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Abstract

Given the lack of word delimiters in written
Japanese,word segmentationis generallyconsid-
eredacrucialfirst stepin processingJapanesetexts.
Typical Japanesesegmentationalgorithmsrely ei-
therona lexiconandgrammaror onpre-segmented
data. In contrast,we introducea novel statistical
methodutilizing unsegmentedtraining data, with
performanceon kanji sequencescomparableto and
sometimessurpassingthatof morphologicalanalyz-
ersoveravarietyof errormetrics.

1 Introduction

BecauseJapaneseis written without delimitersbe-
tween words,1 accurateword segmentationto re-
cover thelexical itemsis akey stepin Japanesetext
processing.Proposedapplicationsof segmentation
technologyincludeextractingnew technicalterms,
indexing documentsfor information retrieval, and
correctingoptical characterrecognition(OCR) er-
rors (Wu andTseng,1993;NagaoandMori, 1994;
Nagata,1996a;Nagata,1996b;Sproatet al., 1996;
Fung,1998).

Typically, Japaneseword segmentationis per-
formedby morphologicalanalysisbasedon lexical
andgrammaticalknowledge.This analysisis aided
by the fact that thereare three typesof Japanese
characters,kanji, hiragana, andkatakana: changes
in charactertypeoftenindicatewordboundaries,al-
thoughusingthis heuristicaloneachieveslessthan
60%accuracy (Nagata,1997).

Charactersequencesconsistingsolely of kanji
pose a challenge to morphologically-basedseg-
menters for several reasons. First and most
importantly, kanji sequencesoften containdomain
terms and proper nouns: Fung (1998) notesthat
50-85% of the terms in various technicaldictio-

1Theanalogoussituationin Englishwouldbeif wordswere
writtenwithout spacesbetweenthem.

Sequencelength # of characters % of corpus
1 - 3 kanji 20,405,486 25.6
4 - 6 kanji 12,743,177 16.1
morethan6 kanji 3,966,408 5.1
Total 37,115,071 46.8

Figure1: Statisticsfrom 1993Japanesenewswire
(NIKKEI), 79,326,406characterstotal.

nariesarecomposedat leastpartly of kanji. Such
words tend to be missing from general-purpose
lexicons, causingan unknownword problem for
morphologicalanalyzers;yet, thesetermsarequite
important for information retrieval, information
extraction,andtext summarization,makingcorrect
segmentationof thesetermscritical. Second,kanji
sequencesoften consist of compoundnouns, so
grammaticalconstraintsare not applicable. For
instance,the sequencesha-choh� ken�gyoh-mu� bu-
choh (president�and�business� general manager
= “a presidentas well as a generalmanagerof
business”)couldbe incorrectlysegmentedas: sha-
choh� ken-gyoh�mu�bu-choh (president� subsidiary
business�Tsutomu [a name]�general manager);
since both alternatives are four-noun sequences,
they cannot be distinguishedby part-of-speech
information alone. Finally, heuristics basedon
changesin charactertypeobviously do notapplyto
kanji-onlysequences.

Although kanji sequencesare difficult to seg-
ment, they can comprisea significant portion of
Japanesetext, as shown in Figure 1. Since se-
quencesof more than 3 kanji generallyconsistof
morethanoneword,at least21.2%of 1993Nikkei
newswireconsistsof kanji sequencesrequiringseg-
mentation.Thus,accuracy on kanji sequencesis an
importantaspectof thetotal segmentationprocess.

As an alternative to lexico-grammaticalandsu-
pervisedapproaches,we proposea simple, effi-



cient segmentationmethod which learns mostly
from very large amountsof unsegmentedtraining
data,thusavoiding the costsof building a lexicon
or grammaror hand-segmentinglarge amountsof
trainingdata.Somekey advantagesof this method
are:

� No Japanese-specificrulesareemployed, en-
hancingportability to otherlanguages.

� A very small numberof pre-segmentedtrain-
ing examples(asfew as5 in our experiments)
are neededfor good performance,as long as
large amountsof unsegmenteddataareavail-
able.

� For longkanji strings,themethodproducesre-
sults rivalling thoseproducedby Juman3.61
(KurohashiandNagao,1998)andChasen1.0
(Matsumotoet al., 1997), two morphological
analyzersin widespreaduse.For instance,we
achieve 5%higherword precisionand6%bet-
termorphemerecall.

2 Algorithm
Ouralgorithmemployscountsof character� -grams
in anunsegmentedcorpusto makesegmentationde-
cisions. We illustrate its usewith an example(see
Figure2).

