were of more concern 1? Third, the use of background
knowledge given by a domain expert determines our ef-
forts in preparing the application. Can we easily write
down what we have learned and is the learning algo-
rithm able to make good use of it? Or do we have to
�nd a clever way of how to encode the knowledge into
our representation language? Fourth, the validation
of machine learning results is an issue. When using a
dataset of a library, accuracy of prediction is a suit-
able criterion. However, in real-world applications this
criterion is one among others. Two other criteria are
at least as decisive as is the accuracy, namely under-
standability and embeddedness.

By understandability, we denote how well an ex-
pert of the application domain can inspect the
learning results in order to verify them. Most of-
ten, this demand restricts the representation for-

1The application �eld of knowledge discovery has raised
the interest in feature selection and construction again, cf.
(Liu and Motoda, 1998).



malism we can choose. Using a formalism which
is close to the representation the expert is used to
eases the veri�cation by him or her. In addition,
it restricts the size of the learning result. No ex-
pert has the time to inspect 10 or more pages of
rules.

By embeddedness, we denote how well the learning
algorithm can be integrated into the overall ap-
plication system. This covers the use of already
available data for learning as well as the use of
learning results for processes of the application.
The notions of pre- and post-processing are too
much focused on the learning part of the appli-
cation and, hence, simplify the issue of integrat-
ing several processes, among them possibly more
than one learning algorithm. Again, the repre-
sentation formalism for learning is constrained by
the requirement of embeddedness. In contrast,
the constraints regarding accuracy may even be
weakened. In a sequence of (learning) processes,
the low accuracy of one of them can be compen-
sated by following (learning) processes2.

Some of our arguments in favor of the scienti�c investi-
gation of applications seem to underly the famous pa-
per of Ross Quinlan (Quinlan, 1986). However, what
received most of the attention was the ID3 algorithm.
Also the subject of multistrategy learning issued by
Ryszard Michalski (Michalski and Wnek, 1997) seems
to point into the same direction. However, there are
also good points against application-oriented publica-
tions, which we do not want to ignore. First, it is hard
to show that the chosen modelling of the application is
optimal. If the customer is happy with it { wouldn't he
be even happier with another approach? All we can do
about this, is to make our raw data publicly available
in order to allow for the reproduceability and compa-
rability of results. Second, readers do not learn from
yet another application of the same kind. Hence, we
have to characterize our application such that princi-
pled new points become clear. This is what we try
next.

We have investigated whether machine learning could
enhance on-line monitoring in intensive care medicine.
Why is this a challenging application? There are three
groups of reasons, namely the data situation, the task

2In our robotics application, we conducted a sequence
of learning runs, where the �rst achieved only 71% accu-
racy. Although exactly these results were the input to the
following learning run, the results of the last run showed
94% accuracy. Moreover, the robot could, in fact, navigate
using the learned rules!(Klingspor, 1998)

of monitoring, and the particular constraints given by
the application. Let us consider one after the other.

DATA SITUATION In modern intensive care,
each minute several hundreds of measurements of a
patient are recorded at the bed-side. This gives us
a very high dimensional space of data about a pa-
tient. However, this does not mean that for each pa-
tient, each vital sign is recorded properly. The values
of some vital signs are recorded only once within an
hour. Some other vital signs are recorded only for a
subset of the patients. Hence, the overall high dimen-
sional data space is sparse. Moreover, the data is noisy
with respect to the point in time whenever the proto-
col is made by nurses and not automatically. The av-
erage time di�erence between intervention as charted
and calculated hemodynamic e�ect is 12.34 minutes
for catecholamines, vasodilators, and rapid infusions {
opposed to an expected time lag of very few minutes.
Even the automatic measurements can be noisy, for
instance, if somebody touches the tube or moves the
bed. To make it even worse, some highly relevant pa-
rameters are not recorded at all, for instance, why the
patient needs intensive care. To summarize, we have
masses of noisy, high dimensional, sparse time series
of numerical data.

