
TYPE THEORETICAL FOUNDATIONS

FOR

DATA STRUCTURES, CLASSES, AND OBJECTS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Alexei Pavlovich Kopylov

January 2004

This document is in the public domain.

TYPE THEORETICAL FOUNDATIONS

FOR

DATA STRUCTURES, CLASSES, AND OBJECTS

Alexei Pavlovich Kopylov, Ph.D.

Cornell University 2004

In this thesis we explore the question of how to represent programming data structures

in a constructive type theory. The basic data structures in programing languages are

records and objects. Most known papers treat such data structure as primitive. That is,

they add new primitive type constructors and supporting axioms for records and objects.

This approach is not satisfactory. First of all it complicates a type theory a lot. Second,

the validity of the new axioms is not easily established. As we will see the naive choice

of axioms can lead to contradiction even in the simplest cases.

We will show that records and objects can bedefinedin a powerful enough type

theory. We will also show how to use these type constructors to define abstract data

structure.

BIOGRAPHICAL SKETCH

Alexei Kopylov was born in Moscow State University on April 2, 1974. His parents

were students in the Department of Mathematics and Mechanics there. First year of his

life Alexei lived in a student dormitory in the main building of the Moscow State Uni-

versity. Then his parents moved to Chernogolovka, a cozy scientific town near Moscow.

Alexei returned to Moscow State University as a student in 1991. Five years later he

graduated from the Department of Mathematics and Mechanics and entered the graduate

school of the same Department. He passed all qualifying exam and almost finish his

thesis there, but in 1998 he dropped the graduate school in Moscow and enrolled in the

PhD program at Cornell University.

Now in January 2004 he is looking forward to move to Caltech as a post doctoral

fellow.

iii

ACKNOWLEDGEMENTS

I would like to thank here my teachers I had in my life. First of all, I am thankful to

my parents Pavel Kopylov and Ekaterina Gamazova. They inculcated in me a taste for

mathematics in my early ages. For example, when I was a little boy, my father brought

me a pair of sand-glasses. I played with them and came up with different puzzles, like

how to measure eleven minutes using sand-glasses for three and ten minutes?My father

also taught me programming in Pascal when we did not have a computer.

I am also thankful to Raymond Smullyan, although I never met him in person. My

early interest in mathematics is partially due to his great book —What Is the Name

of This Book?— with logical puzzles about knights and knaves. My father read me

the problems from this book (I could hardly read at that time) and I competed with my

mother trying to solve the problems first.

My special thanks are due to my school math teacher Alexandr Nikolaevich Zem-

lyakov “Zemmm”. I admire his mathematical taste and his teaching style.

Unfortunately some people who had great influence on me are already passed away.

I am very grateful to my grandfather Andrei Konstantinovich Gamazov, who was a great

teacher, I am very proud of him. I am also very grateful to my other grandfather Nikolai

Georgievivh Kopylov, who taught me chess. My schoolfriend Ivan Soloviev had a big

influence on me. He was one year older than me and was always a step ahead of me in

mathematical Olympics.

I am thankful to my Moscow adviser Sergei Artemov. He helped me alot both in

Moscow and at Cornell. Thanks to him I am here. I owe many thanks to my Cornell

adviser Robert Constable for his guidance and many useful discussions.

I was very pleased to work with my colleague and namesake (although he spells

his name differently) Aleksey Nogin. Part of the thesis is a joint work with Aleksey.

iv

Many thanks are due to my other colleague Jason Hickey for his discussions and early

appreciation of my work.

I am also thankful to Christoph Kreitz and Stuart Allen for reading and reviewing my

work. I want to thank many other Cornellians included: Anil Nerode and Jon Kleinberg

for serving on my committee, Dexter Kozen who said that “a computer scientist is a

mathematician with a job”, Evan Moran for his comments on my work during PRL

seminars, Mark Bickford, working with him was a pleasure, Pavel Naumov and Lena

Safirova for their help during my first year at Cornell, Alexandre Evfimievski for his

sharp criticism, and many others.

I also want to thank the PRL seminar for giving me a forum for presenting my ideas

and helping me refine them — especially the long series on objects.

I also acknowledge support from the DoD Multidisciplinary University Research

Initiative (MURI) program administered by the Office of Naval Research (ONR) under

Grant N00014-01-1-0765, the Defense Advanced Research Projects Agency (DARPA)

under Grant F30602-98-2-0198, and by NSF Grant CCR 0204193.

v

TABLE OF CONTENTS

1 Introduction 1
1.1 Records. 1
1.2 Objects . 2
1.3 Organization of the Thesis. 3

2 Constructive Type Theory 5
2.1 Martin-Löf Type Theory . 5

2.1.1 Types . 5
2.1.2 Dependent Types. 6
2.1.3 Universe Types. 7

2.2 Functionality . 7
2.2.1 Pointwise Functionality . 8
2.2.2 Pairwise Functionality. 9
2.2.3 Comparing . 9

2.3 Additional Types . 10
2.3.1 Squiggle Equality. 10
2.3.2 The Set Type Constructor. 11
2.3.3 Subtyping. 11
2.3.4 Intersection. 12
2.3.5 Union . 15
2.3.6 Elimination Rules for Intersections and Unions in Different Func-

tionalities . 17

3 Record Type and Dependent Intersection 19
3.1 Dependent Intersection. 21

3.1.1 Semantics. 22
3.1.2 The Inference Rules. 23

3.2 Records. 24
3.2.1 Plain Records. 25
3.2.2 Dependent Records. 29

3.3 The Record Calculus. 32
3.3.1 The Formal Definition. 32
3.3.2 The Rules. 35
3.3.3 Examples. 37

4 Elimination Rule for Independent Records 40
4.1 Weak Elimination Rule. 40
4.2 Naive Elimination Rule. 41
4.3 Strong Elimination Rule . 42
4.4 Functions with Limited Polymorphism. 43

4.4.1 Non-polymorphic Definition of Record Type. 45

vi

4.5 Functionality . 48
4.5.1 Elimination Rule in Pairwise Functionality. 48
4.5.2 Elimination Rule in Pointwise Functionality. 49

5 Other Possible Applications 50
5.1 Sets and Dependent Intersections. 50
5.2 Variant Type. 52

5.2.1 Definitions . 53
5.2.2 Properties. 54

5.3 Abstract Algebra . 55
5.4 Join Operator. 56

6 Red–Black Trees 57
6.1 Introduction. 57
6.2 Binary Trees. 59
6.3 Sorted Trees. 61
6.4 Red–Black Trees. 63
6.5 Sorted Red–Black Trees. 68

7 Objects 70
7.1 Object instances. 70

7.1.1 The operations with objects. 70
7.1.2 Formal definitions . 76
7.1.3 Additional Properties. 77
7.1.4 Notations. 77
7.1.5 Recursion. 78

7.2 Typing . 79
7.3 Definition of Object Types. 81
7.4 Extensibility. 82
7.5 Updatable Fields. 83
7.6 Topology . 84

7.6.1 Continuous functions. 84
7.6.2 Semicontinuous functions. 85
7.6.3 Closed properties and sets. 85

7.7 Extensible objects: Formal definitions. 86
7.8 Object Calculus. 90
7.9 Example. 93

Bibliography 95

vii

LIST OF TABLES

2.1 Inference rules for the binary intersection type. 13
2.2 Inference rules for the family intersection type. 14
2.3 Inference rules for the union type. 16
2.4 Inference rules for the family union type. 17

3.1 Rules for dependent intersection. 24
3.2 Inference rules for records. 34

7.1 Reduction rules for object calculus. 75
7.2 Basic typing rules of object calculus. 91
7.3 Some derived rules of object calculus. 92

viii

Chapter 1

Introduction
This thesis is done in the framework of a certain constructive type theory, which is

an extension of Martin-L̈of type theory. Type theory is powerful tool for formalizing

programming languages. It already contains the functional programming language (λ-

calculus) and typing systems. The typing system is powerful enough to represent any

program specification. In this thesis we research the question of expanding type theory

with more programming tools.

1.1 Records

One of the important tools of any programming languages is the record type. We also

will consider a dependent record type, that is, a record type where the types of com-

ponents may depend of previous components (like{x : A; y : B[x]}). Records and

especially dependent records are a powerful tool for programming, representing mathe-

matical concepts and data structures. In the last decade several type systems with records

as primitive types were proposed. We will see that the record type is too complex a type

to be primitive, and naive axiomatization leads to contradiction (see Section4.2). The

question arose: whether it is possible to define the record type in existent type theories

using standard types without introducing new primitives.

It was known thatindependentrecords can be defined in type theories with depen-

dent functions or intersection. On the other handdependentrecords cannot be formed

using standard types [5]. Hickey [20] introduced a complex notion ofvery dependent

functionsto represent dependent records. Here we extend the constructive type theory

with a simpler type constructordependent intersection, i.e., the intersection oftwo types,

1

2

where the second type may depend on elements of the first one (not to be confused with

the intersection of a family of types). This new type constructor allows us to define

dependent records in a very simple way.

Dependent intersection is very simple and natural type constructor. It also allows

us to define the set type constructor (which is primitive in the original theory), thus it

simplifies the overall type theory.

Also it turns out that natural join operator (on) is just an intersection of sets of

records.

1.2 Objects

Another important concept in programming languages is object-oriented programming.

Unfortunately object-oriented languages are hard to represent in the type theories due to

self-application. (See [1, 17].)

In the last decade several encodings of objects in type theory were proposed. See a

comparison among the most basic ones in [7]. Almost every existing encoding uses an

extension of systemF [14] as a target type theory.

We show how to embed object types in the constructive type theory using intersec-

tion and union. The object encoding in this system has its own specific characters.

Objects may have recursive methods. In our system we have total functions. That

is, we allow recursive functions as soon as we can prove that they terminate. So we are

looking for a definition of a type of objects, such that it allows recursive methods and

at the same time allows for a type of objects with a certain method, application of this

method to any object of this type should always terminate. Note that inF -like systems

application of a method does not necessary terminate. Therefore we can not simply

follow the encoding of objects inF -like systems. It also shows that there is no simple

3

way to define objects as primitives.

We will also see similarities with the existing encodings. Most of the known encod-

ings of the type of object use an existential type inF -like type theories. In our type

theory, the union type (Section2.3.5) could be used instead of an existential quantifier.

That is, we could use
⋃

X:Ui

A[X] instead of∃X.A[X], whereUi is the universe (a type

of types, Section2.1.3) of level i. On the one hand, the union type is more powerful:

we can take a union over types satisfying some condition. This feature allows us to find

a simpler encoding of objects. Also the union type does not require packing/unpacking

its elements as does an existential type. On the other hand, the unions type has its own

restrictions. We cannot take union over all types, but only over types of a particular level

i. This union will be a type of leveli + 1 (i.e.,
⋃

X:Ui

A[X] ∈ Ui+1). That means we are

not allowed to substitute this type in place ofX. That is, for example, we cannot prove

that A[
⋃

X:Ui

A[X]] ⊆ ⋃
X:Ui

A[X]. This problem significantly complicates our theory of

objects. In particular, it requires that types of methods should depend continuously on

theSelf type.

Our encoding of object types has most of the standard object-oriented features such

as polymorphism, inheritance, method abstraction, method overriding and so on. Also

our object type allows full abstraction. That is, users do not have access to abstract

fields. So two different implementations of an object may be equal from the interface

point of view. Moreover, this can be formally proved inside system itself. We do not

allow binary methods on objects, since it would contradict full abstraction.

1.3 Organization of the Thesis

The remainder of the thesis is organized as follows. Chapter2 gives an overview of

Martin-Löf type theory and the constructive type theory extension of it implemented in

4

MetaPRL.

In Chapter3 we introduce the new type constructordependent intersectionand show

that record types can be defined using this constructor. Even with this new definition of

the record type, finding the right elimination rule a for record calculus is challenging.

In Chapter4 we will show that a naive elimination rule for records is contradictory. We

will discuss how functionality affects the elimination rule. We also introduce an idea of

functions with limited polymorphism.

In Section5.1 we show that our dependent intersection can replace the set type

constructor. In Section5.2we will show the definition of the variant type which is dual

to the record type. In Section5.3 we show that our record calculus could be used to

define abstract algebraic structures. In Section5.4 we show that natural join operator

(on) is just an intersection of sets of records.

In Chapter6 we show an example of an abstract data structure,Set, and give a

formally correct implementation of this data structure using red-black trees.

In Chapter7 we encode objects into the type theory.

Chapter 2

Constructive Type Theory
Our work is done in the setting of constructive type theory as implemented in the Meta-

PRL logical framework [22, 19, 23]. Our type theory is an extension of the constructive

type theory implemented in NuPRL [8, 9], which is an extension of Martin-L̈of’s type

theory [30].

In this chapter we give a short overview of our type theory.

2.1 Martin-L öf Type Theory

First let us give an overview of the original Martin-Löf Type Theory [30].

2.1.1 Types

The basic notion in the theory istype. Type is a primitive notion. Two main judgments

about types areA Type meaning thatA is a type anda ∈ A meaning thata has typeA.

Each typeA is associated with an equality relation on elements of this type,a = b ∈ A.

There is also the equivalence relation on types:A = B. So, Martin-L̈of’s type theory

has the following four forms of judgments:

A Type A is a well-formed type

A = B A andB are equal types

a ∈ A a has typeA

a = b ∈ A a andb are equal as elements of typeA

The examples of types include simple types likeZ for integers0, 1, −1 andB for

booleans. We can also construct new types using basic type constructors, like product

A × B for the type of pairs〈a, b〉 and function typeA → B for the type of functions

5

6

λx.b[x].

Some notations: we will useT [x1, . . . , xn] for expressions that may contain free

variablesx1, . . . ,xn (and probably some other free variables), andT [t1, . . . , tn] for the

substitution of termsti’s for all free occurrences ofxi’s. We call such variables that

stands for termssecond order variables. If a second-order variable is in scope of a

bound variable we will always write all variables it may contain. For example we will

write λx.f [x] for generalλ-expressions. The expressionλx.f means thatf does not

contain free variables.