Let “A B C D W X Y Z” representaneight-kanji
sequence.Todecidewhetherthereshouldbeaword
boundarybetweenD andW, we checkwhether� -
gramsthat areadjacentto the proposedboundary,
suchasthe 4-grams���	� “A B C D” and ��
�� “W
X Y Z”, tendto bemorefrequentthan� -gramsthat
straddleit, suchasthe4-gram���� “B C D W”. If
so,we have evidenceof a word boundarybetween
D and W, sincethereseemsto be relatively little
cohesionbetweenthe characterson oppositesides
of this gap.

The � -gramordersusedasevidencein the seg-
mentationdecisionarespecifiedby theset � . For
instance,if ��������� in our example,thenwe pose
thesix questionsof theform, “Is ��������� �!���"�#$� ?”,
where ���"%&� denotesthe numberof occurrencesof% in the (unsegmented)training corpus. If � ��('()*��� , then two more questions(Is “ ��� C D �+���� D W � ?” and “Is ��� W X �,�-��� D W � ?”) are
added.

More formally, let �/. � and ��.
 be the non-
straddling� -gramsjust to the left andright of lo-
cation 0 , respectively, and let  .# be the straddling� -gramwith 1 charactersto theright of location 0 .

2 3 4 5 6 7 8 9
: ; : <

= ;
= <

= >

?

Figure2: Collectingevidencefor a word boundary
– are the non-straddling� -grams ��� and �/
 more
frequentthanthestraddling� -grams$�/)*@
A) and@B ?
Let CEDF�"GH)�IJ� beanindicatorfunctionthatis 1 whenGK�LI , and0 otherwise.2 In orderto compensatefor
the fact that therearemore � -gramquestionsthan�"�	MON(� -gramquestions,wecalculatethefractionof
affirmative answersseparatelyfor each� in � :

P . ��0Q�R�
N

'(�"��MSN(�


�UT �

.WV �
#�T � CEDF������� .� ��)����" .# ���

Then,we averagethecontributionsof each� -gram
order: PAX ��0Q�Y� N

� �Z� .W[ X
P . ��0Q�

After PAX ��0Q� is computedfor every location,bound-
ariesareplacedatall locations\ suchthateither:

�KPAX �"\��]� PAX �"\^M!N(� and P(X �"\(�_� PAX �"\a`LN(�
(thatis, \ is a local maximum),or

�KPAX �"\��YbZ , a thresholdparameter.

The secondcondition is necessaryto allow for
single-characterwords(seeFigure3). Note that it
also controls the granularityof the segmentation:
low thresholdsencourageshortersegments.

Both the countacquisitionandthe testingphase
are efficient. Computing � -gram statisticsfor all
possiblevaluesof � simultaneouslycanbedoneinc �"dfe g(hidj� time using suffix arrays,where d is
the trainingcorpussize(ManberandMyers,1993;
NagaoandMori, 1994). However, if the set � of� -gram ordersis known in advance,conceptually
simpleralgorithmssuffice. Memory allocationfor

2Note that we do not take into accountthe magnitudeof
the differencebetweenthe two frequencies;seesection5 for
discussion.
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Figure3: Determiningword boundaries.TheX- Y
boundaryis createdby the thresholdcriterion, the
otherthreeby thelocal maximumcondition.

count tablescanbe significantly reducedby omit-
ting � -gramsoccurringonly onceandassumingthe
countof unseen� -gramsto beone. In theapplica-
tion phase,thealgorithmis clearlylinearin thetest
corpussizeif � �Z� is treatedasaconstant.

Finally, we notethatsomepre-segmenteddatais
necessaryin order to set the parameters� and  .
However, asdescribedbelow, very little suchdata
wasrequiredto getgoodperformance;wetherefore
deemouralgorithmto be“mostly unsupervised”.

3 Experimental Framework

Our experimental data was drawn from 150
megabytesof 1993 Nikkei newswire (seeFigure
1). Five 500-sequenceheld-outsubsetswere ob-
tainedfrom this corpus,the rest of the dataserv-
ing astheunsegmentedcorpusfrom whichto derive
character� -gramcounts.Eachheld-outsubsetwas
hand-segmentedand then split into a 50-sequence
parameter-training setanda 450-sequencetestset.
Finally, any sequencesoccurringin both a testset
and its correspondingparameter-training set were
discardedfrom the parameter-training set, so that
thesesetswere disjoint. (Typically no more than
fivesequenceswereremoved.)

