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Abstract

We present a novel algorithm that creates document
vectors with reduced dimensionality. This work was
motivated by an application characterizing relationships
among documents in a collection. Our algorithm yielded
inter-document similarities with an average precision up
to 17.8% higher than that of singular value decomposition
(SVD) used for Latent Semantic Indexing. The best per-
formance was achieved with dimensional reduction rates
that were 43% higher than SVD on average. Our algo-
rithm creates basis vectors for a reduced space by itera-
tively “scaling” vectors and computing eigenvectors. Un-
like SVD, it breaks the symmetry of documents and terms
to capture information more evenly across documents. We
also discuss correlation with a probabilistic model and
evaluate a method for selecting the dimensionality using
log-likelihood estimation.

1 Introduction

This paper presents a novel algorithm that creates vector
representations for natural language documents by reduc-
ing dimensionality. Our experimental results show that it
yields higher similarity precision than singular value de-
composition (SVD).

Similarities and differences among documents need to
be measured in a variety of applications such as document
clustering. The vector space model [18] is often used with
an assumption that the “bag of words” approach works
well. Among the approaches based on vector space, La-
tent Semantic Indexing (LSI) [5, 7] using SVD is a well-
known successful approach applied to text analysis appli-
cations [8, 9, 10, 20], as well as information retrieval.

The algorithm that we propose was originally devel-
oped for a multiple document summarization program
used for presenting query results. This summarization

*Portions of this work were done while the author was at IBM T. J.
Watson Research Center as a visitor.

program [1] creates vectors that represent topics under-
lying a given document set. Given that source docu-
ment sets were relatively small (e.g. top-ranked 100 doc-
uments), one of the requirements was to capture infor-
mation from every document without ignoring any single
one.

Our algorithm is closely related to SVD used for LSI.
As in SVD, starting with a term-document matrix, it cre-
ates document vectors with reduced dimensionality by re-
peatedly computing eigenvectors. In fact, we were mo-
tivated by the observation that, using SVD, the topics
underlying outlier documents (i.e. the documents very
different from other documents) tended to be lost as we
chose lower numbers of dimensions.

A general explanation of LSI’s good performance is
that when eigenvectors with smaller eigenvalues are left
out, noise is eliminated; and as a result, the similarities
among the linguistic units are measured more accurately
than in the original space. According to the mathemat-
ical formulation of SVD, dimensional reduction comes
from two sources: outlier documents, and minor terms.
We note that these two kinds of noise are mathematically
equivalent and inseparable under SVD. However, we do
not want to consider the outlier documents as “noise”
when our interest is in characterizing the relationships
among the documents while all the documents are as-
sumed to be equal. Thus, our algorithm differs from SVD
in that terms and documents are treated in a nonsymmet-
rical way. By scaling® the vectors in each computation
of eigenvectors, it tries to eliminate noise from the minor
terms but not eliminate the influence of the outlier docu-
ments.

We evaluated our algorithm in terms of the precision of
a cosine similarity measurement among the documents.
Our algorithm yielded an average precision up to 17.8%
higher than that of SVD.

There are studies of applying modified or generalized
SVD to document representations. The semidiscrete de-
composition (SDD) has been proposed to reduce the stor-
age and computational costs of LSI [15]. It has been
shown that user feedback can be integrated into LSI mod-
els by using the Riemannian SVD (R-SVD) [13]. Com-
pared with these studies, the algorithm presented here dif-
fers in that it focuses on improving the precision of simi-

INote that this is essentially different from scaling or normalizing of
vectors as a preprocess or a post-process of SVD mentioned in [5]. As
shown later, it also differs from scaling of some factor analysis methods
(see e.g. [16]) performed mainly for “standardizing”.
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Figure 1: Intuitive difference between SVD and our algo-
rithm. By scaling, the longer residual vector gets longer and the
shorter ones get shorter, relatively. As a result, the basis vector
computed next points closer to the longer residual vector.

larities among all the documents in a collection.

Several studies have provided theoretical interpreta-
tions of LSI in relation to the Bayesian regression model
[19], Multidimensional Scaling (MDS) [3], and probab-
listic models [6, 17]. A method for selecting the number
of dimensions based on a subspace-based model and the
minimal description length principle has been proposed
[21]. Among these studies, we adopt the similarity-based
probability model proposed by Ding [6] to analyze our
approach and to find the optimal number of dimensions.