Functions types representtotal computable functions. For example,λx.b[x] has type

Z → Z if for any integera evaluation ofb[a] terminates and returns an integer. Thus,

we are allowed to have recursive functions as long as we can prove that they terminate

on any input from their domain. Of course that makes type-checking undecidable.

Membership and equality in a type is extensional. In particular it means that two

functionsf andg are equal in the typeA → B if f(a) = g(a) ∈ B for anya ∈ A.

Our type theory uses the proposition-as-types principle. That is, we will consider

any type as a proposition which is true when this type is non-empty.

2.1.2 Dependent Types

Martin-Löf’s type theory also has dependent types, namely dependent product and de-

pendent function type.

Suppose, we have a type expressionB[x] that contains a free variablex ranging

over a typeA. For example,B[x] may be[0..x] which represents an initial sequence of

natural numbers. This expression is a type whenx ∈ N.

Then we can form a dependent product typex : A× B[x] (also known as aΣ-type)

which is a type of all pairs〈a, b〉 wherea ∈ A andb ∈ B[a]. For example, ifA = N

7

andB[x] = [0..x] thenx : A×B[x] is a type of pairs of natural numbers〈n, m〉, where

m ≤ n.

We can also form a dependent function typex : A → B[x] (also known as aΠ-

type) which is a type of all functionsλx.b[x] whereb[a] ∈ B[a] for any a ∈ A. For

example, ifA = N andB[x] = [0..x] thenx : A → B[x] is a type of functionsf(n), s.t.

0 ≤ f(n) ≤ n.

Dependent types make the theory powerful enough to represent any mathematical

statement.

2.1.3 Universe Types

Introduction of a type of all types leads to contradiction (Girard’s paradox [15]). But

we can introduce a sequence of universe typesU1, U2, WhereU1 is the universe of

the first level, a type of all types constructed without using universes.U2 is the universe

of the second level, a type of all types constructed without using universes of any level

above 1. And so on.

In this thesis we will assume that we fix some universe levelU = Ui, and we will

writeU′ for Ui+1 andU′′ for Ui+2.

2.2 Functionality

In our type theory we derivesequents. Each sequent has a form:

x1 : H1; x2 : H2[x1]; . . . ; xn : Hn[x1; . . . ; xn−1] ` C[x1; . . . ; xn] (2.1)

Herexi’s are declared variables,Hi’s are hypotheses andC is a conclusion. Thei-th

hypothesis may depend on the variables declared before it, and conclusion may depend

on all variables.

8

Roughly speaking the sequent (2.1) is true whenC[x1; . . . ; xn] is true (i.e. non-

empty) for allxi’s from Hi[x1; . . . ; xi−1]. The formal definition of the truth of the se-

quent deals with functionality. Basically, we say that a typeC[x] is functional overx : T

if t1 = t2 ∈ T impliesC[t1] = C[t2].

There are different nonequivalent approaches to define what it means for a sequent

to be true. Originally Martin-L̈of required that any hypothesisHi must be functional

over previous hypotheses and the conclusion must be functional over all hypotheses.

The type theory implemented in NuPRL uses a weaker requirement that allows one

to formulate stronger rules (for example a rule for induction over natural numbers). This

approach is calledpointwise functionalityand was discovered by Stuart Allen in [3].

Another version of functionality was used in [31]. Aleksey Nogin later indepen-

dently rediscovered it and called itpairwise functionality.

In the thesis we will consider pairwise and pointwise functionality.

2.2.1 Pointwise Functionality

Pointwise functionality is fairly complicated notion. We will use Aleksey Nogin’s pre-

sentation of it.

Let we are given a list of hypothesesΓ:

x1 : H1; x2 : H2[x1]; . . . ; xn : Hn[x1; . . . ; xn−1].

Then we write~t for a list of termst1, t2, . . . , tn. We will also write

~t ∈ Γ[~t] for ∀i ∈ [1..n]. ti ∈ Hi[t1; . . . ; ti−1];

~t = ~t′ ∈ Γ[~t] for ∀i ∈ [1..n]. ti = t′i ∈ Hi[t1; . . . ; ti−1];

Γ[~t] = Γ[~t′] for ∀i ∈ [1..n]. Hi[t1; . . . ; ti−1] = Hi[t
′
1; . . . ; t

′
i−1].

9

Then a sequentΓ ` C[~x] said to betrue in pointwise functionalityiff

∀~t. (~t ∈ Γ[~t] ∧ ∀~t′. (~t = ~t′ ∈ Γ[~t] ⇒ Γ[~t] = Γ[~t′]) ⇒
∀~t′.(~t = ~t′ ∈ Γ[~t] ⇒ C[~t] ∧ C[~t] = C[~t′])

)

2.2.2 Pairwise Functionality

The alternative definition of the truth of a sequent is pairwise functionality. Using the

above notation, we say that a sequentΓ ` C[~x] is true in pairwise functionalityiff

∀~t.∀~t′. (Γ[~t] = Γ[~t′] ∧ ~t = ~t′ ∈ Γ[~t]) ⇒ (C[~t] ∧ C[~t] = C[~t′])

2.2.3 Comparing

Most of the rules are true in both functionalities. But some rules are true only in point-

wise functionality, and some rules are true only in pairwise functionality.

The most important rule that holds only in pairwise functionality is theLet rule (a

form of theCut rule):

Γ; x : A; ∆[x] ` C[x] Γ ` a ∈ A

Γ; ∆[a] ` C[a]
(Let x = a ∈ A)

In pointwise functionality this rule is invalid, only a weaker form of this rule (when∆

does not depend onx) is valid:

Γ; x : A; ∆ ` C[x] Γ ` a ∈ A

Γ; ∆ ` C[a]

(Note that according to our notations the above rule means that∆ does not contain free

occurrences ofx.)

The following corollary of theLet rule is also invalid in pointwise functionality (but

of course holds in pairwise functionality):

Γ; x : B; ∆[x] ` C[x] Γ ` A ⊆ B

Γ; x : A; ∆[x] ` C[x]

10

On the other hand, the following rule is true in pointwise, but not in pairwise:

Γ1; t : T ; Γ2[t]; x : A[t]; ∆[x; t] ` t = t′ ∈ T

Γ1; t : T ; Γ2[t]; x : A[t′]; ∆[x; t] ` C[t; x]

Γ1; t : T ; Γ2[t]; x : A[t]; ∆[x; t] ` C[t; x]

(PointwiseSubstitute)

This rule states that we can replace a variable declared ast : T by a termt′ if we know

thatt = t′ ∈ T . Sometimes this rule is stronger than a general substitution rule (which

is true in both functionalities). The later rule requires that typeA[t] is functional over

t : T :

Γ; x : A[t]; ∆[x]; z : T ` A[z] Type

Γ; x : A[t]; ∆[x] ` t = t′ ∈ T

Γ; x : A[t′]; ∆[x] ` C[x]

Γ; x : A[t]; ∆[x] ` C[x]

Rules stated in this thesis are true for both functionalities, unless otherwise men-

tioned.

2.3 Additional Types

The constructive type theory implemented in MetaPRL has some additional type con-

structors, some of them inherited form the NuPRL type theory.

2.3.1 Squiggle Equality

The squiggle equality on termsa ≡ b is defined as the symmetric transitive closure of

the reduction relation. Howe showed that it is a congruence [24].

For example we can prove that for any elementp of typeA×B

p ≡ 〈π1p, π2p〉 .

11

Also we haveη-reduction for anyf ∈ A → B:

f ≡ λx.(fx)

2.3.2 The Set Type Constructor

Our type theory has a primitive type constructor for set types [9]. By definition, the set

type{x : T | P [x]} is a subtype ofT , which contains only such elementsx of T that

satisfy propertyP [x] (see [9]).

Example 2.1 The type of natural numbers is defined asN = {n : Z | n ≥ 0}. Without

set types we would have to defineN asn : Z× (n ≥ 0). In this case we would not have

the subtyping propertyN ⊆ Z.

Later in the thesis (Section5.1) we will replace this primitive type constructor by

more fundamental primitive type, thus simplifying the type theory.

2.3.3 Subtyping

Our type theory also has a subtyping relation [31]. The subtyping relation as well as

the membership relation are extensional. That means thatA ⊆ B does not say anything

about structure of these types, but only means that all elements of typeA are also ele-

ments of typeB and if two elements are equal inA then they are also equal inB. As a

result the subtyping relation is undecidable (as well as type checking).

Example 2.2 If A ⊆ B then(B → C) ⊆ (A → C). It may seem strange at a first:

supposeA, B andC are finite types anda, b andc are the number of elements in these

types correspondingly, thenB → C hascb elements andA → C hasca < cb elements.

This example shows that a subtype may have more elements than a supertype!

12

Remark Of course, when we say that a typeA hasn elements, we mean that typeA hasn

differentelements. Actually this type may have many elements that are equal from the point of

view of this type.

After the subtyping is defined, the natural question arises: what is the biggest (w.r.t.

subtyping) common subtype of two or more types and what is the smallest supertype of

two or more types?

2.3.4 Intersection

Binary Intersection

It is easy to see thatt can be in a common subtype ofA andB only if t ∈ A andt ∈ B.

Also, t1 may be equal tot2 in a common subtype only if they are equal in bothA and

B. Since the more elements the type has and the more elements are equal in a type,

the ”greater” the type is (in the sense of subtyping), in order to get the biggest common

subtype ofA andB, we need to take all the objects that are both inA and inB and make

all elements that are equal in bothA andB equal in our type. In other words, the biggest

common subtype of two types is a type whose set of members is an intersection of sets

of members of those types and whose equivalence relation is an intersection (as sets of

pairs) of equivalence relations of those two types. We call such typean intersectionof

A andB, written: A ∩B.

Example 2.3 λx.x + 1 is an element of the type(Z→ Z) ∩ (N→ N).

Example 2.4 Let A = N → N and B = Z− → Z (whereZ− is a type of negative

integers). Letid = λx.x andabs = λx.|x|. Thenid andabs are both elements of the

typeA ∩ B. Althoughid andabs are equal as elements of the typeN → N (because

13

Table 2.1:Inference rules for the binary intersection type

Γ ` A Type Γ ` B Type
Γ ` A ∩B Type

(TypeFormation)

Γ ` A = A′ Γ ` B = B′

Γ ` A ∩B = A′ ∩B′ (TypeEquality)

Γ ` a ∈ A Γ ` a ∈ B

Γ ` a ∈ A ∩B
(Introduction)

Γ ` a = a′ ∈ A Γ ` a = a′ ∈ B

Γ ` a = a′ ∈ A ∩B
(Equality)

Γ ` x ∈ A ∩B

Γ ` x ∈ A

Γ ` x ∈ A ∩B

Γ ` x ∈ B
(Elimination)1

1See also Section2.3.6

these two functions do not differ onN), id andabs are different as elements ofZ− → Z.

Therefore,id 6= abs ∈ A ∩B.

Example 2.5 Let A = {0} → B, where{0} is a singleton subset ofZ. ThenA is a

type of functions that maps0 to a boolean value. Obviously, this type has two elements.

Now letB = {1} → B. This type also has two elements. But their intersection is

A ∩B = {0, 1} → B has four elements!

The inference rules for the intersection type are presented in Table2.1.

Intersection of a Family of Types

It is easy to see that the same is true if we take the largest common subtype of more than

two types or if we take a largest common subtype of a whole family of types. We call

the biggest common subtype of several types or of a family of typesan intersection type

of those types.

14

Table 2.2:Inference rules for the family intersection type

Γ ` A Type Γ; x : A ` B[x] Type
Γ ` ⋂

x:A

B[x] Type
(TypeFormation)

Γ ` A = A′ Γ; x : A ` B[x] = B′[x]

Γ ` ⋂
x:A

B[x] =
⋂

x:A′
B′[x]

(TypeEquality)

Γ; x : A ` b ∈ B[x]

Γ ` b ∈ ⋂
x:A

B[x]
(Introduction)

Γ; x : A ` b = b′ ∈ B[x]

Γ ` b = b′ ∈ ⋂
x:A

B[x]
(Equality)

Γ ` a ∈ A Γ ` b ∈ ⋂
x:A

B[x]

Γ ` b ∈ B[a]
(Elimination)1

1See also Section2.3.6

Example 2.6 λx.x has typeA → A for any typeA. Therefore

λx.x ∈
⋂

A:U
A → A

Example 2.7 LetTop =
⋂

x:Void
Void. This type contains anything, and any two element

of this type are equal. This is similar to the typeVoid → Void, but the later type contains

onlyλ-terms. Again any two elements are equal inVoid → Void.

It seems very strange thatTop∈ Top, and anyUi ∈ Top, evenUi ⊆ Top, whenever

Top∈ U1. But it does not contradict anything. The reason is similar to the reason why

λx.Ui ∈ Void → Void does not lead to a contradiction. AlthoughTop is a supertype

of any type it is very trivial, because it has the trivial equality. So, we can not define

something like “the type of all types” usingTop.

The inference rules for the family intersection type are presented in Table2.2.

15

Note that we can define binary intersection as a partial case of of family intersection:

A ∩B =
⋂

b:B
if b then A else B

2.3.5 Union

Binary Union

A similar argument shows that whenever eithert ∈ A or t ∈ B, t should also be in

common supertype ofA andB, and whenevert1 = t2 in eitherA or B, t1 should be

equal tot2 in any common supertype. Similarly, for the intersection type, the the set of

all members of the smallest common supertype of two types is just a union of the sets of

members of those types. However the union of two equivalence relations is not neces-

sary an equivalence relation (it is not necessarily transitive). So the equivalence relation

of the smallest common supertype is the smallest equivalence relation containing the

union of the equivalence relations of the two types — the transitive closure of that union

of the equivalence relations. We call this type theunion of A andB and denote it by

A ∪B.

The union considered as a proposition is a disjunction:A ∪ B is true iff A is true

or B is true. But unlike the standard disjunction, union is not constructive. Knowing

A ∪B we cannot always say what is true:A or B. Therefore the rule

x : A ` C x : B ` C

x : A ∪B ` C

is not constructively true. Indeed if a witness ofC is constructed differently in case

whenx ∈ A and in case whenx ∈ B then we have no way to construct a witness if we

now only thatx ∈ A∪B. But in case whenC does not have the computational context,

like membership, this rule would be true.