3.1 Held-out set annotation

Eachheld-outsetcontained500randomly-extracted
kanji sequencesat leastten characterslong (about
twelve on average), lengthy sequencesbeing the
most difficult to segment (Takeda and Fujisaki,
1987).To obtainthegold-standardannotations,we
segmentedthesequencesbyhand,usinganobserva-
tion of TakedaandFujisaki (1987)thatmany kanji
compound words consist of two-characterstem
wordstogetherwith one-characterprefixesandsuf-
fixes.Usingthisterminology, ourtwo-level bracket-
ing annotationmaybesummarizedasfollows.3 At

3A completedescriptionof theannotationpolicy, including
the treatmentof numericexpressions,maybefound in a tech-
nical report(Ando andLee,1999).

theword level, a stemandits affixesarebracketed
togetheras a single unit. At the morphemelevel,
stemsaredivided from their affixes. For example,
althoughbothnaga-no(Nagano)andshi (city) can
appearas individual words, naga-no-shi(Nagano
city) is bracketedas[[naga-no][shi]], sincehereshi
serves as a suffix. Loosely speaking,word-level
bracketing demarcatesdiscourseentities, whereas
morpheme-level bracketsenclosestringsthatcannot
befurthersegmentedwithout lossof meaning.4 For
instance,if one segmentsnaga-no in naga-no-shi
into naga (long) andno (field), the intendedmean-
ing disappears.Hereis an examplesequencefrom
ourdatasets:

[ ][ ][[ ][ ]][ ]
Three native Japanesespeakers participatedin

theannotation:onesegmentedall theheld-outdata
basedontheaboverules,andtheothertwo reviewed
350 sequencesin total. The percentageof agree-
mentwith thefirst person’s bracketingwas98.42%:
only 62 out of 3927locationswerecontestedby a
verifier. Interestingly, all disagreementwasat the
morphemelevel.

3.2 Baseline algorithms

We evaluatedour segmentationmethodby com-
paring its performanceagainstChasen1.05 (Mat-
sumotoet al., 1997)andJuman3.61,6 (Kurohashi
andNagao,1998), two state-of-the-art,publically-
available,user-extensiblemorphologicalanalyzers.
In bothcases,thegrammarswereusedasdistributed
withoutmodification.Thesizesof Chasen’sandJu-
man’s default lexicons are approximately115,000
and231,000words,respectively.

Comparison issues An important questionthat
arosein designingour experimentswashow to en-
able morphologicalanalyzersto make use of the
parameter-training data,sincethey do not have pa-
rametersto tune.Theonly significantway thatthey
can be updatedis by changingtheir grammarsor
lexicons, which is quite tedious(for instance,we
had to add part-of-speechinformation to new en-
tries by hand). We took what we felt to be a rea-
sonable,but not too time-consuming,courseof cre-
atingnew lexical entriesfor all thebracketedwords
in the parameter-training data. Evidencethat this

4This level of segmentationis consistentwith Wu’s (1998)
MonotonicityPrinciple for segmentation.

5http://cactus.aist-nara.ac.jp/lab/nlt/chasen.html
6http://pine.kuee.kyoto-u.ac.jp/nl-resource/juman-e.html
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Figure 4: Word accuracy. The three rightmost
groups representour algorithm with parameters
tunedfor differentoptimizationcriteria.

wasappropriatecomesfrom the fact that thesead-
ditionsneverdegradedtestsetperformance,andin-
deedimprovedit by onepercentin somecases(only
small improvementsareto beexpectedbecausethe
parameter-trainingsetswerefairly small).

It is importantto notethatin theend,wearecom-
paring algorithmswith accessto different sources
of knowledge.JumanandChasenuselexiconsand
grammarsdevelopedby humanexperts. Our al-
gorithm, not having accessto such pre-compiled
knowledgebases,mustof necessitydraw on other
informationsources(in this case,a very large un-
segmentedcorpusanda few pre-segmentedexam-
ples)to compensatefor this lack. Sincewe arein-
terestedin whetherusingsimplestatisticscanmatch
theperformanceof labor-intensive methods,we do
not view theseinformation sourcesas conveying
an unfair advantage,especiallysincethe annotated
training setswere small, available to the morpho-
logicalanalyzers,anddisjoint from thetestsets.

