TYPE THEORETICAL FOUNDATIONS
FOR

DATA STRUCTURES, CLASSES, AND OBJECTS

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfilment of the Requirements for the Degree of

Doctor of Philosophy

by
Alexei Pavlovich Kopylov

January 2004

This document is in the public domain.

TYPE THEORETICAL FOUNDATIONS
FOR

DATA STRUCTURES, CLASSES, AND OBJECTS

Alexei Pavlovich Kopylov, Ph.D.
Cornell University 2004

In this thesis we explore the question of how to represent programming data structures
in a constructive type theory. The basic data structures in programing languages are
records and objects. Most known papers treat such data structure as primitive. That is,
they add new primitive type constructors and supporting axioms for records and objects.
This approach is not satisfactory. First of all it complicates a type theory a lot. Second,
the validity of the new axioms is not easily established. As we will see the naive choice
of axioms can lead to contradiction even in the simplest cases.
We will show that records and objects can definedin a powerful enough type

theory. We will also show how to use these type constructors to define abstract data

structure.

BIOGRAPHICAL SKETCH

Alexei Kopylov was born in Moscow State University on April 2, 1974. His parents
were students in the Department of Mathematics and Mechanics there. First year of his
life Alexei lived in a student dormitory in the main building of the Moscow State Uni-
versity. Then his parents moved to Chernogolovka, a cozy scientific town near Moscow.

Alexei returned to Moscow State University as a student in 1991. Five years later he
graduated from the Department of Mathematics and Mechanics and entered the graduate
school of the same Department. He passed all qualifying exam and almost finish his
thesis there, but in 1998 he dropped the graduate school in Moscow and enrolled in the
PhD program at Cornell University.

Now in January 2004 he is looking forward to move to Caltech as a post doctoral

fellow.

ACKNOWLEDGEMENTS

| would like to thank here my teachers | had in my life. First of all, | am thankful to
my parents Pavel Kopylov and Ekaterina Gamazova. They inculcated in me a taste for
mathematics in my early ages. For example, when | was a little boy, my father brought
me a pair of sand-glasses. | played with them and came up with different puzzles, like
how to measure eleven minutes using sand-glasses for three and ten miviytigRer

also taught me programming in Pascal when we did not have a computer.

| am also thankful to Raymond Smullyan, although | never met him in person. My
early interest in mathematics is partially due to his great bookVkat Is the Name
of This Book?— with logical puzzles about knights and knaves. My father read me
the problems from this book (I could hardly read at that time) and | competed with my
mother trying to solve the problems first.

My special thanks are due to my school math teacher Alexandr Nikolaevich Zem-
lyakov “Zemmm?”. | admire his mathematical taste and his teaching style.

Unfortunately some people who had great influence on me are already passed away.
| am very grateful to my grandfather Andrei Konstantinovich Gamazov, who was a great
teacher, | am very proud of him. | am also very grateful to my other grandfather Nikolai
Georgievivh Kopylov, who taught me chess. My schoolfriend Ivan Soloviev had a big
influence on me. He was one year older than me and was always a step ahead of me in
mathematical Olympics.

| am thankful to my Moscow adviser Sergei Artemov. He helped na &oth in
Moscow and at Cornell. Thanks to him | am here. | owe many thanks to my Cornell
adviser Robert Constable for his guidance and many useful discussions.

| was very pleased to work with my colleague and namesake (although he spells

his name differently) Aleksey Nogin. Part of the thesis is a joint work with Aleksey.

Many thanks are due to my other colleague Jason Hickey for his discussions and early
appreciation of my work.

| am also thankful to Christoph Kreitz and Stuart Allen for reading and reviewing my
work. | want to thank many other Cornellians included: Anil Nerode and Jon Kleinberg
for serving on my committee, Dexter Kozen who said that “a computer scientist is a
mathematician with a job”, Evan Moran for his comments on my work during PRL
seminars, Mark Bickford, working with him was a pleasure, Pavel Naumov and Lena
Safirova for their help during my first year at Cornell, Alexandre Evfimievski for his
sharp criticism, and many others.

| also want to thank the PRL seminar for giving me a forum for presenting my ideas
and helping me refine them — especially the long series on objects.

| also acknowledge support from the DoD Multidisciplinary University Research
Initiative (MURI) program administered by the Office of Naval Research (ONR) under
Grant NO0014-01-1-0765, the Defense Advanced Research Projects Agency (DARPA)

under Grant F30602-98-2-0198, and by NSF Grant CCR 0204193.

1

TABLE OF CONTENTS

Introduction 1
1.1 Records. e 1
1.2 ODbjects e 2
1.3 Organizationofthe Thesis 3
Constructive Type Theory 5
2.1 Martin-Lof Type Theory oo 5
2.1.1 TYpes. e 5
2.1.2 DependentTypes. i 6
2.1.3 Universe Types o o e 7
2.2 Functionality 7
2.2.1 Pointwise Functionality. 8
2.2.2 Pairwise Functionality. 9
2.2.3 Comparing. e e e e e 9
2.3 Additional Types. 10
2.3.1 Squiggle Equalityo oo 10
2.3.2 The SetType Constructor 11
2.3.3 Subtyping 11
2.3.4 Intersection. 12
2.3.5 Union. 15
2.3.6 _Elimination Rules for Intersections and Unions in Different Func-
tionalities 17
Record Type and Dependent Intersection 19
3.1 Dependentintersection., 21
311 Semantics 22
3.1.2 ThelnferenceRules 23
3.2 Records. 24
3.2.1 PlainRecords 25
3.2.2 DependentRecords. 29
3.3 TheRecordCalculus 32
3.3.1 The Formal Definition. 32
332 TheRules 35
3.3.3 Examples. 37
Elimination Rule for Independent Records 40
4.1 Weak EliminationRule. 0oL, 40
4.2 Naive EliminationRule. L. 41
4.3 Strong EliminationRule. 0L, 42
4.4 Functions with Limited Polymorphism. 43
4.4.1 Non-polymorphic Definition of Record Type 45

Vi

45 Functionality e
4.5.1 Elimination Rule in Pairwise Functionality
4.5.2 Elimination Rule in Pointwise Functionality.

5 Other Possible Applications
5.1 Sets and Dependent Intersections.
5.2 Varlant Type. e
5.2.1 Definitions
9.2.2 Properties e e e e
5.3 AbstractAlgebra.
9.4 JoinOperator. e e

6 Red-Black Trees
6.1 Introduction. e e e
6.2 BinaryTrees e
6.3 SortedTrees e e
6.4 Red-BlackTrees. e
6.5 Sorted Red—BlackTrees

7 Objects
7.1 Objectinstances. e e
7.1.1 Theoperationswithobjects
7.1.2 Formaldefinitions.,
/7.1.3 Additional Properties
7.1.4 Notations.
7.1.5 Recursian
7.2 TYPING. . . o e e e e e e
7.3 Definitionof Object Types.
7.4 Extensibility.
7.5 UpdatableFields.
7.6 TOpOIOgY
/7.6.1 Continuousfunctions.
7.6.2 Semicontinuous functions Lo
7.6.3 Closed propertiesandsets.
/.7 Extensible objects: Formal definitions.
7.8 ObjectCalculus
7.9 Example.

Bibliography

Vil

2.1
2.2
2.3
2.4

3.1
3.2

7.1
7.2
7.3

LIST OF TABLES

Inference rules for the binary intersectiontype. 13
Inference rules for the family intersectiontype. 14
Inference rules for theuniontype 16
Inference rules for the family uniontype 17
Rules for dependent intersection 24
Inference rulesforrecords. 34
Reduction rules for objectcalculus 75
Basic typing rules of objectcalculus. 91
Some derived rules of object calculus. 92

viii

Chapter 1

Introduction

This thesis is done in the framework of a certain constructive type theory, which is
an extension of Martin-&f type theory. Type theory is powerful tool for formalizing
programming languages. It already contains the functional programming language (
calculus) and typing systems. The typing system is powerful enough to represent any
program specification. In this thesis we research the question of expanding type theory

with more programming tools.

1.1 Records

One of the important tools of any programming languages is the record type. We also
will consider a dependent record type, that is, a record type where the types of com-
ponents may depend of previous components ({ike A;y : Blx|}). Records and
especially dependent records are a powerful tool for programming, representing mathe-
matical concepts and data structures. In the last decade several type systems with records
as primitive types were proposed. We will see that the record type is too complex a type
to be primitive, and naive axiomatization leads to contradiction (see Set@hnThe
guestion arose: whether it is possible to define the record type in existent type theories
using standard types without introducing new primitives.

It was known thaindependentecords can be defined in type theories with depen-
dent functions or intersection. On the other halegpendentecords cannot be formed
using standard type®]. Hickey |2(] introduced a complex notion ofery dependent
functionsto represent dependent records. Here we extend the constructive type theory

with a simpler type constructalependent intersectione., the intersection divotypes,

where the second type may depend on elements of the first one (not to be confused with
the intersection of a family of types). This new type constructor allows us to define
dependent records in a very simple way.

Dependent intersection is very simple and natural type constructor. It also allows
us to define the set type constructor (which is primitive in the original theory), thus it
simplifies the overall type theory.

Also it turns out that natural join operatox] is just an intersection of sets of

records.

1.2 Objects

Another important concept in programming languages is object-oriented programming.
Unfortunately object-oriented languages are hard to represent in the type theories due to
self-application. (Seel]17].)

In the last decade several encodings of objects in type theory were proposed. See a
comparison among the most basic ones/jn Almost every existing encoding uses an
extension of systemi’ [14] as a target type theory.

We show how to embed object types in the constructive type theory using intersec-
tion and union. The object encoding in this system has its own specific characters.

Objects may have recursive methods. In our system we have total functions. That
is, we allow recursive functions as soon as we can prove that they terminate. So we are
looking for a definition of a type of objects, such that it allows recursive methods and
at the same time allows for a type of objects with a certain method, application of this
method to any object of this type should always terminate. Note th&tlike systems
application of a method does not necessary terminate. Therefore we can not simply

follow the encoding of objects if'-like systems. It also shows that there is no simple

way to define objects as primitives.

We will also see similarities with the existing encodings. Most of the known encod-
ings of the type of object use an existential typefidike type theories. In our type
theory, the union type (Secti¢h3.5 could be used instead of an existential quantifier.
That is, we could usel J A[X] instead o3.X.A[X], whereU; is the universe (a type
of types, SectioﬁZ.l.E);'HoJ;c leveli. On the one hand, the union type is more powerful:
we can take a union over types satisfying some condition. This feature allows us to find
a simpler encoding of objects. Also the union type does not require packing/unpacking
its elements as does an existential type. On the other hand, the unions type has its own
restrictions. We cannot take union over all types, but only over types of a particular level
i. This union will be a type of level + 1 (i.e., |J A[X] € U,;41). That means we are
not allowed to substitute this type in pIaceXifX $F1at is, for example, we cannot prove
that A] |J A[X]] € |J A[X]. This problem significantly complicates our theory of
objects)f-[&l}; particula)r(,.uijti requires that types of methods should depend continuously on
the Self type.

Our encoding of object types has most of the standard object-oriented features such
as polymorphism, inheritance, method abstraction, method overriding and so on. Also
our object type allows full abstraction. That is, users do not have access to abstract
fields. So two different implementations of an object may be equal from the interface

point of view. Moreover, this can be formally proved inside system itself. We do not

allow binary methods on objects, since it would contradict full abstraction.

1.3 Organization of the Thesis

The remainder of the thesis is organized as follows. Ché#btgves an overview of

Martin-Lof type theory and the constructive type theory extension of it implemented in

MetaPRL.

In Chapte3we introduce the new type constructi@pendent intersecticand show
that record types can be defined using this constructor. Even with this new definition of
the record type, finding the right elimination rule a for record calculus is challenging.
In Chapteid we will show that a naive elimination rule for records is contradictory. We
will discuss how functionality affects the elimination rule. We also introduce an idea of
functions with limited polymorphism.

In Section5.1 we show that our dependent intersection can replace the set type
constructor. In Sectioh.2 we will show the definition of the variant type which is dual
to the record type. In Sectidh.2 we show that our record calculus could be used to
define abstract algebraic structures. In Sechaghwe show that natural join operator
(x) is just an intersection of sets of records.

In Chapter6 we show an example of an abstract data structfre, and give a
formally correct implementation of this data structure using red-black trees.

In Chaptef7 we encode objects into the type theory.

Chapter 2

Constructive Type Theory

Our work is done in the setting of constructive type theory as implemented in the Meta-
PRL logical framework22,'19, 23]. Our type theory is an extension of the constructive
type theory implemented in NUPRIB,[9], which is an extension of Martinf’s type
theory BQ].

In this chapter we give a short overview of our type theory.

2.1 Martin-L of Type Theory

First let us give an overview of the original Martir3£. Type Theory 8Q].

2.1.1 Types

The basic notion in the theory tgpe Type is a primitive notion. Two main judgments
about types arel Type meaning thatl is a type andi € A meaning that: has typeA.
Each typeA is associated with an equality relation on elements of this type) € A.
There is also the equivalence relation on typds= B. So, Martin-Lof’s type theory

has the following four forms of judgments:

AType Ais a well-formed type
A=B A andB are equal types
ae A a has typeA

a=be A aandbare equal as elements of tyde
The examples of types include simple types likdor integers0, 1, —1 andB for

booleans. We can also construct new types using basic type constructors, like product

A x B for the type of pairga,b) and function typeA — B for the type of functions

Az.b[x].
Some notations: we will us&'[zy,...,z,| for expressions that may contain free
variablesry, ..., z, (and probably some other free variables), did, . . ., ¢,,| for the

substitution of terms;’s for all free occurrences af;’'s. We call such variables that
stands for termsecond order variablesIf a second-order variable is in scope of a
bound variable we will always write all variables it may contain. For example we will
write Az. f[x] for general\-expressions. The expressian.f means thaif does not
contain free variables.

Functions types represeiotal computable functions. For example;.b[x] has type
Z — Z if for any integera evaluation ofb[a] terminates and returns an integer. Thus,
we are allowed to have recursive functions as long as we can prove that they terminate
on any input from their domain. Of course that makes type-checking undecidable.

Membership and equality in a type is extensional. In particular it means that two
functionsf andg are equal in the typd — Bif f(a) = g(a) € B foranya € A.

Our type theory uses the proposition-as-types principle. That is, we will consider

any type as a proposition which is true when this type is non-empty.

2.1.2 Dependent Types

Martin-Lof’s type theory also has dependent types, namely dependent product and de-
pendent function type.

Suppose, we have a type expressip] that contains a free variable ranging
over a typeA. For example3[x] may be[0..z] which represents an initial sequence of
natural numbers. This expression is a type whenN.

Then we can form a dependent product typeA x Blz| (also known as &-type)

which is a type of all pairga, b) wherea € A andb € Bla|. For example, ifA = N

andBlz] = [0..z] thenx : A x Blz] is a type of pairs of natural numbefs, m), where
m <n.
We can also form a dependent function type A — B[] (also known as al-
type) which is a type of all functionax.b[z] wherebla] € Bla] for anya € A. For
example, ifA = NandB[z] = [0..z] thenz : A — Blz] is a type of functiong(n), s.t.
0 < f(n) <n.
Dependent types make the theory powerful enough to represent any mathematical

statement.