We describe the algorithm in Section 2. Section 3 dis-
cusses the algorithm in comparison to SVD and in rela-
tion to the Ding’s probabilistic model. Section 4 presents
the evaluation results; it also evaluates the probabilistic
method of choosing the number of dimensions. We will
conclude in Section 5.

2 Algorithm

The input to the algorithm is a term-document matrix of
the conventional vector space model. From the term-
document matrix, we create basis vectors for a reduced
space. The document vectors with reduced dimension-
ality are created from the basis vectors and the term-
document matrix.
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Let n be the number of documents, and let m be the num-
ber of terms. A term-document matrix is an m-by-n ma-
trix whose [, j]th element is the degree of relevance of the
ith term to the jth document. We call each column vec-
tor, associated with a document, a term-document vector.
The term-document vectors should be length normalized
so that every document is treated equally.

Input: term-document matrix

2.2 Basisvector and document vector creation

Basis vector creation is the critical process where our al-
gorithm differs from SVD. Both our algorithm and SVD
work by trying to find a smaller set of basis vectors for
a reduced space. A rough overview of this basis vector
creation process is as follows. First, an initial basis vector
is chosen in such a way as to be “representative” of the
document set. Then, the influence of this basis vector is
subtracted from the document vectors, resulting in resid-
ual vectors. The residual vectors for documents that were
not well-represented by the initial basis vector will be rel-
atively large, whereas the residual vectors for documents
that were well-represented will be somewhat small. Then,
anew basis vector is chosen for these residual vectors, and
the process is repeated.

Where our algorithm differs from SVD is as follows.
Consider the situation pictured in Figure 1 where many
small residual vectors point in essentially the same di-
rection, but one (resulting from an “outlier” document)
points in a different direction. In SVD, a basis vector will
be picked that is representative of the majority of the doc-
uments, even though these documents have already been
well-represented by some previous basis vectors. Thus,
the outlier document will not be well-represented.

We attempt to compensate for this bias towards many
small residual vectors by scaling outlier documents, thus
amplifying their influence on the choice of the next basis
vector, as shown in the bottom half of Figure 1. This is
accomplished by the following procedure.

A matrix R is initialized by the term-document ma-
trix?>. R’s column vectors keep the information not yet
represented by any basis vectors (i.e. the r;’s are residual
vectors). In each iteration, each residual vector is scaled
by a power of its own length, and then the first eigenvec-
tor3 of R,RI (where R, is a matrix of the scaled residual
vectors) is chosen as the next basis vector.

At the end of each iteration, the information captured
by the newly computed basis vector is subtracted from
each residual vector. The basis vectors are orthogonal
because this subtraction makes the residual vectors per-
pendicular to the previous basis vectors, and because the
eigenvector computed next is a linear combination of the
residual vectors.

After all the basis vectors are chosen, a term-document
vector d; is converted to the reduced document vector (the
document vector in a reduced space) d; by multiplying the
matrix of basis vectors following the standard method of
orthogonal transformation.

The pseudo-code is shown in Figure 2. Its running time
is proportional to the number of basis vectors, i.e. the
dimensionality of the reduced space. Since eigenvector

2Throughout this paper, we denote a matrix by a bold-faced upper
case letter, and its ¢th column vector by the bold-faced lower case letter
with index 7, unless defined otherwise. For instance, a; denotes the ith
column vector of a matrix A.

SFollowing convention, we denote the eigenvector with the ith
largest eigenvalue as the ith eigenvector.



Basic vector creation
Input: term-document matrix D, scaling factor ¢
Output: basis vectors by, by, - - -

R = D /* Initialize a residual matrix by the term-doc matrix */
For (¢ = 1; until reaching some criterion; i = 7 + 1)
R = [|r1]|%r1, - - -, |rn|%rys] /* scale each residual vector */
b; = the first unit eigenvector of R,RZ
R = R — b;bI R /* subtract out the b; coordinate */
End for

Document vector creation
d; =[by,- - ,bk]Tdi /* reduce the dimensionality to k& */

Figure 2: Basis vector and document vector creation.

computation is relatively expensive (see [11] for eigen-
vector computation), a small number of dimensions is ad-
vantageous.