Medical experts explain the numerical data in qualita-
tive terms of high abstraction. The background knowl-
edge given by the expert covers functional models of
the human body as well as expertise in the proper
treatment of intensive care patients including e�ects
of drugs and volume input. In the experts' reason-
ing, time becomes the relation between time intervals,
abstracting away the exact duration of, e.g., an in-
creasing heart rate and focusing on tendencies of other
parameters (e.g., cardiac output) within overlapping
time intervals. To summarize, we have complex quali-
tative background knowledge explaining both the pa-
tient's and the doctor's behavior.

MONITORING The task of monitoring can best
be understood as time-critical decision support. The
�nal goal is to enhance the quality of clinical practice.
This means that imitating the actual interventions, i.e.
the doctor's behavior, is not the goal. Actual behav-
ior is inuenced by the overall hospital situation, e.g.,
how long is the doctor on duty, how many patients re-
quire attention at the same time. The goal of decision
support is to supply the best recommendation under
all circumstances (Morris, 1998).



CONSTRAINTS The application area of intensive
care constrains our work in three ways. First, on-line
monitoring restricts the computational e�orts. The
system that supports decision making must analyze
many parameters and output a recommendation for an
intervention { if necessary { in short real time. Sec-
ond, experiments are not possible. We can only test
our algorithms based on what we observe as the re-
sults of one particular intervention. Whether another
intervention would have been better cannot be deter-
mined. Third, it must be easy to validate the acquired
rules of decision both, with respect to previously un-
seen patient records and by experts' inspections. To
summarize, the overall system must work in real time,
taking numerical data as input and deliver recommen-
dations in an understandable way.

Now, that we have explained why we consider appli-
cations a relevant subject for machine learning and
our intensive care application a challenging one, we
can start to describe our case study. The paper is
organized as follows. First, we describe our layout
for learning and validation: the detection of learning
tasks, the modelling of background knowledge, the se-
lection of learning algorithms. Second, we describe
the learning tasks which the support vector machine
has solved and how the results were evaluated. Third,
we describe our modelling of medical knowledge in a
restricted �rst-order logic and how we used reason-
ing and multistrategy learning for its validation. We
then use the validated knowledge base for justifying
interventions proposed by the learning results of the
support vector machine. This additional validation
of learning results is of particular importance when
putting learning results to good use in medicine. We
conclude by summarizing where we are and indicating
our next steps.

2 Layout for Learning and Validation

Clinical decision support aims at providing doctors
and nurses with therapy guidelines directly at the bed-
side. This should enhance the quality of clinical care,
since the guidelines sort out high value practices from
those that have little or no value. The computerized
protocol of care takes into account more aspects of the
patient than a doctor can accommodate. It is not dis-
turbed by circumstances or hospital constraints and
it bridges the gap between low-level numerical mea-
surements (the level of the equipment) and high-level
qualitative principles (the level of medical reasoning).
The system takes as input measurements of the patient
as recorded at the bed-side. It outputs executable pro-

tocols of therapeutical interventions as a recommenda-
tion to the doctor. Such a decision support system has
been developed and established at the LDS hospital of
Salt Lake City for respiratory care (Morris, 1998). It is
a knowledge-based system where the production rules
have been acquired in about 25 person years. The sys-
tem has been evaluated in several studies at diverse
hospitals in more than 10 years. Our task is now to
build such a decision support system for hemodynamic
care. The question is: can we achieve equally good re-
sults using much less resources (i.e. person years) if
we apply machine learning?

Looking again at the list of advantages of computer-
assisted intensive care, we obtain a list of requirements
for the system to be built. The system must ground its
decisions in explicit medical methods. We do not aim
at modelling the hemodynamic system, the cardiac
processes of patients. Neither do we aim at modelling
the actual doctors' behaviors. Instead, the knowledge
base must represent a therapy protocol which can be
applied to measurements of the patient. This reminds
us of the early days of knowledge acquisition for expert
systems. However, our task at hand goes beyond clas-
sical medical knowledge acquisition, since the system
has to cope with high dimensional data in real time. Its
task is on-line monitoring, not heuristic classi�cation
or cover and di�erentiate. Moreover, the data consists
of time series. Time stamped data do not necessarily
require sequence analysis methods. For an applica-
tion, we have to determine whether points in time,
time intervals and their relations, or curves of mea-
surements o�er an adequate representation. How do
we handle the patient's history? How do we summa-
rize the curves of measurements to abstract qualitative
propositions? These questions point at the problem of
�nding an adequate representation. Two sets of re-
quirements on the capabilities of the representation
can be distinguished:

1. The representation must handle numerical data,
valid in one point in time, and time series. For
each point in time, it must classify whether and
which therapy intervention is appropriate for the
patient.