2.1.3 Universe Types

Introduction of a type of all types leads to contradiction (Girard's paradsg.[But
we can introduce a sequence of universe tyipesUs, Wherel; is the universe of
the first level, a type of all types constructed without using univerSess the universe
of the second level, a type of all types constructed without using universes of any level
above 1. And so on.
In this thesis we will assume that we fix some universe |&vet U;, and we will

write U’ for U;,, andU” for U, ;.

2.2 Functionality

In our type theory we deriveequentsEach sequent has a form:

xy: Hyyxg s Ho[wqs sy s Hylxys s ana] B Clag; .o ay) (2.1)

Herex;’s are declared variableg{;’s are hypotheses and is a conclusion. The-th
hypothesis may depend on the variables declared before it, and conclusion may depend

on all variables.

Roughly speaking the sequei®.]) is true whenC|xy;...;z,] is true (i.e. non-
empty) for allz;'s from H;[xq;...;x;_1]. The formal definition of the truth of the se-
quent deals with functionality. Basically, we say that a tgfie] is functional over: : T’
if t; =ty € T impliesC[t;] = Clts).

There are different nonequivalent approaches to define what it means for a sequent
to be true. Originally Martin-bf required that any hypothesig; must be functional
over previous hypotheses and the conclusion must be functional over all hypotheses.

The type theory implemented in NUPRL uses a weaker requirement that allows one
to formulate stronger rules (for example a rule for induction over natural numbers). This
approach is calledointwise functionalityand was discovered by Stuart Allen 8]

Another version of functionality was used i81]. Aleksey Nogin later indepen-
dently rediscovered it and calledggirwise functionality

In the thesis we will consider pairwise and pointwise functionality.

2.2.1 Pointwise Functionality

Pointwise functionality is fairly complicated notion. We will use Aleksey Nogin’s pre-
sentation of it.

Let we are given a list of hypothesEs

x1: Hyyxg t Ho[xqs o5y s Hyplxeys oo 2.
Then we writef for a list of termsty, to, ..., t,. We will also write

—.

teT[t] forVie[l.n].t; =t € Hilty;.. . tiy);

™y
I

—.

Then a sequerit - C[#] said to berue in pointwise functionalityff

VIi.((eTE) AVW.(f=¢ eT[t] = I[f] =T[¥]) =

VU.(E=1t € T[] = C[f] AC[t] = C[t']))
2.2.2 Pairwise Functionality

The alternative definition of the truth of a sequent is pairwise functionality. Using the

above notation, we say that a sequEnt C[Z] is true in pairwise functionalityff

— —

T[f] A T=# e T[f]) = (C[f] A C[E] = C[#))

—.

ViV (D[]

2.2.3 Comparing

Most of the rules are true in both functionalities. But some rules are true only in point-
wise functionality, and some rules are true only in pairwise functionality.
The most important rule that holds only in pairwise functionality is flae rule (a

form of theC'ut rule):

Uiz A; Alz] F Clz] F'Fae A
['; Ala] F Cld]

(Letx =a € A)

In pointwise functionality this rule is invalid, only a weaker form of this rule (whken
does not depend an) is valid:

Uiz A A F Cla] 'Fae A
A Clal

(Note that according to our notations the above rule meang\ltktes not contain free
occurrences af.)

The following corollary of the.et rule is also invalid in pointwise functionality (but
of course holds in pairwise functionality):

I B; Alz] F Clz] 'ACB
o Ay Alz]) F Cla]

10

On the other hand, the following rule is true in pointwise, but not in pairwise:

Lyt T Dot o Alt]; Azt -t =t €T

Lyt Ty Dot o A[t']; Alz; t] = C[t; 2] (PointwiseSubstitute)

Lyt T Doft]s o : Alt]; Az t) F Ct; 2
This rule states that we can replace a variable declaréd @sby a termt’ if we know
thatt = ¢’ € T. Sometimes this rule is stronger than a general substitution rule (which

is true in both functionalities). The later rule requires that tyyg is functional over

t:T"
o Alt]; Alz]; 2 - T+ Alz] Type

Oz Alt]; Alz)Ft =t €T
Uiz AlY']; Alz] F Cla]

sz Alt]; Alz] F Clx]
Rules stated in this thesis are true for both functionalities, unless otherwise men-

tioned.

2.3 Additional Types

The constructive type theory implemented in MetaPRL has some additional type con-

structors, some of them inherited form the NuPRL type theory.

2.3.1 Squiggle Equality

The squiggle equality on terms= b is defined as the symmetric transitive closure of
the reduction relation. Howe showed that it is a congruefdg [

For example we can prove that for any elemenf type A x B

p = (mp, map) .

11

Also we havej-reduction for anyf € A — B:

f=Xe.(fx)

2.3.2 The Set Type Constructor

Our type theory has a primitive type constructor for set ty®psBy definition, the set
type {x : T | P[x]} is a subtype ofl", which contains only such elementf 7" that

satisfy propertyP[z] (see P]).

Example 2.1 The type of natural numbers is definedMs= {n : Z | n > 0}. Without
set types we would have to defii@sn : Z x (n > 0). In this case we would not have

the subtyping propertj C Z.

Later in the thesis (Sectidb.1) we will replace this primitive type constructor by

more fundamental primitive type, thus simplifying the type theory.

2.3.3 Subtyping

Our type theory also has a subtyping relati®i][The subtyping relation as well as
the membership relation are extensional. That meansithiatB does not say anything
about structure of these types, but only means that all elements ofitgpe also ele-
ments of typeB and if two elements are equal ihthen they are also equal iB. As a

result the subtyping relation is undecidable (as well as type checking).

Example 2.21f A C Bthen(B — C) C (A — (). It may seem strange at a first:
supposed, B and (' are finite types and, b andc are the number of elements in these
types correspondingly, thel — C hasc’ elements andl — C hasc® < ¢’ elements.

This example shows that a subtype may have more elements than a supertype!

12

Remark Of course, when we say that a tygehasn elements, we mean that typehasn
differentelements. Actually this type may have many elements that are equal from the point of
view of this type.

After the subtyping is defined, the natural question arises: what is the biggest (w.r.t.
subtyping) common subtype of two or more types and what is the smallest supertype of

two or more types?

2.3.4 Intersection
Binary Intersection

It is easy to see thatcan be in a common subtype dfandB only if t € A andt € B.

Also, t; may be equal t@, in a common subtype only if they are equal in bettand

B. Since the more elements the type has and the more elements are equal in a type,
the "greater” the type is (in the sense of subtyping), in order to get the biggest common
subtype ofd and B, we need to take all the objects that are botA iand in B and make

all elements that are equal in bothand B equal in our type. In other words, the biggest
common subtype of two types is a type whose set of members is an intersection of sets
of members of those types and whose equivalence relation is an intersection (as sets of
pairs) of equivalence relations of those two types. We call suchaypgatersectiorof

A and B, written: AN B.

Example 2.3 Az.xz + 1 is an element of the tygd@. — Z) N (N — N).

Example2.4LetA = N — NandB = Z~ — Z (whereZ~ is a type of negative
integers). Letd = Az.x andabs = A\z.|z|. Thenid andabs are both elements of the

type A N B. Althoughid and abs are equal as elements of the tyje— N (because

13

Table 2.1:Inference rules for the binary intersection type

I' - AType I' - BType
' AN BType

r-A=A4 '-B=58
''FANB=ANDB

I'Fac A I'ae B

(T'ypeFormation)

(T'ype Equality)

T acAnEd (Introduction)
'Fa=d €A 'Fa=d €eB ,
TFa=a €ANB (Bquality)
' ANB ' ANB
re e (Elimination)?

I'Fze A I'xe B

1See also Sectic?.3.6

these two functions do not differ &), id andabs are different as elements @f- — Z.

Thereforejd # abs € AN B.

Example 2.5 Let A = {0} — B, where{0} is a singleton subset &. ThenA is a
type of functions that magisto a boolean value. Obviously, this type has two elements.
Now letB = {1} — B. This type also has two elements. But their intersection is

AN B ={0,1} — B has four elements!

The inference rules for the intersection type are presented in Zable

Intersection of a Family of Types

It is easy to see that the same is true if we take the largest common subtype of more than
two types or if we take a largest common subtype of a whole family of types. We call
the biggest common subtype of several types or of a family of tgpestersection type

of those types.

14

Table 2.2:Inference rules for the family intersection type

' AType T;z:AF Blx]Type

TypeF ;
I'+ () Blz] Type (T'ypeFormation)
T:A
A=A F;x:Al—B[ZI;]:B/[x] |
TypeF
I'F N Blz] = N B[] (Type Equality)
T:A z: A’
ax: AF B
’Fajl— be rb]EB [x[]x] (Introduction)
x:A
Iix: AFb=10 € Blz] |
L-b=10 € () Blz] (Fquality)
T:A
I'Fac A F}—beﬂB[ﬂ
= (Elimination)?

I'-be Bla

1See also Sectic®.3.6

Example 2.6 \x.x has typeA — A for any typeA. Therefore

A\r.x € mA — A
AU

Example 2.7 LetTop = ﬂ. Void. This type contains anything, and any two element
of this type are equal. T:ﬁi\éoigsimilar to the tyyy@d — Void, but the later type contains
only A\-terms. Again any two elements are equaVoid — \oid.

It seems very strange th@bp € Top, and anyU; € Top, evenU; C Top, whenever
Top € U;. But it does not contradict anything. The reason is similar to the reason why
Az.U; € Void — Void does not lead to a contradiction. Althoudbp is a supertype

of any type it is very trivial, because it has the trivial equality. So, we can not define

something like “the type of all types” usingpp.

The inference rules for the family intersection type are presented in Zable

15

Note that we can define binary intersection as a partial case of of family intersection:

AmBzﬂif b then A else B
b:B

2.3.5 Union
Binary Union

A similar argument shows that whenever either A ort¢ € B, t should also be in
common supertype oft and B, and whenevet, = ¢, in either A or B, t; should be
equal tot, in any common supertype. Similarly, for the intersection type, the the set of
all members of the smallest common supertype of two types is just a union of the sets of
members of those types. However the union of two equivalence relations is not neces-
sary an equivalence relation (it is not necessarily transitive). So the equivalence relation
of the smallest common supertype is the smallest equivalence relation containing the
union of the equivalence relations of the two types — the transitive closure of that union
of the equivalence relations. We call this type theon of A and B and denote it by
AU B.

The union considered as a proposition is a disjunctidny B is true iff A is true
or B is true. But unlike the standard disjunction, union is not constructive. Knowing
A U B we cannot always say what is trué:or B. Therefore the rule

z: AFC z:BFC
z: AUBFC

is not constructively true. Indeed if a withess @fis constructed differently in case
whenz € A and in case whem € B then we have no way to construct a witness if we
now only thatr € AU B. Butin case whed' does not have the computational context,
like membership, this rule would be true.

The inference rules for the union type are presented in TaBle

16

Table 2.3:Inference rules for the union type

I' - AType I' - BType

- AU BType (T'ypeFormation)
r-A=A '-B=#8 _
TFAUB=AUB (TypeEquality)
Lfa€d IPBType TrbeB TEAType 0.
TFacAUB TFbheAUB rredtienon

'Fa=d €A '+ BType b= €B '+ AType

'ra=a € AUB F'Fb=ve AUB
(Equality)
Diu: AJAF Iu: B,AF

cuc A, clu] € Clu] ;u B, clu] € Clu (Blimination)!

Tiu: (AUB); A cu] € Clul

1See also Secticd®.3.6

The following holds for union. Iff € A — C'andf € B — C'then

feAuB — C.

Union of a Family of Types

Similarly we can define the union of a family of types.

The inference rules for the family union type are presented in Talle

Example 2.8 Let P[z]| be a predicate on some € A. ThenUAP[x] is a true propo-

sition (i.e., non empty type) if there is an element A, s.tg.C.P[a]. Therefore union

could be considered as an existential quantifier. The difference between union type and
standard existential quantifietz : A.P[z] = = : A x P[z] is that union type “hides”
thefirst component of the existential quantifier. That is, the witness of the union type is

just a witness ofP[z] for somex € A, but it does not contain itself. Compare with

the set type{z : A| P[z]}. The set type hides the second component of the existential

17

Table 2.4:Inference rules for the family union type

' AType T;z:AF Blx]Type

Typel t
I U Bl Type (T'ypeFormation)
x:A
A=A [z : AF Blz| = B'[x] ,
Type Equalit
x:A x: A
TFacA TrbeBla Tiz:AF Blz]Type ‘
Introduct
Tt be UBl (Introduction)
T:A
I'Fac A I'Fb=1 € Bla] [z 0 A Blz] Type ,
Equalit
THb=1b e U B[] (Bquality)
T:A
e Aju: Blz], A+
i A u: Blal, ul € Cly] (Elimination)?

]
u: L:iB[x],A - clu] € Clu

1See also Secticd®.3.6

quantifier. The witness of this type is jusfrom A, s.t. P[z].

By analogy with intersection we can define binary union as a partial case of of family
union:
AUuB=|]Jif bthen A else B
b:B

2.3.6 Elimination Rules for Intersections and Unions in Different

Functionalities

All of the above rules for union and intersection hold in both functionalities. In pairwise
functionality we can prove a stronger elimination rule for intersections and in pointwise
functionality we can prove a stronger elimination rule for unions.

In pairwise functionality we have theet rule (Sectior2.2.3. Using this rule and

18

the elimination rules for intersection from Tabl2sl and2.2 we can prove stronger

elimination rules:

Ui Ay B Al yl F Cla;y)
Diu: (z: AN B); Alu;u) B Clu; ul

Tyu: () Blz]; Alusul Fa€e A T Q‘B[a:];v : Bla]; Alu; v]; u=veB[a] F Clu; v

z:A

[y u: () Blz]; Alu; v] F Clu; v]
z:A
In pointwise functionality using the wedket rule, we can only prove weak versions

of the above rules wher& does not depend am

Dia: Ajy: ByAF Cla;y)
Diu:(x: AN B); A F Clu;]

Ciu: OB[x];Al—aeA e OB[J?];U:B[CL];A;UIUEB[CL] F Clu; v]

Iu: qgfx];A = Clu; v]

Oppositely, the elimination rulés for union type are stronger in pointwise function-
ality. In the elimination rules from Tabléa3 and2.4 A does not depend om In the
pointwise functionality usingPointwiseSubstitute rule (Sectior2.2.9 we can make

these rules stronger by allowinyto depend on::

Tiu: A; Alu] b cu] € Clul Tiu: B; Alu] = clu] € Clu]
Cu: (AU B); Alul F clu] € Clu]

[y Aju: Ble]; Afu] F cfu] € Clul
IRET ;EL:IJLXB[J:];A[U] Fclu] € Clul

These rules are invalid in pairwise functionality.

Remark 2.9 Intersection of types was introduced ihl] and [37]. Our interpretation
of intersection and union is most close ®4]. The understanding of semantics and

rules for intersection and union is our join work with Aleksey Nogin.

Chapter 3

Record Type and Dependent Intersection

In general, records are tuples of labeled fields, where each field may have its own type.
In dependent records (or more formally, dependently typed records) the type of some
components may depend on values of the other components. Since we have the type of
typesU, values of record components may be types. This makes the notion of dependent
records very powerful. Dependent records may be used to represent algebraic structures
(such as groups) and modules in programming languages like SML or Haskell (see for

example 4, 18)).