4 Results

We reporttheaverageresultsover thefive testsets
usingthe optimal parametersettingsfor the corre-
spondingtraining sets(we tried all nonemptysub-
setsof �('()�¢()*��)�£()�¤(� for thesetof � -gramorders�
andall valuesin �(¥§¦(£()�¥§N()�¥§N(£()�¥�¥�¥()�N(� for thethresh-
old  )7. In all performancegraphs,the “error bars”
representone standarddeviation. The resultsfor
ChasenandJumanreflectthe lexicon additionsde-

7For simplicity, ties weredeterministicallybroken by pre-
ferring smallersizesof ¨ , shorter© -gramsin ¨ , and larger
thresholdvalues,in thatorder.

scribedin section3.2.

Word and morpheme accuracy The standard
metrics in word segmentationare word precision
andrecall. Treatinga proposedsegmentationasa
non-nestedbracketing (e.g., “ �AB �C � ” corresponds
to thebracketing“[AB][C]”), word precision( ª ) is
definedasthepercentageof proposedbracketsthat
exactlymatchword-level bracketsin theannotation;
word recall ( « ) is thepercentageof word-level an-
notationbracketsthatareproposedby thealgorithm
in question;andword F combinesprecisionandre-
call: ¬L�L'(ª«a®(��ª¯`S«a� .

One problem with using word metrics is that
morphologicalanalyzersare designedto produce
morpheme-level segments. To compensate,we al-
tered the segmentationsproducedby Jumanand
Chasenby concatenatingstemsandaffixes,asiden-
tified by thepart-of-speechinformationtheanalyz-
ersprovided. (We alsomeasuredmorphemeaccu-
racy, asdescribedbelow.)

Figures4 and8 show word accuracy for Chasen,
Juman,and our algorithm for parametersettings
optimizing word precision,recall, and F-measure
rates. Our algorithmachieves5.27%higherpreci-
sionand0.26%betterF-measureaccuracy thanJu-
man,anddoesevenbetter(8.8%and4.22%,respec-
tively) with respectto Chasen. The recall perfor-
mancefalls (barely)betweenthatof Jumanandthat
of Chasen.

As noted above, Jumanand Chasenwere de-
signedto producemorpheme-level segmentations.
We thereforealso measuredmorphemeprecision,
recall, and F measure, all definedanalogouslyto
theirwordcounterparts.

Figure5 shows our morphemeaccuracy results.
We seethatour algorithmcanachieve betterrecall
(by 6.51%)andF-measure(by 1.38%)thanJuman,
anddoesbetterthanChasenby anevenwider mar-
gin (11.18%and 5.39%, respectively). Precision
wasgenerallyworsethanthemorphologicalanalyz-
ers.

Compatible Brackets Althoughword-level accu-
racy is a standardperformancemetric, it is clearly
very sensitive to thetestannotation.Morphemeac-
curacy suffers the sameproblem. Indeed,the au-
thors of Jumanand Chasenmay well have con-
structedtheir standarddictionariesusing different
notionsof word andmorphemethanthedefinitions
we usedin annotatingthedata.We thereforedevel-
opedtwo new, morerobust metricsto measurethe
numberof proposedbrackets that would be incor-



[[data][base]][system] (annotation brackets)
Proposedsegmentation word morpheme compatible-bracket errors

errors errors crossing morpheme-dividing
[data][base] [system] 2 0 0 0
[data][basesystem] 2 1 1 0
[database] [sys][tem] 2 3 0 2

Figure6: Examplesof word,morpheme,andcompatible-bracket errors.Thesequence“database”hasbeen
annotatedas“[[data][base]]”because“database”and“database”areinterchangeable.

Morpheme accuracy
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Figure5: Morphemeaccuracy.

rectwith respectto anyreasonableannotation.
Our novel metricsaccountfor two typesof er-

rors. The first, a crossingbracket, is a proposed
bracket thatoverlapsbut is not containedwithin an
annotationbracket (Grishmanet al., 1992). Cross-
ing bracketscannotcoexist with annotationbrack-
ets, and it is unlikely that anotherhumanwould
create such brackets. The second type of er-
ror, a morpheme-dividingbracket, subdivides a
morpheme-level annotationbracket; by definition,
suchabracket resultsin a lossof meaning.SeeFig-
ure6 for someexamples.