2. The representation must handle relations of time
intervals, interrelations of diverse drugs and rela-
tions between di�erent parameters of the patient.
It has to derive expected e�ects of medical in-
terventions from medical knowledge and compare
expected outcome with actual outcome.

The requirements are conicting. Whereas we know
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Figure 1: Overall architecture.

good formalisms for each of the sets, we are not aware
of a representation that ful�lls both sets of demands.
Hence, we decided to break down the overall reasoning
into several processes and �nd an appropriate repre-
sentation for each of them, independently. The overall
architecture is shown in Figure 1. The patients' mea-
surements at one point in time are used in order to rec-
ommend an intervention. This corresponds to clinical
practice where for each point in time a recommenda-
tion for optimal treatment is needed. Of course, one of
the recommendations is to not change the current ther-
apy. The recommendation of interventions constitutes
a model of doctors' behavior. A recommended inter-
vention is checked by calculating its expected e�ects
on the basis of medical knowledge. Medical knowledge
qualitatively describes a patient's state during a time
interval and e�ects of drugs. It constitutes a model
of the patients' hemodynamical system. The medical
knowledge base uses relations between time intervals
and their abstract characterizations. To this end, pa-
tients' measurements are abstracted with respect to
their course over time. The abstraction mechanism
handles curves of measurements. The integration of
numerical and knowledge-based methods allows us to
validate the processes carefully. On one hand, the
qualitative assessment of a statistical prediction en-
hances the model of the doctor's behavior in order to
obtain a model of best practice. On the other hand,
the medical knowledge is validated with respect to past
patients' data. In detail, the processes we have de-
signed are:

data abstraction Given series of measurements of
one vital sign of the patient, eliminate outliers and
�nd level changes. This abstracts the measure-
ments to qualitative propositions with respect to
a time interval, e.g., within time point 12 and time
point 63, the heart rate remained about equal,
from time point 63 to time point 69 it was in-
creasing.

state-action rules Given the numerical data de-
scribing vital signs of the patient and his or her
current medication, �nd the appropriate interven-
tion. An intervention is formalized as increasing,
decreasing or not changing the dose of a drug.
The decision is made every minute.

action-e�ect rules Given the state of a patient de-
scribed in qualitative terms, medical knowledge
about e�ects of substances, relations between dif-
ferent vital signs, interrelation between di�erent
substances, a sequence of interventions, and a cur-
rent intervention, �nd the e�ects of the current
intervention on the patient. The derivation of ef-
fects is made for each intervention.

conict detection Given the expected e�ect of a
medication for a patient and his or her actual
state, �nd inconsistencies.

conict explanation Given interventions with ef-
fects on the patient that follow the medical knowl-
edge and those that are in conict with medical
knowledge, �nd characterizations which separate
the two sets.

It is straightforward to determine appropriate repre-
sentations now: state-action rules and data abstrac-
tion use numerical functions, the other modules use
a restricted �rst-order logic. Knowing the represen-
tation class for each process we can detect learning
tasks. Which process can be modelled using machine
learning? Which learning algorithm is appropriate
for the task? For learning state-action rules, we ap-
plied the support vector machine, because it is ca-
pable of handling high dimensional numerical data.
Since the support vector machine is a binary classi-
�er, we had to split the overall task of �nding state-
action rules into several particular learning tasks. For
each drug, the support vector machine was trained on



16 demographic attributes 11 vital parameters
5 intensive care diagnoses 37 I/O parameters
6 continuously given drugs 10 drugs
14 breathing parameters 10 laboratory tests
9 derived parameters

Figure 2: Attributes in the hemodynamic dataset.