Example 3.1 One can define the signature for an ordered set as a dependent record

type:
OrdSetSig 2 {t:U;less:t —t — B}

This definition can be understood as an algebraic structure as well as an interface of a

module in a programing language.

Example 3.2 The proposition-as-type principle allows us to add the property of order

as a new component:
OrdSet 2 {t:U;less:it — t — B;axm: Ord(t,less)}

whereOrd(t, less) is a predicate stating thatess is a transitive irreflexive relation
ont. Hereaxm is a new field that defines the axiom of the algebraic structure of ordered

sets (or specification of the module typedSet).

Example 3.3 In type theories with equality, manifested field®8]) may be also repre-

sented in the specification.

IntOrdSetSig 2 {t:U;less:t—t—B;mnf:t=7}

19

20

is a signature where is bound to be the type of integers.

From a mathematical point of view the record type is similar to the product type.
The essential difference is the subtyping property: we can extend a record type with new
fields and get a subtype of the original record type. EXgdSet andIntOrdSetSig
defined above are subtypes@idSetSig. The subtyping property is important in math-
ematics: we can apply all theorems about monoids to included types such as groups. It
is also essential in programing for inheritance and abstractions.

Different type theories with records were proposed both for proof systems as well as
for programming languagesl@, 28, 13, 4, 5, 36] and others). These systems treat the
record type as a new primitive. In the current thesis we are interested in the following
natural questionis it possible to express the notion of records in usual type theories
without the record type as primitiveThis question is especially interesting for pure
mathematical proof systems. As we saw, the record type is a handy tool for representing
algebraic structures. On the other hand records do not seem to be the basic mathematical
concept that should be included in the foundation of mathematics. Rather records should
be defined in terms of more abstract mathematical concepts.

It is known that it is possible to defineadependent records a sufficiently pow-
erful type theory that has dependent functicB€] [or intersection88]. On the other
hand, there is no known way to form dependent records in standard Martmiipe
theory B]. However, Hickey PC] showed thatlependent recordsan be formed in an
extension of Martin-bf’s type theory. Namely, he introduced a new typeefy depen-
dent function typesThis type is powerful enough to express dependent records in a type
theory and provides a mathematical foundation of dependent records. Unfortunately the
type of very dependent functions is very complex itself. The rules and the semantics

are probably more complicated for this type than for dependent records. The question is

21

whether there is a simpler way to add dependent records to a type theory.

In this thesis we extend the NUPRL type theory with a simpler and easier to under-
stand primitive type constructatgependent intersectioif his is a natural generalization
of the standard intersection introduced i) and [37]. Dependent intersection is an
intersection oftwo types, where the second type may depend on elements of the first
one. This type constructor is built by analogy to dependent products: elements of de-
pendent products are pairs where the type of the second component may depend on the
first component. We will show that dependent intersection allows us to define the record
type in a very simple way. Our definition of records is extensionally equal to Hickey’s,
but is far simpler. Moreover our constructors (unlike Hickey'’s) allow us to extend record
types. For example, having a definition of monoids we can define groups by extending

this definition rather than repeating the definition of monoid.

3.1 Dependent Intersection

We extend the definition of intersectiohn B to a case when the typB can depend
on elements of the typd. Let A be a type and3[z] be a type for allz of type A. We
define a new typajependent intersection A N B[z|. This type contains all elemenis

from A such that: is also inBla] (see below for equality).

Remark 3.4 Do not confuseéhe dependent intersectiovith the intersection of a fam-

ily of types(,., Blz]. The latter refers to an intersection of typ&§z| for all z in

A. The difference between these two type constructors is similar to the difference be-
tween dependent productsA x Blz| = 3,.4B[x] and the product of a family of types

II,.4B[z] =2 : A— Blz].

Example 3.5 The ordinary binary intersection is just a special case of a dependent

22

intersection with a constant second argumeAtn B =z : AN B.

Example 3.6 Let A = Z and B[z] = [0 .. —5]. Thenxz : AN BJz] is a set of all

integers, such thai < = < 22 — 5.

Two elements anda’ are equal in the dependent intersectiod N B[z] when they

are equal both il and Ba].

Example 3.7 Let A be {0} — N and B[f] be {1} — [0 .. f(0)], where{0} and {1}

are types that contain only one elemebitand 1 respectively). Themn:A N Blz] is a

type of functions that map0 to a natural number, and mapl to a natural number
ny € [0 .. ng]. Two such functiong and f" are equal in this type, when firsf, =

/€ {0} — N,ie. f(0) = f(0), and secondf = f" € {1} — [0 ..f(0)], i.e.

f(1) = f(1) < f(0).

3.1.1 Semantics

We are going to give the formal semantics for dependent intersection types based on
the predicative PER semantics, for the NuPRL type the2r]l In the PER seman-
tics types are interpreted as partial equivalence relations (PERS) over terms. Partial
equivalence relations are relations that are transitive and symmetric, but not necessary
reflexive.

According to B], to give the semantics for a type expressibwe need to determine
when this expression is a well-formed type, define elements of this type, and specify the
partial equivalence relation on terms for this type=£ b € A). We should also give
an equivalence relation on types, i.e. determine when two types are equaB] 8&e |

details.

23

Extension of the Semantics We introduce a new term constructor for dependent in-
tersectionr : A N B[z|. This constructor bounds the variabléen B[x]. We extend the

semantics of3] as follows.

e The expression : AN Blz| is a well-formed type if and only ifA is a type and
Blx] is a functional type over : A. That s, for any: from A the expressio3|z]

should be a type and if = 2’ € A thenB[z| = B2/].

e The elements of the well-formed type: A N B[z] are such terma thata is an

element of both typed and B|a].

e Two elements anda’ are equal in the well-formed type: AN B[z iff a = €

Aanda = d € Bla).

e Two typesz : AN Blz] andxz : A’ N B'[z] are equal whem! and A’ are equal

types and for alk andy from A if z = y € A thenBlz| = B'[y].

3.1.2 The Inference Rules

The corresponding inference rules are shown in Tadle
Theorem 3.8 All rules of Table3.1 are valid in the semantics given above.
This theorem is proved by straightforward application of the semantics definition.

Theorem 3.9 The following rules can be derived from the primitive rules of Téblz

in a type theory with the appropriate cut rule.
'Fa=d € (x: AN Blzx])
'Fa=d €A

'Fa=d € (x: AN B[z
I'Fa=da € Bla

24

Table 3.1:Rules for dependent intersection

' AType T;z:AF Blx]Type

TypeF ;
['F (z: AN Blz]) Type (T'ype Formation)
A=A F;l'iAl_B[ﬂ:B/[x] |
TF(z:ANB[]) = (z: A'NB'z)) (TypeEquality)
FFacA TraeB T'ha: AN BT
= o€ bl < N Blr| Type (Introduction)

'Fae€(x: AN Blx])

'Fa=d €A I'Fa=d € Bla I'Fa: AN Blz] Type

Fouali
'Fa=d € (x: AN Blzx)) (Equality)

Tiu: (x: AN Blx]); Asx: Ayy - Ble] F Clx, y)
Dyu: (x: AN Blz]); A F Clu, ul

(Elimination)?

!In pairwise functionality we can make this rule stronger, cf. Se@iG6

Theorem 3.10 Dependent intersection is associative, i.e.
x:AN(y: Blx]NClz,y]) =c z: (x: AN Blz]) N C|z, 2]

The formal proof is checked by the MetaPRL system. We show here a sketch of
a proof. An element: has typea : AN (b : Bla] N Cla, b)) iff it has typesA and
b: Blzx] N C[z,b]. The latter is a case iff € B[x] andz € C[z, z]. On the other hand,
x has typeab : (a : AN Bla]) N Clab, ab] iff z € (a : AN Bla]) andz € C[z,z]. The
former means that € A andxz € B[z|. Thereforer € a : AN (b: Bla] N Cla, b)) iff

x € Aandz € Blx] andx € Clz,] iff z € ab: (a: AN Bla]) N C|ab, ab).

3.2 Records

We are going to define record types using dependent intersection. In this section we in-

formally describe what properties we are expecting from records. The formal definitions

25

are presented in Secti@3

3.2.1 Plain Records

Records are collections of labeled fields. We use the following notations for records:

{Xl :al;---;Xn:CLn} (3.1)

wherex, ..., x, arelabelsanday, . .. a,, are corresponding field values. Usually labels
have a string type, but generally speaking labels can be of any fixed /e with a
decidable equality. We will use therue type font for labels.

The selection operatot.x is used to access record fieldsrlis a record them.x is

a field of this record labeled. That is we expect the following reduction rule:

{x1=a1;...;%, = an}.x; — a; (3.2)

Fields may have different types. If eaghhas typeA; then the whole record(1)
has the type
{x1:A1;. . 5x, 0 Ap (3.3)

Also we want the natural typing rule for the field selection: for any recooflthe
type 3.3 we should be able to conclude that; € A;.

The main difference between record types and prodd¢ts --- x A, is the that
record type has theubtyping property Given two recordsRk; and R, if any label
declared inR, as a field of typeA is also declared iR, as a field of type3, such that

B C A, thenR, is subtype ofR;. In particular,

{x1: A1 5%, A} C{x1 s Ay % s A} (3.4)

wherem < n.

26

Example 3.11 Let
Point ={x: Z;y : Z} andColorPoint = {x : Z;y : Z; color : Color}.

Then the record{x = 0;y = 0;color = red} is not only aColorPoint, but it is
also aPoint, so we can use this record whenevé&rint is expected. For example, we
can use it as an argument of the function of the typagent — T. Further the result
of this function does not depend whether we {sse= 0;y = 0;color = red} or
{x = 0;y = 0; color = green}. Thatis, these two records are equal as elements of the
type Point, i.e.

{x =0;y = 0;color =red} =

{x =0;y =0;color = green} € {x: Z;y : Z}

Using subtyping one can model the private fields. Consider a recthrat has one
“private” field x of the typeA and one “public” fieldy of the typeB. This record has
the type{x : A;y : B}. Using the subtyping property we can conclude that it also has
type{y : B}. Now we can consider typgy : B} as a public interface for this record.

A user knows only that € {y : B}. Therefore the user has access to figldut access

to field x would be type invalid (i.e. untyped). Formally it means that a function of the
type{y : B} — T can access only the fiejdon its argument (although an argument of
this function can have other fields).

Further, records’ equality does not depend on field ordering. For exafwle;

0;y = 1} should be equal tdy = 1;x = 0}, moreovefx : A;y : B}and{y: B;x: A}

should define the same type.

Records as Dependent Functions

Records may be considered as mappings from labels to the corresponding fields. There-

fore it is natural to define a record type as a function type with the dombabal (cf.

27

[8]). Since the types of each field may vary, one should use dependent function type
(i.e., II type). LetField|l] be a type of a field labeled For example, for the record
type 3.3) take

Field|l] 2 l=x; then A, else

if [=x, then A, else Top

Then define the record type as the dependent function type:
{x1:A1;.. %0 Ay} 2 1 Label — Field][l]. (3.5)

Now records may be defined as functions:

xi=a;...;%, = a,} 2
AMif [=x; then q; else
(3.6)
if [=x, then a,

And selection is defined as application:

1>

r.l

rl (3.7)

One can see that these definitions meet the expected properties mentioned above

including the subtyping property.

Records as Intersections

Using the above definitions we can prove that in the case whetisadire distinct labels

{x1: A1 %t Apt = {x1 AP0 {xy s At (3.8)

28

This property provides us a simpler way to define records. First, let us define the type
of records with only one field. We define it as a function type like we did it in the last
section, but for single-field records we do not need dependent functions, so we may
simplify the definition:

{x:A} 2 x} > A (3.9)

where{x} is the singleton subset of tygeibel. Now we may take3.8) and B.S) as a
definition of an arbitrary record type instead 8f4) and keep definitions3(€) and B.7).

This way was used ir38] where{x : A} was a primitive type.

Example 3.12 The record{x = 1;y = 2} by definition B8.€) is a function that maps
x to 1 andy to 2. Therefore it has typdx} — Z = {x : Z} and also has type

{y} = Z={y:7Z}. Henceithastypéx : Z;y : Z} = {x : Z} N {y : Z}.

One can see that when all labels are distinct, definiti@¥ @nd B.8)+(3.9) are
equivalent. That is, for any record expression : A;;...;z, : A,} wherez; # x;,
these two definitions define two extensionally equal types.

However, definitions3.8)+(3.9) differ from the traditional ones in the case when
labels coincide. Most record calculi prohibit repeating labels in the declaration of record
types, e.g., they do not recognize the expresgion A;x : B} as a valid type. On the
other hand, in2Q] in the case when labels coincide the last field overlaps the previous
ones, e.g.{x : A;x : B} is equal to{x : B}. In both these cases many typing rules of
the record calculus need some additional conditions that prohibit coincident labels. For
example, the subtyping relatioB.4) would be true only when all labels are distinct.

We will follow the definition 3.8) and allow repeated labels and assume that

{x: A;x: B} ={x: AnB}. (3.10)

29

This may look unusual, but this notation significantly simplifies the rules of the record
calculus, because we do not need to worry about coincident labels. Moreover, this
allows us to have multiple inheritance (see Sed8dh3for an example). Note that the

equation/8.10 holds also in/10Q].

3.2.2 Dependent Records

We want to be able to represent abstract data types and algebraic structures as records.
For example, a semigroup may be considered as a record with thedéaldepresent-
ing a carrier) ancbroduct (representing a binary operation). The typecat is the
universeU. The type ofproduct should becar x car — car. The problem is that the
type ofproduct depends on the value of the fietdr. Therefore we cannot use plain
record types to represent such structures.

We need dependent records 20, 36]. In general a dependent record type has the
following form

{x: A;y:B[x|;z: Clz,y];... } (3.11)

That is, the type of a field in such records can depend on the values of the previous
fields.

The following main property shows the intended meaning of this type.
Therecord{x = a;y = b;z = ¢; ... } has typel8.1]) if and only if

ac€ A, beBlal, ceCla,bl,

Example 3.13 Let SemigroupSig be the record type that represents the signature of

semigroups:

SemigroupSig 2 {car : U;product : car x car — car}.

30

Semigroups are elements S8tmigroupSig satisfying the associativity axiom. This

axiom may be represented as an additional field:

. A
Semigroup = {car : U;
product : car X car — car;

axm: Vz,y, z : car. (x-y)z = x-(y-2)}

wherez - y stands forproduct(z, y).

Dependent Records as Very Dependent Functions

We cannot define the dependent record type using the ordinary dependent function type,
because the type of the fields depends not only on labels, but also on values of other
fields.

To represent dependent records Hick2g] introduced thevery dependent function
type constructor:

{f|lz:A— B[f,]} (3.12)

Here A is the domain of the function type and the rangjgf, x| can depend on the ar-
gumentr and the functiory itself. That is, typel3.12) refers to the type of all functions
g with the domain4 and the rangé3[g, a] on any argument € A.

For instanceSemigroupSig can be represented as a very dependent function type
SemigroupSig 2 {r|1: Label — Field[r,]} (3.13)

whereField[r,l] 2

if [=car then U else
if [=product then r.car x r.car — r.car

else Top

31

Not every very dependent function type has a meaning. For example the range of

the function on argument cannot depend ofi(a) itself. For instance, the expression

{fle:A— f(x)}

is not a well-formed type.