The inference rules for the union type are presented in Table2.3.

16

Table 2.3:Inference rules for the union type

Γ ` A Type Γ ` B Type
Γ ` A ∪B Type

(TypeFormation)

Γ ` A = A′ Γ ` B = B′

Γ ` A ∪B = A′ ∪B′ (TypeEquality)

Γ ` a ∈ A Γ ` B Type
Γ ` a ∈ A ∪B

Γ ` b ∈ B Γ ` A Type
Γ ` b ∈ A ∪B

(Introduction)

Γ ` a = a′ ∈ A Γ ` B Type
Γ ` a = a′ ∈ A ∪B

Γ ` b = b′ ∈ B Γ ` A Type
Γ ` b = b′ ∈ A ∪B

(Equality)

Γ; u : A, ∆ ` c[u] ∈ C[u] Γ; u : B, ∆ ` c[u] ∈ C[u]

Γ; u : (A ∪B); ∆ ` c[u] ∈ C[u]
(Elimination)1

1See also Section2.3.6

The following holds for union. Iff ∈ A → C andf ∈ B → C then

f ∈ A ∪B → C.

Union of a Family of Types

Similarly we can define the union of a family of types.

The inference rules for the family union type are presented in Table2.4.

Example 2.8 Let P [x] be a predicate on somex ∈ A. Then
⋃
x:A

P [x] is a true propo-

sition (i.e., non empty type) if there is an elementa ∈ A, s.t. P [a]. Therefore union

could be considered as an existential quantifier. The difference between union type and

standard existential quantifier∃x : A.P [x] = x : A × P [x] is that union type “hides”

thefirst component of the existential quantifier. That is, the witness of the union type is

just a witness ofP [x] for somex ∈ A, but it does not containx itself. Compare with

the set type:{x : A | P [x]}. The set type hides the second component of the existential

17

Table 2.4:Inference rules for the family union type

Γ ` A Type Γ; x : A ` B[x] Type
Γ ` ⋃

x:A

B[x] Type
(TypeFormation)

Γ ` A = A′ Γ; x : A ` B[x] = B′[x]

Γ ` ⋃
x:A

B[x] =
⋃

x:A′
B′[x]

(TypeEquality)

Γ ` a ∈ A Γ ` b ∈ B[a] Γ; x : A ` B[x] Type
Γ ` b ∈ ⋃

x:A

B[x]
(Introduction)

Γ ` a ∈ A Γ ` b = b′ ∈ B[a] Γ; x : A ` B[x] Type
Γ ` b = b′ ∈ ⋃

x:A

B[x]
(Equality)

Γ; x : A, u : B[x], ∆ ` c[u] ∈ C[u]

Γ; u :
⋃
x:A

B[x], ∆ ` c[u] ∈ C[u]
(Elimination)1

1See also Section2.3.6

quantifier. The witness of this type is justx fromA, s.t.P [x].

By analogy with intersection we can define binary union as a partial case of of family

union:

A ∪B =
⋃

b:B
if b then A else B

2.3.6 Elimination Rules for Intersections and Unions in Different

Functionalities

All of the above rules for union and intersection hold in both functionalities. In pairwise

functionality we can prove a stronger elimination rule for intersections and in pointwise

functionality we can prove a stronger elimination rule for unions.

In pairwise functionality we have theLet rule (Section2.2.3). Using this rule and

18

the elimination rules for intersection from Tables2.1 and 2.2 we can prove stronger

elimination rules:

Γ; x : A; y : B; ∆[x; y] ` C[x; y]

Γ; u : (x : A ∩B); ∆[u; u] ` C[u; u]

Γ; u:
⋂
x:A

B[x]; ∆[u; u] ` a ∈ A Γ; u:
⋂
x:A

B[x]; v : B[a]; ∆[u; v]; u=v∈B[a] ` C[u; v]

Γ; u:
⋂
x:A

B[x]; ∆[u; v] ` C[u; v]

In pointwise functionality using the weakLet rule, we can only prove weak versions

of the above rules where∆ does not depend onu:

Γ; x : A; y : B; ∆ ` C[x; y]

Γ; u : (x : A ∩B); ∆ ` C[u; u]

Γ; u :
⋂
x:A

B[x]; ∆ ` a ∈ A Γ; u :
⋂
x:A

B[x]; v : B[a]; ∆; u = v ∈ B[a] ` C[u; v]

Γ; u :
⋂
x:A

B[x]; ∆ ` C[u; v]

Oppositely, the elimination rules for union type are stronger in pointwise function-

ality. In the elimination rules from Tables2.3 and2.4 ∆ does not depend onu. In the

pointwise functionality usingPointwiseSubstitute rule (Section2.2.3) we can make

these rules stronger by allowing∆ to depend onu:

Γ; u : A; ∆[u] ` c[u] ∈ C[u] Γ; u : B; ∆[u] ` c[u] ∈ C[u]

Γ; u : (A ∪B); ∆[u] ` c[u] ∈ C[u]

Γ; x : A, u : B[x]; ∆[u] ` c[u] ∈ C[u]

Γ; u :
⋃
x:A

B[x]; ∆[u] ` c[u] ∈ C[u]

These rules are invalid in pairwise functionality.

Remark 2.9 Intersection of types was introduced in [11] and [37]. Our interpretation

of intersection and union is most close to [34]. The understanding of semantics and

rules for intersection and union is our join work with Aleksey Nogin.

Chapter 3

Record Type and Dependent Intersection
In general, records are tuples of labeled fields, where each field may have its own type.

In dependent records (or more formally, dependently typed records) the type of some

components may depend on values of the other components. Since we have the type of

typesU, values of record components may be types. This makes the notion of dependent

records very powerful. Dependent records may be used to represent algebraic structures

(such as groups) and modules in programming languages like SML or Haskell (see for

example [4, 18]).

Example 3.1 One can define the signature for an ordered set as a dependent record

type:

OrdSetSig
∆
= {t : U; less : t→ t→ B}

This definition can be understood as an algebraic structure as well as an interface of a

module in a programing language.

Example 3.2 The proposition-as-type principle allows us to add the property of order

as a new component:

OrdSet
∆
= {t:U; less:t→ t→ B; axm : Ord(t, less)}

whereOrd(t, less) is a predicate stating thatless is a transitive irreflexive relation

ont. Hereaxm is a new field that defines the axiom of the algebraic structure of ordered

sets (or specification of the module typeOrdSet).

Example 3.3 In type theories with equality, manifested fields ([28]) may be also repre-

sented in the specification.

IntOrdSetSig
∆
= {t:U; less:t→t→B; mnf:t=Z}

19

20

is a signature wheret is bound to be the type of integers.

From a mathematical point of view the record type is similar to the product type.

The essential difference is the subtyping property: we can extend a record type with new

fields and get a subtype of the original record type. E.g.OrdSet andIntOrdSetSig

defined above are subtypes ofOrdSetSig. The subtyping property is important in math-

ematics: we can apply all theorems about monoids to included types such as groups. It

is also essential in programing for inheritance and abstractions.

Different type theories with records were proposed both for proof systems as well as

for programming languages ([18, 28, 13, 4, 5, 36] and others). These systems treat the

record type as a new primitive. In the current thesis we are interested in the following

natural question:is it possible to express the notion of records in usual type theories

without the record type as primitive?This question is especially interesting for pure

mathematical proof systems. As we saw, the record type is a handy tool for representing

algebraic structures. On the other hand records do not seem to be the basic mathematical

concept that should be included in the foundation of mathematics. Rather records should

be defined in terms of more abstract mathematical concepts.

It is known that it is possible to defineindependent recordsin a sufficiently pow-

erful type theory that has dependent functions [20] or intersection [38]. On the other

hand, there is no known way to form dependent records in standard Martin-Löf’s type

theory [5]. However, Hickey [20] showed thatdependent recordscan be formed in an

extension of Martin-L̈of’s type theory. Namely, he introduced a new type ofvery depen-

dent function types. This type is powerful enough to express dependent records in a type

theory and provides a mathematical foundation of dependent records. Unfortunately the

type of very dependent functions is very complex itself. The rules and the semantics

are probably more complicated for this type than for dependent records. The question is

21

whether there is a simpler way to add dependent records to a type theory.

In this thesis we extend the NuPRL type theory with a simpler and easier to under-

stand primitive type constructor,dependent intersection. This is a natural generalization

of the standard intersection introduced in [11] and [37]. Dependent intersection is an

intersection oftwo types, where the second type may depend on elements of the first

one. This type constructor is built by analogy to dependent products: elements of de-

pendent products are pairs where the type of the second component may depend on the

first component. We will show that dependent intersection allows us to define the record

type in a very simple way. Our definition of records is extensionally equal to Hickey’s,

but is far simpler. Moreover our constructors (unlike Hickey’s) allow us to extend record

types. For example, having a definition of monoids we can define groups by extending

this definition rather than repeating the definition of monoid.

3.1 Dependent Intersection

We extend the definition of intersectionA ∩ B to a case when the typeB can depend

on elements of the typeA. Let A be a type andB[x] be a type for allx of typeA. We

define a new type,dependent intersectionx:A∩B[x]. This type contains all elementsa

from A such thata is also inB[a] (see below for equality).

Remark 3.4 Do not confusethe dependent intersectionwith the intersection of a fam-

ily of types
⋂

x:A B[x]. The latter refers to an intersection of typesB[x] for all x in

A. The difference between these two type constructors is similar to the difference be-

tween dependent productsx:A× B[x] = Σx:AB[x] and the product of a family of types

Πx:AB[x] = x : A → B[x].

Example 3.5 The ordinary binary intersection is just a special case of a dependent

22

intersection with a constant second argument:A ∩B = x : A ∩B.

Example 3.6 Let A = Z and B[x] = [0 .. x2−5]. Thenx : A ∩ B[x] is a set of all

integers, such that0 ≤ x ≤ x2 − 5.

Two elementsa anda′ are equal in the dependent intersectionx:A∩B[x] when they

are equal both inA andB[a].

Example 3.7 Let A be {0} → N and B[f] be {1} → [0 .. f(0)], where{0} and {1}
are types that contain only one element (0 and 1 respectively). Thenx:A ∩ B[x] is a

type of functionsf that map0 to a natural numbern0 and map1 to a natural number

n1 ∈ [0 .. n0]. Two such functionsf and f ′ are equal in this type, when first,f =

f ′ ∈ {0} → N, i.e. f(0) = f ′(0), and second,f = f ′ ∈ {1} → [0 ..f(0)], i.e.

f(1) = f ′(1) ≤ f(0).

3.1.1 Semantics

We are going to give the formal semantics for dependent intersection types based on

the predicative PER semantics, for the NuPRL type theory [2, 3]. In the PER seman-

tics types are interpreted as partial equivalence relations (PERs) over terms. Partial

equivalence relations are relations that are transitive and symmetric, but not necessary

reflexive.

According to [3], to give the semantics for a type expressionA we need to determine

when this expression is a well-formed type, define elements of this type, and specify the

partial equivalence relation on terms for this type (a = b ∈ A). We should also give

an equivalence relation on types, i.e. determine when two types are equal. See [3] for

details.

23

Extension of the Semantics We introduce a new term constructor for dependent in-

tersectionx : A ∩B[x]. This constructor bounds the variablex in B[x]. We extend the

semantics of [3] as follows.

• The expressionx : A ∩ B[x] is a well-formed type if and only ifA is a type and

B[x] is a functional type overx : A. That is, for anyx from A the expressionB[x]

should be a type and ifx = x′ ∈ A thenB[x] = B[x′].

• The elements of the well-formed typex : A ∩ B[x] are such termsa thata is an

element of both typesA andB[a].

• Two elementsa anda′ are equal in the well-formed typex : A∩B[x] iff a = a′ ∈
A anda = a′ ∈ B[a].

• Two typesx : A ∩ B[x] andx : A′ ∩ B′[x] are equal whenA andA′ are equal

types and for allx andy from A if x = y ∈ A thenB[x] = B′[y].

3.1.2 The Inference Rules

The corresponding inference rules are shown in Table3.1.

Theorem 3.8 All rules of Table3.1are valid in the semantics given above.

This theorem is proved by straightforward application of the semantics definition.

Theorem 3.9 The following rules can be derived from the primitive rules of Table3.1

in a type theory with the appropriate cut rule.

Γ ` a = a′ ∈ (x : A ∩B[x])

Γ ` a = a′ ∈ A

Γ ` a = a′ ∈ (x : A ∩B[x])

Γ ` a = a′ ∈ B[a]

24

Table 3.1:Rules for dependent intersection

Γ ` A Type Γ; x : A ` B[x] Type
Γ ` (x : A ∩B[x]) Type

(TypeFormation)

Γ ` A = A′ Γ; x : A ` B[x] = B′[x]

Γ ` (x : A ∩B[x]) = (x : A′ ∩B′[x])
(TypeEquality)

Γ ` a ∈ A Γ ` a ∈ B[a] Γ ` x : A ∩B[x] Type
Γ ` a ∈ (x : A ∩B[x])

(Introduction)

Γ ` a = a′ ∈ A Γ ` a = a′ ∈ B[a] Γ ` x : A ∩B[x] Type
Γ ` a = a′ ∈ (x : A ∩B[x])

(Equality)

Γ; u : (x : A ∩B[x]); ∆; x : A; y : B[x] ` C[x, y]

Γ; u : (x : A ∩B[x]); ∆ ` C[u, u]
(Elimination)1

1In pairwise functionality we can make this rule stronger, cf. Section2.3.6

Theorem 3.10 Dependent intersection is associative, i.e.

x : A ∩ (y : B[x] ∩ C[x, y]) =e z : (x : A ∩B[x]) ∩ C[z, z]

The formal proof is checked by the MetaPRL system. We show here a sketch of

a proof. An elementx has typea : A ∩ (b : B[a] ∩ C[a, b]) iff it has typesA and

b : B[x] ∩ C[x, b]. The latter is a case iffx ∈ B[x] andx ∈ C[x, x]. On the other hand,

x has typeab : (a : A ∩B[a]) ∩ C[ab, ab] iff x ∈ (a : A ∩ B[a]) andx ∈ C[x, x]. The

former means thatx ∈ A andx ∈ B[x]. Thereforex ∈ a : A ∩ (b : B[a] ∩ C[a, b]) iff

x ∈ A andx ∈ B[x] andx ∈ C[x, x] iff x ∈ ab : (a : A ∩B[a]) ∩ C[ab, ab].