We define a compatiblebracket as a proposed
bracket that is neither crossing nor morpheme-
dividing. Thecompatiblebracketsrateis simplythe
compatiblebracketsprecision. Note that this met-
ric accountsfor differentlevelsof segmentationsi-
multaneously, which is beneficialbecausethegran-
ularity of ChasenandJuman’s segmentationvaries
from morphemelevel to compoundword level (by
ourdefinition).For instance,well-known university
namesaretreatedassinglesegmentsby virtueof be-
ing in thedefault lexicon, whereasotheruniversity
namesaredividedinto thenameandtheword “uni-
versity”. Using the compatiblebrackets rate,both

segmentationscanbecountedascorrect.

We also use the all-compatible brackets rate,
which is the fraction of sequencesfor which all
the proposedbrackets are compatible. Intuitively,
this functionmeasurestheeasewith whichahuman
could correctthe outputof the segmentationalgo-
rithm: if the all-compatiblebrackets rate is high,
then the errors are concentratedin relatively few
sequences;if it is low, then a humandoing post-
processingwouldhave to correctmany sequences.

Figure7 depictsthecompatiblebracketsandall-
compatiblebracketsrates.Our algorithmdoesbet-
ter on both metrics(for instance,whenF-measure
is optimized,by 2.16%and1.9%, respectively, in
comparisonto Chasen,and by 3.15%and 4.96%,
respectively, in comparisonto Juman),regardlessof
training optimizationfunction (word precision,re-
call, or F — we cannotdirectly optimizethe com-
patiblebracketsratebecause“perfect” performance
is possiblesimply by makingtheentiresequencea
singlesegment).

Compatible and all-compatible brackets rates

ÚoÛ
ÜoÝ
Ü Û
Þ�Ý
Þ Û
ß ÝoÝ
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ñ�émí�ê�ô ë ì ��õ ï��oð ô�ñ�� ï�ë ò�ð ô�ë ï�ò ômõ õ � ñ�émí�ê�ô�ë ì �oõ ï	�oð ô�ñ
� ï�ë ò�ð ô�ë ï�ò
Figure 7: Compatiblebrackets and all-compatible
bracket rateswhenwordaccuracy is optimized.



Juman5vs. Juman50 Our50vsJuman50 Our5vs. Juman5 Our5vs. Juman50
precision -1.04 +5.27 +6.18 +5.14
recall -0.63 -4.39 -3.73 -4.36
F-measure -0.84 +0.26 +1.14 +0.30

Figure8: Relative word accuracy asa function of training setsize. “5” and“50” denotetraining setsize
before discardingoverlapswith thetestsets.

4.1 Discussion

Minimal human effort is needed. In contrast
to our mostly-unsupervisedmethod,morphological
analyzersneeda lexicon and grammarrules built
using humanexpertise. The workload in creating
dictionarieson the orderof hundredsof thousands
of words (the size of Chasen’s and Juman’s de-
fault lexicons) is clearly muchlarger thanannotat-
ing the small parameter-training setsfor our algo-
rithm. We alsoavoid the needto segmenta large
amountof parameter-training databecauseour al-
gorithm draws almostall its information from an
unsegmentedcorpus.Indeed,theonly humaneffort
involvedin ouralgorithmis pre-segmentingthefive
50-sequenceparametertraining sets, which took
only 42 minutes. In contrast,previously proposed
supervisedapproacheshave usedsegmentedtrain-
ing setsrangingfrom 1000-5000sentences(Kash-
ioka et al., 1998) to 190,000sentences(Nagata,
1996a).

To testhow muchannotatedtrainingdatais actu-
ally necessary, we experimentedwith usingminis-
cule parameter-training sets: five setsof only five
stringseach(from whichany sequencesrepeatedin
thetestdatawerediscarded).It tookonly 4 minutes
to performthe handsegmentationin this case.As
shown in Figure8, relative word performancewas
notdegradedandsometimesevenslightly better. In
fact, from the last columnof Figure8 we seethat
even if our algorithmhasaccessto only five anno-
tatedsequenceswhenJumanhasaccessto tentimes
asmany, we still achieve betterprecisionandbetter
F measure.

Both the local maximum and threshold condi-
tions contribute. In our algorithm, a location 0
is deemeda word boundaryif P X ��0Q� is either(1) a
local maximumor (2) at leastasbig asthe thresh-
old  . It is naturalto askwhetherwereallyneedtwo
conditions,or whetherjustonewouldsuffice.

We therefore studied whether optimal perfor-
mancecouldbeachievedusingonly oneof thecon-
ditions. Figure9 shows that in factbothcontribute

to producinggoodsegmentations.Indeed,in some
cases,both are neededto achieve the bestperfor-
mance;also,eachconditionwhenusedin isolation
yieldssuboptimalperformancewith respectto some
performancemetrics.

accuracy optimize optimize optimize
precision recall F-measure

word M M & T M
morpheme M & T T T

Figure9: Entriesindicatewhetherbestperformance
is achievedusingthelocalmaximumcondition(M),
thethresholdcondition(T), or both.