The type 8.12) is well-formed if there is some well-founded orderon the domain
A, and the range typ8|z, f] onx = a depends only on value&b), whereb < a. The
requirement of well-founded order makes the definition of very-dependent functions

very complex. See2(] for more details.

Dependent Records as Dependent Intersection

By using dependent intersection we can avoid the complex concept of very dependent
functions. For example, we may define

SemigroupSig 2 self : {car: U} N

{product : self.car x self.car — self.car}
Here self is a bound variable that is used to refer to the record itself considered as a

record of the typg car : U}. This definition can be read as follows:

r has typeSemigroupSig, when first,r is a record with a fiel¢ar of the
type U, and second; is a record with a fielgproduct of the typer.car x

r.car — r.car.

This definition of theSemigroupSig type is extensionally equal t8(13), but it has
two advantages. First, it is much simpler. Second, dependent intersection allows us to

extend theSemigroupSig type to theSemigroup type by adding an extra fiekgkm:

Semigroup 2 self : SemigroupSig N

{axm: Vz,y,z : self.car (x-y)-z=a-(y-2)}

32

wherez - y stands forself .product(z, y).

We can define a dependent record type of an arbitrary length in this fashion as a
dependent intersection of single-field records associated to the left.

Note thatSemigroup can be also defined as an intersection associated to the right:

Semigroup =

re: {car:U}N
(Tp : {product : r..car X r..car — r..car} N
{axm:Vz,y, 2 :recar (z-y)-z=x-(y-2)})
wherex - y stands forr,.product(z, y). Herer. andr, are bound variables. Both of
them refer to the record itself, but has type{car : U} andr, has type{product :
... }. These two definitions are equal, because of associativity of dependent intersection
(Theorem3.10).
Note that Pollack36] considered two types of dependent records: left associating

records and right associating records. However, in our framework left and right associ-
ation are just two different ways of building the same type. We will allow using both of

them. Which one to choose is the matter of taste.

3.3 The Record Calculus

3.3.1 The Formal Definition

Now we are going to give the formal definition of records using dependent intersection.

Records

Elements of record types are defined as functions from labels to the corresponding fields.

We need three primitive operations:

33

1. Empty record{} 2 LI

(We could pick any function as a definition of an empty record.)

2. Field update/extension:
r.(x:

a) 2 (M.if [=x then a else 1)

. . A
3. Field selectionr.x = rx

We can construct any record by these operations: we dgfine: a4;...;x, = a,}
as

Record Types
Single-field record type is defined as

(x: 4} 2 x} > A

where{x} 2 {I: Label | | = x € Label} is a singleton set.

Independent concatenation of record types is defined as

{R1; Ry} 2 RINR, (3.14)

This definition is a partial case of the below definition of left associating records when
R, does not depend oself.

Left associating dependent concatenation of record types is defined as

{self : Ry; Ra[self]} 2 self : Ry N Ry[self] (3.15)

34

Table 3.2:Inference rules for records

Reduction rules
(rx:=a)x —a
(r.y :=b).x — r.xwhenx # y.

In particular:{x; = ay;...;%, = a,}.x; — a; when allx;’s are distinct.

Type formation

Single-field record: Dependent record:
' AType Tk x € Label ' R, Type [self : Ry F Ryself] Type
T {x: A} Type I'F {Ry; Ry[self]} Type
Independent record: Right associating record:
' R, Type T+ R, Type I'F{x:A}Type T;z:AF R[z]Type
'+ {Ry; Ry} Type 'k {z:x: A; R[x]} Type

Introduction (membership rules)
Single-field record:

'Fae A I' = x € Label I'Fre{x:A} I'+x#y € Label
F'Frx:=ac{x: A} 'k (ry:=b)=rec{x:A}
Independent record:

I'Ere Ry I're R,
FI—TG{Rl;RQ}

Dependent record:
PFreR TrreRyr] Tk {Ry; Ryfself]} Type
I'Fr e {Ry; Ry[self]}

Right associating record:
'Fre{x:A} I'Fr e R[r.x| I'F{z:x: A; R[z]} Type
Pkref{z:x: A R[z]|}

Elimination (inverse typing rules)!

Single-field record: Dependent record:
I'Fre{x:A} I'Er € {Ry; Ro[self]}
FTFrxe A 'kEreR; I'Fr e Ryr]
Independent record: Right associating record:
I'Fre{Ry; Ry} F'Fred{z:x:A;R[z]}
F'kFreR I'FreR, 'FrxeA I'-re Rrx|

!See also Chapt#

35

Syntactical RemarksHere variableself is bounded ink,. When we use the name
“self” for this variable, we can use the shorteni;; R»[self]} for this type. Further,
we will omit “self.” in the body of R,, e.g. we will write justx for self.x, when such
notation does not lead to misunderstanding. We assume that this concatenation is a
left associative operation and we will omit inner braces. For example, we will write
{x: Ay : Blself];z : C[self]} instead of{{{x : A};{y : Blself]}};{z : Clself]}}.
Note that in this expression there are two distinct bound variallgs The first one is
bound inB and refers to the record itself as a record of the t{pe A}. The second

self is bound inC} it also refers to the same record, but it has type A;y : B[self]}.

Right associating dependent concatenation. The above definitions are enough to
form any record type, but to complete the picture we give the definition of right associ-

ating record constructor:

{z :x: A; R[z]} 2 self - {x: A} N R[self .x] (3.16)
Syntactical RemarksHerez is a variable bound i that represents a field Note
that we mayn-convert the variable, but not a labek, e.g.{z : x: A; R[z]} ={y : x:
A; Rly]}, but{z : x: A; R[z]} # {y :y: A; R[y]}. We will usually use the same name
for labels and corresponding bound variables. This connection is right associative, e.g.,

{r:x:Ajy:y: Blz];z: Clz,y|} stands fof{z : x : A;{y : y: Blz]; {z : Clz,y]} } }.

3.3.2 The Rules

The basic rules of our record calculus are shown in T8e The elimination rules in

this table are weak. We will discuss stronger rule in Chagiter

Theorem 3.14 All the rules of Tablé&.2 are derivable from the definitions given above.

36

From the reduction rules we get:
{x1=a1;...;x, = an}.x; — a;

when allx;’s are distinct.
We do not show the equality rules here, because in fact, these rules repeat rules in
Table3.2 and can be derived from them using substitution rules in our type theory. For

example, we can prove the following rules

I'Fa=d e A I'x=x" € Label
'F(rx:=a)=('x:=d)e{x: A}

F'Fr=r"€eR F'Er=1"¢€Ry
FI_T:T/G{Rl;RQ}

In particular, we can prove that

{x=0;y =0;color =red} =
{x =0;y =0;color = green} € {x:Z;y: Z}

We can also derive the following subtyping properties:

{Ri; Ro} C Ry
{Ri; Ra} C Ry
{R1; Ro[self]} € Ry
{z:x:A;R[z]} C{x: A}

Ry CR, self : Ry Ryself] C Rbself]
= {Ry; Rofself]} C {Ry; Ry[self]}
FACA z:AF Rlz] C R[a]

Fl{z:x: A R[z]} C{z:x: A R'[z]}

Further, we can establish two facts that state the equality of left and right associating
records.
{z :x: A; Rlz]} = {x: 4; R[self x|},

and

37

{Ry;{w : x : Alself]; Ra[self z]}} =

{{R1;x : Alself]}; Ro[self, self x]}.
For example, using these two equalities we can prove that
{x: Ay« Blself x);z : Ofself x; self.y]} =

{z:x:Ajy:y: Blz];z: Clz;y]}.

3.3.3 Examples
Semigroup Example

Now we can define th®emigroupSig type in two ways:

{car : U;product : car x car — car} oOf

{car : car : U;product : car x car — car}

Note that in the first definitiorar in the declaration oproduct stands forself .car,
and in the second definitiarr is just a bound variable.

We can defin&emigroup by extendingSemigroupSig:
{SemigroupSig; axm : Vx,y,z : car (x-y)-z=uz-(y-2)}
or as a right associating record:

{car : car : U;
product : product : car X car — car;

axm:Vx,y,z:car (z-y)-z=x-(y-2)}

In the first caser - y stands forself.product(x,y) and in the second case for just

product(zx,y).

38

Multiply Inheriting Example

A monoid is a semigroup with a unit. So,
MonoidSig 2 {SemigroupSig;unit : car}

A monoid is an element af/onoidSig which satisfies the axiom of semigroups and an
additional property of the unit. That i8/onoid inherits fields from both\/onoidSig

andSemigroup. We can define thé/onoid type as follows:

Monoid é{{ MonoidSig; Semigroup;

unit_axm:Vz:car x-unit=x}

Note that sincé/onoidSig andSemigroup share the fieldsar andproduct, these
two fields are present in the definition dfonoid twice. This does not create problems,
since we allow repeating labels (Sect®2.]).

Now we have the following subtyping relations:

SemigroupSig DO MonoidSig
U U

Semigroup D Monoid
Abstract Data Type

We can also represent abstract data types as dependent records. Consider for example
a data structureollection of elements of a tyge. This data structure consists of an
abstract typear for collections of elements of the tyg& a constant of this typempty

to construct an empty collection, and functiofber s a to inquire if element is in
collections, andinsert s a to add element into collections. These functions should

satisfy certain properties that guarantee their intended behavior:

1. The empty collection does not have elements.

39
2. insert s a has all elements thathas and elementand nothing more.

A formal definition of the data structure of collections could be written as a record:

>

Collection(T)
{car: U;
empty : car,
member : car — T — B;

insert : car — 1" — car;

emp_axm:Va:T a ¢ empty

ins_axm:Vs:car Va,b:7T (member (insert sa)b)

<= (member sb)V (a=0b€eT)}

It Section6 we will show an example of an implementation of this data structure.

Chapter 4

Elimination Rule for Independent Records

In this chapter we consider the question what should be the right elimination rule for
the record type. As we will see this question is not as simple as it looks. While the
introduction rule for records is very natural and simple, the right elimination rule is not
obvious.

In this chapter we will consider independent records for the sake of simplicity.

We will use the following notations: in the inference rules we will use] for

Alx] = Clz]. For example instead of the rule:

Tyay: A ag - Aoy Al{ar, az)] F Cl{ar, az)]
[a: Ap x Ay; Ala] F Clal

we would just write:
F, ai - Al;ag . Ag, CD[<CZ1,G2>]
[a: Ap x Ay; @la)

4.1 Weak Elimination Rule

In Table3.2 we showed a weak elimination rule for records:

I'Fre{x: AR}

Weak Elimination
E—— (Weak Elimination)

It just said that ifr € {x : A; R} thenr.x € A. This rule is valid and easy to prove,
but it turns out that it is too weak in practice.

The correct elimination rule should have a conclusion of the form

Cyrc{xy s Ay oo xn 0 An ks O]

40

41
4.2 Naive Elimination Rule

The elimination rule for records should be dual to the introduction rule. Let us look at

the introduction rule. It follows from the rules of Tale? that

I'Fa €A I'ta, €A,

4.1
PE{xi=ay;...;x, =a,} €{x1: A1;.. ;% An} (4.1)

This rule is just an analog of the introduction rule for products:

C'ka € A ['Fay e Ay
' (ai,a2) € A; x Ay

The elimination rule for products is

Tiay: Ajsas 0 Ay @f{ay, as)]
[a: Ay x Ay; @la)

One can expect the following elimination rule for records:

[iay s Ayyoosan s Ay ®[{xn = an; % = an]
Cyrc{xy: Ay xn 0 An ks @]

(Naive Elimination)

But this rule is not valid! Moreover this rule contradicts other basic rules of records.
Indeed, consider the simple case whe# 1. In this case this rule says that any record
of the type{x : A} has a form{x = a}. But this is clearly not true. For example, the
record{x = a;y = b} also has this type. So the above elimination rule would be invalid
if ®[r] refers to fields of other tharx. For example, there is a propositiotiz| such that
Cz] is true whenz is {x = a}.y, butis not true for alk. E.g. letC|z] = (z = {}.y).
Then the sequent

a:AF C[{x =a}.y]

would be true. Applying the Naive Elimination rule, we get:

r:{x: A} F C[r.y]

42

Therefore, sincéx = a;y = b} € {x: A}, we get thatC[b] for anyb. Contradiction.
This example shows us that one should be careful when choosing elimination rules
for records. It also shows why it is important to define records and prove all rules, rather

than take them as a primitive type with a bunch of new axioms.

4.3 Strong Elimination Rule

The mistake made in the last section is thatl does not actually capture the whole
introduction rule. It does not say that records of type : A;} could have additional
fields. The complete introduction rule (derived from the rules of T8kl is the fol-

lowing:
I'Fa €4 I'ka, €A, re{}
FHE{xi=ay;...;xp =ap;r} € {x1: A1;...;%x, 0 An}

where{} is the record type with empty declaration (it contains all records). The dual

rule would be:

Tiap: Agsoosan s Ay o {9z = ags .. 5% = ag; 1}
Cyrc{xy: Ay xn 0 Ank; @]

(Strong Elimination)

The Strong Elimination rule captures our intuition of record types. We can also state it

as two rules:
Tia: Asr: Ry O[{x = a;r}]

Tir: {x : A; R}; B[r] (Strong Elimination)

and
Dia: Asr: {} @[{x = a;r}]
Tir:{x: A}; 9[r]

(Strong Elimination)

It follows from this rule that ifr € {x : A} then
r={x=rxr}

We will call this n-reduction for records. We will see that this reduction is actually

equivalent to the Strong Elimination rule.

43

Unfortunately thej-reduction (and therefore the Strong Elimination rule) is invalid

when records are defined as functions (definit®s8)j and
{x=ar} & (\if I=x then a else r)

Indeed, thej-reduction says that any element of a record type has thefermr.x; r}.
But this is not true for all functions with domaibabel. For example, itz € A then by
definition 3.9) \l.a € {x : A}. Note that this function could be applied to any argument
[, not only to labels. On the other hand, functidhif [= x then a else r [
could be applied only tofrom the typeLabel, because if ¢ Label then the expression
I = x would be undefined, therefore the application would be undefined. Therefore
r # {x = r.x;r} forr = Al.a. Contradiction.

Note that the Naive Elimination rule contradicts the basic introduction rule of records.
Therefore it is not valid for any possible definition of records. On the other hand, the
Strong Elimination Rule contradicts only our definition of records. Therefore there is

still a hope that we can find a better definition to satisfy this rule.

4.4 Functions with Limited Polymorphism

Let us consider the problem with the Strong Elimination rule more closely. We have

n-reduction rule for functions: if is a function then

f=Xz(fz).

That means that any function is\aexpression. The-reduction for records says that if

r is arecord of the typéx : A} then

r=)MN.if [=xthen 7 x else r [.

44

So, we would like to have the following reduction:
A(rl)=A.if [=x then r x else r 1. 4.2)
We can prove only that for anyfrom typeLabel:
rl=if |=xthen r x else r . (4.3)

Unfortunately, 4.3) does not hold for anjyand therefore4.2) is not true.

The problem is that our definition uspslymorphicfunctions. As a result we may
potentially apply the functiom to any argument, not only to labels. On the other hand,
we never apply it to anything other than labels. We need to have some form of type of
functions withlimited polymorphism That is, we need a type of functions that can be
applied only to elements of a particular type (in our caséel).

