
TASTE OVER TIME: THE TEMPORAL DYNAMICS OF USER
PREFERENCES

Joshua L. Moore, Shuo Chen, Thorsten Joachims
Cornell University, Dept. of Computer Science
{jlmo|shuochen|tj}@cs.cornell.edu

Douglas Turnbull
Ithaca College, Dept. of Computer Science

dturnbull@ithaca.edu

ABSTRACT

We develop temporal embedding models for exploring how
listening preferences of a population develop over time. In
particular, we propose time-dynamic probabilistic embed-
ding models that incorporate users and songs in a joint Eu-
clidian space in which they gradually change position over
time. Using large-scale Scrobbler data from Last.fm span-
ning a period of 8 years, our models generate trajectories
of how user tastes changed over time, how artists devel-
oped, and how songs move in the embedded space. This
ability to visualize and quantify listening preferences of a
large population of people over a multi-year time period
provides exciting opportunities for data-driven exploration
of musicological trends and patterns.

1. INTRODUCTION

Embedding methods are a class of models that learn posi-
tions for discrete objects in a metric space. Such models
are widely employed in a variety of fields, including nat-
ural language processing and music information retrieval
(MIR). In MIR, these methods find use in recommendation
and playlist prediction, among other problems. Embed-
ding methods offer advantages in two main aspects. First,
they are often very easy to interpret: the resulting space
can be easily visualized and inspected in order to explain
the behavior of the model. Second, they can be applied
to discrete objects without features, learning feature repre-
sentations of the objects as part of model training.

In this work, we explore the use of embedding meth-
ods as a tool for identifying trends and patterns in multi-
year listening data of Last.fm users. In particular, we pro-
pose novel time-dynamic embedding models that gener-
ate trajectories of musical preferences by jointly embed-
ding listeners and the songs they play in a single metric
space. In order to do this, we extend existing probabilis-
tic playlists models [1, 2] by adding time dynamics, al-
lowing users and songs to change position on a multi-year
scale. By examining these models, we can draw conclu-
sions about the behavior of listeners and musical artists

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2013 International Society for Music Information Retrieval.

over time. Based on these findings, we conjecture that
these time-dynamic embedding methods provide exciting
opportunities for data-driven exploration of musicological
trends and patterns. To facilitate such research, scalable
software implementations of our embedding methods are
available at http://lme.joachims.org.

2. RELATED WORK

Embedding music into a low-dimensional space is useful
for visualization and automatic playlist generation. There
are numerous existing algorithms, such as Multi-Dimensional
Scaling [7] and Local Linear Embedding [4], which have
been applied to large corpora of songs and artists.

Our work is motivated by recent work of Moore et al.
[2, 5] and Aizenberg et al. [1] on using historical playlist
data, but we focus on long-term temporal dynamics. This
is different from the short-term dynamics considered by
Aizenberg et al., namely, the time of day of a track play
by a station. This time dependency is employed to factor
out the influence of different format blocks at a radio sta-
tion based on the time of day (i.e. a college station may
play classical music from 6 AM to 9 AM and jazz from
9 AM to noon). In our work, we allow the positions of
users or songs to vary smoothly over the long-term, learn-
ing a representation for each three-month time step from
the beginning of 2005 to the end of 2012. Second, both of
these related works focus on automatic playlist prediction.
In this paper, we instead use our model as a data analysis
tool to explore long-range trends in the behavior of users,
songs, and artists.

Weston et al. [9] use music embedding for a variety of
MIR tasks including tag prediction and determining song
similarity. Their embedding algorithm works by optimiz-
ing a rank-based loss function (e.g., AUC, precision at k)
over training data for a given task. Our work differs from
this in that our embedding results from a probabilistic se-
quence model that is learned from the track histories of
users. In addition, the work by Weston et al. does not at-
tempt to model the temporal dynamics.

Dror et al. [3] explore the use of temporal dynamics in
collaborative filtering for music. However, the use of time
dynamics in their work is mainly restricted to modeling
biases for songs and users, which does not permit the visu-
alization and analysis applications enabled by our work.