There are two important variables in this algorithm: the
number of dimensions and the scaling factor (denoted by
k and q in the pseudo-code, respectively). Note that if the
scaling factor is set to zero (i.e. the residual vectors are not
scaled at all), the basis vectors become the left singular
vectors of SVD. These two variables will be discussed in
Section 3.

3 Discussion of the algorithm

Scaling of the residual vectors is the critical part of our
algorithm that makes the resultant basis vectors different
from the left singular vectors of SVD. In Section 3.1, we
investigate the application of SVD to a term-document
matrix; on this basis, we discuss how our algorithm differs
from SVD. Section 3.2 analyzes the algorithm in relation
to a probabilistic model.

3.1 SVD and our algorithm

It is known that a real m-by-n matrix D can be de-
composed into three matrices (singular value decompo-
sition), D = UXVT. X is an m-by-n matrix such that
o; = X[i, 1] is the square root of the ith largest eigenvalue
of DD? (singular value), and X[i, 5] is zero for i # j.
U is an m-by-m orthonormal matrix of eigenvectors of
DD? (left singular vectors), in the order of eigenvalues,
and V is an n-by-n orthonormal matrix of eigenvectors of
DTD (right singular vectors) [12].

In the discussion below, we assume D is a term-
document matrix, i.e. D’s column vectors and row vec-
tors represent the documents and terms respectively. We
also assume that m > n and D’s rank is n since a typ-
ical term-document matrix (for a relatively small docu-
ment set) takes this shape.

Regarding the first n left singular vectors as the basis
vectors, a term-document vector with dimension m can
be transformed into an n-dimensional vector. For docu-
ment vectors, this transformation is the same as a rotation.

Thus, the dimensionality of the document vectors can be
reduced from m to n without losing (or gaining) any in-
formation, since the rank of n vectors’ linear subspace is
at most n. However, when we reduce the number of basis
vectors to k < n, the transformation is no longer a rota-
tion. For a given k, the first k£ left singular vectors make
the optimal approximation of the linear subspace of the
term-document vectors in terms of the least square errors
or Frobenius matrix norm (F-norm)*

Here is an intuition that we need for investigating the
left singular vectors. Generally, > | (x”a;)?, subject
to x”x = 1, is maximized when x is the first eigenvec-
tor of AAT; this is well known as a way of “fitting” x
to the a;’s. This maximization can be explained as fol-
lows. Since x’a; = |x||a;| cos(x.a,), it inCreases as x
approaches a; (a larger cosine) and as a; is longer. There-
fore, the first eigenvector of AAT, which maximizes
> (xTa;)?, points in the direction of the majority of
a;’s while also pointing somewhat closer to the longer
a;’s.

The first left singular vector u; is the first eigenvector
of DDY. Using the intuition described above, we know
that u; points in the direction of the majority of the term-
document vectors (assuming that the vectors are initially
normalized to the same lengths; see Section 2.1). By sub-
tracting the direction of u; from the term-document vec-
tors, we get residual vectors r;. The second left singular
vector us is the second eigenvector of DD, and also the
first eigenvector of RR” (R is a residual matrix). Using
the intuition again, we know that the second left singular
vector points in the direction of the majority of the resid-
ual vectors while being somewhat closer to the longer
residual vectors. The process is repeated. Thus, as the left
singular vectors are computed one by one, the document
vectors having more nearby vectors are represented ear-
lier. The outlier document vectors are represented later.
Therefore, when low dimensionality is chosen, we lose
more information from the outlier documents.

Because of symmetry of rows and columns, we know
that the right singular vectors represent the term vectors
having more nearby term vectors (resulting from the terms
co-occurring with more terms) and the longer term vectors
(resulting from the terms occurring more frequently) first.
Other terms (minor terms) are represented later.

By dimensional reduction, we eliminate information
from both the outlier documents and the minor terms
at the same time. These are inseparable because SVD
is essentially symmetric: u; = (1/0;)Dv; and v; =
(1/0;)D*u;. However, our interest is not necessarily
symmetric (see Section 1). While minor terms can be re-
garded as “noise”, we want to treat all the documents as
equally important when our interest is in characterizing
the relationships among the documents.