There is no such type in our type theory. The interesting questions are whether we
can add such type, what would be the semantics for it and what would be inference rules
for this type. We will not discuss these questions here. But wededinesuch a type
in current type theory for some particular cases, e.g., whem! is the type of natural

numbers. Informally speaking we can define “integer functions” as long tuples:

f={fos (s (far)

and applications as takingth element of the tuple. That is,
f(0) £ mif
f(1) = m(maf)
f(2) m1(ma(m2f)) and so on. We will not give the formal definition, but rather

just use the idea of non-polymorphic functions. We are going define records as tuples.

1>

1>

It may help intuition to view these tuples as “integer functions”.

45

4.4.1 Non-polymorphic Definition of Record Type

Without loss of generality we can assume that labels are natural numbersqb&. =
N (or we can assume that there is a given injection of the label typ&into
We will give a new definition of the typén : A} for any natural numbet and any
type A. Then we define an arbitrary record type (dependent or not dependent) using

intersection as in Secti¢®3.1.

New definition of records

The type{n : A} is atype of tuples where theth element has the typ&. We define it
by induction:

{0: A} 2 Ax Top,

{(n+1:A} 2 Topx {n:A}.

Thatis,{1: A} = Topx A x Top,{2: A} = Top x Top x A x Top, and so on.

Note that Top contain everything. So for example iE A then (o, (a,t2)) is in
{1: A} as well as(ty, (a, (tz2, (t3,t4))))

Then we define application (field selectian). as then-th element of tuple-. We
define it by induction:

r.0 = ™

r.(n+1) 2 (mar)m

Finally, we define record extension/update := a as updating the-th component

to bea.
r0:=a 2 {a, mor)
r.n+1):=a 2 (myr, (mor).n := a)

These definitions with the definition8.44), (3.15), and B.1€) of an arbitrary record

type as an intersection of single record types provide the formal account of record types

46

in our theory.

Old rules are still valid

The reductions for records from TaleZ could be easily proved by induction for our
new definitions:

(r.x:=a).x — aforanyx € Label.

(r.y :=b).x — r.xforanyx,y € Label whenx # y.

We can also prove by induction the rules for single-record types from Bakile

I'- AType T'F x € Label
['F{x: A} Type

'Fae A T'kxe€ Label
F'Frx:=aec{x: A}

'Fre{x:A} TFx#yée€ Label
I'E(ry:=b)=rec{x: A}

F'Fre{x:A}
I'Frxe A

All these rules were proven by induction erfandy) and checked in MetaPRL.
All remaining rules from Tabl&.2 are still valid, because we have not changed the

definition of the record type as an intersection of single record types.

The n-reduction for records

The n-reduction that was invalid for the old definition, could be easily proven for the
new definition:

For anyx € Label if r € {x: A} thenr = {x = r.x;r}

a7

The proof is based on the fact that
If p € A x Bthenp = (mp, mp)

The proof was checked in MetaPRL.

New equalities

Another advantage of out new definitions is that now we can exchange record fields.
That is, we can prove the following squiggle equality:
{x=a,y=0b;r} ={y=a;x=0b;r} foranyx,y € Label whenx # y
We can also prove that
{x=a;x="0b;r} ={x=a;r}foranyx € Label

These equalities were proved by inductionxoandy in MetaPRL.

Note that these equalities were invalid for the old definitions. We could only prove
the equalities in a record type. The squiggle equalities gives us more freedom in using

them: we can change the order of fields of a record without worrying about its type.

Efficiency

Note that our new definition of records assumes that there is an injection (coding func-
tion) of type Label into N. It may seems to be very inefficient. Indeed, assumedhmat

is a label with a huge number, say 333148. Then it means that r¢card= A} is

a huge tuple with at least 333148 elements. Ardr = A}.car is reduced toA in
333148 steps. Fortunately we do not need to unfold the definition and does all these
steps, since we have proven the r(le := a).x — a for any labelx. MetaPRL uses

this rule and do the reductioftar = A}.car — A in just one step. Therefore we

do not need to worry about these huge numbers, there is no difference in the efficiency

between old and new definitions.

48

4.5 Functionality

Now let us come back to the record calculus. In the Sedtidnl we gave the new
definition of records that satisfies theeduction. Our goal was the Strong Elimination

rule:
Dia: Ayr: Ry @{x = a;r}
Uyr:{x: A; R}; @[r]

The question is: can we prove this rule from tjteeduction rule? It turns out that the

answer depends on functionality.

4.5.1 Elimination Rule in Pairwise Functionality

It is very easy to prove the Strong Elimination rule using ila¢ rule (Sectior2.2.3 in

pairwise functionality. Indeed, we need to prove:
Iyr:{x: A; R}, @[r].
Usingn-reduction to replace by {x = r.x;r} we get
Oyr o {x: A R}, P{x =r.x;r}].

Then noting that~.x € A andr € R we can apply ruledet a = r.x € A and

Let " =r € R. Then we get
Uir:Rya: A;r': Ry ®[{x = a;r'}]
Then thinning the: : R hypothesis and renamingto » we get the original assumption:

Cia: Ayr: Ry ®{x = a;r}]

49

4.5.2 Elimination Rule in Pointwise Functionality

The above reasoning does not hold in pointwise functionality. We can prove the weak

form of the Strong Elimination rule:

Cia: A;r: Ry AE CH{x = a;r}]
Oyr:{x: AR}, AFCrl

whereA does not depend an
The original Strong Elimination rule is invalid in pointwise functionality. But we
can get almost Strong Elimination rule in pointwise functionality if we introduce a new

notion of orthogonality.

Orthogonality

Basically we say that a record tygeis orthogonal to{x = «} if the declaration ofR
does not contais. Formally, for any typeR, for any labelx and for any element we

define a predicate:
{x=a} LR 2 Vr:R.r=(rx:=a)€R

It is clear that ifR = {x; : A;;...;%, : A,} and allx;’s differ from x then{x =
a} L R.

In pointwise functionality we can prove that

Ia:AF{x=a} LR Fia: Asr: Ry O[{x = a;r}]
Oir:{x: A; R}; ®[r]

This is the closest version of Strong Elimination rule valid in pointwise functionality.
The proof is fairly complicated and uses the rideintwiseSubstitute (Sectior2.2.3).

It was checked by MetaPRL.

Chapter 5

Other Possible Applications
5.1 Sets and Dependent Intersections
The set type constructor allows us to hide part of a witness.

Example 5.1 Instead of definingemigroup type as an extension dfemigroupSig
type with an additional fielchxm, we could define th&emigroup type as a subset of

SemigroupSig.
Semigroup 2 {S : SemigroupSig |Vx,y,z: S.car...}

Now we will show that the set type constructor (which is primitive in our original
type theory) may be defined as a dependent intersection as well.

Now consider the following type (squash operator):
[P] £ {«:Top| P}
[P] is an empty type whe is false, and is equal tBop whenP is true.

Theorem 5.2

{z:T|Plz]} =.x: TN[P[z]] (5.1)

We can not take5.1) as a definition of sets yet, because we defined the squash
operator as a set. But actually the squash operator is defined in our type theory as a
primitive constructor and rules for the set type depend on the squash operatoBZ|See [
for the rules for the squash type and explanations why this is a primitive type.) Thus,

we can takeg.1) as a definition.

50

51

Moreover, the squash operator could be defined using other primitives. For example,

one can define the squash type using union:
[P] 2 |JTop.
z:P

Remark Inis interesting to note that in the presence of Markov’s princi@i there is an

alternative way to definpP]:
[P] 2 ((P => Void) => Void)

whered => B 2 () B. We will not give any details here, since it is beyond the scope of the
T:A
thesis.

We can also define sets withdlibp and squash type. First, defimelependensets:

{A|By 2 [JA

Then define the set type:

{x:A|Blz]} & z: An{A|B[z]}.
The Mystery of Notations It is very surprising that braces .. } were used for sets
and for records independently for a long time. But now it turns out that sets and records
are almost the same thing, namely, dependent intersection! Compare the definitions for

sets and records:

1>

{z:T] P}

{self : Ry; Rylself]}

r:T N[P[x]]

>

self : Ry N Ry[self]

The only differences between them are that we use squash in the first definition and

write ¢

" for sets and ¥ for records.

So, we will use the following definitions for records:

52

{self : Ry | Ro[self]} 2 {self : Ry;[Ralself]]} = self : Ry N [Re[self]]

{w:x: AR)} £ {z:x: 4[RE]} =
self : {x : A} N[R[self x]]

This gives us the right to use the shortening notations as in Segt®hto omit
inner braces andse¢lf”. For example, we can rewrite the definition of tRemigroup

type as

. A
Semigroup = {car : U;
product : car X car — car |

Ve,y,z:car (z-y)-z=x-(y-2)}

Remark Note that we cannot define dependent intersection as a set:
x:ANBlz] 2 {z: A|z € Bf]}. (wrong!)

First of all, this set is not well-formed in our type theory (this set would be a well-formed
type, only whene € B[zx] is a type for allz € A, but the membership is a well-formed

type in the our type theory, only when it is true). Second, this set type does not have
the expected equivalence relation. Two elements are equal in this set type when they are
equal just inA, but to be equal in the intersection they must be equal in both types

and B (see Exampl2.4).

5.2 Variant Type

In the same way that the union type is dual to the intersection type, there exists a type
dual to the records type — the variant type. The variant type is an expression of the
form (x; of A;|x, of As|...|x, of A,), wherex; are labels and|; are types.

The elements of this type are expressions of the foim) wherea € A;.

53

Example 5.3 We can define the type of binary trees
BinTree(A) 2 pT.(node of T xT x A|emptytree of Unit}

Here p-operator is an inductive recursive type constructor, i.e. the least fixp8ijt [

andUnit is a type that contains only one element

We will abbreviatex;(e) asx; andx;({ai, as, . ..,a,)) asx;(ay, as, . .., a,). FOr ex-
ample, the typeBinTree(A) includesemptytree, tree(emptytree, emptytree, ay),
tree(tree(emptytree, emptytree, a;), tree(emptytree, emptytree, as), ag) Where

a;'s are of typeA.

5.2.1 Definitions
We can define the variant type as a dependent product:e.gf A | y of B) 2
[:Label x (if [=x then A else if [=y then B else \oid)
Or we can first definéx of A) 2 {x} x A, and then define
(x of A|y of B)2 (x of A)U(y of B)
In any case the constructor for this type is defined as a pair:

x(a) £ (x,a)

We also need to define a destructor:
match ¢ with
x1(a1) => filai] |

xa(az) => folas] |

Xp(an) => folan] |

54

as
let (l,a) =t in

if (= X1 then f1 [CL]

if [= X9 then fg [CL]

if [=x, then f,[a]
5.2.2 Properties

The variant type has a subtyping property which is dual to the subtyping property of
record types:
(x; of Aj)lier € (% of A)|ics

when! C JandA; C Al foranyi € I.

Example 5.4 Let

Week 2 (Sunday of Unit|Monday of Unit|Tuesday of Unit |
Wednesday Of Unit | Thursday of Unit |

Friday of Unit|Saturday of Unit)

ThenWeekend 2 (Sunday of Unit|Saturday of Unit|)is a subtype oV eek.

There is a general formula about variant types and union that is dual to the formula

about records and intersection:

(xg of Ay|...|xx of Ag|y, of By|...|y, of B,)U
(xg of Al|...|xx of A, |z of Ci|... |z, of C,)=
(xy of AjUAL| ... |xx of A UA]]

yp of By|...|y, Of B,|z of Cy|... |z, of C)

So, the intersection of two record types is alway a record type, and the union of two

variant types is always a variant type.

55

5.3 Abstract Algebra

In this section we outline a way how one can define general abstract algebraic structures
using our record type.

Our encoding of records uses the typebel for names of the fields. In all of the
above examples names were constants. But we are allowed to use variables over type
Label. In fact, we may even use arbitrary terms of the typéel as the name of the
fields. It could be useful to define an algebraic structure of an arbitrary signature.

A signature is a list of operations with their arity:

Signature = (Label x N) List

We can define an algebraic structure of any signature:
A
Algebra(opy,ny :: ... opg,ny) = {car:U;op;:car™ —car;. .. ;opg:car*—car}

Now we can define standard notions from abstract algebra. For example, homomor-
phism between two algebraic structurésind B of the same signaturgig is defined
as:

Hom (A, B, Sig) 2

{ f:A.car — B.car|
Y (op,n) € Sig.Vx € A.car™. f(A.op(x)) = B.op(fn(x)) € B.car }
Whel‘efn(<x1, e 7xn>) = <f($1)7 ey f(xn)>
We can prove some general properties about homomorphisms, like composition of
two homomorphisms is a homomorphism. Then we can apply this theorem to concrete

algebraic structures.

56
5.4 Join Operator

In this section we outline possible applications of records and intersections to databases.
One of the basic operation for relation databases is a join operator.

We can represent a relation with attributgsa,, ..., A, as a finite subset of a type
{Ay : T1;Ay - To; .. A, : T,}, whereT; is a type of an attribute;. That means that
a relationR is represented by a set of records that has fig|ds. ., A, that coincide
with one of the tuples ik, and probably other fields. Then one can easily see that
the intersection of two relation8; and R, is exactly the natural join of these relations!

That is, we can very easily define the natural join for the relations:

RlMRQZleRQ!

Chapter 6

Red-Black Trees

In this section we will show an example of how one can define an abstract data struc-
ture in the constructive type theory, and formally prove the correctness of the concrete
implementation. We will consider red—black tre&s€]| one of the most popular imple-

mentation of a data structure of collections of elements of a certain type.

6.1 Introduction

In the end of SectioB.3.3we gave a definition of the data structuwellection(T), a
collection of elements of the type. Here we repeat the definition using set type (using

notations of Sectiob.1):

1>

Collection(T)
{car: U;
empty : car;
member : car — 17" — B;
insert : car — T — car |
Va:T a ¢ empty |
Vs:car VYa,b:T (member (insert sa)b)
<= (member sb)V(a=0beT)}
We can implement this data structure in several ways. The simplest but inefficient
implementation of sets uses lists. Each set is represented by an unordered list. Formally
we takecar to beT List,empty to ben:il and define operationssert andmember

correspondingly. In this implementation, functiomsert andmember take O(n)

57

58

time, wheren is a number of elements of the set.

A more efficient implementation of sets is binary search trees. Each set is repre-
sented by a binary tree, where elements are stored at the nodes, such that the element at
any given node is greater than each element in its left subtree and less than each element
in its right subtree. In this implementation, functidnsert andmember takeO(d)
time, whered is a depth of the tree. On random data the heights of the trieg(s).

But in the worst case the tree will be imbalanced, and an individual operation will take
up toO(n) time.

The solution to this problem is to usmlancedbinary trees. The most popular
balanced binary search trees are red—black tregs\[Ve will show how the implemen-
tation of red—black trees could be written as a term in type theory.

Red-black trees could be defined only on an ordered set. We have defined ordered
structures in Exampl8.2. Thus the implementation of red—black trees should be a
functor(i.e. a function from one data structure to another) that takes an ordered set and
returns a data structure of collections of elements of this set. That s, it has the following
type:

ord : OrdSet — Collection(ord.car).

The implementation of red-black trees in a functional programming setting is a little
bit different (and simpler) than the typical presentation in imperative programming lan-
guages (as for example id2]). We will follow the presentation of red—black trees in

functional languages fron8B].

