
Text Categorization with Support Vector
Machines: Learning with Many Relevant

Features

Thorsten Joachims

Universit�at Dortmund
Informatik LS8, Baroper Str. 301

44221 Dortmund, Germany

Abstract. This paper explores the use of Support Vector Machines
(SVMs) for learning text classi�ers from examples. It analyzes the par-
ticular properties of learning with text data and identi�es why SVMs
are appropriate for this task. Empirical results support the theoretical
�ndings. SVMs achieve substantial improvements over the currently best
performing methods and behave robustly over a variety of di�erent learn-
ing tasks. Furthermore, they are fully automatic, eliminating the need
for manual parameter tuning.

1 Introduction

With the rapid growth of online information, text categorization has become one
of the key techniques for handling and organizing text data. Text categorization
techniques are used to classify news stories, to �nd interesting information on
the WWW, and to guide a user's search through hypertext. Since building text
classi�ers by hand is di�cult and time-consuming, it is advantageous to learn
classi�ers from examples.

In this paper I will explore and identify the bene�ts of Support Vector Ma-
chines (SVMs) for text categorization. SVMs are a new learning method intro-
duced by V. Vapnik et al. [9] [1]. They are well-founded in terms of computational
learning theory and very open to theoretical understanding and analysis.

After reviewing the standard feature vector representation of text, I will
identify the particular properties of text in this representation in section 4. I
will argue that SVMs are very well suited for learning in this setting. The em-
pirical results in section 5 will support this claim. Compared to state-of-the-art
methods, SVMs show substantial performance gains. Moreover, in contrast to
conventional text classi�cation methods SVMs will prove to be very robust,
eliminating the need for expensive parameter tuning.

2 Text Categorization

The goal of text categorization is the classi�cation of documents into a �xed
number of prede�ned categories. Each document can be in multiple, exactly one,
or no category at all. Using machine learning, the objective is to learn classi�ers

from examples which perform the category assignments automatically. This is
a supervised learning problem. Since categories may overlap, each category is
treated as a separate binary classi�cation problem.

The �rst step in text categorization is to transform documents, which typ-
ically are strings of characters, into a representation suitable for the learning
algorithm and the classi�cation task. Information Retrieval research suggests
that word stems work well as representation units and that their ordering in a
document is of minor importance for many tasks. This leads to an attribute-
value representation of text. Each distinct word1 wi corresponds to a feature,
with the number of times word wi occurs in the document as its value. To avoid
unnecessarily large feature vectors, words are considered as features only if they
occur in the training data at least 3 times and if they are not \stop-words" (like
\and", \or", etc.).

This representation scheme leads to very high-dimensional feature spaces
containing 10000 dimensions and more. Many have noted the need for feature
selection to make the use of conventional learning methods possible, to improve
generalization accuracy, and to avoid \over�tting". Following the recommenda-
tion of [11], the information gain criterion will be used in this paper to select a
subset of features.

Finally, from IR it is known that scaling the dimensions of the feature vector
with their inverse document frequency (IDF) [8] improves performance. Here
the \tfc" variant is used. To abstract from di�erent document lengths, each
document feature vector is normalized to unit length.

3 Support Vector Machines

Support vector machines are based on the Structural Risk Minimization principle
[9] from computational learning theory. The idea of structural risk minimization
is to �nd a hypothesis h for which we can guarantee the lowest true error. The
true error of h is the probability that h will make an error on an unseen and
randomly selected test example. An upper bound can be used to connect the
true error of a hypothesis h with the error of h on the training set and the
complexity of H (measured by VC-Dimension), the hypothesis space containing
h [9]. Support vector machines �nd the hypothesis h which (approximately)
minimizes this bound on the true error by e�ectively and e�ciently controlling
the VC-Dimension of H.

SVMs are very universal learners. In their basic form, SVMs learn linear
threshold function. Nevertheless, by a simple \plug-in" of an appropriate kernel
function, they can be used to learn polynomial classi�ers, radial basic function
(RBF) networks, and three-layer sigmoid neural nets.

One remarkable property of SVMs is that their ability to learn can be in-
dependent of the dimensionality of the feature space. SVMs measure
the complexity of hypotheses based on the margin with which they separate the

1 The terms \word" and \word stem" will be used synonymously in the following.

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Pr
ec

is
io

n/
R

ec
al

l-B
re

ak
ev

en
 P

oi
nt

Features ranked by Mutual Information

Bayes
Random

Fig. 1. Learning without using the \best" features.

data, not the number of features. This means that we can generalize even in the
presence of very many features, if our data is separable with a wide margin using
functions from the hypothesis space.

The same margin argument also suggest a heuristic for selecting good pa-

rameter settings for the learner (like the kernel width in an RBF network)
[9]. The best parameter setting is the one which produces the hypothesis with
the lowest VC-Dimension. This allows fully automatic parameter tuning without
expensive cross-validation.

4 Why Should SVMs Work Well for Text Categorization?

To �nd out what methods are promising for learning text classi�ers, we should
�nd out more about the properties of text.