We wish to choose a small dimensionality & because it
saves space and runtime cost. Using SVD, however, we

NAllF = /3, ; Ali 5]



lose more information from outlier documents than the
others when £ is small. As a result, those outlier doc-
uments could be incorrectly regarded as similar to non-
outlier documents. For instance, if we run a clustering
algorithm on the resultant reduced document vectors, we
would observe that small clusters just disappear.

Figure 1 illustrates the intuitive difference between
SVD and our algorithm. We scale the length of each resid-
ual vector by multiplying it by a power of its own length.
By doing this, the longer residual vectors get even longer,
and the shorter ones get even shorter, relatively. (Suppose
that « is the length ratio of a longer vector to a shorter
one. We have z < xt! for ¢ > 0 since z > 1.) This
scaling makes the basis vector closer to the longer resid-
ual vectors. A longer residual vector r; (resulting in a
shorter document vector cii) means that the ith document
is not well-represented by the basis vectors. By scaling
appropriately, the longer residual vectors receive more at-
tention. As a result, information is captured more evenly
from all the documents, and we get a more even distribu-
tion of the reduced document vector lengths. This is how
we break the symmetry of documents and terms in order
to treat all the documents more equally.

3.2 Probabilistic model

A similarity-based probability model has been proposed
as a theoretical explanation of LSI. In this section, we dis-
cuss correlation between our algorithm and this model.

First, we describe the outline of the model with
the notation adjusted for our algorithm. The details
may be found in [6]. The assumption is that, given
the basis vectors B, = {by,---,by}, the docu-
ments are distributed with the probability p(d|By) =
exp(X5_; (d7b;)?)/Z(By,) where d denotes a docu-
ment vector and Z(By) = [exp(35_, (x7b;)?)dx for
normalization. This follows a Gaussian distribution when
we regard By as the mean and an inner product as a
measure of similarity. Assuming independence, the log-
likelihood for the document vectors reduced to dimension
k is computed as

Iy

log(] [ p(d:s/Bx))

i=1

n k
YD (di"by)? + (=n)log(Z(By))

i=1 j=1

Ding [6] has argued that larger log-likelihood indicates
a better statistical model, (i.e. a better semantic space),
and that SVD maximizes the first term of [, while the
second term is negligible because it changes very slowly
compared to the first term.

3.21 Our interpretation

We note that /;.’s second term ( (—n)log(Z(By)) ), ig-

nored by SVD, plays an important role in our algorithm.
The second term of [, represents the proba-

bility of the occurrence of the term-document

subspace when {by,---,b,} are treated as the
mean. Ding [6] estimated the second term as
(—n)log(X1, exp(XF_; (di"b;)?)) by taking the
documents as unbiased data drawn from the popu-
lation, and by ignoring dx treating it as being inde-
pendent of k. Rewriting the estimated second term as
(—n) log(327_, exp(|d;|?)), we note that, for 7 |d;|?
fixed, the estimation of the second term is maximized
when |d;|? = --- = |d,|?. In other words, the second
term is maximized when the lengths of the resultant
reduced document vectors are all the same. Thus, the
second term increases as information is preserved more
evenly from all the documents. Recall that this is exactly
why our algorithm scales the residual vectors r;’s. Our
algorithm tries to increase both the first and second terms
of the log-likelihood estimation while the left singular
vectors of SVD maximize only the first term, ignoring
the second term.

We do not know an easy way to compute the basis
vectors that maximizes the likelihood without ignoring
the second term. To approximate the maximum likeli-
hood, we could search for the scaling factor that will yield
the larger log-likelihood estimation (hereafter, I;,) in each
computation. However, its computation is so expensive
that we chose to fix the scaling factor in all the iterations.
In the experiments we observed that, in general, our algo-
rithm yielded larger values of [}, than SVD.

3.2.2 Choosing the optimal number of dimensions

So far, we have analyzed the log-likelihood estimation for
a fixed dimensionality. To use it for selecting the opti-
mal number of dimensions, we need to consider the es-
timated log-likelihood I, for & ranging from 1 to n. We
note that I, is maximized when k = n, assuming that
the term-document vectors are initially normalized to the
same length. (When k£ = n, the lengths of the reduced
document vectors are all the same, and therefore the es-
timation of the second term is maximized. The first term
is also maximized since it increases monotonically in &.)
However, the best performance is often produced when
k << n, both by SVD and by our algorithm (we show
this later in Section 4.2).