59
6.2 Binary Trees
Definition

We already gave the definition of binary trees in Exantof

BinTree(A) = puT.(node of T x T x A|emptytree of Unit}

We have the following introduction rules about this type:

AType acA | € BinTree(A) r € BinTree(A)
emptytree € BinT'ree(A) tree(l,r,a) € BinTree(A)

The elimination rule is the induction rule:

'+ Clemptytree] [;1: BinTree(A);r : BinTree(A) F Cltree(l,r, a)]
[;t: BinTree(A) - C[t]

Operations with trees

We can define depth and weight (i.e. number of elements) of the tree by induction:

weight(emptytree) 20

weight(tree(l,r,a)) 2 weight(l) + weight(r) + 1

1>

1

depth(emptytree)

depth(tree(l,r,a)) 2 max(weight(l); weight(r)) + 1

We can define quantifiers on the nodes of the tree. R[étr; a] be a proposition
of nodestree(l,r,a). Then we define by inductiodnode(l,r,a) € t. P[l;r;a] as

a proposition that says that is true for all nodes of the tree and3node(l,7,a) €

60

t. P[l;r;a] as a proposition that says th@tis true for at least one node of the tre€,

r anda are bound variables). That is,
- Vnode(l,7,a) € emptytree. P[l;r;a] 2 True

- Vnode(l,r,a) € tree(ly,r,a1) . Pll;7;al

Plly;r;a0] A
Vnode(l,r,a) € ly . P[l;r;a] A

Vnode(l,r,a) € ry . P[l;r;al

False

- Jnode(l,7,a) € emptytree. P[l;r;q]

1>

- dnode(l,r,a) € tree(ly,r1,a1) . P[l;r;al
Plly;ri;aq] V
dnode(l,r,a) € Iy . P[l;r;a] V

dnode(l,r,a) € ry . P[l;r;a]

We will store elements in the nodes of a tree. We define the proposition

in_tree(a;t; A) that states that nodeis stored in the treé&
in_tree(a;t; A) 2 3node(l,r,d) €t.a=d € A

This proposition needs the typeas a parameter because we have different equalities
in different types.
Finally, we can define a set of elements stored in a given tree:

|t]a = {a: Alin_tree(a;t; A)}

61

6.3 Sorted Trees

Assume we have an ordered setl. Sorted trees are binary trees satisfying the follow-
ing property: for any nodeéree(l,r, a) in the tree any element from the left subtide
less than the roat and any element from the right subtreés greater than the roat

Formally,

SortedTree(ord) 2

{t : BinTree(ord.car) |
Vnode(l,r,a) € t.
YV |l|ord.car LT <ord G A

\V/y : ’r’or‘d.car - <ord Y

Searching in balance trees

We can find whether an element is in tree by binary search:

- search(a; emptytree;ord) 2 falsen

- search(a;tree(l,r, data); ord) 2

if @ <,qdata then search(a;l;ord)
if a=,4qdata then trueg

if @ >,qdata then search(a;r;ord)

Note that this function returns a boolean value, unlikeén_tree, which is a propo-
sition.

Using the transitivity of order we can prove

62

Theorem 6.1 (Correctness of Search}or any ordered setrd € OrdSet, for any el-

ement € ord.car and for any tree € SortedT'ree(ord)
search(a;t;ord) € B
and
search(a;t;ord) = trueg <= a € |t|ord.car
Insert function

To insert a new element into the tree we again use binary search to find an appropriate

place:
: A
- ins(a; emptytree;ord) = tree(emptytree, emptytree,a)

- insert(a; tree(l,r, data); ord)
if @ <uqdata then tree(insert(a;l;ord),r, data)
if a=,qdata then tree(l,r a)
(

if a>,qdata then tree(l,insert(a;r;ord),data)
We can prove the following

Theorem 6.2 (Invarian of Insert) For any ordered setrd € OrdSet and for any ele-
menta € ord.car if t € SortedT'ree(ord) theninsert(a;t; ord) is also in

SortedTree(ord).

Theorem 6.3 (Correctness of Insert)For any ordered setrd € OrdSet, for any ele-

menta € ord.car, for any treet € SortedT'ree(ord)

|in8€7‘t(@; tv Ord)’ord.car e ’t|ord.car U {a}ord.car-

63

6.4 Red-Black Trees
Definition

In a red—black tree each node is colored either red or black. A red-black tree should

satisfy the following invariants:

e Any child of a red color is black

e All paths from the root to any leaf have the same number of black nodes. (We will

call this number dlack depthof a tree).
We will consider trees that satisfy an additional property:
e The root of a tree is black

We start the formal definition with the definition of colors:
Color 2 (red of wnit|black of wunit)

That is,Color has two elementszed andblack. We also define two subtypes of this
type:

Red 2 (red of wnit) has only one elememd

Black 2 (black of wnit) has only one elememflack

Then we defin€oloredTree(A) as a type of trees with colored nodes:
ColoredTree(A) 2 BinTree(Color x A)

Then we define three subtypes®@bloredT'ree(A): RB,(A) for red—black trees of
the black dept, B,,(A) for red—black trees of the black depthhat have a black root,
and R, (A) for red—black trees of the black depththat have a red root. (For the sake
of this definition we assume that empty tree has a black root.) We define these types

simultaneously by induction:

64

>

e By(A) = (emptytree of Unit) (only the empty tree has black depth 0);

and for any naturab

A

- Byi1(A) = (tree of (RB,(A) x RB,(A)) x (Black x A)) (a black tree of

the black dept + 1 has a black root and two sons of the black depth

- R, (A) 2 (tree of (B,(A) x B,(A)) x (Red x A)) (ared tree has a red root

and black sons of the same black depth);
- RB,(A) 2 R,.(A)U B, (A) (ared-black tree is either red or black).

We can prove by induction that these definitions are well-formed for any natural

Vn : N. B, (A) TypeA R,(A) TypeA RB,(A) Type

Finally we define a type of red—black trees as a union oBallA):

RedBlackTree(A) = U B,(A)
n:N

Insert Function

The insert function for red—black trees is similar to the insert function for sorted trees,
but it maintains the invariants.

When we insert a new node we will color it red. It satisfies the second invariant, but
may break the first invariant if the father of the new node is red.

Let us define an auxiliary function:

. A
- ins(a; emptytree;ord) = tree(emptytree, emptytree,red, a)

>

- ins(a; tree(l,r, color, data); ord)

if a <yqdata then lbalance(ins(a;l; ord);r; color; data)

65

if a=yqdata then tree(l;r;color,a)

if @ >,qdata then rbalance(l;ins(a;r; ord); color; data)

Wherelbalance andrbalance are functions that rebalance a tree without changing

the order to enforce invariants. They are defined as follows:

lbalance(tree(tree(ty, ta, red, ay),ts, red, as); ty; color; ag) 2

tree(tree(ty, ty, black, ai), tree(ts, t4, black, as), red, as)

- lbalance(tree(ty, tree(ts, ts3, red, as), red, ay); ty; color; as) 2

tree(tree(ty, ty, black, ay), tree(ts, iy, black, as), red, as)

- For all other cases

Ibalance(l;r; color; a) 2 tree(l; r; color, a)

>

- rbalance(t, tree(tree(ty, t3, red, as), ty, red, as); color; ay)

tree(tree(ty, ty, black, ai), tree(ts, t4, black, as), red, as)

- rbalance(ty, tree(ts, tree(ts, ty, red, as), red, as); color; ay) 2

tree(tree(ty, ty, black, ai), tree(ts, t4, black, as), red, as)

- For all other cases

rbalance(l; r; color; a) 2 tree(l;r; color, a)

Functionins may break the first invariant. Namely it may return a tree ity
onesingularityat the root a red root may have a red son. The functiémgance and
rbalance then take care of this singularity.

Formally let us define a type of trees with at most on one singularity at the root:

- IRRB,,(A) 2 (tree of R,(A)x B,(A)x Red x A) (trees with a red root and
a red left child);

66

- rRRB,(A) 2 (tree of B,(A) x R,(A) x Red x A) (trees with a red root

and a red right child);

- RRB,(A) 2 RB,(A)UIRRB,(A) UrRRB,(A) (trees with at most one sin-

gularity at the root).

We will see that theéns function may return trees of the tygeR B,,(A). Functions

lbalance andrbalance deal with such trees.
Lemma 6.4 For any naturaln and for any typed the following is true:
l: RRB,(A);r: RB,(A) I lbalance(l;r;black; a) € RBy,+1(A)

l:RB,(A);r: B,(A) F lbalance(l;r;red; a) € RRB,(A)
l: RB,(A);r: RRB,(A) - rbalance(l;r;black;a) € RB1(A)

l: B,(A);r: RB,(A) F rbalance(l;r;red;a) € RB,(A)
This lemma could be proved by analyzing all possible cases.
Lemma 6.5 For any ordered setrd € OrdSet and for anya € ord.car
t: R,(ord.car) & ins(a;t;ord) € RRB,(ord.car)
t: By(ord.car) - ins(a; t; ord) € RB,(ord.car)

This lemma could be easily proved by simultaneous induction using the previous

lemma.

Finally, we need to correct the singularity in the root. It may be done by just painting

the root black:

blackroot(tree(l,r, color,a)) 2 tree(l,r,black, a)

67

So,

rb_insert(a;t; ord) 2 blackroot(ins(a; t; ord))
It is easy to prove the following

Lemma 6.6

t: R,(A) F blackroot(t) € RedBlackTree(A).
Therefore we have the following

Theorem 6.7 (Invariant of the insert function) For any ordered sebrd € OrdSet
for anya € ord.car if t is in RedBlackTree(A) thenrb_insert(a;t; ord) is also in

RedBlackTree(A).

Red-black trees are balanced

Lemma 6.8 The depth of a red—black tree is not more than 2 times its black depth.
Formally,

Vn : NVt : RB,(A).depth(t) < 2n

Lemma 6.9 A red-black tree of the black depthcontains at leasP™ — 1 elements.
Formally,

Vn : NVt : RB,(A).weight(t) > 2" *

These lemmas are easily proved by inductiomof\We need to prove them also fér,
andB,.)

It follows from these lemmas that the depth of any red—black tree is less than or
equal to2 log(n), wheren is the number of nodes. Therefore searching and inserting in
this tree take®)(log n) time. The last argument is informal. In the current system there

is no way to formally prove an upper bound for the working time of an algorithm.

68

6.5 Sorted Red-Black Trees

Now we define the type of sorted red—black trees just as an intersection of the types of

sorted trees and red—black trees:
Sorted RedBlackTree(ord) 2 RedBlackTree(ord.car) N SortedTree(Top ord)

whereT'op x ord is an ordered set of all paiKgsolor, a) for a € ord.car and the order

relation ignoring the first component. That is,
Top ord = {car = Top x ord.car; less (c1,a1) (c2,a2) = ord.less a; as}

SinceSortedRedBlackTree(ord) is a subtype ofortedTree(Top * ord) we can

use the same function for searching:
rb_search(a;t; ord) = search(a;t; Top* ord)

Theorem 6.10 (Correctness of Search)or any ordered setrd € OrdSet for any

element: € ord.car for any treet € Sorted RedBlackTree(ord)
rb_search(a;t;ord) € B

and

rb_search(a;t;ord) = trueg <= a € |t|ord.car

It immediately follows from Theorerf.1and the fact that Top ord € OrdSet.
We can prove thathalance andrbalance do not change the order of elements in

Top * ord. Therefore we can prove that

Lemma 6.11 For any ordered sebrd € OrdSet for any element € ord.car if t €

SortedT'ree(Top= ord) thenrb_insert(a; t; ord) is also inSortedTree(Top* ord) and

]rb,insert(a; t’ O’l"d) ’Topxord.car e ‘t|TOp><o7‘d.car U {.’ G'}Topxord.car'

69

Finally, using the factthatif € A, — A, andf € B; — Bothenf € A; N Ay —

B N By, we get

Theorem 6.12 (Correctness of Insert)For any ordered setrd € OrdSet for any el-
ementu € ord.car if t € SortedRedBlackTree(ord) thenrb_insert(a;t;ord) is also

in SortedRedBlackTree(ord) and for anyb € ord.car

rb_search(b; rb_insert(a;t;ord); ord) <= rb_search(t)V a =b € ord.car.

Collection

Finally we combine the above functions into the functor of the typé : Ord —

Collection(ord.car).

redblacktree_collection(ord) 2

{car = SortedRedBlackTree(ord);
empty = emptytree;
member t a = rb_search(a;t; ord);
insert t a = rb_insert(a;t; ord)

}

Theorem 6.13 (Main) For any ordered setrd € OrdSet the structure
redblacktree_collection(ord) is a correct structure for collections of elements of the

carrier of the ordered setrd. Formally,

redblacktree_collection(ord) € Collection(ord.car).

Note that this theorem not only tells us that our functions have the right type, but also

tells that this function satisfies the specifications stated in the definition of collections.

Chapter 7

Obijects

Note that the elements of the typgéllection(T') defined in the last chapter are not
collections, but rather implementations of collections, i.e., a bunches of functions. The
actual collections are elements of typecar whereC' € Collection(T). If we have a
function that need a collection as a parameter, it actually should have two arguments: an

implementation and a collection itself. So, it should have a type like:
C : Collection(T') — C.car — A (7.1)

Another disadvantage of this data structure is that it is not fully abstract. Functions of
the type [7.1) may have access to fietchr, which is supposed to be abstract.
In this chapter we will define a notion of objects that removes these disadvantages.

Note that the theory of objects is not yet implemented MetaPRL.

7.1 Object instances

In this section we define object instances and basic operations with them. First we
describe the intended behavior of these operations and then we give a formal definition.
The problem of the typing of these object instances will be considered in the successive

sections.

7.1.1 The operations with objects
Methods

The main difference between objects and records is that objects have methods. Methods

can be understood as functions that have a parameflgrthat represents the object

70

71

itself. Thatis, when we evaluate a method of a particular object we substitute this object
for the self parameter.

The main operation that we perform with methods is to apply them to an object. We
will use circle dot 6b5.0) for a method extraction (to distinguish it from field selection
for recordsrec.l). Hereobj is an object and is a name of a method. Thus,db;j is
an object instance that has a method naineith a bodym(self) thenobj,l expands
to m(obj). (Hereself is a variable, andn(obj) stands for the substitutiosb; for the
variableself.)

Fields of objects can be represented as methods that do not depedig.on

So, object instances are lists of methods (including fields). We will use the following

syntax for objects:

o self {1y = my(self);...;l, = my(self)}

whereself is a bound variabld;’s are names of the methods (fields) angs are bodies

of the corresponding methods (values of the fields).

Example 7.1 The following is an example of an objeginpleF'lea. The flea lives on
an integer line and has a coordinatethat can be obtained, by a methgeltX. Method

getNextX returns a coordinate where the flea wants to jump next time.

stmpleFlea 2 0 self.

getX = self .x;
getNextX = self ,getX + 1
}

For the objeckimple F'lea we expect the following reductions:

72

stmpleFlea,getX — simpleFlea,x — O

simpleFlea,getNextX — flea,getX+1—0+1—1
In general, for object
object = o self {l; = mq(self);...;l, = my,(self)} (7.2)
with distinct/;’s we have the following reduction rule:

object,l; — m;(object) (7.3)

Field update

Another basic operation that we need for objects is a field/method update.