two tasks, namely learning the direction of interven-
tions and learning when to intervene. This work is
described in section 3. A statistical method for data
abstraction was readily available (Imho� et al., 1997).
Action-e�ect rules were not to be learned, since our
medical expert, Michael Imho�, provided us with the
medical knowledge. Using the MOBAL system (Morik
et al., 1993) it was extremely easy to write the accord-
ing rules. The inference engine of MOBAL derives
expected e�ects and compares them with actual ef-
fects. These are deductive inferences. However, the
explanation of conicts between prediction and actual
outcome requires to investigate many hypotheses. For
this task, we used the inductive logic programming
tool RDT/DB (Morik and Brockhausen, 1997). Work
on action-e�ect rules and validation is described in sec-
tion 4.

Data Set. The data set was collected at the 16-bed
intensive care unit (ICU) of the \Chirurgische Kliniken
der St�adtischen Kliniken Dortmund". It contains the
data of 147 patients between January 1997 and Oc-
tober 1998. Measurements are taken every minute,
amounting to 679,817 observations for which data from
a Swan-Ganz catheter is available. There are 118 at-
tributes forming 9 groups (cf. �gure 2).

Some of the parameters (like the demographic at-
tributes) are not time dependent. While especially the
vital parameters are measured on a minute to minute
basis, others occur only once per hour or less.

3 Learning State-Action Rules

3.1 Support Vector Machine

Support vector machines (see (Vapnik, 1998)) are
based on the Structural Risk Minimization principle
(Vapnik, 1998) from statistical learning theory. The
idea of structural risk minimization is to �nd a hy-
pothesis h for which we can guarantee the lowest true
error. Vapnik connects the bounds on the true error
with the margin of separating hyperplanes. In their
basic form support vector machines �nd the hyper-
plane that separates the training data with maximum

margin. Since we will be dealing with very unbalanced
numbers of positive and negative examples in the fol-
lowing, we introduce cost factors C+ and C� to be
able to adjust the cost of false positives vs. false neg-
atives. Finding this hyperplane can be translated into
the following optimization problem:

Minimize:
1

2
jj~wjj2 + C+

X

i:yi=1

�i + C�
X

j:yj=�1

�j (1)

subject to: 8k : yk[~w � ~xk + b] � 1� �k (2)

xi is the feature vector of example i. yi equals +1
(�1), if example i is in class + (�).

We solve this optimization problem in its dual formu-
lation using SVM light 3 (Joachims, 1999a), extended
to handle unsymmetric cost-factors. It can e�ciently
handle problems with many thousand support vectors,
converges fast, and has minimal memory requirements.

3.2 Learning the Direction of Interventions

The �rst question we asked ourselves was: Given that
we know the doctor changed the dosage of some drug,
can we learn when he increased the dosage and when
he decreased the dosage based on the state of the pa-
tient? To learn such a function, we had to �rst �nd
an appropriate representation describing the patient's
state.

3.2.1 What is an Appropriate

Representation of the Patient's State?

Our dataset contains 118 attributes, some real valued,
some categorial. Which features should we use for
learning? How can we represent them appropriately
for the SVM?

Categorial attributes are broken down into a number of
binary attributes, each taking the values f0; 1g. Real
valued parameters are either scaled so that all mea-
surements lie in the interval [0::1], or they are normal-
ized by empirical mean and variance.

norm(X) =
X �mean(X)p

var(X)
(3)

We systematically evaluated a large number of plau-
sible feature sets using a train/test scheme. The fea-
ture set with the best performance is given in �gure 3.

3http://www-ai.cs.uni-dortmund.de/ svm light



Vital Parameters Continuously Given Drugs Demographic Attributes

Diastolic Arterial Pressure Dobutamin Broca-Index
Systolic Arterial Pressure Adrenalin Age
Mean Arterial Pressure Glyceroltrinitrat Body Surface Area
Heart Rate Noradrenalin Ermergency Surgery?
Central Venous Pressure Dopamin
Diastolic Pulmonary Pressure Nifedipin
Systolic Pulmonary Pressure
Mean Pulmonary Pressure

Figure 3: The best feature set.