3.2 Records

We are going to define record types using dependent intersection. In this section we in-

formally describe what properties we are expecting from records. The formal definitions

25

are presented in Section3.3.

3.2.1 Plain Records

Records are collections of labeled fields. We use the following notations for records:

{x1 = a1; . . . ; xn = an} (3.1)

wherex1, . . . , xn arelabelsanda1, . . . an are corresponding field values. Usually labels

have a string type, but generally speaking labels can be of any fixed typeLabel with a

decidable equality. We will use thetrue type font for labels.

The selection operatorr.x is used to access record fields. Ifr is a record thenr.x is

a field of this record labeledx. That is we expect the following reduction rule:

{x1 = a1; . . . ; xn = an}.xi −→ ai (3.2)

Fields may have different types. If eachai has typeAi then the whole record (3.1)

has the type

{x1 : A1; . . . ; xn : An}. (3.3)

Also we want the natural typing rule for the field selection: for any recordr of the

type (3.3) we should be able to conclude thatr.xi ∈ Ai.

The main difference between record types and productsA1 × · · · × An is the that

record type has thesubtyping property. Given two recordsR1 and R2, if any label

declared inR1 as a field of typeA is also declared inR2 as a field of typeB, such that

B ⊆ A, thenR2 is subtype ofR1. In particular,

{x1 : A1; . . . ; xn : An} ⊆ {x1 : A1; . . . ; xm : Am} (3.4)

wherem < n.

26

Example 3.11 Let

Point = {x : Z; y : Z} andColorPoint = {x : Z; y : Z; color : Color}.

Then the record{x = 0; y = 0; color = red} is not only aColorPoint, but it is

also aPoint, so we can use this record wheneverPoint is expected. For example, we

can use it as an argument of the function of the typePoint → T . Further the result

of this function does not depend whether we use{x = 0; y = 0; color = red} or

{x = 0; y = 0; color = green}. That is, these two records are equal as elements of the

typePoint, i.e.

{x = 0; y = 0; color = red} =

{x = 0; y = 0; color = green} ∈ {x : Z; y : Z}
Using subtyping one can model the private fields. Consider a recordr that has one

“private” field x of the typeA and one “public” fieldy of the typeB. This record has

the type{x : A; y : B}. Using the subtyping property we can conclude that it also has

type{y : B}. Now we can consider type{y : B} as a public interface for this record.

A user knows only thatr ∈ {y : B}. Therefore the user has access to fieldy, but access

to field x would be type invalid (i.e. untyped). Formally it means that a function of the

type{y : B} → T can access only the fieldy on its argument (although an argument of

this function can have other fields).

Further, records’ equality does not depend on field ordering. For example,{x =

0; y = 1} should be equal to{y = 1; x = 0}, moreover{x : A; y : B} and{y : B; x : A}
should define the same type.

Records as Dependent Functions

Records may be considered as mappings from labels to the corresponding fields. There-

fore it is natural to define a record type as a function type with the domainLabel (cf.

27

[8]). Since the types of each field may vary, one should use dependent function type

(i.e., Π type). LetField[l] be a type of a field labeledl. For example, for the record

type (3.3) take

Field[l]
∆
= if l = x1 then A1 else

. . .

if l = xn then An else Top

Then define the record type as the dependent function type:

{x1 : A1; . . . ; xn : An} ∆
= l : Label → Field[l]. (3.5)

Now records may be defined as functions:

{x1 = a1; . . . ; xn = an} ∆
=

λl.if l = x1 then a1 else

. . .

if l = xn then an

(3.6)

And selection is defined as application:

r.l ∆
= r l (3.7)

One can see that these definitions meet the expected properties mentioned above

including the subtyping property.

Records as Intersections

Using the above definitions we can prove that in the case when allxi’s are distinct labels

{x1 : A1; . . . ; xn : An} =e {x1 : A1} ∩ · · · ∩ {xn : An}. (3.8)

28

This property provides us a simpler way to define records. First, let us define the type

of records with only one field. We define it as a function type like we did it in the last

section, but for single-field records we do not need dependent functions, so we may

simplify the definition:

{x : A} ∆
= {x} → A (3.9)

where{x} is the singleton subset of typeLabel. Now we may take (3.8) and (3.9) as a

definition of an arbitrary record type instead of (3.5) and keep definitions (3.6) and (3.7).

This way was used in [38] where{x : A} was a primitive type.

Example 3.12 The record{x = 1; y = 2} by definition (3.6) is a function that maps

x to 1 and y to 2. Therefore it has type{x} → Z = {x : Z} and also has type

{y} → Z = {y : Z}. Hence it has type{x : Z; y : Z} = {x : Z} ∩ {y : Z}.

One can see that when all labels are distinct, definitions (3.5) and (3.8)+(3.9) are

equivalent. That is, for any record expression{x1 : A1; . . . ; xn : An} wherexi 6= xj,

these two definitions define two extensionally equal types.

However, definitions (3.8)+(3.9) differ from the traditional ones in the case when

labels coincide. Most record calculi prohibit repeating labels in the declaration of record

types, e.g., they do not recognize the expression{x : A; x : B} as a valid type. On the

other hand, in [20] in the case when labels coincide the last field overlaps the previous

ones, e.g.,{x : A; x : B} is equal to{x : B}. In both these cases many typing rules of

the record calculus need some additional conditions that prohibit coincident labels. For

example, the subtyping relation (3.4) would be true only when all labelsxi are distinct.

We will follow the definition (3.8) and allow repeated labels and assume that

{x : A; x : B} = {x : A ∩B}. (3.10)

29

This may look unusual, but this notation significantly simplifies the rules of the record

calculus, because we do not need to worry about coincident labels. Moreover, this

allows us to have multiple inheritance (see Section3.3.3for an example). Note that the

equation (3.10) holds also in [10].

3.2.2 Dependent Records

We want to be able to represent abstract data types and algebraic structures as records.

For example, a semigroup may be considered as a record with the fieldscar (represent-

ing a carrier) andproduct (representing a binary operation). The type ofcar is the

universeU. The type ofproduct should becar× car→ car. The problem is that the

type ofproduct depends on the value of the fieldcar. Therefore we cannot use plain

record types to represent such structures.

We need dependent records [5, 20, 36]. In general a dependent record type has the

following form

{x : A; y : B[x]; z : C[x, y]; . . . } (3.11)

That is, the type of a field in such records can depend on the values of the previous

fields.

The following main property shows the intended meaning of this type.

The record{x = a; y = b; z = c; . . . } has type (3.11) if and only if

a ∈ A, b ∈ B[a], c ∈ C[a, b], . . .

Example 3.13 Let SemigroupSig be the record type that represents the signature of

semigroups:

SemigroupSig
∆
= {car : U; product : car× car→ car}.

30

Semigroups are elements ofSemigroupSig satisfying the associativity axiom. This

axiom may be represented as an additional field:

Semigroup
∆
= {car : U;

product : car× car→ car;

axm : ∀x, y, z : car. (x·y)·z = x·(y·z)}

wherex · y stands forproduct(x, y).

Dependent Records as Very Dependent Functions

We cannot define the dependent record type using the ordinary dependent function type,

because the type of the fields depends not only on labels, but also on values of other

fields.

To represent dependent records Hickey [20] introduced thevery dependent function

type constructor:

{f | x : A → B[f, x]} (3.12)

HereA is the domain of the function type and the rangeB[f, x] can depend on the ar-

gumentx and the functionf itself. That is, type (3.12) refers to the type of all functions

g with the domainA and the rangeB[g, a] on any argumenta ∈ A.

For instance,SemigroupSig can be represented as a very dependent function type

SemigroupSig
∆
= {r | l : Label → Field[r, l]} (3.13)

whereField[r, l]
∆
=

if l = car then U else

if l = product then r.car× r.car→ r.car

else Top

31

Not every very dependent function type has a meaning. For example the range of

the function on argumenta cannot depend onf(a) itself. For instance, the expression

{f | x : A → f(x)}

is not a well-formed type.

The type (3.12) is well-formed if there is some well-founded order< on the domain

A, and the range typeB[x, f] onx = a depends only on valuesf(b), whereb < a. The

requirement of well-founded order makes the definition of very-dependent functions

very complex. See [20] for more details.

Dependent Records as Dependent Intersection

By using dependent intersection we can avoid the complex concept of very dependent

functions. For example, we may define

SemigroupSig
∆
= self : {car : U} ∩

{product : self .car× self .car→ self .car}
Hereself is a bound variable that is used to refer to the record itself considered as a

record of the type{car : U}. This definition can be read as follows:

r has typeSemigroupSig, when first,r is a record with a fieldcar of the

typeU, and second,r is a record with a fieldproduct of the typer.car ×
r.car→ r.car.

This definition of theSemigroupSig type is extensionally equal to (3.13), but it has

two advantages. First, it is much simpler. Second, dependent intersection allows us to

extend theSemigroupSig type to theSemigroup type by adding an extra fieldaxm:

Semigroup
∆
= self : SemigroupSig ∩

{axm : ∀x, y, z : self .car (x · y) · z = x · (y · z)}

32

wherex · y stands forself .product(x, y).

We can define a dependent record type of an arbitrary length in this fashion as a

dependent intersection of single-field records associated to the left.

Note thatSemigroup can be also defined as an intersection associated to the right:

Semigroup =

rc : {car : U} ∩
(
rp : {product : rc.car× rc.car→ rc.car} ∩

{axm : ∀x, y, z : rc.car (x · y) · z = x · (y · z)})

wherex · y stands forrp.product(x, y). Hererc andrp are bound variables. Both of

them refer to the record itself, butrc has type{car : U} andrp has type{product :

. . . }. These two definitions are equal, because of associativity of dependent intersection

(Theorem3.10).

Note that Pollack [36] considered two types of dependent records: left associating

records and right associating records. However, in our framework left and right associ-

ation are just two different ways of building the same type. We will allow using both of

them. Which one to choose is the matter of taste.

3.3 The Record Calculus

3.3.1 The Formal Definition

Now we are going to give the formal definition of records using dependent intersection.

Records

Elements of record types are defined as functions from labels to the corresponding fields.

We need three primitive operations:

33

1. Empty record:{} ∆
= λl.l

(We could pick any function as a definition of an empty record.)

2. Field update/extension:

r.(x := a)
∆
= (λl.if l = x then a else r l)

3. Field selection:r.x ∆
= r x

We can construct any record by these operations: we define{x1 = a1; . . . ; xn = an}
as

{}.(x1 := a1).(x2 := a2).(xn := an)

Record Types

Single-field record type is defined as

{x : A} ∆
= {x} → A

where{x} ∆
= {l : Label | l = x ∈ Label} is a singleton set.

Independent concatenation of record types is defined as

{R1; R2} ∆
= R1 ∩R2 (3.14)

This definition is a partial case of the below definition of left associating records when

R2 does not depend onself .

Left associating dependent concatenation of record types is defined as

{self : R1; R2[self]} ∆
= self : R1 ∩R2[self] (3.15)

34

Table 3.2:Inference rules for records

Reduction rules
(r.x := a).x −→ a
(r.y := b).x −→ r.x whenx 6= y.

In particular:{x1 = a1; . . . ; xn = an}.xi −→ ai when allxi’s are distinct.

Type formation

Single-field record:

Γ ` A Type Γ ` x ∈ Label

Γ ` {x : A}Type

Independent record:

Γ ` R1 Type Γ ` R2 Type
Γ ` {R1; R2}Type

Dependent record:

Γ ` R1 Type Γ; self : R1 ` R2[self] Type
Γ ` {R1; R2[self]}Type

Right associating record:

Γ ` {x : A}Type Γ; x : A ` R[x] Type
Γ ` {x : x : A; R[x]}Type

Introduction (membership rules)

Single-field record:

Γ ` a ∈ A Γ ` x ∈ Label

Γ ` r.x := a ∈ {x : A}
Γ ` r ∈ {x : A} Γ ` x 6= y ∈ Label

Γ ` (r.y := b) = r ∈ {x : A}
Independent record:

Γ ` r ∈ R1 Γ ` r ∈ R2

Γ ` r ∈ {R1; R2}
Dependent record:

Γ ` r ∈ R1 Γ ` r ∈ R2[r] Γ ` {R1; R2[self]}Type
Γ ` r ∈ {R1; R2[self]}

Right associating record:

Γ ` r ∈ {x : A} Γ ` r ∈ R[r.x] Γ ` {x : x : A; R[x]}Type
Γ ` r ∈ {x : x : A; R[x]}

Elimination (inverse typing rules)1

Single-field record:

Γ ` r ∈ {x : A}
Γ ` r.x ∈ A

Independent record:

Γ ` r ∈ {R1; R2}
Γ ` r ∈ R1 Γ ` r ∈ R2

Dependent record:

Γ ` r ∈ {R1; R2[self]}
Γ ` r ∈ R1 Γ ` r ∈ R2[r]

Right associating record:

Γ ` r ∈ {x : x : A; R[x]}
Γ ` r.x ∈ A Γ ` r ∈ R[r.x]

1See also Chapter4

35

Syntactical RemarksHere variableself is bounded inR2. When we use the name

“self” for this variable, we can use the shortening{R1; R2[self]} for this type. Further,

we will omit “self .” in the body ofR2, e.g. we will write justx for self .x, when such

notation does not lead to misunderstanding. We assume that this concatenation is a

left associative operation and we will omit inner braces. For example, we will write

{x : A;y : B[self];z : C[self]} instead of{{{x : A}; {y : B[self]}}; {z : C[self]}}.
Note that in this expression there are two distinct bound variablesself . The first one is

bound inB and refers to the record itself as a record of the type{x : A}. The second

self is bound inC; it also refers to the same record, but it has type{x : A; y : B[self]}.