We will use the following syntax for this operatiowbj [:= ¢, whereobj is an
object instance, is a name of a field antlis a new value. Note that we are working in
a pure functional language. Field update does not modify an existing object, but rather
creates a new objects. For examplenple Flea,x := 17 is a new object that coincides
to simpleF'lea in all fields excepk. Field update should obey the following reduction
rule:

(obj l:=1),l —t (7.4)

For example(flea,x := 17),x — 17. This rule is the same as an analogous rule for

records8.2). On the other hand, the analog of the record reduction rule form Bable
(obj 1 :=1t),I'" — obj,l', when! # I’ (wrong!)

is wrong for objects. For examplésimpleFlea,x := 17).getX reduces ta7, not to
simpleFlea,getX which is0.

The right reduction rule is the following: famject defined in7.2) let object’ be
object,l :==t, then

object’ l; — m;(object’) (7.5)

73

wherei € 1..n andl # ;.

For example,
(flea,x :=17),getX — (flea,x :== 17),x — 17

Example 7.2 Now we can define a methadve that moves a flea by step to the right.

movable Flea 2 0 self .

getX = self .x;
getNextX = self ,getX + 1;

move = (self ,x := self .,getNextX)

}
In this examplemovable Flea,move, move, getX evaluates to 2.
Method update
The generalization of the field update is a method update:
obj,l := < self .m(self)

Herel is a name of a methody is a new body of this method with a bound variable
self .
The reduction rules for the method update are analogous to ones for field update.

Forobject defined inl7.2) let object’ beobject l := < self .m(self), then
object’ | — m(object’) (7.6)

and

object’ l; — m;(object’) (7.7)

wherei € 1..n andl # ;.

74

Example 7.3 We can override methagktNextX in the last example:

fastFlea 2 movableFlea,getNextX := ¢ self .self .getX + 2.

Now fastF'lea moves twice faster thamovable F'lea. For example,
fastFlea,move move,getX — 0+ 2+ 2 = 4.

The operation method update could be used for extending an object with new meth-
ods. That is, we can apply the operation of updating a method to an object that did not
contain this method before.

We will use the following alternative syntax for method update. We will write

o(oby) self.
{li = mq(self);

L, = my(self)}

instead of
obj i =< self .mq(self)

oln := < self .my, (self)
For example we could definedovable Flea from Example7.2 as an extension of

stmpleFlea:
movableFlea = o(simpleFlea) self {move = (self ,x := self ,getNextX)}.

Note that field update can be considered as a partial case of method update:when
does not depend oself.

These operations and the reduction rules are summarized inAdble

75

Table 7.1:Reduction rules for object calculus

Canonical terms:

0 self.{h = m1<5€lf)§ cee ln = mn(self)}

Operations:
Method applicationobj. [
Method update/extensionb;, i := < self .m(self)
Field update/extension is a partial case of method update:

obj l = f 2 obj.l .= < self . m

Reductions:

If obj = o self {1l = mq(self);...;l, = m,(self)} then

Objoli — mZ(Obj) Whenli 7é liJrl, R

obj,l := < self .m(self) — o self {l; = my(self);...;l, = my(self);l = m(self)}

76

7.1.2 Formal definitions

Itis relatively easy to define objects and their operations (method application and method
update) in lambda-calculus with records. We will define objects as functions that take

self as a parameter and return a record:

oself. { 1y =ma(self);...;l, = my(self)} 2
Aself. { Iy =mq(self);...;1L, = my(self)} (7.8)
As one would expect, method application is a self application :
. A . .
obj,l = (obj obj).l, (7.9)

i.e., we apply an object to itself and then get a record, and extract al fiedch this
record.

Field update is defined as
obj.l =t 2 Xself. (obj self).l :=t. (7.10)
By analogy, method update is defined as
obj.l =< self .m(self) 2 Aself.((obj self).l := m(self)). (7.11)

Theorem 7.4 The definitiong7.8—(7.11) satisfy the intended reduction rules from Ta-

ble/7.1.

Remark An alternative way would be to define an object as a record of methods, where

each method is a function that tak€f as a parameter:

oself {li = my(self);...;l, = mp(self)} 2

{li = Aself .my(self);...;l, = Aself .my(self)}

This approach was used by HickeyR1]. Although the latter definition may seem more natural,

we choose the former one, because the typing rules will be more elegant for it.

77

7.1.3 Additional Properties

From the above definitions it is easy to see that we can define any object as an extension

of an empty objecf|[}. For example, thebject defined in7.2) is equal to

o({I[}) self.
{li = mq(self);

ln = my(self)}.

Also if we rewrite a method, then we can forget about the old method, i.e.,
oself{...;l=m;...;l=m';.. . }=oself {...;...;1l=m;...}

and

obj (I :==m),(l :=m') = obj,l :=m'.
The methods with different names commute. That is,
oself {...;l=m;l'=m';...} =oself {.. ;' =m;l=m;...}

and

wherel #£ .

7.1.4 Notations

First, let us note that we use three types of dots in the thesis. The simpl¢ idaiged
for in expressions like\x. f, o self .{x = 0} to show binding variables. The bold do} (
is used for records, e.g:,x, r.x := 1. The circle dot () is used for objects, e.qg,x,

0,x .= 1.

78

Like in many programming languages, we will usually owdtf. That is, we will

use the following notations:

instead of writing:| we will write:

self . x x
self x = m X :=m
oself.{...} {...1

o(obj) self-{...} | aobj) 4.]

For instance, Examplé.2 can be rewritten as follows:

movableF'lea =
{lx =0
getX = x;
getNextX = getX + 1;

move = (x := getNextX);

[t
7.1.5 Recursion

The above definition allows us to write recursive objects.

Example 7.5 We can write a recursive method that moves the flea &igps.

advanceFlea 2 o(movableFlea).

{moveBy = (An.iff n =0 then self else move,moveBy (n— 1))

}

ThenadvanceFlea,moveBy (17),getX evaluates td 7.

79

Example 7.6 We can also write objects with mutual recursion:

feeFoo 2
{foo=Anif n=0 then 0 else fee(n—1);

fee=Mnif n=0 then 1 else foo(n—1)
I

This object has two methodgise and foo, which recursively call each other. According

to rules of Tablé/’.1 feeFoo,foo(17) evaluates td.

7.2 Typing

As we saw, object instances can be defined fairly easily in lambda-calculus with records.
However, finding the right type for these objects is a difficult task. Indeed, how do we
type even a simple objectmplestFlea 2 {x = 1;getX = x[}? This object is a
function from objects of this type to the record type : Z;getX : Z}. Intuitively

the type of this objecX should satisfy an equatioN = X — {x : Z;getX : Z}.
Unfortunately, this equation is not monotoneXn Therefore, we can not use standard
fixpoint operations such as the least fixpoin) or the greatesty). Moreover, this
equation may not have a fixpoint at all!

First let us examine more carefully what we are looking for. We want to define the

type of objects of the form

0 self.{h = m1<561f); cee ln = mn(self)}

where we are given the type of the methods. L&the a type of a method namédLet

us denote the type of such objects as

Ofly : My;...5l, - My}

80

For examplegsimplest Flea should have typ&implest Fleas 2 Of{x: Z;getX : Z}.
Note that some methods may return objects of the same typen@vg.andmoveBy
methods). In this case we will use a bound variatd§ that represent the type of the

object itself. We will use the following syntax:
O Self {ly : My(Self);...;l, : M,(Self)} (7.12)

For example, we expeatlivanceFlea to be of the following type

AdvanceFleas 2
O Self {x : Z;getX : Z; getNextX : Z;move : Self;moveBy : N — Seif}.

We will call the record typeM [Self] = {li : My(Self);...;l, : M,(Self)} a
declaration typeof an object type. Our goal is define a constructo$el f.M [Sel f]
which is an object type of a given declaration. First, let us describe the properties that
we expect from this type constructor.

What does it mean that the method of an object has a tyfe It means that if
we apply this method we get an element of typle That is, if obj has typed{/; :

My;...; 1, : M, } thenobj, l; must have typé/;. More generally, if
Object = O Self {1y : My(Self);...;1, : M,(Self)}

then we can apply methad to all objects of this type and the result must have type

M;(Object). That s, the following rule is necessary:

obj € Object

7.13
obj,l; € M;(Object) (7.13)

For example for albug € AdvanceFleas we should havéug.getX € Z and

bug.move € AdvanceFleas.

81
7.3 Definition of Object Types

In this section we are going to give a definition of a type of objects satisfying the prop-

erties outlined above. We start with

Definition 7.7 Let X and A be types, then
X<Aiff X C (X — A)

This definition says that iK' <1 A then we can apply elements of typeto themselves.

Therefore we have the following

Lemma 7.8 If X < Athenifo € X theno(o) € A.
In particular, if

X <{ly: My;...50,: My} (7.14)
then for anyo € X we have thav,l; € M,;.

So intuitively, the typeX = O Self {l; : My(Self);...;l, : M,(Self)} should
satisfy the property4.14). Of course the empty type always satisfi@slé), but we
want the object type to contain as many elements as possible. So we define the object

type as a union of all type& satisfying {7.14).

Definition 7.9 Generally, letM [X] be a type for any typ& . We define atyp® X. M |[X]

as a union of all type that satisfyX < M[X]:
OX.M[X]=U{X:U| X < M[X]}.

We will also use the following abbreviatior}l; : M, (Self);...;1, : M,(Self)[}
for the type® Self {1y : My(Self);...;l, : M,(Self)}.
This definition does not satisfy the properi#.14), but it turns out that we do not

need this property. We still have the following lemma:

82

Lemma 7.10 If M[X] is monotone inX (w.r.t. subtyping relation) then for any €
O X.M[X] we have thab(o) € M[O X.M[X]].
In particular, if M;[X] are monotone inX, then ifO = {l; : M(Self);...;

Iy, : M, (Self)} ando € O theno,l; € M;(0O).

Proof If o € © X.M[X] then there is a typ& € U, such thab € X and X <
M(X). By Lemma7.§ o(o) € M(X). SinceX C © X.M[X] andM is monotone,
M(X) C M[9 X.M[X]]. Thereforeo(o) € MO X.M[X]].

The second part of the lemma immediately follows form the first part.

This lemma provides us the elimination rule for obje3t4d.6).

obj € Object
obj l; € M;(Object)

whereObject = O Self {1y : My(Self);...;l, : M,(Self)}.
The remaining question is how to prove that this type is nonempty? For example,
how can one prove thatmplest Flea € SimplestFleas? This is nontrivial question.

We should find a typ& satisfyingo € X < M (X). We will need another constructor.

7.4 Extensibility

Definition|7.S has one important disadvantage: objects of the §ypelf. M [Self] are

not extensible, in the sense that we cannot add new methods to them.

Example 7.11 Leta be an arbitrary object of the typgmove : Self[}. Consider another
object

b = {move = al}.

Thenb is also an object of the typgmove : Self[}. The problem witlb is thatb is not

83
extensible. For instance an extension
b = {{move = a;new method = ¢}

does not have a typgmove : Self;new method : T'[} becausé’ ,move,new method is

undefined.

Extensible objects should have typesuch that not only” < M (T'), but also any

extensions (subtypeY of 7" should meetX <1 M (X).

7.5 Updatable Fields

Another problem with Definitio7.Sis that we can not update fields and methods of the

objects of the type X. M [X].

Example 7.12 Suppose we want to update a fielaf an objectob; of the type{x :
Z;y : Zl. Thatis, we want to prove thabj.x := 1 has the same type. We cannot

always do that. For example let
o={x=0;y=if x=0 then 1 else errorf}.
This object has typfx : Z;y : Z|}, butobj,x := 1 does not have this type.

So to be able to update fields, we will need some additional restrictions on the object

type. To deal with this problem we need

Definition 7.13 Letx be a label,A andT be types. Let us define the following relation
onz, A, T:

{x: A} < TiffVa: AVt:T.(t.x:=a) €T

Note that this is a ternary relation, not a binary relation between types.

84

Informally speaking{|x : A[} < T gives a lower bound for a type of fieldin 7. It
plays the same role as Hickeysrelation 21] and Zwanenburg'st-relation 39)].

We are going to define a type ektensibleobjects satisfying conditions of the form
P(T) = {x : A} < T. More precisely, for a given declaratiaWf (X) and a given
condition P(X') we define a type of extensible obje€ts /. HereM € U — U and
P(X) is a predicate on types. We cannot give this definition for an arbitraignd P.

M should be monotone and continuous @hghould be closed under intersection (see

below).

7.6 Topology

Subtyping relation forms a partial order over the type®irPartial order forms a topol-

ogy: the topology is formed by intervals

[A;B] £ {X:U|AC X C B}

7.6.1 Continuous functions

Usually the following definition is used for continuity of monotone operators:

Definition 7.14 Monotone type operata¥/ is continuousff for any non-empty family
of types{ X, }..r
M(ﬂ X;) = ﬂ M(X;)
[ol
Most of the monotone type constructors are continuods: Y, X x Y, and most

important{x : X;y : Y} are continuous.

85

7.6.2 Semicontinuous functions

We will need to iterateV(X) = X — M(X). Unfortunately, this operator is not
monotone and not continuous in any sense. For exam{l&]) = —X is clearly not

continuous. So we will need a less strict definition.

Definition 7.15 Atype operatorV is (upper) semicontinuou for any non-empty fam-
ily of types{ X }:.r
N(()X) 2N (X)
a1

a1
It is clear that any continuous function is semicontinuous. We can also prove that if

M (X) is semicontinuous theiV (X) = X — M(X) is also semicontinuous. It follows

from the following two lemmas.

Lemma 7.16 If F(X,Y) is a function that is anti-monotone in its first argument and

semicontinuous in its second argument, théfX') = F(X,Y") is semicontinuous.
Lemma 7.17 X — Y is a monotone and continuous Yhand anti-monotone itX .

Note that a monotone function is semicontinuous iff it is continuous.

7.6.3 Closed properties and sets

Definition 7.18 We will say that a property’ of types isclosed (under intersectiofifj
for any family of typeg X },.; if P is true for all X;’s then P is true for intersection of
X;'s, i.e.

(Vi: LP(X;)) = P(()X)

a1

In other words it means that is semicontinuous function frofid to propositions.

86

Definition 7.19 We will say that a subtyp¥ of U is closed (under intersectioifj for

any family of types X; }..; whereX; € V, intersection of allX;’s is also inV'.

Note that it follows from this definition that iP is closed therP is true for Top and

Top is in any closed set of types (since Tep () Void).
:Void

Example 7.20 P(T') = {|z : A[} < T is a closed predicate.

7.7 Extensible objects: Formal definitions

Now we are going to give a formal definition 6§ M.
Definition 7.21 Let P : U — P be a property of types. Defifig, 2 {X:U|P(X)}.
Definition 7.22 LetV be a subtype dt/, and A and B be types. Define

V[A;B] 2 {X:V|AC X C B}.

Definition 7.23 Let M be a continuous monotone type operator. Eebe a closed

proposition andl” be a type. Define a relation
Top M 2 VX :Up. 3Y :Up[XNT; X].Y < M(Y).
We will refer to sucly” as M*(X).
Definition 7.24 Let M and P be as in definitioly.23 Define
€pM = | T :U | T xp M}

We cannot prove that for any tygeif 7" <, M thenT < M(T). But we can prove

the following

Lemma 7.25 Let M and P be as in definitior¥.23 For any typel’, if T' ocp M then

there is a typ&” in Up, such thatl’ C 7" andT” < M (T").