According to a doctor, these are actually the most im-
portant parameters of the patient. Only the attributes
\Cardiac Output" and \Net I/O" are missing, since
they are seldomly present. Moreover, \Cardiac Out-
put" measurements are always a risk for the patient.

3.2.2 How much History is Necessary?

When making a decision about an intervention, it is
(at least theoretically) possible to consider history in
some form. We experimented with di�erent ways of
incorporating the history of the patient into the repre-
sentation. We tried using only the measurements from
one minute before the intervention (i. e. no history),
using the last up to 10 minutes before the interven-
tion, using averages of up to 60 minutes before the
intervention, and combinations of both. We also tried
incorporating the state of the patient at the previous
intervention.

None of the approaches that use history gave signi�-
cantly better results than just using the measurements
from one minute before the intervention. This result
is plausible and consistent with medical practice. Ac-
cording to doctors their decision to intervene is mostly
based on the measurements they �nd after entering the
patient's room. So short term history is ignored.

3.2.3 Prediction Performance

All experiments towards �nding an appropriate rep-
resentation were done on the training set. Using 10-
fold cross validation on the training set we further op-
timized the parameters of the SVM (kernel and C).
This lead to using linear SVMs for all drugs. The
performance of the respective SVM on a previously
untouched test set is given in �gure 4.

To get an impression about how good these predic-
tion accuracies are, we conducted an experiment with
a doctor. On a subset of 40 test examples we asked an
expert to do the same task as the SVM for Dobutamin,
given the same information about the state of the pa-
tient. In a blind test the doctor predicted the same

Drug Accuracy StdErr

Dobutamin 83.6% 2.5%
Adrenalin 81.3% 3.7%
Glyceroltrinitrat 85.5% 3.0%
Noradrenalin 86.0% 5.2%
Dopamin 84.0% 7.3%
Nifedipin 86.9% 7.0%

Figure 4: Accuracy in predicting the right direction of
an intervention.

direction of dosage change as actually performed in 32
out of the 40 cases. On the same examples the SVM
predicted the same direction of dosage change as actu-
ally performed in 34 cases, resulting in an essentially
equivalent accuracy.

3.3 Learning when to Intervene

The previous experiment shows that SVMs can learn
in how far drugs should be changed given the state
the patient is in. In reality, the doctor also has to de-
cide when to intervene or just keep a dosage constant.
This leads to the following three class learning prob-
lem. Given the state of the patient, should the dosage
of a drug be increased, decreased or kept constant?
Knowing such a function is also a step towards decid-
ing when to substitute one drug with another. Gener-
ating examples for this task from the data is di�cult.
The particular minute a dosage is changed depends to
a large extent on external conditions (e.g. an emer-
gency involving a di�erent patient). So interventions
can be delayed and the optimal minute an interven-
tion should be performed is unknown. To make sure
that we generate examples only when a doctor was
closely monitoring the patient, we consider only those
minutes where some drug was changed. This leads to
1319 training and 473 test examples.

For each drug we trained two binary SVMs. One is
trained on the problem \increase dosage" vs. \lower
or keep dosage equal", the other one is trained on the
problem \lower dosage" vs. \increase or keep dosage
equal". In order to better reect the costs of inap-



Dobutamin actual intervention
up equal down

predicted up 46 32 3
predicted equal 50 197 54
predicted down 5 30 56

Adrenalin actual intervention
up equal down

predicted up 23 22 3
predicted equal 21 310 15
predicted down 4 34 41

Figure 5: Confusion matrices for predicting time and
direction of Dobutamin and Adrenalin interventions.

propriate interventions, we use an SVM with a cost
model. Lacking data for designing a more re�ned cost
model, the cost-factors are chosen so that the poten-
tial total cost of the false positives equals the potential
total cost of the false negatives. This means that the
parameters C+ and C� of the SVM are chosen to obey
the ratio

C+

C�
=

number of negative training examples

number of positive training examples
(4)

Figure 5 shows the test results for Dobutamin and
Adrenalin. The confusion matrices give insight into
the class distributions and the type of errors that oc-
cur. The diagonal contains the test cases, where the
prediction of the SVM was the same as the actual in-
tervention of the doctor. This accounts for 63% of
the test cases for Dobutamin and for 79% of the test
cases for Adrenalin. The SVM suggests the opposite
intervention in about 1.5% for both drugs.