Finally, Shalit et al. [8] applies a dynamic topic model
to audio features of songs for the purpose of modeling and

(a) (b) (c)

Figure 1: Illustrations of the embedding models. Blue dots and red crosses represent songs and users respectively. (a)
Static playlist model. A playlist is represented by songs that are linked by arrows. The next song sne is decided by both
current song scu and the user u (The popularity term also has its effect, which is not shown here). (b) The drifting of a user
u over timesteps in the user-dynamic model. At each timestep, a random walk governed by a Gaussian distribution is taken.
(c) Similar drifting of a song s over timesteps in the song-dynamic model.

discovering musical influence. While this work does not
explicitly involve embedding songs, users or artists, it is a
good example of the use of temporal dynamics in analysis
of music data. In addition, their topic model requires audio
features to represent each song. This is in contrast to our
model where features are not required.

3. MODEL

In this section we detail the probabilistic embedding mod-
els we propose for temporal embedding of users and songs.
Starting from a static playlist model (Section 3.1) similar
to [2, 5], we incorporate a macroscopic temporal model
under which the embedding can change over time, pro-
viding trajectories for users and songs through embedding
space. In particular, we propose a user-dynamic embed-
ding model (Section 3.2) in which users move against over
a map of songs, as well as a song-dynamic embedding
model (Section 3.3) in which songs move against a map
of users. For both models, we briefly outline how they can
be trained using maximum likelihood (Section 3.4).

3.1 Embedding Songs and Users for Playlist Modeling

Given a collection of songs S = {s1, . . . , s|S|} and a col-
lection of users U = {u1, . . . , u|U|}, each user’s listen-
ing history can be described as a sequence of songs p =
(p[1], ..., p[kp]) of length kp, where each p[i] ∈ S. We refer
to this (multi-year) sequence as the “playlist” of that user.
The collection D of all user playlists is the training data
for our embedding method.

Following the approach proposed in [2], we model a
user’s playlist using a first-order Markov model, but also
augment it with a user model similar to [1]. As a result,
the probability Pr(sne|scu, u) of the next song in a playlist
depends only on the current song and the user. The overall

probability of a playlist is therefore

Pr(p|u) =

kp∏
i=1

Pr(p[i]|p[i−1], u). (1)

Note that transition triples (sne|scu, u) (i.e., reads as “user
u listened to the current song scu, then listened to the next
song sne”) are a sufficient statistic for this model.

Our goal is to embed each song and user into a d-
dimensional latent Euclidean space such that song-song
and song-user distances model the transition probabilities
Pr(sne|scu, u). This provides such distances with a clear
semantic meaning. More specifically, we want to learn a
mapping X(·) that maps every song s or user u into that
space, namely X(s), X(u) ∈ Rd. The dimensionality d
is manually specified. Alternatively, X can be considered
as a (|S|+ |U|)× d embedding matrix, the rows of which
correspond to the position of songs and users in the latent
space. We will not distinguish the two interpretations ofX
in the rest of the paper if it is clear from the context.

The specific model we propose for relating distances to
transition probabilities is

Pr(sne|scu, u) =
e−∆(sne,scu)

2−∆(sne,u)2+bidx(sne)

Z(scu, u)
, (2)

where ∆(x, y) = ||X(x) − X(y)|| is the Euclidean dis-
tance between two embedded items (either song or user) in
the latent space. bidx(s) is a scalar bias term that is added
to model the popularity of each song, where idx(s) returns
the index for song s. For example, idx(si) = i. Z(scu, u)
is the partition function that normalizes the distribution. It
is defined as

Z(scu, u) =

|S|∑
i=1

e−∆(si,scu)
2−∆(si,u)2+bi . (3)

Panel (a) of Figure 1 illustrates how song and user posi-
tions in the embedding space relate to the transition prob-
ability Pr(sne|scu, u). The red cross is the position of the

user, and the blue dot labeled scu is the current song in the
playlist. The probability of playing some song sne next de-
pends on its sum of the squared distances to the current
song and the user, plus its inherent popularity bsne . This
means that the transition to the next song sne is more likely
if (1) the next song is close to the current song in the latent
space, (2) the next song is close to the user(’s taste) in the
latent space, or (3) the next song is popular. We focus our
experiments on two-dimensional embeddings, since this
provides us with an X that can easily be visualized. How-
ever, higher-dimensional embeddings are possible as well.