Right associating dependent concatenation.The above definitions are enough to

form any record type, but to complete the picture we give the definition of right associ-

ating record constructor:

{x : x : A; R[x]} ∆
= self : {x : A} ∩R[self .x] (3.16)

Syntactical RemarksHerex is a variable bound inR that represents a fieldx. Note

that we mayα-convert the variablex, but not a labelx, e.g.,{x : x : A; R[x]} = {y : x :

A; R[y]}, but{x : x : A; R[x]} 6= {y : y : A; R[y]}. We will usually use the same name

for labels and corresponding bound variables. This connection is right associative, e.g.,

{x : x : A; y : y : B[x]; z : C[x, y]} stands for{x : x : A; {y : y : B[x]; {z : C[x, y]}}}.

3.3.2 The Rules

The basic rules of our record calculus are shown in Table3.2. The elimination rules in

this table are weak. We will discuss stronger rule in Chapter4.

Theorem 3.14 All the rules of Table3.2are derivable from the definitions given above.

36

From the reduction rules we get:

{x1 = a1; . . . ; xn = an}.xi −→ ai

when allxi’s are distinct.

We do not show the equality rules here, because in fact, these rules repeat rules in

Table3.2and can be derived from them using substitution rules in our type theory. For

example, we can prove the following rules

Γ ` a = a′ ∈ A Γ ` x = x′ ∈ Label

Γ ` (r.x := a) = (r′.x′ := a′) ∈ {x : A}
Γ ` r = r′ ∈ R1 Γ ` r = r′ ∈ R2

Γ ` r = r′ ∈ {R1; R2}
In particular, we can prove that

{x = 0; y = 0; color = red} =

{x = 0; y = 0; color = green} ∈ {x : Z; y : Z}

We can also derive the following subtyping properties:

{R1; R2} ⊆ R1

{R1; R2} ⊆ R2

{R1; R2[self]} ⊆ R1

{x : x : A; R[x]} ⊆ {x : A}
` R1 ⊆ R′

1 self : R1 ` R2[self] ⊆ R′
2[self]

` {R1; R2[self]} ⊆ {R′
1; R

′
2[self]}

` A ⊆ A′ x : A ` R[x] ⊆ R′[x]

` {x : x : A; R[x]} ⊆ {x : x : A′; R′[x]}
Further, we can establish two facts that state the equality of left and right associating

records.

{x : x : A; R[x]} =e {x : A; R[self .x]},
and

37

{R1; {x : x : A[self]; R2[self , x]}} =e

{{R1; x : A[self]}; R2[self , self .x]}.
For example, using these two equalities we can prove that

{x : A; y : B[self .x]; z : C[self .x; self .y]} =e

{x : x : A; y : y : B[x]; z : C[x; y]}.

3.3.3 Examples

Semigroup Example

Now we can define theSemigroupSig type in two ways:

{car : U; product : car× car→ car} or

{car : car : U; product : car × car → car}

Note that in the first definitioncar in the declaration ofproduct stands forself .car,

and in the second definitioncar is just a bound variable.

We can defineSemigroup by extendingSemigroupSig:

{SemigroupSig; axm : ∀x, y, z : car (x·y)·z = x·(y·z)}

or as a right associating record:

{car : car : U;

product : product : car × car → car;

axm : ∀x, y, z : car (x · y) · z = x · (y · z)}

In the first casex · y stands forself .product(x, y) and in the second case for just

product(x, y).

38

Multiply Inheriting Example

A monoid is a semigroup with a unit. So,

MonoidSig
∆
= {SemigroupSig; unit : car}

A monoid is an element ofMonoidSig which satisfies the axiom of semigroups and an

additional property of the unit. That is,Monoid inherits fields from bothMonoidSig

andSemigroup. We can define theMonoid type as follows:

Monoid
∆
= {{ MonoidSig; Semigroup;

unit axm : ∀x : car x · unit = x}
Note that sinceMonoidSig andSemigroup share the fieldscar andproduct, these

two fields are present in the definition ofMonoid twice. This does not create problems,

since we allow repeating labels (Section3.2.1).

Now we have the following subtyping relations:

SemigroupSig ⊃ MonoidSig

∪ ∪
Semigroup ⊃ Monoid

Abstract Data Type

We can also represent abstract data types as dependent records. Consider for example

a data structurecollection of elements of a typeT . This data structure consists of an

abstract typecar for collections of elements of the typeT , a constant of this typeempty

to construct an empty collection, and functionsmember s a to inquire if elementa is in

collections, andinsert s a to add elementa into collections. These functions should

satisfy certain properties that guarantee their intended behavior:

1. The empty collection does not have elements.

39

2. insert s a has all elements thats has and elementa and nothing more.

A formal definition of the data structure of collections could be written as a record:

Collection(T)
∆
=

{car : U;

empty : car;

member : car→ T → B;

insert : car→ T → car;

emp axm : ∀a : T a /∈ empty

ins axm : ∀s : car ∀a, b : T (member (insert s a) b)

⇐⇒ (member s b) ∨ (a = b ∈ T)}

It Section6 we will show an example of an implementation of this data structure.

Chapter 4

Elimination Rule for Independent Records
In this chapter we consider the question what should be the right elimination rule for

the record type. As we will see this question is not as simple as it looks. While the

introduction rule for records is very natural and simple, the right elimination rule is not

obvious.

In this chapter we will consider independent records for the sake of simplicity.

We will use the following notations: in the inference rules we will useΦ[x] for

∆[x] ` C[x]. For example instead of the rule:

Γ; a1 : A1; a2 : A2; ∆[〈a1, a2〉] ` C[〈a1, a2〉]
Γ; a : A1 × A2; ∆[a] ` C[a]

we would just write:

Γ; a1 : A1; a2 : A2; Φ[〈a1, a2〉]
Γ; a : A1 × A2; Φ[a]

4.1 Weak Elimination Rule

In Table3.2we showed a weak elimination rule for records:

Γ ` r ∈ {x : A; R}
Γ ` r.x ∈ A

(Weak Elimination)

It just said that ifr ∈ {x : A; R} thenr.x ∈ A. This rule is valid and easy to prove,

but it turns out that it is too weak in practice.

The correct elimination rule should have a conclusion of the form

Γ; r : {x1 : A1; . . . ; xn : An}; Φ[r]

40

41

4.2 Naive Elimination Rule

The elimination rule for records should be dual to the introduction rule. Let us look at

the introduction rule. It follows from the rules of Table3.2that

Γ ` a1 ∈ A1 . . . Γ ` an ∈ An

Γ ` {x1 = a1; . . . ; xn = an} ∈ {x1 : A1; . . . ; xn : An} (4.1)

This rule is just an analog of the introduction rule for products:

Γ ` a1 ∈ A1 Γ ` a2 ∈ A2

Γ ` 〈a1, a2〉 ∈ A1 × A2

The elimination rule for products is

Γ; a1 : A1; a2 : A2; Φ[〈a1, a2〉]
Γ; a : A1 × A2; Φ[a]

One can expect the following elimination rule for records:

Γ; a1 : A1; . . . ; an : An; Φ[{x1 = a1; . . . ; xn = an}]
Γ; r : {x1 : A1; . . . ; xn : An}; Φ[r]

(Naive Elimination)

But this rule is not valid! Moreover this rule contradicts other basic rules of records.

Indeed, consider the simple case whenn = 1. In this case this rule says that any record

of the type{x : A} has a form{x = a}. But this is clearly not true. For example, the

record{x = a; y = b} also has this type. So the above elimination rule would be invalid

if Φ[r] refers to fields ofr other thanx. For example, there is a propositionC[z] such that

C[z] is true whenz is {x = a}.y, but is not true for allz. E.g. letC[z] = (z ≡ {}.y).
Then the sequent

a : A ` C[{x = a}.y]

would be true. Applying the Naive Elimination rule, we get:

r : {x : A} ` C[r.y]

42

Therefore, since{x = a; y = b} ∈ {x : A}, we get thatC[b] for anyb. Contradiction.

This example shows us that one should be careful when choosing elimination rules

for records. It also shows why it is important to define records and prove all rules, rather

than take them as a primitive type with a bunch of new axioms.

4.3 Strong Elimination Rule

The mistake made in the last section is that (4.1) does not actually capture the whole

introduction rule. It does not say that records of type{xi : Ai} could have additional

fields. The complete introduction rule (derived from the rules of Table3.2) is the fol-

lowing:

Γ ` a1 ∈ A1 . . . Γ ` an ∈ An r ∈ {}
Γ ` {x1 = a1; . . . ; xn = an; r} ∈ {x1 : A1; . . . ; xn : An}

where{} is the record type with empty declaration (it contains all records). The dual

rule would be:

Γ; a1 : A1; . . . ; an : An; r : {}; Φ[{x1 = a1; . . . ; xn = an; r}]
Γ; r : {x1 : A1; . . . ; xn : An}; Φ[r]

(Strong Elimination)

The Strong Elimination rule captures our intuition of record types. We can also state it

as two rules:

Γ; a : A; r : R; Φ[{x = a; r}]
Γ; r : {x : A; R}; Φ[r]

(Strong Elimination1)

and

Γ; a : A; r : {}; Φ[{x = a; r}]
Γ; r : {x : A}; Φ[r]

(Strong Elimination2)

It follows from this rule that ifr ∈ {x : A} then

r ≡ {x = r.x; r}

We will call this η-reduction for records. We will see that this reduction is actually

equivalent to the Strong Elimination rule.

43

Unfortunately theη-reduction (and therefore the Strong Elimination rule) is invalid

when records are defined as functions (definition (3.9)) and

{x = a; r} ∆
= (λl.if l = x then a else r l)

Indeed, theη-reduction says that any element of a record type has the form{x = r.x; r}.
But this is not true for all functions with domainLabel. For example, ifa ∈ A then by

definition (3.9) λl.a ∈ {x : A}. Note that this function could be applied to any argument

l, not only to labels. On the other hand, functionλl.if l = x then a else r l

could be applied only tol from the typeLabel, because ifl /∈ Label then the expression

l = x would be undefined, therefore the application would be undefined. Therefore

r 6≡ {x = r.x; r} for r = λl.a. Contradiction.

Note that the Naive Elimination rule contradicts the basic introduction rule of records.

Therefore it is not valid for any possible definition of records. On the other hand, the

Strong Elimination Rule contradicts only our definition of records. Therefore there is

still a hope that we can find a better definition to satisfy this rule.

4.4 Functions with Limited Polymorphism

Let us consider the problem with the Strong Elimination rule more closely. We have

η-reduction rule for functions: iff is a function then

f ≡ λz.(fz) .

That means that any function is aλ-expression. Theη-reduction for records says that if

r is a record of the type{x : A} then

r ≡ λl.if l = x then r x else r l.

44

So, we would like to have the following reduction:

λl.(rl) ≡ λl.if l = x then r x else r l . (4.2)

We can prove only that for anyl from typeLabel:

r l ≡ if l = x then r x else r l . (4.3)

Unfortunately, (4.3) does not hold for anyl and therefore (4.2) is not true.

The problem is that our definition usespolymorphicfunctions. As a result we may

potentially apply the functionr to any argument, not only to labels. On the other hand,

we never apply it to anything other than labels. We need to have some form of type of

functions withlimited polymorphism. That is, we need a type of functions that can be

applied only to elements of a particular type (in our caseLabel).

There is no such type in our type theory. The interesting questions are whether we

can add such type, what would be the semantics for it and what would be inference rules

for this type. We will not discuss these questions here. But we candefinesuch a type

in current type theory for some particular cases, e.g., whenLabel is the type of natural

numbers. Informally speaking we can define “integer functions” as long tuples:

f = 〈f0, 〈f1, 〈f2, . . . 〉〉〉

and applications as takingn-th element of the tuple. That is,

f(0)
∆
= π1f

f(1)
∆
= π1(π2f)

f(2)
∆
= π1(π2(π2f)) and so on. We will not give the formal definition, but rather

just use the idea of non-polymorphic functions. We are going define records as tuples.

It may help intuition to view these tuples as “integer functions”.

45

4.4.1 Non-polymorphic Definition of Record Type

Without loss of generality we can assume that labels are natural numbers, i.e.,Label =

N (or we can assume that there is a given injection of the label type intoN).

We will give a new definition of the type{n : A} for any natural numbern and any

type A. Then we define an arbitrary record type (dependent or not dependent) using

intersection as in Section3.3.1.

New definition of records

The type{n : A} is a type of tuples where then-th element has the typeA. We define it

by induction:

{0 : A} ∆
= A× Top;

{n + 1 : A} ∆
= Top× {n : A}.

That is,{1 : A} = Top× A× Top,{2 : A} = Top× Top× A× Top, and so on.

Note that Top contain everything. So for example ifa ∈ A then〈t0, 〈a, t2〉〉 is in

{1 : A} as well as〈t0, 〈a, 〈t2, 〈t3, t4〉〉〉〉
Then we define application (field selection)r.n as then-th element of tupler. We

define it by induction:

r.0 ∆
= π1r

r.(n + 1)
∆
= (π2r).n

Finally, we define record extension/updater.n := a as updating then-th component

to bea.

r.0 := a
∆
= 〈a, π2r〉

r.(n + 1) := a
∆
= 〈π1r, (π2r).n := a〉

These definitions with the definitions (3.14), (3.15), and (3.16) of an arbitrary record

type as an intersection of single record types provide the formal account of record types

46

in our theory.

Old rules are still valid

The reductions for records from Table3.2 could be easily proved by induction for our

new definitions:

(r.x := a).x −→ a for anyx ∈ Label.

(r.y := b).x −→ r.x for anyx, y ∈ Label whenx 6= y.