Again, we would like to put these numbers into re-
lation with the performance of an expert when given
the same information. For a subsample of 95 examples
from the test set, we again asked a doctor to perform
the same task as the SVM. The results for Dobutamin
and Adrenalin are given in �gure 6. The performance
of the SVM on this subsample is followed by the per-
formance of the human expert (in brackets). Both are
well aligned. Again, the learned functions of the SVM
are comparable in terms of accuracy with a human
expert. This also holds for the other drugs.

4 Action-E�ect Rules

Based on detailed information from our medical ex-
pert, Michael Imho�, we have built a compact knowl-
edge base modelling the e�ects of drugs. Not counting
patients' records, the knowledge base consists of 39

Dobutamin actual intervention
up equal down

predicted up 10 (9) 12 (8) 0 (1)
predicted equal 7 (9) 35 (31) 9 (9)
predicted down 2 (1) 7 (15) 13 (12)

Adrenalin actual intervention
up equal down

predicted up 4 (2) 3 (1) 0 (0)
predicted equal 4 (6) 65 (66) 2 (2)
predicted down 1 (1) 8 (9) 8 (8)

Figure 6: Confusion matrices for predicting time and
direction of Dobutamin and Adrenalin interventions in
comparison to human performance.

% Facts:
contains(dobutrex,dobutamin).
med e�ect(dobutamin,1,10,hr,up).
med e�ect(dobutamin,10,30,hr,up).
opposite(up,down).

% Rules:
intervention(P,T1,T2,M,D1) & intervention(P,T2,T3,M,D2) &
contains(M,S) &
med e�ect(S,From1,To1,V,Dir) &
med e�ect(S,From2,To2,V,Dir) &
ne(From1,From2) & gt(D2,D1) &
lt(D1,To1) & ge(D1,From1) & lt(D2,To2) & ge(D2,From2)

! interv e�ect(P,T2,T3,M,V,Dir).

% Patient Data:
level change(pat460, 160, 168, hr, up)
intervention(pat460, 159, 190, dobutrex, 8)

Figure 7: Excerpt from the knowledge base.

rules and 88 facts. Figure 7 shows a typical rule from
the knowledge base. The rule states that increasing
the dose from D1 to D2 of a drug M leads to an in-
creasing e�ect on the parameter V of a patient P. The
time intervals in which a certain dose is given to the
patient are immediate successors. The dose is changed
signi�cantly.

4.1 Validating the Knowledge Base

In order to validate the knowledge base we applied
it to the data of 148 patients. Part of an abstracted
patient record is also shown in �gure 7 for the time
interval from the 160th minute to the 190th minute.
Following an intervention, namely giving Dobutrex (=
Dobutamin) in a dose of 8 units, a level change can be
observed.

Overall, the patient data contain 8,200 interventions.
22,599 e�ects of the interventions were derived using
forward chaining. In order to compare the predicted
e�ects with the actual ones, we distinguish three types
of conformity or contradiction. A predicted e�ect is



weakly conform with observed patient behavior, if
no level change is observed, the patient's state
remains stable;

strongly conform with observed patient behavior, if
the observed level change has the same direction
as is predicted by the rules;

contradictory with observed patient behavior, if a
level change is observed into a direction opposite
to the one predicted by the rules.

Note, that weak conformity is not in conict with med-
ical knowledge, but shows best therapeutical practice.
Smooth medication keeps the patient's state stable and
does not lead to oscillating reactions of the patient.

When matching the derived e�ects with the actual
ones, the system detected:

weak conformity: 13,364 e�ects, i.e. 59.14%, took
place in the restricted sense, that the patient's
state remained stable.

strong conformity: 5,165 e�ects , i.e. 22.85%, took
place in the sense, that increasing or decreasing
e�ects of drugs on vital signs match corresponding
level changes.

contradiction: 4,070 contradictions, i.e. 18.01% of
the interventions, were detected. The observed
level change of a vital sign went into the opposite
direction of the knowledge-based prediction.