High dimensional input space: When learning text classi�ers, one has to
deal with very many (more than 10000) features. Since SVMs use over�tting
protection, which does not necessarily depend on the number of features,
they have the potential to handle these large feature spaces.

Few irrelevant features: One way to avoid these high dimensional input spaces
is to assume that most of the features are irrelevant. Feature selection tries
to determine these irrelevant features. Unfortunately, in text categorization
there are only very few irrelevant features. Figure 1 shows the results of an
experiment on the Reuters \acq" category (see section 5). All features are
ranked according to their (binary) information gain. Then a naive Bayes
classi�er [2] is trained using only those features ranked 1-200, 201-500, 501-
1000, 1001-2000, 2001-4000, 4001-9962. The results in �gure 1 show that
even features ranked lowest still contain considerable information and are
somewhat relevant. A classi�er using only those \worst" features has a per-
formance much better than random. Since it seems unlikely that all those
features are completely redundant, this leads to the conjecture that a good
classi�er should combine many features (learn a \dense" concept) and that
aggressive feature selection may result in a loss of information.

Document vectors are sparse: For each document, the corresponding docu-
ment vector contains only few entries which are not zero. Kivinen et al. [4]
give both theoretical and empirical evidence for the mistake bound model
that \additive" algorithms, which have a similar inductive bias like SVMs,
are well suited for problems with dense concepts and sparse instances.

Most text categorization problems are linearly separable: All Ohsumed
categories are linearly separable and so are many of the Reuters (see section
5) tasks. The idea of SVMs is to �nd such linear (or polynomial, RBF, etc.)
separators.

These arguments give theoretical evidence that SVMs should perform well
for text categorization.

5 Experiments

The following experiments compare the performance of SVMs using polyno-
mial and RBF kernels with four conventional learning methods commonly used
for text categorization. Each method represents a di�erent machine learning
approach: density estimation using a naive Bayes classi�er [2], the Rocchio al-
gorithm [7] as the most popular learning method from information retrieval,
a distance weighted k-nearest neighbor classi�er [5][10], and the C4.5 decision
tree/rule learner [6]. SVM training is carried out with the SVMlight2 package.
The SVMlight package will be described in a forthcoming paper.

Test Collections: The empirical evaluation is done on two test collection. The
�rst one is the \ModApte" split of the Reuters-21578 dataset compiled by David
Lewis. The \ModApte" split leads to a corpus of 9603 training documents and
3299 test documents. Of the 135 potential topic categories only those 90 are used
for which there is at least one training and one test example. After preprocessing,
the training corpus contains 9962 distinct terms.

The second test collection is taken from the Ohsumed corpus compiled by
William Hersh. From the 50216 documents in 1991 which have abstracts, the
�rst 10000 are used for training and the second 10000 are used for testing.
The classi�cation task considered here is to assign the documents to one or
multiple categories of the 23 MeSH \diseases" categories. A document belongs
to a category if it is indexed with at least one indexing term from that category.
After preprocessing, the training corpus contains 15561 distinct terms.

Results: Figure 2 shows the results on the Reuters corpus. The Precision/Recall-
Breakeven Point (see e. g. [3]) is used as a measure of performance and mi-
croaveraging [10][3] is applied to get a single performance value over all binary
classi�cation tasks. To make sure that the results for the conventional methods
are not biased by an inappropriate choice of parameters, all four methods were
run after selecting the 500 best, 1000 best, 2000 best, 5000 best, (10000 best,)
or all features using information gain. At each number of features the values
� 2 f0; 0:1; 0:25;0:5;1:0g for the Rocchio algorithm and k 2 f1; 15; 30; 45;60g

2 http://www-ai.informatik.uni-dortmund.de/thorsten/svm light.html

SVM (poly) SVM (rbf)
degree d = width =

Bayes Rocchio C4.5 k-NN 1 2 3 4 5 0.6 0.8 1.0 1.2

earn 95.9 96.1 96.1 97.3 98.2 98.4 98.5 98.4 98.3 98.5 98.5 98.4 98.3

acq 91.5 92.1 85.3 92.0 92.6 94.6 95.2 95.2 95.3 95.0 95.3 95.3 95.4

money-fx 62.9 67.6 69.4 78.2 66.9 72.5 75.4 74.9 76.2 74.0 75.4 76.3 75.9
grain 72.5 79.5 89.1 82.2 91.3 93.1 92.4 91.3 89.9 93.1 91.9 91.9 90.6

crude 81.0 81.5 75.5 85.7 86.0 87.3 88.6 88.9 87.8 88.9 89.0 88.9 88.2
trade 50.0 77.4 59.2 77.4 69.2 75.5 76.6 77.3 77.1 76.9 78.0 77.8 76.8
interest 58.0 72.5 49.1 74.0 69.8 63.3 67.9 73.1 76.2 74.4 75.0 76.2 76.1

ship 78.7 83.1 80.9 79.2 82.0 85.4 86.0 86.5 86.0 85.4 86.5 87.6 87.1
wheat 60.6 79.4 85.5 76.6 83.1 84.5 85.2 85.9 83.8 85.2 85.9 85.9 85.9
corn 47.3 62.2 87.7 77.9 86.0 86.5 85.3 85.7 83.9 85.1 85.7 85.7 84.5