We can also prove by induction the rules for single-record types from Table3.2:

Γ ` A Type Γ ` x ∈ Label

Γ ` {x : A}Type

Γ ` a ∈ A Γ ` x ∈ Label

Γ ` r.x := a ∈ {x : A}

Γ ` r ∈ {x : A} Γ ` x 6= y ∈ Label

Γ ` (r.y := b) = r ∈ {x : A}

Γ ` r ∈ {x : A}
Γ ` r.x ∈ A

All these rules were proven by induction onx (andy) and checked in MetaPRL.

All remaining rules from Table3.2are still valid, because we have not changed the

definition of the record type as an intersection of single record types.

The η-reduction for records

The η-reduction that was invalid for the old definition, could be easily proven for the

new definition:

For anyx ∈ Label if r ∈ {x : A} thenr ≡ {x = r.x; r}

47

The proof is based on the fact that

If p ∈ A×B thenp ≡ 〈π1p, π2p〉
The proof was checked in MetaPRL.

New equalities

Another advantage of out new definitions is that now we can exchange record fields.

That is, we can prove the following squiggle equality:

{x = a; y = b; r} ≡ {y = a; x = b; r} for anyx, y ∈ Label whenx 6= y

We can also prove that

{x = a; x = b; r} ≡ {x = a; r} for anyx ∈ Label

These equalities were proved by induction onx andy in MetaPRL.

Note that these equalities were invalid for the old definitions. We could only prove

the equalities in a record type. The squiggle equalities gives us more freedom in using

them: we can change the order of fields of a record without worrying about its type.

Efficiency

Note that our new definition of records assumes that there is an injection (coding func-

tion) of typeLabel intoN. It may seems to be very inefficient. Indeed, assume thatcar

is a label with a huge number, say 333148. Then it means that record{car = A} is

a huge tuple with at least 333148 elements. And{car = A}.car is reduced toA in

333148 steps. Fortunately we do not need to unfold the definition and does all these

steps, since we have proven the rule(r.x := a).x −→ a for any labelx. MetaPRL uses

this rule and do the reduction{car = A}.car −→ A in just one step. Therefore we

do not need to worry about these huge numbers, there is no difference in the efficiency

between old and new definitions.

48

4.5 Functionality

Now let us come back to the record calculus. In the Section4.4.1we gave the new

definition of records that satisfies theη-reduction. Our goal was the Strong Elimination

rule:

Γ; a : A; r : R; Φ[{x = a; r}]
Γ; r : {x : A; R}; Φ[r]

The question is: can we prove this rule from theη-reduction rule? It turns out that the

answer depends on functionality.

4.5.1 Elimination Rule in Pairwise Functionality

It is very easy to prove the Strong Elimination rule using theLet rule (Section2.2.3) in

pairwise functionality. Indeed, we need to prove:

Γ; r : {x : A; R}; Φ[r].

Usingη-reduction to replacer by {x = r.x; r} we get

Γ; r : {x : A; R}; Φ[{x = r.x; r}].

Then noting thatr.x ∈ A and r ∈ R we can apply rulesLet a = r.x ∈ A and

Let r′ = r ∈ R. Then we get

Γ; r : R; a : A; r′ : R; Φ[{x = a; r′}]

Then thinning ther : R hypothesis and renamingr′ to r we get the original assumption:

Γ; a : A; r : R; Φ[{x = a; r}]

49

4.5.2 Elimination Rule in Pointwise Functionality

The above reasoning does not hold in pointwise functionality. We can prove the weak

form of the Strong Elimination rule:

Γ; a : A; r : R; ∆ ` C[{x = a; r}]
Γ; r : {x : A; R}; ∆ ` C[r]

where∆ does not depend onr.

The original Strong Elimination rule is invalid in pointwise functionality. But we

can get almost Strong Elimination rule in pointwise functionality if we introduce a new

notion of orthogonality.

Orthogonality

Basically we say that a record typeR is orthogonal to{x = a} if the declaration ofR

does not containx. Formally, for any typeR, for any labelx and for any elementa we

define a predicate:

{x = a} ⊥ R
∆
= ∀r : R. r = (r.x := a) ∈ R

It is clear that ifR = {x1 : A1; . . . ; xn : An} and allxi’s differ from x then{x =

a} ⊥ R.

In pointwise functionality we can prove that

Γ; a : A ` {x = a} ⊥ R Γ; a : A; r : R; Φ[{x = a; r}]
Γ; r : {x : A; R}; Φ[r]

This is the closest version of Strong Elimination rule valid in pointwise functionality.

The proof is fairly complicated and uses the rulePointwiseSubstitute (Section2.2.3).

It was checked by MetaPRL.

Chapter 5

Other Possible Applications

5.1 Sets and Dependent Intersections

The set type constructor allows us to hide part of a witness.

Example 5.1 Instead of definingSemigroup type as an extension ofSemigroupSig

type with an additional fieldaxm, we could define theSemigroup type as a subset of

SemigroupSig:

Semigroup
∆
= {S : SemigroupSig | ∀x, y, z : S.car . . . }

Now we will show that the set type constructor (which is primitive in our original

type theory) may be defined as a dependent intersection as well.

Now consider the following type (squash operator):

[P] ∆
= {x : Top | P}

[P] is an empty type whenP is false, and is equal toTop whenP is true.

Theorem 5.2

{x : T | P [x]} =e x : T ∩ [P [x]] (5.1)

We can not take (5.1) as a definition of sets yet, because we defined the squash

operator as a set. But actually the squash operator is defined in our type theory as a

primitive constructor and rules for the set type depend on the squash operator. (See [32]

for the rules for the squash type and explanations why this is a primitive type.) Thus,

we can take (5.1) as a definition.

50

51

Moreover, the squash operator could be defined using other primitives. For example,

one can define the squash type using union:

[P] ∆
=

⋃
x:P

Top.

Remark In is interesting to note that in the presence of Markov’s principle [27] there is an

alternative way to define[P]:

[P] ∆= ((P ≡> Void) ≡> Void)

whereA ≡> B
∆=

⋂
x:A

B. We will not give any details here, since it is beyond the scope of the

thesis.

We can also define sets withoutTop and squash type. First, defineindependentsets:

{A |B} ∆
=

⋃
x:B

A.

Then define the set type:

{x : A |B[x]} ∆
= x : A ∩ {A |B[x]}.

The Mystery of Notations It is very surprising that braces{. . . } were used for sets

and for records independently for a long time. But now it turns out that sets and records

are almost the same thing, namely, dependent intersection! Compare the definitions for

sets and records:

{x : T | P [x]} ∆
= x : T ∩ [P [x]]

{self : R1; R2[self]} ∆
= self : R1 ∩R2[self]

The only differences between them are that we use squash in the first definition and

write “|” for sets and “;” for records.

So, we will use the following definitions for records:

52

{self : R1 |R2[self]} ∆
= {self : R1; [R2[self]]} = self : R1 ∩ [R2[self]]

{x : x : A |R[x]} ∆
= {x : x : A; [R[x]]} =

self : {x : A} ∩ [R[self .x]]

This gives us the right to use the shortening notations as in Section3.3.1 to omit

inner braces and “self ”. For example, we can rewrite the definition of theSemigroup

type as

Semigroup
∆
= {car : U;

product : car× car→ car |

∀x, y, z : car (x · y) · z = x · (y · z)}

Remark Note that we cannot define dependent intersection as a set:

x : A ∩B[x]
∆
= {x : A | x ∈ B[x]}. (wrong!)

First of all, this set is not well-formed in our type theory (this set would be a well-formed

type, only whenx ∈ B[x] is a type for allx ∈ A, but the membership is a well-formed

type in the our type theory, only when it is true). Second, this set type does not have

the expected equivalence relation. Two elements are equal in this set type when they are

equal just inA, but to be equal in the intersection they must be equal in both typesA

andB (see Example2.4).

5.2 Variant Type

In the same way that the union type is dual to the intersection type, there exists a type

dual to the records type — the variant type. The variant type is an expression of the

form (x1 of A1 | x2 of A2 | . . . | xn of An), wherexi are labels andAi are types.

The elements of this type are expressions of the formxi(a) wherea ∈ Ai.

53

Example 5.3 We can define the type of binary trees

BinTree(A)
∆
= µT.(node of T × T × A | emptytree of Unit}

Hereµ-operator is an inductive recursive type constructor, i.e. the least fixpoint [31],

andUnit is a type that contains only one element•.

We will abbreviatexi(•) asxi andxi(〈a1, a2, . . . , an〉) asxi(a1, a2, . . . , an). For ex-

ample, the typeBinTree(A) includesemptytree, tree(emptytree, emptytree, a0),

tree(tree(emptytree, emptytree, a1), tree(emptytree, emptytree, a2), a0) where

ai’s are of typeA.

5.2.1 Definitions

We can define the variant type as a dependent product, e.g.(x of A | y of B)
∆
=

l : Label × (if l = x then A else if l = y then B else Void)

Or we can first define(x of A)
∆
= {x} × A, and then define

(x of A | y of B)
∆
= (x of A) ∪ (y of B)

In any case the constructor for this type is defined as a pair:

x(a)
∆
= 〈x, a〉

We also need to define a destructor:

match t with

x1(a1) => f1[a1] |
x2(a2) => f2[a3] |
. . .

xn(an) => fn[an] |

54

as

let 〈l, a〉 = t in

if l = x1 then f1[a]

if l = x2 then f2[a]

. . .

if l = xn then fn[a]

5.2.2 Properties

The variant type has a subtyping property which is dual to the subtyping property of

record types:

(xi of Ai)|i∈I ⊆ (xi of A′
i)|i∈J

whenI ⊆ J andAi ⊆ A′
i for anyi ∈ I.

Example 5.4 Let

Week
∆
= (Sunday of Unit | Monday of Unit | Tuesday of Unit |

Wednesday of Unit | Thursday of Unit |
Friday of Unit | Saturday of Unit)

ThenWeekend
∆
= (Sunday of Unit | Saturday of Unit |) is a subtype ofWeek.

There is a general formula about variant types and union that is dual to the formula

about records and intersection:

(x1 of A1 | . . . | xk of Ak | y1 of B1 | . . . | yn of Bn) ∪
(x1 of A′

1 | . . . | xk of A′
k | z1 of C1 | . . . | zm of Cm) =

(x1 of A1 ∪ A′
1 | . . . | xk of Ak ∪ A′

k |
y1 of B1 | . . . | yn of Bn | z1 of C1 | . . . | zm of Cm)

So, the intersection of two record types is alway a record type, and the union of two

variant types is always a variant type.

55

5.3 Abstract Algebra

In this section we outline a way how one can define general abstract algebraic structures

using our record type.

Our encoding of records uses the typeLabel for names of the fields. In all of the

above examples names were constants. But we are allowed to use variables over type

Label. In fact, we may even use arbitrary terms of the typeLabel as the name of the

fields. It could be useful to define an algebraic structure of an arbitrary signature.

A signature is a list of operations with their arity:

Signature
∆
= (Label × N) List

We can define an algebraic structure of any signature:

Algebra(op1, n1 :: . . . :: opk, nk)
∆
= {car:U; op1:car

n1→car; . . . ; opk:car
nk→car}

Now we can define standard notions from abstract algebra. For example, homomor-

phism between two algebraic structuresA andB of the same signatureSig is defined

as:

Hom (A,B, Sig)
∆
=

{ f : A.car→ B.car |
∀ 〈op, n〉 ∈ Sig. ∀x ∈ A.carn. f(A.op(x)) = B.op(fn(x)) ∈ B.car }

wherefn(〈x1, . . . , xn〉) = 〈f(x1), . . . , f(xn)〉.
We can prove some general properties about homomorphisms, like composition of

two homomorphisms is a homomorphism. Then we can apply this theorem to concrete

algebraic structures.

56

5.4 Join Operator

In this section we outline possible applications of records and intersections to databases.

One of the basic operation for relation databases is a join operator.

We can represent a relation with attributesA1, A2, . . . ,An as a finite subset of a type

{A1 : T1; A2 : T2; . . . An : Tn}, whereTi is a type of an attributeAi. That means that

a relationR is represented by a set of records that has fieldsA1, . . . , An that coincide

with one of the tuples inR, and probably other fields. Then one can easily see that

the intersection of two relationsR1 andR2 is exactly the natural join of these relations!

That is, we can very easily define the natural join for the relations:

R1 on R2 = R1 ∩R2 !

Chapter 6

Red–Black Trees
In this section we will show an example of how one can define an abstract data struc-

ture in the constructive type theory, and formally prove the correctness of the concrete

implementation. We will consider red–black trees [16], one of the most popular imple-

mentation of a data structure of collections of elements of a certain type.

6.1 Introduction

In the end of Section3.3.3we gave a definition of the data structureCollection(T), a

collection of elements of the typeT . Here we repeat the definition using set type (using

notations of Section5.1):

Collection(T)
∆
=

{car : U;

empty : car;

member : car→ T → B;

insert : car→ T → car |
∀a : T a /∈ empty |
∀s : car ∀a, b : T (member (insert s a) b)

⇐⇒ (member s b) ∨ (a = b ∈ T)}
We can implement this data structure in several ways. The simplest but inefficient

implementation of sets uses lists. Each set is represented by an unordered list. Formally

we takecar to beT List, empty to benil and define operationsinsert andmember

correspondingly. In this implementation, functionsinsert andmember takeO(n)

57

58

time, wheren is a number of elements of the set.

A more efficient implementation of sets is binary search trees. Each set is repre-

sented by a binary tree, where elements are stored at the nodes, such that the element at

any given node is greater than each element in its left subtree and less than each element

in its right subtree. In this implementation, functionsinsert andmember takeO(d)

time, whered is a depth of the tree. On random data the heights of the tree islog(n).

But in the worst case the tree will be imbalanced, and an individual operation will take

up toO(n) time.

The solution to this problem is to usebalancedbinary trees. The most popular

balanced binary search trees are red–black trees [16]. We will show how the implemen-

tation of red–black trees could be written as a term in type theory.

Red–black trees could be defined only on an ordered set. We have defined ordered

structures in Example3.2. Thus the implementation of red–black trees should be a

functor(i.e. a function from one data structure to another) that takes an ordered set and

returns a data structure of collections of elements of this set. That is, it has the following

type:

ord : OrdSet → Collection(ord.car).