First, we started a knowledge revision process using
concept formation using the methods of Stefan Wro-
bel (Wrobel, 1994). A concept is learned that sepa-
rates successful rule applications (i.e. those, where the
rules are not in conict with the observations) from
rule applications that lead to a contradiction. How-
ever, no clear separation could be found. Hence, we
weakened the task to �ltering out inuential aspects.
For learning, we chose 5,466 interventions with their
e�ects being classi�ed as conform (including the weak
conformity described above) and as not conform. 11
predicates about the patient and the medications es-
tablished the structured hypothesis space. Of all pos-
sible combinations, 121 hypotheses had to be tested.
The �ndings were:

� The rule stating that a lowering a dose of a pa-
rameter increasing drug should lower the respec-
tive parameter is less reliable than the opposite
rule.

� If combined with the age of the patient being
around 55 years or the weight of the patient being
small, the rule for e�ects of decreasing a medica-
tion is particularly unreliable.

� The weight of the patient alone has no impact on
the reliability of action-e�ect rules.

� For elder patients (in the group of more than 65
years and in the group of more than 75 years), the
weight is an inuential feature.

� To our surprise, the amount of reducing or in-
creasing the dose is not a relevant aspect for ex-
plaining contradictions, neither alone nor in com-
bination with other features.

Relational learning did a good job in generating and
testing many hypotheses. However, the learning re-
sults clearly indicate that the decisive features that
would distinguish successful rule applications from not
successful ones are not present in the data. The deci-
sive features cannot even be formed from the available
data using constructive induction! As is often the case,
a negative result { even if it is well-based { is disap-
pointing. It prevents us from inadequate revisions of
the knowledge base, but it does not show us, how to
e�ectively enhance the rules. When reporting our re-
sults to the medical expert, he assessed the ratio of
83.56 % correct predictions of e�ects very positively.
Asked about possible missing data that could explain
deviations, he indicated arhythmic heart beat as a de-
cisive feature which is not present in the data. Also the
missing values of cardiac output could possibly explain
many deviations of observed from predicted e�ects.4.

4.2 Using the Knowledge Base for Validating

Interventions

As depicted in the overall architecture (cf. �gure 1),
we have chosen a design which allows us to use the
action{e�ect rules in the knowledge base for validat-
ing predicted interventions. The underlying argument
is that accuracy measures only reect how well SVM's
learning results �t actual behavior of the doctor. How-
ever, there are usually several di�erent combinations
of drugs that achieve the same goal of keeping the
patient in a stable state. And indeed, di�erent doc-
tors, depending on their experience in the ICU, do
use di�erent mixtures and follow di�erent strategies to
reach this goal. For comparing treatment strategies,

4Note, that cardiac output is not measured for all pa-
tients, because of its potential harm to the patient.



same e�ect same
art. hr. all param. behavior

Noradrenalin 436 428 424 420
Dobutamin 403 395 383 299
Dopamin 472 472 472 387
Adrenalin 407 406 393 374
Glyceroltrinitrat 437 388 380 342
Nifedipin 457 457 455 438

Figure 8: Accuracy and equivalence of decisions.

the real criterion is whether the recommendations have
the same e�ect as the actual interventions. Therefore,
we apply the action{e�ect rules from the knowledge
base to both the proposed intervention of the SVM
classi�ers and to the intervention actually performed
by the doctor. If the derived e�ects are equal, then the
proposed decision of the SVM classi�ers can be con-
sidered as \equivalent" to the intervention executed by
the doctor.

The results of this comparison for 473 interventions are
shown in �gure 8. The right-most column indicates the
accuracy, i.e. in how many cases the classi�cation of
SVM and doctor were identical (same behavior of SVM
and doctor). The other columns state how often the
SVM's intervention leads to the same e�ects as the in-
tervention of the doctor. The �rst two columns show,
how many of interventions had the same e�ect on ar-
terial blood pressure or heart rate, respectively. The
third column gives a more concise evaluation. Here
it is stated, how many interventions recommended by
the SVM had the same e�ects on all vital signs as
the actual intervention. For instance, the SVM cor-
rectly classi�es 299 test cases for Dobutamin (63%).
If we compare the resulting e�ects of the predicted in-
terventions concerning Dobutamin with the e�ects of
the actual doctor's interventions, we �nd that in 383
cases (81%) the deduced e�ects will be equal. Thus,
in 84 cases the recommendation of the SVM does not
match the doctor's behavior, but the e�ects are the
same, since the doctor has chosen an \equivalent" drug
or combination of drugs. This example demonstrates
the advantage of our approach for validating learning
results in contrast to merely looking at accuracy rates.