5 Related Work

Japanese Many previously proposedsegmenta-
tion methodsfor Japanesetext make useof either
a pre-existing lexicon (Yamronet al., 1993; Mat-
sumotoandNagao,1994;TakeuchiandMatsumoto,
1995; Nagata,1997; Fuchi and Takagi, 1998) or
pre-segmentedtraining data(Nagata,1994; Papa-
georgiou, 1994; Nagata,1996a; Kashiokaet al.,
1998; Mori and Nagao,1998). Other approaches
bootstrapfrom an initial segmentationprovided by
a baselinealgorithmsuchasJuman(Matsukawa et
al., 1993;Yamamoto,1996).

Unsupervised,non-lexicon-basedmethods for
Japanesesegmentationdo exist, but they oftenhave
limited applicability. Both Tomokiyo and Ries
(1997)andTeller andBatchelder(1994)explicitly
avoid working with kanji charactes. Takeda and
Fujisaki (1987) proposethe short unit model, a
type of HiddenMarkov Model with linguistically-
determinedtopology, to segmentkanji compound
words. However, their method does not handle
three-characterstemwordsor single-characterstem
words with affixes, both of which often occur in
propernouns. In our five test datasets,we found
that 13.56%of the kanji sequencescontainwords
thatcannotbehandledby theshortunit model.

NagaoandMori (1994)proposeusingtheheuris-



tic thathigh-frequency character� -gramsmayrep-
resent (portions of) new collocationsand terms,
but the results are not experimentally evaluated,
nor is a generalsegmentationalgorithmproposed.
The work of Ito andKohda(1995)similarly relies
on high-frequency character� -grams,but again,is
moreconcernedwith usingthesefrequent� -grams
aspseudo-lexicon entries;a standardsegmentation
algorithmis thenusedon the basisof the induced
lexicon. Our algorithm,on thehand,is fundamen-
tally differentin that it incorporatesno explicit no-
tion of word, but only “sees” locations between
characters.

Chinese Accordingto Sproatet al. (1996),most
prior work in Chinesesegmentationhasexploited
lexical knowledgebases;indeed,theauthorsassert
that they were aware of only one previously pub-
lished instance(the mutual-informationmethodof
SproatandShih (1990))of a purely statisticalap-
proach. In a later paper, Palmer (1997) presents
a transformation-basedalgorithm, which requires
pre-segmentedtrainingdata.

To our knowledge,the Chinesesegmentermost
similar to ours is that of Sunet al. (1998). They
alsoavoid using a lexicon, determiningwhethera
given locationconstitutesa word boundaryin part
by decidingwhetherthe two characterson either
sidetendto occurtogether;also,they usethresholds
and several typesof local minima and maximato
make segmentationdecisions.However, the statis-
tics they use(mutual information and  -score)are
morecomplex thanthe simple � -gramcountsthat
we employ.

Our preliminary reimplementation of their
methodshows that it doesnot perform as well as
the morphologicalanalyzerson our datasets,al-
thoughwe donotwantto draw definiteconclusions
becausesomeaspectsof Sunet al’s methodseem
incomparableto ours. We do note, however, that
their method incorporatesnumerical differences
betweenstatistics,whereaswe only use indicator
functions; for example, once we know that one
trigram is more commonthan another, we do not
take into accountthe differencebetweenthe two
frequencies. We conjecturethat using absolute
differencesmay have an adverse effect on rare
sequences.

6 Conclusion

In this paper, we have presenteda simple,mostly-
unsupervisedalgorithmthat segmentsJapanesese-

quencesinto wordsbasedon statisticsdrawn from
a large unsegmentedcorpus. We evaluatedper-
formanceon kanji with respectto several metrics,
including the novel compatiblebrackets and all-
compatiblebrackets rates,and found that our al-
gorithm could yield performancesrivaling that of
lexicon-basedmorphologicalanalyzers.

In future work, we plan to experiment on
Japanesesentenceswith mixtures of character
types, possibly in combinationwith morphologi-
cal analyzersin order to balancethe strengthsand
weaknessesof the two types of methods. Since
our methoddoesnot useany Japanese-dependent
heuristics,wealsohopeto testit onChineseor other
languagesaswell.
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