3.2 User-dynamic Embedding Model

Combining Equations (1) and (2) models a playlist as
a stochastic process on a microscopic level (i.e., on the
timescale of minutes). In addition, we also model changes
in user preferences as a stochastic process on a macro-
scopic level. In the following experiments, each macro-
scopic timestep t ∈ T (T is the set of all timesteps) de-
notes a quarter of a year, and notation like 20083 denotes
“third quarter of year 2008”.

Let us first consider a macroscopic stochastic process
where positions of users are changing over time, while the
position of the songs are fixed in the latent space. Denot-
ing with u(t) the position of user u in embedding space
at timestep t, the overall trajectory of a user is u(∗) =
(u(1), u(2), ...). At each timestep t, the microscopic transi-
tion probability Pr(sne|scu, u

(t)) now depends on the users
current position, and the conditional probability of the next
song is

Pr(sne|scu, u
(t)) =

e
−∆(sne,scu)

2−∆(sne,u
(t))

2
+b

(t)

idx(sne)

Z(scu, u(t))
. (4)

Note that even though the positions of songs are fixed, we
still give each song a time-varying popularity term b

(t)
i .

To restrict users from drifting too much from one
timestep to the other, we model a users trajectory as a
Gaussian random walk. Panel (b) of Figure 1 illustrates
such a random walk. Concretely, this means that the user’s
next position u(t) is a Gaussian step N (u

(t−1)
i , 1

2νuser
Id)

from the current position u(t−1). Here, Id is the d-
dimensional identity matrix, and νuser is the variance
(which can be viewed as a regularization coefficient that
influences step sizes). This Gaussian distribution makes
it more likely that the user’s positions at two consecutive
timesteps are close to each other.

Considering both the stochastic process over transition
triples and the stochastic process describing the users’ tra-
jectories, the overall user-dynamic embedding model can
be trained via maximum likelihood. The resulting opti-
mization problem is

max
X∈R(|S|+|T ||U|)×d

b∈R|T |×|S|

∏
(sne|scu,u(t))∈D

Pr(sne|scu, u
(t))

·
|U|∏
i=1

∏
t∈{τ|(τ∈T)
∧(τ−1∈T)}

e−νuser∆(u
(t−1)
i ,u

(t)
i)

2

, (5)

where the song and time-dependent user positions are opti-
mized to maximize the likelihood of the observed playlists.

3.3 Song-dynamic Embedding Model

Similar to the user-dynamic embedding model, we also
consider a song-dynamic embedding model which fixes the
position of users and allows songs to drift over time. In this
model, the probability of each transition triple is

Pr(s(t)
ne |s(t)

cu , u) =
e
−∆(s(t)ne ,s

(t)
cu)

2−∆(s(t)ne ,u)
2
+b

(t)

idx(sne)

Z(s
(t)
cu , u)

. (6)

After introducing an analogous Gaussian random walk for
songs over different timesteps (as illustrated in Panel (c) of
Figure 1), we get the training problem

max
X∈R(|T ||S|+|U|)×d

b∈R|T |×|S|

∏
(s

(t)
ne |s

(t)
cu ,u)∈D

Pr(s(t)
ne |s(t)

cu , u)

·
|S|∏
i=1

∏
t∈{τ|(τ∈T)
∧(τ−1∈T)}

e−νsong∆(s
(t−1)
i ,s

(t)
i)

2

, (7)

where users and time-dependent song positions are opti-
mized.