We conjecture that the estimation of Z(B,) causes A
to be incomparable for very different values of k, since
the estimation of Z(By,) is based on the simplifying as-
sumption that dx is independent of k. If Iy and [}, are in
fact comparable for k and h that are close enough, we ex-
pect that, instead of the global maximum, the local maxi-
mum of the log-likelihood will give a clue to the optimal
number of dimensions. This expectation will be experi-
mentally verified in Section 4.3.

4 Evaluation

This algorithm was originally developed for a multi-
document summarization program [1] used for present-
ing query results. For this reason, it was designed with
the following considerations: (1) it should model a rel-



atively small document set (e.g. 100 top-ranked docu-
ments) treating every document equally and (2) it should
run fast enough to be used in an interactive application.
Based on these requirements, we evaluated our algorithm
in terms of the precision of inter-document similarities
and the rates of dimensional reduction.

We chose cosine as a similarity measurement because
it was required for our application, and because another
potential application is document clustering that generally
assumes symmetry in measures [14]. However, it will be
interesting to evaluate other similarity measurements such
as inner products and Euclidian distances.

4.1 Experimental framework
411 Test data

For the evaluation, we used the Text REtrieval Conference
(TREC) collections that were provided for formal train-
ing for SUMMAC. Twenty topics including extraterres-
trial life, animal husbandry, and nuclear non-proliferation
treaties were used®. We made two disjoint document
pools, called ‘pooll’ and ‘pool2’, from the TREC doc-
uments relevant to exactly one of the twenty topics. The
total number of the documents was 684.

We made 15 document sets from each of the two doc-
ument pools (i.e. 30 document sets in total) by selecting
the documents containing the same keyword®. This was a
simplified simulation of the result that might be obtained
by submitting a query to a search program. The number
of documents for each set ranged from 31 to 126 with an
average of 63, and the number of topics ranged from 6 to
20 with an average of 13. Relatively small document sets
were used because of the original requirements for our
algorithm. For each of the document sets, the algorithm
created the document vectors in a reduced space.

4.1.2 Basdinealgorithms

We evaluated two algorithms besides ours for the pur-
pose of comparison. One was SVD taking the left sin-
gular vectors as the basis vectors. The other was the
term-document vectors without any basis conversion. The
term-document matrix was created for all the tested algo-
rithms in the way described in Section 4.1.4.

4.1.3 Evaluation metrics

Our assumption is that similarity should be higher for any
document pair relevant to the same topic (intra-topic pair)
than for any pair relevant to different topics (cross-topic
pair). This assumption is based on the consideration of
how the document vectors would be used by the appli-
cation. For instance, our multi-document summarization
program tries to find clustered documents by detecting the
document pairs having the largest similarities.

5Specifically, topic number 202, 205, 217, 220, 225, 236, 238, 240,
246, 250, 252, 253, 259, 260, 263, 264, 277, 293, 294, and 299 were
used.

6¢law’, “attack’, ‘citizen’, ‘crime’, ‘evidence’, ‘food’, “foreign’, “il-
legal’, “intelligence’, ‘life’, “mine’, ‘newspaper’, ‘nuclear’, ‘power’, and
‘terrorist’ were arbitrarily chosen from the topic descriptions.
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Figure 3: ‘Best average precision’ average over 30 docu-
ment sets

We evaluated the average precision used in TREC, re-
garding an intra-topic pair as a relevant document and the
similarity value as the ranking score. More formally, let
p; denote the document pair that has the ith largest simi-
larity value among all pairs of documents in the document
set. We evaluated precision for an intra-topic pair py by

. . i - 1 1 . . <
precision(py) = = of intra-topic pairs p; where j < k

k
The average of the precision values over all intra-topic
pairs was computed as the average precision.

4.1.4 Implementation

We extracted single- and multi-word terms from the doc-
ument sets using TALENT 4.1 (a document processing en-
vironment; see [4]). We removed the functional words
and very common words (e.g. “say”) as stop words.

We observed that, by removing proper nouns, the aver-
age precision was improved for all the tested algorithms
while performance trends were maintained. Since we are
interested in the optimal performance we could get, we
will report only the performance with the proper nouns
removed.

Dumais [7] reported that the performance of LSI was
affected (both positively and negatively) by the selec-
tion of term weighting methods used to create the term-
document matrix. To avoid the influence of term weight-
ing methods, we simply used the term frequency.