5 Conclusions

We present an application of machine learning for pa-
tient monitoring in intensive care. This application
involves high dimensional time series data, demand-
ing high quality decision support under real time con-
straints. It requires the integration of numerical data
and qualitative knowledge. The tasks of reasoning

are abstraction, classi�cation, and deductive inference.
These properties make this case study a representative
for a large number of applications in medicine and en-
gineering. Consider, for instance, robot applications,
where measurements of the sensors and actions are
to be integrated. Abstracting the measurements al-
lows for high-level plans that cover a variety of situa-
tions. The classi�cation of appropriate actions consti-
tutes the low-level planning routines of the robot. If
the costs of an inappropriate action are high, its jus-
ti�cation on the basis of general knowledge is neces-
sary. For instance, automatic car driving should inte-
grate the low-level perception and action with general
knowledge about the tra�c law.

This paper presents the necessary steps for solving this
application as a whole. We identify how the applica-
tion can be split up into manageable parts. We pro-
pose an overall architecture that integrates a number
of task, organized both sequentially and in parallel. All
tasks are embedded in a single system, while selecting
the most appropriate technique and representation {
including the di�cult task of selecting and construct-
ing appropriate features { for each task individually.
A statistical method is used to detect level changes in
the curve of a patient's vital sign. The SVM is cho-
sen for learning state-action rules due to its ability to
handle many features. Several feature sets including
the history of the patient were tested. Surprisingly,
best results were achieved if only the patients' data
one minute before an intervention were considered.
This corresponds to the actual routine of a doctor.
We present �rst experimental results demonstrating a
performance comparable to that of a human expert in
terms of accuracy. Moreover, the learned classi�ca-
tions of possible interventions are justi�ed by deriving
expected e�ects. This evaluation of the SVM's learn-
ing results goes beyond accuracy measurements and is
much more realistic.

For modelling medical knowledge in terms of action-
e�ect rules we chose a �rst order logic representation
using MOBAL. This allows a compact representation
of medical knowledge with a small number of rules,
ful�lling the real-world demand for a knowledge base
to be understandable to humans and accessible for ex-
pert validation. In addition, the knowledge base di-
rectly serves as background knowledge for learning re-
�ned rules and for doing knowledge revision. Discus-
sions with experts in intensive care showed that the
knowledge base is, in fact, understandable. We pre-
sented our results at the 9'th international symposium
on intensive care (Joachims, 1999b; Morik and Imho�,



1999) and received positive feedback on our modelling
approach as being in-line with both the structure of
medical knowledge and it's use in decision making.
Moreover, the consistency checking of MOBAL allows
to automatically detect cases where the actual patient
state di�ers from the predicted e�ect of an interven-
tion. Experts �nd it very useful to discuss a rule in
the light of selected contradictory cases. The knowl-
edge base turns the classi�cations of the SVM into
operational knowledge for monitoring patients. The
overall system is designed such that it can be applied
at the hospital.The systemexploits patients' data as
given and outputs operational recommendations for in-
terventions. Hence, embeddedness guided the design
process.

Our next step is the validation of the system by a
committee of medical experts in order to further eval-
uate its performance. In particular, the combinations
of di�erent drugs need to be validated. A comparison
with a hemodynamic knowledge base that is currently
developed at the LDS hospital at Salt Lake City is
planned. The LDS knowledge base does not take the
stream of measurements as input, but reads vital signs
on demand. It cannot be applied to past data and
be evaluated with respect to them, because there is
no component for checking consistency. We plan to
transfer the knowledge base into our system so that
it can be tested on patients' data. The impact of a
stream of data (our approach) as opposed to some se-
lected points in time when a vital sign is read (the LDS
approach) will be investigated carefully.
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