From a technical perspective, it is conceivable to train
an embedding model with both users and songs varying
their position over time, which will output an embedding
matrix X of (|T |(|S| + |U|)) rows. We briefly explored
this model, but found it difficult to interpret the resulting
trajectories. We therefore focus on the restricted models in
our empirical evaluation.

3.4 Training of Probabilistic Embedding Models

The maximum likelihood optimization problems in Equa-
tions (7) and (5) are of substantial scale. Previous sequence
models were trained using stochastic gradient methods
[1, 2, 5]. However, those training algorithm does not scale
well, since the complexity of each training iteration is
quadratic in the number of terms in the partition function
(in our case |S|). In related work on (non-temporal) se-
quence modeling for natural language [6], we developed
an approximate, sampling-based training algorithm which
estimates the partition function on the fly. This training
procedure has complexity which is only linear in the num-
ber of terms in the partition function, and we adopt this
algorithm for training. A software package implement-
ing the training algorithm is available online at http:
//lme.joachims.org.

4. EXPERIMENTS

Our experiments revolve around a Last.fm data set which
we crawled using the site’s API 1 . The crawl was con-
ducted over the course of several weeks in the fourth quar-
ter of 2012. Although it is unused in this work, we were
initially also interested in the social network data, so we

1 http://www.last.fm/api

Figure 2: The song-dynamic model’s song space plotted (from left to right) at 20051, 20091, and 20124

crawled through the social network using the top listener
for each of the 10 top artists on the site at the time as seeds.
For each user, we crawled the user’s complete timestamped
track history and friends list. We later augmented this data
with the age, gender, and country of each user (for those
for which it was available). We also crawled the tags for
some of the songs, although we do not take advantage of
this data in this work.

The result contains over 300,000,000 track plays by
roughly 4700 users, with over 550,000 unique tracks. This
data contains many noisy track names, so we pruned the
data further by only considering tracks with at least 1000
plays and discarding users with no remaining track his-
tory after infrequent songs are discarded. This yields
the set of track histories used in the experiments, which
contains 4,551 users, 32,401 unique tracks, and roughly
200,000,000 track plays. We used this to create our “per-
user playlist” data by splitting the track histories into
playlists of consecutive songs that were played within 15
minutes of each other. Finally, we quantized the times-
tamps to divide each user’s track history into year quarters,
ranging from first quarter, 2005 until fourth quarter, 2012,
for a total of 32 timesteps. From this point on, we will refer
to the nth quarter of year yyyy as yyyyn, such as 20051
for 2005 first quarter.

We considered models with 2 dimensions in this work
for the sake of simplicity and ease of visualization. In or-
der to find good values for νsong and νuser, we further di-
vided the data by placing each fifth song transition into a
validation set and the rest into the training set. We then
used these to validate for the optimal values of these pa-
rameters. The user-dynamic model performed best with a
low value of νuser, with its optimal value at 0.01. In con-
trast, the song-dynamic model performed best with strong
regularization, and the optimal νsong was found to be 2.0.

4.1 Demographics of users

The demographics of the data set reflect characteristics of
the average Last.fm user. For each demographic category,
we report percentages based on the number of users report-
ing in that category. 83% reported an age, 89% reported
a country, and 91% reported gender. In our data, about

Figure 3: Artist trajectories over time. The legend gives
the first quarter in which each artist was observed

78% of the users are male, and about 88% are between the
ages of 15 and 25 (roughly evenly split between the two
groups) as of the crawl in 20124. The median user age is
20, and the average is about 20.8. Due to the social net-
work crawl and a coincidence of the seed users, roughly
57% of our users are from Brazil. The country distribu-
tion has a fairly long tail, with only 84% coming from
the 10 most popular countries, and 91% coming from the
20 most popular countries. The ten most well-represented
countries in the data set are Brazil (57%), US (8%), UK
(4%), Poland (3%), Russia (2.6%), Germany (2.3%), Spain
(1.6%), Mexico (1.6%), Chile (1.3%), and Turkey (1.1%).