4,15 Scaling factor

To determine the scaling factor, parameter training was
performed. For the test of the document sets from “pool1’,
the document sets from “‘pool2” were used as training data,
and vice versa. As described in Section 4.1.1, ‘pool1’ and
‘pool2’ were disjoint. The parameter space of the scaling
factor from 1 to 10 was explored, in increments of 1.

4.2 Reaults

To treat the selection of dimensions as a separate issue, in
this section we will report the best average precision over
all the possible numbers of dimensions, hereafter ‘best av-
erage precision’.

As a measurement of how much information is trans-
ferred from the term-document vectors to the reduced
document vectors, we define preservation rate to be f2/n




term- red.rate> 50%
doc SVD Ours || SVD Ours
70.9 0.0 +178 76 +17.8
55.1 +0.6 +14.0 -7.7 +140
59.4 0.0 +135 -8.1 +135
62.3 +3.6 +13.1 +3.6 +13.1
66.3 +0.2 +12.3 2.1 +12.3
54.7 0.0 +11.2 2.7 +11.2
57.9 +0.1 +111 2.7 +111
59.1 +5.0 +109 +5.0 +10.9
71.7 0.0 +9.6 -0.2 +9.6
52.2 +6.8 +9.6 +6.8 +9.6
71.7 +5.5 +9.1 +5.5 +9.1
80.1 0.0 +8.0 -6.6 +8.0
67.9 +6.5 +8.0 +6.5 +8.0
45.4 +0.1 +7.8 -0.8 +7.8
53.2 +5.4  +7.3 +5.4 +7.3
48.0 +3.3 +7.3 +3.3 +7.3
34.3 +2.9 +7.1 +2.9 +7.1
62.8 +1.7 +6.9 +1.7 +6.9
67.5 +6.6 +6.7 +6.6 +6.7
54.0 0.0 +6.5 -9.4 +6.5
55.3 0.0 +6.2 -6.8 +6.2
67.3 +0.2 454 -4.3 +5.4
68.0 +0.9 +5.2 76  +1.2
73.6 +0.2 +38 || -154 +3.8
61.3 0.0 +3.6 -3.7 +3.6
56.6 0.0 +3.3 -5.0 +3.3
67.6 +4.1 +2.6 +4.1 +2.6
59.0 +0.2 +2.0 6.2 +0.8
65.6 | +11.7 +15 | +11.7 +1.4
30.4 +1.0 +0.3 +0.3 4.1

Figure 4: Best average precision for each document set
(sorted by the third column). For SVD and our algorithm,
relative performance with respect to term-document vectors is
shown. Boldface indicates the best performing algorithm. The
right half is the best average precision where the reduction rate
> 50%, and the degraded performances are underlined.

where f is the F-norm of the matrix of the reduced doc-
ument vectors. (Recall that the left singular vectors yield
the optimal approximation of the document subspace in
terms of F-norm.) The reduction rate is its complement,
1— preservation rate. We also define the dimensional re-
duction rate as 1 — (# of dimensions / max # of dimen-
sions).

Figure 3 shows the ‘best average precision’ on average
over 30 document sets. Our algorithm’s performance was
5.5% higher than SVD and 7.7% higher than the term-
document vectors.

We are aware that the absolute performance largely de-
pends on the document set. Just as information retrieval
research observes that there are easy topics and hard ones
[2], we observe that there exist easy document sets and
hard ones. The left half of Figure 4 shows the best aver-
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Figure 5: Reduction rates that yielded the ‘best average
precision’. The average over 30 document sets is shown for
each algorithm. The “error bars” represent one standard devia-
tion.

age precision for each document set. For our algorithm
and SVD, relative performance with respect to the term-
document vectors is shown. For 27 document sets out of
30, the best average precision of our algorithm was better
than both baseline algorithms by up to 17.8%. For 3 doc-
ument sets, it fell between SVD and the term-document
vectors.

Note that, theoretically, the best average precision for
SVD and our algorithm should never be worse than the
one for the term-document vectors. This is because, when
the preservation rate is one, the dimensional reduction
does not change the cosine values between the document
vectors (as mentioned in Section 3.1). However, our inter-
est is in getting good performance with as high a reduction
rate as possible. For this purpose, we evaluated the best
average precision in the range of higher reduction rates.
The right half of Figure 4 shows the best average preci-
sion where the reduction rate is higher than 50%. The
performance was degraded for only 4 document sets by
our algorithm, while it was degraded for 18 document sets
by SVD.