The implementation of red-black trees in a functional programming setting is a little

bit different (and simpler) than the typical presentation in imperative programming lan-

guages (as for example in [12]). We will follow the presentation of red–black trees in

functional languages from [33].

59

6.2 Binary Trees

Definition

We already gave the definition of binary trees in Example5.3:

BinTree(A)
∆
= µT.(node of T × T × A | emptytree of Unit}

We have the following introduction rules about this type:

A Type
emptytree ∈ BinTree(A)

a ∈ A l ∈ BinTree(A) r ∈ BinTree(A)

tree(l, r, a) ∈ BinTree(A)

The elimination rule is the induction rule:

Γ ` C[emptytree] Γ; l : BinTree(A); r : BinTree(A) ` C[tree(l, r, a)]

Γ; t : BinTree(A) ` C[t]

Operations with trees

We can define depth and weight (i.e. number of elements) of the tree by induction:

- weight(emptytree)
∆
= 0

- weight(tree(l, r, a))
∆
= weight(l) + weight(r) + 1

- depth(emptytree)
∆
= 1

- depth(tree(l, r, a))
∆
= max(weight(l); weight(r)) + 1

We can define quantifiers on the nodes of the tree. LetP [l; r; a] be a proposition

of nodestree(l, r, a). Then we define by induction∀node(l, r, a) ∈ t . P [l; r; a] as

a proposition that says thatP is true for all nodes of the treet, and∃node(l, r, a) ∈

60

t . P [l; r; a] as a proposition that says thatP is true for at least one node of the treet (l,

r anda are bound variables). That is,

- ∀node(l, r, a) ∈ emptytree . P [l; r; a]
∆
= True

- ∀node(l, r, a) ∈ tree(l1, r1, a1) . P [l; r; a]
∆
=

P [l1; r1; a1] ∧
∀node(l, r, a) ∈ l1 . P [l; r; a] ∧
∀node(l, r, a) ∈ r1 . P [l; r; a]

- ∃node(l, r, a) ∈ emptytree . P [l; r; a]
∆
= False

- ∃node(l, r, a) ∈ tree(l1, r1, a1) . P [l; r; a]
∆
=

P [l1; r1; a1] ∨
∃node(l, r, a) ∈ l1 . P [l; r; a] ∨
∃node(l, r, a) ∈ r1 . P [l; r; a]

We will store elements in the nodes of a tree. We define the proposition

in tree(a; t; A) that states that nodea is stored in the treet:

in tree(a; t; A)
∆
= ∃node(l, r, a′) ∈ t . a = a′ ∈ A

This proposition needs the typeA as a parameter because we have different equalities

in different types.

Finally, we can define a set of elements stored in a given tree:

|t|A ∆
= {a : A | in tree(a; t; A)}

61

6.3 Sorted Trees

Assume we have an ordered setord. Sorted trees are binary trees satisfying the follow-

ing property: for any nodetree(l, r, a) in the tree any element from the left subtreel is

less than the roota and any element from the right subtreer is greater than the roota.

Formally,

SortedTree(ord)
∆
=

{t : BinTree(ord.car) |
∀node(l, r, a) ∈ t.

∀x : |l|ord.car . x <ord a ∧
∀y : |r|ord.car . a <ord y

}

Searching in balance trees

We can find whether an element is in tree by binary search:

- search(a; emptytree; ord)
∆
= falseB

- search(a; tree(l, r, data); ord)
∆
=

if a <ord data then search(a; l; ord)

if a =ord data then trueB

if a >ord data then search(a; r; ord)

Note that this function returns a boolean value, unlikeis in tree, which is a propo-

sition.

Using the transitivity of order we can prove

62

Theorem 6.1 (Correctness of Search)For any ordered setord ∈ OrdSet, for any el-

ementa ∈ ord.car and for any treet ∈ SortedTree(ord)

search(a; t; ord) ∈ B

and

search(a; t; ord) = trueB ⇐⇒ a ∈ |t|ord.car

Insert function

To insert a new element into the tree we again use binary search to find an appropriate

place:

- ins(a; emptytree; ord)
∆
= tree(emptytree, emptytree, a)

- insert(a; tree(l, r, data); ord)
∆
=

if a <ord data then tree(insert(a; l; ord), r, data)

if a =ord data then tree(l, r, a)

if a >ord data then tree(l, insert(a; r; ord), data)

We can prove the following

Theorem 6.2 (Invarian of Insert) For any ordered setord ∈ OrdSet and for any ele-

menta ∈ ord.car if t ∈ SortedTree(ord) theninsert(a; t; ord) is also in

SortedTree(ord).

Theorem 6.3 (Correctness of Insert)For any ordered setord ∈ OrdSet, for any ele-

menta ∈ ord.car, for any treet ∈ SortedTree(ord)

|insert(a; t; ord)|ord.car =e |t|ord.car ∪ {a}ord.car.

63

6.4 Red–Black Trees

Definition

In a red–black tree each node is colored either red or black. A red–black tree should

satisfy the following invariants:

• Any child of a red color is black

• All paths from the root to any leaf have the same number of black nodes. (We will

call this number ablack depthof a tree).

We will consider trees that satisfy an additional property:

• The root of a tree is black

We start the formal definition with the definition of colors:

Color
∆
= (red of unit | black of unit)

That is,Color has two elements:red andblack. We also define two subtypes of this

type:

Red
∆
= (red of unit) has only one elementred

Black
∆
= (black of unit) has only one elementblack

Then we defineColoredTree(A) as a type of trees with colored nodes:

ColoredTree(A)
∆
= BinTree(Color × A)

Then we define three subtypes ofColoredTree(A): RBn(A) for red–black trees of

the black depthn, Bn(A) for red–black trees of the black depthn that have a black root,

andRn(A) for red–black trees of the black depthn that have a red root. (For the sake

of this definition we assume that empty tree has a black root.) We define these types

simultaneously by induction:

64

• B0(A)
∆
= (emptytree of Unit) (only the empty tree has black depth 0);

and for any naturaln

- Bn+1(A)
∆
= (tree of (RBn(A)× RBn(A))× (Black × A)) (a black tree of

the black depthn + 1 has a black root and two sons of the black depthn);

- Rn(A)
∆
= (tree of (Bn(A)×Bn(A))× (Red×A)) (a red tree has a red root

and black sons of the same black depth);

- RBn(A)
∆
= Rn(A) ∪Bn(A) (a red–black tree is either red or black).

We can prove by induction that these definitions are well-formed for any naturaln:

∀n : N. Bn(A) Type∧Rn(A) Type∧RBn(A) Type

Finally we define a type of red–black trees as a union of allBn(A):

RedBlackTree(A) =
⋃

n:N
Bn(A)

Insert Function

The insert function for red–black trees is similar to the insert function for sorted trees,

but it maintains the invariants.

When we insert a new node we will color it red. It satisfies the second invariant, but

may break the first invariant if the father of the new node is red.

Let us define an auxiliary function:

- ins(a; emptytree; ord)
∆
= tree(emptytree, emptytree, red, a)

- ins(a; tree(l, r, color, data); ord)
∆
=

if a <ord data then lbalance(ins(a; l; ord); r; color; data)

65

if a =ord data then tree(l; r; color, a)

if a >ord data then rbalance(l; ins(a; r; ord); color; data)

Wherelbalance andrbalance are functions that rebalance a tree without changing

the order to enforce invariants. They are defined as follows:

- lbalance(tree(tree(t1, t2, red, a1), t3, red, a2); t4; color; a3)
∆
=

tree(tree(t1, t2, black, a1), tree(t3, t4, black, a3), red, a2)

- lbalance(tree(t1, tree(t2, t3, red, a2), red, a1); t4; color; a3)
∆
=

tree(tree(t1, t2, black, a1), tree(t3, t4, black, a3), red, a2)

- For all other cases

lbalance(l; r; color; a)
∆
= tree(l; r; color, a)

- rbalance(t1, tree(tree(t2, t3, red, a2), t4, red, a3); color; a1)
∆
=

tree(tree(t1, t2, black, a1), tree(t3, t4, black, a3), red, a2)

- rbalance(t1, tree(t2, tree(t3, t4, red, a3), red, a2); color; a1)
∆
=

tree(tree(t1, t2, black, a1), tree(t3, t4, black, a3), red, a2)

- For all other cases

rbalance(l; r; color; a)
∆
= tree(l; r; color, a)

Functionins may break the first invariant. Namely it may return a tree withonly

onesingularityat the root: a red root may have a red son. The functionslbalance and

rbalance then take care of this singularity.

Formally let us define a type of trees with at most on one singularity at the root:

- lRRBn(A)
∆
= (tree of Rn(A)×Bn(A)×Red×A) (trees with a red root and

a red left child);

66

- rRRBn(A)
∆
= (tree of Bn(A) × Rn(A) × Red × A) (trees with a red root

and a red right child);

- RRBn(A)
∆
= RBn(A) ∪ lRRBn(A) ∪ rRRBn(A) (trees with at most one sin-

gularity at the root).

We will see that theins function may return trees of the typeRRBn(A). Functions

lbalance andrbalance deal with such trees.

Lemma 6.4 For any naturaln and for any typeA the following is true:

l : RRBn(A); r : RBn(A) ` lbalance(l; r; black; a) ∈ RBn+1(A)

l : RBn(A); r : Bn(A) ` lbalance(l; r; red; a) ∈ RRBn(A)

l : RBn(A); r : RRBn(A) ` rbalance(l; r; black; a) ∈ RBn+1(A)

l : Bn(A); r : RBn(A) ` rbalance(l; r; red; a) ∈ RBn(A)

This lemma could be proved by analyzing all possible cases.

Lemma 6.5 For any ordered setord ∈ OrdSet and for anya ∈ ord.car

t : Rn(ord.car) ` ins(a; t; ord) ∈ RRBn(ord.car)

t : Bn(ord.car) ` ins(a; t; ord) ∈ RBn(ord.car)

This lemma could be easily proved by simultaneous induction using the previous

lemma.

Finally, we need to correct the singularity in the root. It may be done by just painting

the root black:

blackroot(tree(l, r, color, a))
∆
= tree(l, r, black, a)

67

So,

rb insert(a; t; ord)
∆
= blackroot(ins(a; t; ord))

It is easy to prove the following

Lemma 6.6

t : Rn(A) ` blackroot(t) ∈ RedBlackTree(A).

Therefore we have the following

Theorem 6.7 (Invariant of the insert function) For any ordered setord ∈ OrdSet

for any a ∈ ord.car if t is in RedBlackTree(A) thenrb insert(a; t; ord) is also in

RedBlackTree(A).

Red–black trees are balanced

Lemma 6.8 The depth of a red–black tree is not more than 2 times its black depth.

Formally,

∀n : N.∀t : RBn(A).depth(t) ≤ 2n

Lemma 6.9 A red–black tree of the black depthn contains at least2n − 1 elements.

Formally,

∀n : N.∀t : RBn(A).weight(t) ≥ 2n−1

These lemmas are easily proved by induction onn. (We need to prove them also forRn

andBn.)

It follows from these lemmas that the depth of any red–black tree is less than or

equal to2 log(n), wheren is the number of nodes. Therefore searching and inserting in

this tree takesO(log n) time. The last argument is informal. In the current system there

is no way to formally prove an upper bound for the working time of an algorithm.

68

6.5 Sorted Red–Black Trees

Now we define the type of sorted red–black trees just as an intersection of the types of

sorted trees and red–black trees:

SortedRedBlackTree(ord)
∆
= RedBlackTree(ord.car) ∩ SortedTree(Top∗ ord)

whereTop ∗ ord is an ordered set of all pairs〈color, a〉 for a ∈ ord.car and the order

relation ignoring the first component. That is,

Top∗ ord
∆
= {car = Top× ord.car; less 〈c1, a1〉 〈c2, a2〉 = ord.less a1 a2}

SinceSortedRedBlackTree(ord) is a subtype ofSortedTree(Top∗ ord) we can

use the same function for searching:

rb search(a; t; ord)
∆
= search(a; t; Top∗ ord)

Theorem 6.10 (Correctness of Search)For any ordered setord ∈ OrdSet for any

elementa ∈ ord.car for any treet ∈ SortedRedBlackTree(ord)

rb search(a; t; ord) ∈ B

and

rb search(a; t; ord) = trueB ⇐⇒ a ∈ |t|ord.car

It immediately follows from Theorem6.1and the fact that Top∗ ord ∈ OrdSet.

We can prove thatlbalance andrbalance do not change the order of elements in

Top∗ ord. Therefore we can prove that

Lemma 6.11 For any ordered setord ∈ OrdSet for any elementa ∈ ord.car if t ∈
SortedTree(Top∗ ord) thenrb insert(a; t; ord) is also inSortedTree(Top∗ ord) and

|rb insert(a; t; ord)|Top×ord.car =e |t|Top×ord.car ∪ {•, a}Top×ord.car.

69

Finally, using the fact that iff ∈ A1 → A2 andf ∈ B1 → B2 thenf ∈ A1 ∩ A2 →
B1 ∩B2, we get

Theorem 6.12 (Correctness of Insert)For any ordered setord ∈ OrdSet for any el-

ementa ∈ ord.car if t ∈ SortedRedBlackTree(ord) thenrb insert(a; t; ord) is also

in SortedRedBlackTree(ord) and for anyb ∈ ord.car

rb search(b; rb insert(a; t; ord); ord) ⇐⇒ rb search(t) ∨ a = b ∈ ord.car.

Collection

Finally we combine the above functions into the functor of the typeord : Ord →
Collection(ord.car).

redblacktree collection(ord)
∆
=

{car = SortedRedBlackTree(ord);

empty = emptytree;

member t a = rb search(a; t; ord);

insert t a = rb insert(a; t; ord)

}

Theorem 6.13 (Main) For any ordered setord ∈ OrdSet the structure

redblacktree collection(ord) is a correct structure for collections of elements of the

carrier of the ordered setord. Formally,

redblacktree collection(ord) ∈ Collection(ord.car).

Note that this theorem not only tells us that our functions have the right type, but also

tells that this function satisfies the specifications stated in the definition of collections.