4.2 Song-dynamic Model

In the song-dynamic model, songs can move over time
through a map of users. Among other things, the result-
ing trajectories give insight into how the appeal of songs
and artists changed over time.

In Figure 2, we show the embedding of the songs at the
start, middle, and end of the time sequence (i.e., timesteps

Figure 4: The 10 artists with the smallest variance in position over time (left) and the 10 with the largest variance in position
over time (top 5 in center, next five at right). The first timestep at which each artist was observed is listed in parentheses.

20051, 20091, and 20124). A song is plotted once it has
been played at least once, which explains why the space
becomes more dense over time. The locations of users
are not plotted to reduce clutter. Generally speaking, the
density of users is greatest around the origin and then de-
creases outwards. In this sense more popular music lies in
the center, but note that we also capture popularity through
the specific song bias parameter.

Are similar songs embedded at similar locations? To
illustrate the semantic layout of the embedding space, we
highlight the songs of some reference artists. Note that
the songs of the reference artist cluster even though our
embedding method has no direct information about artists.
This verifies that the model can indeed learn about songs
similarity merely from the listening patterns. We also
note that our intuitive notion of artist similarity generally
matches the distance at which our model positions them in
embedding space.

How do songs and artists move? Figure 2 also shows
that the songs of some artists move in the embedding space,
while others remain more stationary. The artists’ changes
are aggregated into trajectories and displayed in Figure 3.
Each dot in Figure 3 indicates the mean location of the
songs of one artist at a specific time step. This plot enables
us to see more clearly some events and trends in the music
world that influence the model.

First, note that Michael Jackson’s trajectory starts off
clumped together in the same space, moving very little.
Then, after some number of timesteps, it starts moving
quickly towards the center. Upon closer inspection, the
turning point in this trajectory turns out to line up exactly
with the death of Michael Jackson in June, 2009.

Similarly, the Beatles start to drift slightly away from
the center as many other artists enter the model. Then, they
make an abrupt turn back towards the center. This aligns
with the release of the Beatles’ full catalog on iTunes in
the 20104 after being totally unavailable via digital distri-
bution before then.

Daft Punk also starts to drift away from the center until
the release in December, 2010 of the motion picture Tron:
Legacy, which featured a popular soundtrack by the duo.

We can also see Girls Aloud and Cheryl Cole (of Girls
Aloud) drift from the edges rapidly towards the center in
correlated paths, and the emergence of David Archuleta, an
American Idol runner-up in May, 2008. All follow a sim-
ilar trajectory in user space, indicating that the users that
previously listened to Girls Aloud are listening to David
Archuleta a few years later.

We can also see artists like Katy Perry and Lady Gaga
drift away from the center after the peak of their popular-
ity, and we see Drake drift towards the center in what can
partly be explained by a shift in his style from something
more hip hop oriented to a somewhat more poppy style.

What does the variance of a trajectory indicate? The
trajectories are useful not only for visualization, but also as
the basis for further aggregating and quantifying the behav-
ior of an artist. Figure 4 shows the artists with the smallest
and largest variance in position over time. The specific cri-
terion used here for a given artist is the average distance
over timesteps from the artist’s embedding at that timestep
to the mean vector of that artist’s representation over all
time steps. To avoid obscure artists that would be diffi-
cult to interpret without further background knowledge, we
only consider artists who appeared in the track histories of
at least 10% of the users.

The left-hand panel in Figure 4 shows the 10 artists with
small variance. Many of these are well-established artists
that probably undergo little change in style or fan base.

The panel in the middle and on the right-hand side of
Figure 4 show the 10 artists with the largest variance. Many
of these are popular artists that have a large change in ap-
peal – i.e., those that go from being relatively obscure to
quite popular.

The variance of a trajectory in only one possible statistic
that summarizes a path. We conjecture that other summary
statistics will highlight other aspects of an artist’s devel-
opment, providing additional criteria for exploratory data

Figure 5: Trajectories of users with age, grouped by age
in 2005. Each point is labeled with the average age of the
group at that time. The legend also gives the average age
in 2005 of the users in that group (in parentheses).

analysis.