Figure 5 shows the reduction rates that yielded the best
average precision. Our algorithm shows a 35.8% higher
reduction rate than SVD on average. The relatively small
standard deviation for our algorithm indicates that train-
ing could work well to find the optimal dimensions.

The algorithm’s computational efficiency is dependent
on the number of dimensions computed. Our algorithm
yielded the best average precision at a dimensional reduc-
tion rate 43.0% higher than that of SVD on average. Thus,
our algorithm has the advantage of being computationally
inexpensive, assuming that we can find the optimal num-
ber of dimensions.

Figure 6 shows the average precision and precision-
recall curve for the document sets for which our algorithm
yielded the best and worst performance with respect to
SVD. The precision-recall curve is the one for the dimen-
sionality that yielded the best average precision. ‘Bestl’
and ‘Best2’ show that the performance of our algorithm is
better than baseline algorithms for almost all the preser-
vation rates and recall levels. We conjecture that the scal-
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Figure 6: Examples of average precision and precision-recall curve.

The performances for the document sets for which our algorithm did best and worst w.r.t. SVD are shown. The average precision
of the term-document vectors are the same as that of SVD (and our algorithm) when preservation rate = 1. The precision-recall
curves for the term-document vectors are not shown for ‘Best1’ and ‘Best2’ because they almost overlapped with the ones for SVD.

ing factor was not appropriate for “Worst1’. Choosing the
scaling factor without training will be our future work.

4.3 Selection of dimensions by log-likelihood

In this section, we describe and evaluate a method that
uses the log-likelihood for choosing the number of dimen-
sions.

For the purposes of comparison, we evaluated two more
methods: a training-based method and a random guess-
based method. We chose to evaluate the training-based
method because, according to [21], in practice the number
of dimensions is often determined experimentally for LSI.
The random guess-based method was a baseline.

Log-likelihood method: Based on the discussion in
Section 3.2, we take the dimensionality that yields a larger
log-likelihood estimation than its neighbors. To do so, we
compare the estimated log-likelihood for £ and an average
estimated log-likelihood of k’s neighbors by computing

A k—1 . i=k+c*n/2 .
fRY=L—=( >, L+ > l)/(cxn)
i=k—c*n/2 i=k+1

Here n is the number of documents, and ¢ is a param-
eter to adjust the number of neighbors. The dimension
numbers that give larger f(k) are preferred. For the eval-
uation, ¢ = 0.25 was used.

Training-based method: Let p be the average of the
preservation rates that yielded the best average precision
on the training data. The numbers of dimensions that
yield preservation rates closer to p are preferred. For the
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‘l first guess O average of 3 guesses M best of 3 guesses‘

Figure 7: Ratios of average precision to the best average
precision. The average over 30 document sets is shown
for each method.

evaluation, the training was performed using the docu-
ment sets from “pooll’ as training data for the test of the
document sets from ‘pool2’, and vice versa.

Random guess-based method: We determine the hum-
ber of dimensions randomly.

4.3.1 Evaluation

Each method made three guesses. The relative perfor-
mance (average precision / best average precision) was
evaluated for the numbers of dimensions that each method
guessed. Figure 7 shows the performance of the first
guess, the average performance over three guesses, and
the best performance among three guesses.

The log-likelihood method clearly does better than the
random guess-based method and almost same or slightly



better than the training-based method. We believe that this
result supports the correlation between our algorithm and
the probabilistic model based on Gaussian distribution.

5 Conclusion

We presented an algorithm that creates document vectors
via dimensional reduction for a relatively small document
set. The experimental results showed that our algorithm
achieved higher precision of similarity measurement with
higher reduction rate than the baseline algorithms. The
best average precision was up to 17.8% higher than SVD
and the original term-document vectors. The dimensional
reduction rate yielding the ‘best average precision’ was
43% higher than SVD on average. The experimental re-
sults indicated that the log-likelihood based on the Gaus-
sian distribution would support our approach and suggest
how to select the optimal number of dimensions.

We expect that dynamic determination of scaling fac-
tors will further improve the performance. We also plan
to apply our algorithm to other smaller linguistic units.
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