84.2 85.1 85.9 86.2 85.9 86.4 86.5 86.3 86.2
microavg. 72.0 79.9 79.4 82.3

combined: 86.0 combined: 86.4

Fig. 2. Precision/recall-breakeven point on the ten most frequent Reuters cat-
egories and microaveraged performance over all Reuters categories. k-NN, Roc-
chio, and C4.5 achieve highest performance at 1000 features (with k = 30 for
k-NN and � = 1:0 for Rocchio). Naive Bayes performs best using all features.

for the k-NN classi�er were tried. The results for the parameters with the best
performance on the test set are reported.

On the Reuters data the k-NN classi�er performs best among the conven-
tional methods (see �gure 2). This replicates the �ndings of [10]. Compared to
the conventional methods all SVMs perform better independent of the choice
of parameters. Even for complex hypotheses spaces, like polynomials of degree
5, no over�tting occurs despite using all 9962 features. The numbers printed in
bold in �gure 2 mark the parameter setting with the lowest VCdim estimate as
described in section 3. The results show that this strategy is well-suited to pick
a good parameter setting automatically and achieves a microaverage of 86.0 for
the polynomial SVM and 86.4 for the RBF SVM. With this parameter selection
strategy, the RBF support vector machine is better than k-NN on 63 of the 90
categories (19 ties), which is a signi�cant improvement according to the binomial
sign test.

The results for the Ohsumed collection are similar. Again k-NN is the best
conventional method with a microaveraged precision/recall-breakeven point of
59.1. C4.5 fails on this task (50.0) and heavy over�tting is observed when using
more than 500 features. Naive Bayes achieves a performance of 57.0 and Roc-
chio reaches 56.6. Again, with 65.9 (polynomial SVM) and 66.0 (RBF SVM) the
SVMs perform substantially better than all conventional methods. The RBF
SVM outperforms k-NN on all 23 categories, which is again a signi�cant im-
provement.

Comparing training time, SVMs are roughly comparable to C4.5, but they
are more expensive than naive Bayes, Rocchio, and k-NN. Nevertheless, cur-
rent research is likely to improve e�ciency of SVM-type quadratic programming

problems. SVMs are faster than k-NN at classi�cation time. More details can
found in [3].

6 Conclusions

This paper introduces support vector machines for text categorization. It pro-
vides both theoretical and empirical evidence that SVMs are very well suited for
text categorization. The theoretical analysis concludes that SVMs acknowledge
the particular properties of text: (a) high dimensional feature spaces, (b) few
irrelevant features (dense concept vector), and (c) sparse instance vectors.

The experimental results show that SVMs consistently achieve good perfor-
mance on text categorization tasks, outperforming existing methods substan-
tially and signi�cantly. With their ability to generalize well in high dimensional
feature spaces, SVMs eliminate the need for feature selection, making the ap-
plication of text categorization considerably easier. Another advantage of SVMs
over the conventional methods is their robustness. SVMs show good performance
in all experiments, avoiding catastrophic failure, as observed with the conven-
tional methods on some tasks. Furthermore, SVMs do not require any parameter
tuning, since they can �nd good parameter settings automatically.All this makes
SVMs a very promising and easy-to-use method for learning text classi�ers from
examples.

References

1. C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20:273{
297, November 1995.

2. T. Joachims. A probabilistic analysis of the rocchio algorithm with t�df for text
categorization. In International Conference on Machine Learning (ICML), 1997.

3. T. Joachims. Text categorization with support vector machines: Learning with
many relevant features. Technical Report 23, Universit�at Dortmund, LS VIII,
1997.

4. J. Kivinen, M. Warmuth, and P. Auer. The perceptron algorithm vs. winnow:
Linear vs. logarithmic mistake bounds when few input variables are relevant. In
Conference on Computational Learning Theory, 1995.

5. T. Mitchell. Machine Learning. McGraw-Hill, 1997.
6. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
7. J. Rocchio. Relevance feedback in information retrieval. In G. Salton, editor, The

SMART Retrieval System: Experiments in Automatic Document Processing, pages
313{323. Prentice-Hall Inc., 1971.

8. G. Salton and C. Buckley. Term weighting approaches in automatic text retrieval.
Information Processing and Management, 24(5):513{523, 1988.

9. Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer, New
York, 1995.

10. Y. Yang. An evaluation of statistical approaches to text categorization. Technical
Report CMU-CS-97-127, Carnegie Mellon University, April 1997.

11. Y. Yang and J. Pedersen. A comparative study on feature selection in text cate-
gorization. In International Conference on Machine Learning (ICML), 1997.

This article was processed using the LATEX macro package with LLNCS style