4.3 User-dynamic model

The user-dynamic model is dual to the song-dynamic model,
in that it models trajectories of users on a map of songs.
While the trajectories of indiviual users provide an inter-
sting tool for reflection, they are difficult to interpret for
outsiders. We therefore only show aggregate user paths.

One such aggregation is shown in Figure 5. Here, we
can see the behavior of users when aggregated by age.
Specifically, the users are grouped by age in 2005 in order
to separate the effect of a person’s absolute age from the
effect of the change in the average listener’s taste profile.

Distinctive differences in trajectory can be seen, with
the youngest group moving to north, away from Katy Perry
and many other more “sugary” pop artists, and towards
more dance and R&B oriented pop artists as well as the
hip hop cluster which is further north, outside the figure.

The other age groups see more lateral moves and tend
to be further north, even when age is fixed. The oldest age
groups (where 22 to 30 and 31 to 62 were aggregated with a
larger interval due to a smaller number of users in these age
ranges) start very far north, and the 31 to 62 group mostly
hovers around the eastern part of the figure. Outside of the
figure and to the right are where many older rock bands
such as the Rolling Stones and the Beatles lie, and this
oldest age group is also closer to them.

5. CONCLUSIONS

We presented novel probabilistic embedding methods for
modeling long-term temporal dynamics of sequence data.
These models jointly embed users and songs into a met-
ric space, even when no features are available for either
one. Users and/or songs are allowed to change position

over time, which enables the analysis of long-term dynam-
ics of user tastes and artist appeal and style. The ability to
visualize the learned embeddings is a key feature for easy
interpretability and open-ended exploratory data analysis.
We conjecture that such embedding models will provide
interesting tools for analyzing the growing body of listen-
ing data. Furthermore, the embedding models described
in the paper can easily be adapted and extended to include
further information (e.g., social network data), providing
many directions for future work.

5.1 Acknowledgements

This work was supported by NSF grants IIS-1217485, IIS-
1217686, and IIS-1247696. The first author is supported
by an NSF Graduate Research Fellowship. We would also
like to thank the anonymous reviewers for their feedback,
and Brian McFee for helpful discussions and technical ad-
vice.

6. REFERENCES

[1] N. Aizenberg, Y. Koren, and O. Somekh. Build your
own music recommender by modeling internet radio
streams. In Proceedings of the 21st international con-
ference on World Wide Web, pages 1–10. ACM, 2012.

[2] S. Chen, J. L. Moore, D. Turnbull, and T. Joachims.
Playlist prediction via metric embedding. In Proceed-
ings of the 18th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages
714–722. ACM, 2012.

[3] G. Dror, N. Koenigstein, and Y. Koren. Yahoo! music
recommendations: modeling music ratings with tem-
poral dynamics and item taxonomy. In Proceedings of
the fifth ACM conference on Recommender systems,
pages 165–172. ACM, 2011.

[4] V. Jain and L. Saul. Exploratory analysis and visualiza-
tion of speech and music by locally linear embedding.
ICASSP, 2004.

[5] J. L. Moore, S. Chen, T. Joachims, and D. Turnbull.
Learning to embed songs and tags for playlist predic-
tion, 2012.

[6] J. L. Moore and T. Joachims. Fast training of proba-
bilistic sequence embedding models with long-range
dependencies. Arxiv pre-print, 2013.

[7] J. Platt. Fast embedding of sparse music similarity
graphs. NIPS, 2004.

[8] U. Shalit, D. Weinshall, and G. Chechik. Modeling mu-
sical influence with topic models. In ICML, 2013.

[9] J. Weston, S. Bengio, and P. Hamel. Multi-tasking
with joint semantic spaces for large-scale music anno-
tation and retrieval. Journal of New Music Research,
40(4):337–348, 2011.