87

Proof TakeT’ = M*(Top).
Corollary 7.26 €p M C O M

Lemma 7.27 T «p M is anti-monotone iA” and monotone i/, i.e.,
o 11 C Ty xp M impliesT; xp M and

o If M(X) C My(X) forall X thenT op M, impliesT «p M,
Corollary 7.28 €p M is monotone in/.
Lemma 7.29 T «xp Top for any typel'.

Lemma 7.30 Let{M;},.; be a family of continuous functions. Tfop M; forall i € 1

thenT op [M; (i.e. T xp M is continuous inV/).
i1

Proof SinceT «p X.M;(X) we have a family of functiond/}, s.t. M*(X) €
Up[X NT; X] andM;(X) < M;(M;(X)) forany X € Up.

Now, we want to provd’ «p X. ﬂ M;(X). We are givenX € Up. We want to find
Y € Up[X NT; X] such that” < ﬂl.](/[i(Y).

Let V;(X) = X — Mi(X).uiNe now thatN;’s are semicontinuous. Note that
Y < QMZ-(Y) iff Y C QNi(Y).

Define a family of sequences of typE$ by induction:
o Vi = M/ (X)

7
hd Yn+1

= M?(QYJ)

Then we prove the following:

0.Y, e Up

88

Proof: straightforward induction using facts the}* : Up — Up andUp is closed
under intersection.

1.Y,., , C Y/ for any indexes, j.

Proof: Y}, = M (NY)) CNY] C V]

As a corollary we If].;ve: "

2. N Y!= Y/ forany indexes, j.

n:N n:N
Now, defineY” as this intersectiol” = () Y'.

3. Y C Ny(Y}) "

Proof: SinceN(X) C N;(N;(X)) forany X € Up.
4.Y C N;(Y)

Proof: N;(Y) = N;(NYH) 2 O N;(Y) D N Yi=Y.
. Yg Cx n:N N n:N

Proof: By induction.

6.Y/DXNT

Proof: By induction.

So we have that” € Up[X NT; X]andY C N;(Y).
Corollary 7.31 €p is continuous in/.

In particular,
@P(Ml N MQ) - (@p Ml) N (@P Mg)
This establishes the following rule

OG@PM1 OEGPMI
0 € @p(Ml ﬂMQ)

89

Lemma 7.32 Let P be a closed proposition}/; be a continuous function frofid, to
Up and M, be a continuous monotone function. Let

T= (] M(X)

ng({ﬁx)
Let No(X) = X — My(X). If Ny € {X : Up | X < M;(X)} — Up, then for anyl”

such thatl” «p M; we have thal” N T ocp M,.

Proof Since7” xp X.M;(X), there is a functionV/}, s.t. M{(X) € Up[X N
T X and M (X) < M; (M (X)) forany X € Up.

Let No(X) = X — My(X).

Now, we want to provel’ N T" «p X.No(X). That is for any typeX € Up we
should find atypg” s.t.Y e Up[X NT NT"; X]andY C Ny(Y).

Define the following sequence:
o Yy = M;(Top)
o Yiin = M;(Ny(Y,) N X)

DefineY = [Y,. Then we can prove the following:
1Y, € I[q}jj andY,, < M (Y,).
Proof: straightforward simultaneous induction.
2.7 C Ny(Y,)
Proof: By definition ofT".
3. 7NT'NnX C X,

Proof: Two cases:
Yo=M(Top 2T’ D2TNT' NX

Y1 = M (No(Y,)NX) DN (Y)N XNT' DTNT'NX

90

4. No(Yy) 2 Yo

Proof: Y, = M (Ny(Y,) N X) C Ny(Y,,).

5.Y C Ny(Y)

Proof: No(Y) 2D M No(Y) 2 Y1 2 Y.

6.Y CX " "

Proof: Y C Y = M;(Ny(Yy) N X) C Ny(Yo) N X C X,
7.Y e Up[X NTNT'; X]

Proof: By (1), (3) and (6).

So we are done.
Corollary 7.33 If P, M;, M, andT are as in Lemm#.32then
TNEp My CEp(My N M)

This corollary provides a main introduction rule for objects:
I'Foe€€pM,
X U P(X); X < Mi(X) Foe My(X)

X U P(X); X 9 My(X) F P(My(X))

I'Foe€€p M N M
7.8 Object Calculus

The rules that we proved above are represented inTable
We can make these rules more concrete substituting record types in platevaé

will use the notation
{x1 : My[Selfl;...;x, « M,[Self]]} o

for €p .(ASelf {xy1 : My[Self];...; %, : M,[Self]}).

91

Table 7.2:Basic typing rules of object calculus

FFOE@PMl
X Uy P(X); X < M(X) Foe My(X)

;X : U; P(X); X < My(X) F P(My(X))

I'Foe€p M N M,

XU P(X) B Mi(X) € Ma(X)

I'=€¢pM; C€Ep M

[i:I+Foe€plM,

F*‘OE@PHMZ'

il

I'oe€p M

I'Hoe9X.MX)

In these ruled” are closed predicates and’'s are monotone continuous functions.

92

Table 7.3:Some derived rules of object calculus

I'Fo(o){xn = my[self]]} € {|x1 : Ma[Self];...;xp—1 : Mp_1[Self]} p
DX U P(X); X < {x:Ma[X5 s xp—1: M1 [X} sel f + X F my[sel f] € My [X]

XU, P(X); X < {xi:Mi[X]; .. s xp—1:Mp1 [X} F P(X — M, [X])

I'Fo(o){|xn = mn[self]} € {|x1 : Mi[Self];...;x, : My[Self]]} p

FEX <{x: Mi[X];. ;%0 0 M,[X]} F'Foe X

I'Fo,x; € M;[X]

I'Fo€obj € {|x1 : My[Self];...;x, : M,[Self]]}p

I'Foeobj e {x1: M[Self];...;x, : M,[Self][}

I'Foeobj e {x1: Mi[Self];...;x, : M,[Self][}

T+ o.x; € M[X]

F'F{x: A} <X F'Foe X 'Fac A

I'Fox:=ae X

F'Ex#y

FHE{x: A} < (X — {y: B})

I'FACBEB

FE{x: A} < (X — {x: B})

In these ruled” is a closed predicates add’s are monotone continuous functions.

93

7.9 Example

Now we show how rules of Tablé.3works. Let us prove thatovable F'lea has type

MovableFleas =
{l getX : Z;
getNextX : Z;
move : Self
I
Remember
movableFlea =
{x=0;
getX = x;

getNextX = getX + 1;
move = (x := getNextX);
I
Let P(T) = {|x : Z|} < T. Itis enough to prove thatovableFlea € {|x : Z; getX :
Z; getNextX : Z;move : Self|} .. Applying introduction four times we get four main
subgoals:
X:U;P(X);self : XFO0e€Z
X U P(X); X <{x:Z};self : X F self x € Z
X:UP(X); X <{x:Z;getX:Z};self : X F self .getX+1€Z
X : UyP(X); X < {x : Z;getX : Z;getNextX : Z};self : X F self .x =
self .getNextX € X
and four goals with the conclusion®(X — {z : Z}), P(X — {getX : Z}), and

so on. These subgoals are momentary proved by introduction rules for

94

The first main subgoal is trivial. The second and the third one are proved by elimi-

nation rules fori. And finally, the last one is proved by the elimination rule far

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

BIBLIOGRAPHY

Martin Abadi and Luca Cardelli. A semantics of object types.Phoceedings of
9" IEEE Symposium on Logic in Computer Sciemzes 332—-341, Paris, France,
July 1994. IEEE, IEEE Computer Society Press.

Stuart F. Allen. A Non-type-theoretic Definition of Martindf's Types. In
D. Gries, editorProceedings of the™? IEEE Symposium on Logic in Computer
Sciencepages 215-224. IEEE Computer Society Press, June 1987.

Stuart F. Allen. A Non-Type-Theoretic Semantics for Type-Theoretic Language
PhD thesis, Cornell University, 1987.

Lennart Augustsson. Cayenne — a language with dependent typdatetna-
tional Conference on Functional Programmingages 239-250, 1998.

Gustavo Betarte and Alvaro Tasistro. Extension of Martof4 type theory
with record types and subtyping. In Giovanni Sambin and Jan M. Smith, edi-
tors, Twenty-Five Years of Constructive Type Theenlume 36 ofOxford Logic
Guides pages 21-39, Oxford, 1998. Clarendon Press.

Mark Bickford and Jason J. Hickey. Predicate transformers for infinite-state au-
tomata in NuPRL type theory. IRroceedings o8 Irish Workshop in Formal
Methods 1999.

Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing object encod-
ings. InProceedings of FOOL,31996.

Robert L. Constable. Types in logic, mathematics and programming. In Sam Buss,
editor,Handbook of Proof Theorychapter 10. Elsevier Science, 1998.

Robert L. Constable et allmplementing Mathematics with the NuPRL Develop-
ment SystenPrentice-Hall, NJ, 1986.

Robert L. Constable and Jason Hickey. NuPRL'’s class theory and its applica-
tions. In Friedrich L. Bauer and Ralf Steinbrueggen, editbosindations of Se-
cure ComputationNATO ASI Series, Series F: Computer & System Sciences,
pages 91-116. I0S Press, 2000.

Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of the basic
functionality theory for the\-calculus. Notre-Dame Journal of Formal Logic
21(4):685-693, October 1980.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivestduction to
Algorithms MIT Press/McGraw-Hill Book Company, Cambridge, Massachusetts,
1994,

95

96

[13] Judicél Courant. An applicative module calculus. TAPSOFT Lecture Notes in
Computer Science, pages 622—636, Lille, France, April 1997. Springer-Verlag.

[14] J-Y. Girard. Une extension de l'interpretation dédgl a I'analyse, et son appli-
cation a I'elimination des coupures dans I'analyse et la theorie des typ&ndin
Scandinavian Logic Symposiupages 63—69. Springer-Verlag, NY, 1971.

[15] J-Y. Girard. Interprétation fonctionnelle etélimination des coupures de
I'arithmétique d’ordre suprieur. PhD thesis, UnivergitParis VII, 1972.

[16] Leo J. Guibas and Robert Sedgewick. A dichromatic framework for balanced trees.
In IEEE Symposium on Foundations of Computer Sciepages 8-21, October
1978.

[17] C. A. Gunter and J. C. Mitchell, editord heoretical Aspects of Object-Oriented
Programming, Types, Semantics and Language Desifypes, Semantics, and
Language Design. MIT Press, Cambridge, MA, 1994.

[18] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order
modules with sharing. II€onference record of POPL '94: 21st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languapages 123-137,
Portland, OR, January 1994.

[19] Jason Hickey, Aleksey Nogin, Robert L. Constable, Brian E. Aydemir, Eli Barzi-
lay, Yegor Bryukhov, Richard Eaton, Adam Granicz, Alexei Kopylov, Christoph
Kreitz, Vladimir N. Krupski, Lori Lorigo, Stephan Schmitt, Carl Witty, and Xin
Yu. MetaPRL — A modular logical environment. Accepted to the TPHOLs 2003
Conference, 2003.

[20] Jason J. Hickey. Formal objects in type theory using very dependent types. In
Foundations of Object Oriented Languages 1296. Available electronically
through theFOOL 3 home page

[21] Jason J. Hickey. A predicative type-theoretic interpretation of objects. Unpub-
lished, 1997.

[22] Jason J. HickeyThe MetaPRL Logical Programming EnvironmemhD thesis,
Cornell University, Ithaca, NY, January 2001.

[23] Jason J. Hickey, Aleksey Nogin, Alexei Kopylov, et al. MetaPRL home page.
http://metaprl.org/

[24] Douglas J. Howe. Equality in lazy computation systemsPiloaceedings of the
4t |EEE Symposium on Logic in Computer Scieneages 198-203, Asilomar
Conference Center, Pacific Grove, California, June 1989. IEEE, IEEE Computer
Society Press.

http://www.cis.upenn.edu/~bcpierce/FOOL/FOOL3.html�
http://metaprl.org/�

97

[25] T. B. Knoblock and R. L. Constable. Formalized metareasoning in type theory. In
Proceedings of the 1st Symposium on Logic in Computing Scipages 237—248.
IEEE, 1986.

[26] Alexei Kopylov. Dependent intersection: A new way of defining records in type
theory. InProceedings of 18 IEEE Symposium on Logic in Computer Science
2003.

[27] Alexei Kopylov and Aleksey Nogin. Markov’s principle for propositional type
theory. In L. Fribourg, editorComputer Science Logic, Proceedings of thé& 10
Annual Conference of the EACStolume 2142 ofLecture Notes in Computer
Sciencepages 570-584. Springer-Verlag, 2001.

[28] Xavier Leroy. Manifest types, modules, and separate compilatioRrdoeedings
of the 21st ACM SIGPLAN-SIGACT symposium on Principles of programming
languagespages 109-122. ACM Press, 1994.

[29] Per Martin-Lof. Constructive mathematics and computer programming?rén
ceedings of the Sixth International Congress for Logic, Methodology, and Philos-
ophy of Sciencepages 153-175, Amsterdam, 1982. North Holland.

[30] Per Martin-Lof. Intuitionistic Type TheoryNumber 1 in Studies in Proof Theory,
Lecture Notes. Bibliopolis, Napoli, 1984.

[31] P.F. MendlerInductive Definition in Type TheoryhD thesis, Cornell University,
Ithaca, NY, 1988.

[32] Aleksey Nogin. Quotient types: A modular approach. In Victor A. Caore
Cézar A. Muioz, and Sopleine Tahar, editorProceedings of the 15 Interna-
tional Conference on Theorem Proving in Higher Order Logics (TPHOLs 2002)
volume 2410 ofLecture Notes in Computer Sciengeges 263—-280. Springer-
Verlag, 2002.

[33] Chris Okasaki. Red-black trees un a functional settidgurnal of Functional
Programming 9(4):471-477, May 1999.

[34] Benjamin C. Pierce. Programming with intersection types, union types, and
polymorphism. Technical Report CMU-CS-91-106, Carnegie Mellon University,
February 1991.

[35] Benjamin C. Pierce. Programming with intersection types, union types, and
polymorphism. Technical Report CMU-CS-91-106, Carnegie Mellon University,
February 1991.

[36] Robert Pollack. Dependently typed records for representing mathematical struc-
ture. In J. Harrison and M. Aagaard, editof$ieorem Proving in Higher Order
Logics: 13" International Conference, TPHOLs 2Q0@lume 1869 ofLecture
Notes in Computer Sciengeages 461-478. Springer-Verlag, 2000.

98

[37] Garrel Pottinger. A type assignment for the strongly normalizablerms. In
Jonathan P. Seldin and J. Roger Hindley, edit®og;. B. Curry: Essays in Combi-
natory Logic, Lambda Calculus and Formalispages 561-577. Academic Press,
London, 1980.

[38] John C. Reynolds. Design of the programming language forsythe. Technical Re-
port CMU-CS-96-146, Carnegie Mellon University, June 1996.

[39] Jan Zwanenburg. A type system for record concatenation and subtyping. In Kim
Bruce and Giuseppe Longo, editoisformal proceedings of Third Workshop on
Foundations of Object-Oriented Languages (FOOL1®96.