Chapter 7

Objects
Note that the elements of the typeCollection(T) defined in the last chapter are not

collections, but rather implementations of collections, i.e., a bunches of functions. The

actual collections are elements of typeC.car whereC ∈ Collection(T). If we have a

function that need a collection as a parameter, it actually should have two arguments: an

implementation and a collection itself. So, it should have a type like:

C : Collection(T) → C.car→ A (7.1)

Another disadvantage of this data structure is that it is not fully abstract. Functions of

the type (7.1) may have access to fieldcar, which is supposed to be abstract.

In this chapter we will define a notion of objects that removes these disadvantages.

Note that the theory of objects is not yet implemented MetaPRL.

7.1 Object instances

In this section we define object instances and basic operations with them. First we

describe the intended behavior of these operations and then we give a formal definition.

The problem of the typing of these object instances will be considered in the successive

sections.

7.1.1 The operations with objects

Methods

The main difference between objects and records is that objects have methods. Methods

can be understood as functions that have a parameterself , that represents the object

70

71

itself. That is, when we evaluate a method of a particular object we substitute this object

for theself parameter.

The main operation that we perform with methods is to apply them to an object. We

will use circle dot (obj◦l) for a method extraction (to distinguish it from field selection

for recordsrec.l). Hereobj is an object andl is a name of a method. Thus, ifobj is

an object instance that has a method namedl with a bodym(self) thenobj◦l expands

to m(obj). (Hereself is a variable, andm(obj) stands for the substitutionobj for the

variableself .)

Fields of objects can be represented as methods that do not depend onself .

So, object instances are lists of methods (including fields). We will use the following

syntax for objects:

o self .{l1 = m1(self); . . . ; ln = mn(self)}

whereself is a bound variable,li’s are names of the methods (fields) andmi’s are bodies

of the corresponding methods (values of the fields).

Example 7.1 The following is an example of an objectsimpleF lea. The flea lives on

an integer line and has a coordinatex, that can be obtained, by a methodgetX. Method

getNextX returns a coordinate where the flea wants to jump next time.

simpleF lea
∆
= o self .

{x = 0;

getX = self ◦x;

getNextX = self ◦getX + 1

}

For the objectsimpleF lea we expect the following reductions:

72

simpleF lea◦getX→ simpleF lea◦x→ 0

simpleF lea◦getNextX→ flea◦getX + 1 → 0 + 1 → 1

In general, for object

object = o self .{l1 = m1(self); . . . ; ln = mn(self)} (7.2)

with distinctli’s we have the following reduction rule:

object◦li → mi(object) (7.3)

Field update

Another basic operation that we need for objects is a field/method update.

We will use the following syntax for this operation:obj◦l := t, whereobj is an

object instance,l is a name of a field andt is a new value. Note that we are working in

a pure functional language. Field update does not modify an existing object, but rather

creates a new objects. For example,simpleF lea◦x := 17 is a new object that coincides

to simpleF lea in all fields exceptx. Field update should obey the following reduction

rule:

(obj◦l := t)◦l → t (7.4)

For example,(flea◦x := 17)◦x → 17. This rule is the same as an analogous rule for

records (3.2). On the other hand, the analog of the record reduction rule form Table3.2

(obj◦l := t)◦l
′ → obj◦l

′, whenl 6= l′ (wrong!)

is wrong for objects. For example,(simpleF lea◦x := 17)◦getX reduces to17, not to

simpleF lea◦getX which is0.

The right reduction rule is the following: forobject defined in (7.2) let object′ be

object◦l := t, then

object′◦li → mi(object
′) (7.5)

73

wherei ∈ 1..n andl 6= li.

For example,

(flea◦x := 17)◦getX→ (flea◦x := 17)◦x→ 17

Example 7.2 Now we can define a methodmove that moves a flea by1 step to the right.

movableF lea
∆
= o self .

{x = 0;

getX = self ◦x;

getNextX = self ◦getX + 1;

move = (self ◦x := self ◦getNextX)

}

In this example,movableF lea◦move◦move◦getX evaluates to 2.

Method update

The generalization of the field update is a method update:

obj◦l := ς self .m(self)

Here l is a name of a method,m is a new body of this method with a bound variable

self .

The reduction rules for the method update are analogous to ones for field update.

Forobject defined in (7.2) let object′ beobject◦l := ς self .m(self), then

object′◦l → m(object′) (7.6)

and

object′◦li → mi(object
′) (7.7)

wherei ∈ 1..n andl 6= li.

74

Example 7.3 We can override methodgetNextX in the last example:

fastF lea
∆
= movableF lea◦getNextX := ς self .self ◦getX + 2.

NowfastF lea moves twice faster thanmovableF lea. For example,

fastF lea◦move◦move◦getX −→ 0 + 2 + 2 = 4.

The operation method update could be used for extending an object with new meth-

ods. That is, we can apply the operation of updating a method to an object that did not

contain this method before.

We will use the following alternative syntax for method update. We will write

o(obj) self .

{l1 = m1(self);

. . .

ln = mn(self)}

instead of

obj ◦l1 := ς self .m1(self)

. . .

◦ln := ς self .mn(self)

For example we could definedmovableF lea from Example7.2 as an extension of

simpleF lea:

movableF lea = o(simpleF lea) self .{move = (self ◦x := self ◦getNextX)}.

Note that field update can be considered as a partial case of method update whenm

does not depend onself .

These operations and the reduction rules are summarized in Table7.1.

75

Table 7.1:Reduction rules for object calculus

Canonical terms:

o self .{l1 = m1(self); . . . ; ln = mn(self)}

Operations:

Method application:obj◦l

Method update/extension:obj◦l := ς self .m(self)

Field update/extension is a partial case of method update:

obj◦l := f
∆
= obj◦l := ς self .m

Reductions:

If obj = o self .{l1 = m1(self); . . . ; ln = mn(self)} then

obj◦li → mi(obj) whenli 6= li+1, . . . ln

obj◦l := ς self .m(self) → o self .{l1 = m1(self); . . . ; ln = mn(self); l = m(self)}

76

7.1.2 Formal definitions

It is relatively easy to define objects and their operations (method application and method

update) in lambda-calculus with records. We will define objects as functions that take

self as a parameter and return a record:

o self . { l1 = m1(self); . . . ; ln = mn(self)} ∆
=

λself . { l1 = m1(self); . . . ; ln = mn(self)} (7.8)

As one would expect, method application is a self application :

obj◦l
∆
= (obj obj).l, (7.9)

i.e., we apply an object to itself and then get a record, and extract a fieldl from this

record.

Field update is defined as

obj◦l := t
∆
= λself . (obj self).l := t . (7.10)

By analogy, method update is defined as

obj◦l := ς self .m(self)
∆
= λself .((obj self).l := m(self)). (7.11)

Theorem 7.4 The definitions(7.8)–(7.11) satisfy the intended reduction rules from Ta-

ble7.1.

Remark An alternative way would be to define an object as a record of methods, where

each method is a function that takeself as a parameter:

o self .{l1 = m1(self); . . . ; ln = mn(self)} ∆=

{l1 = λself .m1(self); . . . ; ln = λself .mn(self)}
This approach was used by Hickey in [21]. Although the latter definition may seem more natural,

we choose the former one, because the typing rules will be more elegant for it.

77

7.1.3 Additional Properties

From the above definitions it is easy to see that we can define any object as an extension

of an empty object{||}. For example, theobject defined in (7.2) is equal to

o({||}) self .

{l1 = m1(self);

. . .

ln = mn(self)}.

Also if we rewrite a method, then we can forget about the old method, i.e.,

o self {. . . ; l = m; . . . ; l = m′; . . . } ≡ o self .{. . . ; . . . ; l = m′; . . . }

and

obj◦(l := m)◦(l := m′) ≡ obj◦l := m′.

The methods with different names commute. That is,

o self .{. . . ; l = m; l′ = m′; . . . } ≡ o self .{. . . ; l′ = m′; l = m; . . . }

and

obj◦(l := m)◦(l
′ := m′) ≡ obj◦(l

′ := m′)◦(l := m)

wherel 6= l′.

7.1.4 Notations

First, let us note that we use three types of dots in the thesis. The simple dot (.) is used

for in expressions likeλx.f , o self .{x = 0} to show binding variables. The bold dot (.)

is used for records, e.g.,r.x, r.x := 1. The circle dot (◦) is used for objects, e.g.,o◦x,

o◦x := 1.

78

Like in many programming languages, we will usually omitself . That is, we will

use the following notations:

instead of writing: we will write:

self ◦x x

self ◦x := m x := m

o self .{. . . } {| . . . |}
o(obj) self .{. . . } o(obj) {| . . . |}

For instance, Example7.2can be rewritten as follows:

movableF lea =

{|x = 0;

getX = x;

getNextX = getX + 1;

move = (x := getNextX);

|}

7.1.5 Recursion

The above definition allows us to write recursive objects.

Example 7.5 We can write a recursive method that moves the flea byn steps.

advanceF lea
∆
= o(movableF lea).

{moveBy = (λn.if n = 0 then self else move◦moveBy (n− 1))

}

ThenadvanceF lea◦moveBy (17)◦getX evaluates to17.

79

Example 7.6 We can also write objects with mutual recursion:

feeFoo
∆
=

{|foo = λn.if n = 0 then 0 else fee(n− 1);

fee = λn.if n = 0 then 1 else foo(n− 1)

|}

This object has two methodsfee andfoo, which recursively call each other. According

to rules of Table7.1feeFoo◦foo(17) evaluates to1.

7.2 Typing

As we saw, object instances can be defined fairly easily in lambda-calculus with records.

However, finding the right type for these objects is a difficult task. Indeed, how do we

type even a simple objectsimplestF lea
∆
= {|x = 1; getX = x|}? This object is a

function from objects of this type to the record type{x : Z; getX : Z}. Intuitively

the type of this objectX should satisfy an equationX = X → {x : Z; getX : Z}.
Unfortunately, this equation is not monotone inX. Therefore, we can not use standard

fixpoint operations such as the least fixpoint (µ) or the greatest (ν). Moreover, this

equation may not have a fixpoint at all!

First let us examine more carefully what we are looking for. We want to define the

type of objects of the form

o self .{l1 = m1(self); . . . ; ln = mn(self)}

where we are given the type of the methods. LetMi be a type of a method namedli. Let

us denote the type of such objects as

O{l1 : M1; . . . ; ln : Mn}

80

For example,simplestF lea should have typeSimplestF leas
∆
= O{x : Z; getX : Z}.

Note that some methods may return objects of the same type (e.g.,move andmoveBy

methods). In this case we will use a bound variableSelf that represent the type of the

object itself. We will use the following syntax:

O Self .{l1 : M1(Self); . . . ; ln : Mn(Self)} (7.12)

For example, we expectadvanceF lea to be of the following type

AdvanceF leas
∆
=

O Self .{x : Z; getX : Z; getNextX : Z; move : Self ; moveBy : N→ Self }.
We will call the record typeM [Self] = {l1 : M1(Self); . . . ; ln : Mn(Self)} a

declaration typeof an object type. Our goal is define a constructorOSelf.M [Self]

which is an object type of a given declaration. First, let us describe the properties that

we expect from this type constructor.

What does it mean that the method of an object has a typeM? It means that if

we apply this method we get an element of typeM . That is, if obj has typeO{l1 :

M1; . . . ; ln : Mn} thenobj◦li must have typeMi. More generally, if

Object = O Self .{l1 : M1(Self); . . . ; ln : Mn(Self)}

then we can apply methodli to all objects of this type and the result must have type

Mi(Object). That is, the following rule is necessary:

obj ∈ Object

obj◦li ∈ Mi(Object)
(7.13)

For example for allbug ∈ AdvanceF leas we should havebug◦getX ∈ Z and

bug◦move ∈ AdvanceF leas.

81

7.3 Definition of Object Types

In this section we are going to give a definition of a type of objects satisfying the prop-

erties outlined above. We start with

Definition 7.7 LetX andA be types, then

X C A iff X ⊆ (X → A)

This definition says that ifX C A then we can apply elements of typeX to themselves.

Therefore we have the following

Lemma 7.8 If X C A then ifo ∈ X theno(o) ∈ A.

In particular, if

X C {l1 : M1; . . . ; ln : Mn} (7.14)

then for anyo ∈ X we have thato◦li ∈ Mi.

So intuitively, the typeX = O Self .{l1 : M1(Self); . . . ; ln : Mn(Self)} should

satisfy the property (7.14). Of course the empty type always satisfies (7.14), but we

want the object type to contain as many elements as possible. So we define the object

type as a union of all typesX satisfying (7.14).

Definition 7.9 Generally, letM [X] be a type for any typeX. We define a typeOX.M [X]

as a union of all typesX that satisfyX C M [X]:

OX.M [X] = ∪{X : U |X C M [X]}.

We will also use the following abbreviation:{|l1 : M1(Self); . . . ; ln : Mn(Self)|}
for the typeO Self .{l1 : M1(Self); . . . ; ln : Mn(Self)}.

This definition does not satisfy the property (7.14), but it turns out that we do not

need this property. We still have the following lemma:

82

Lemma 7.10 If M [X] is monotone inX (w.r.t. subtyping relation) then for anyo ∈
OX.M [X] we have thato(o) ∈ M [OX.M [X]].

In particular, if Mi[X] are monotone inX, then if O = {|l1 : M1(Self); . . . ;

ln : Mn(Self)|} ando ∈ O theno◦li ∈ Mi(O).

Proof If o ∈ OX.M [X] then there is a typeX ∈ U, such thato ∈ X andX C

M(X). By Lemma7.8, o(o) ∈ M(X). SinceX ⊆ OX.M [X] andM is monotone,

M(X) ⊆ M [OX.M [X]]. Thereforeo(o) ∈ M [OX.M [X]].

The second part of the lemma immediately follows form the first part.

This lemma provides us the elimination rule for objects (7.13).

obj ∈ Object

obj◦li ∈ Mi(Object)

whereObject = O Self .{l1 : M1(Self); . . . ; ln : Mn(Self)}.
The remaining question is how to prove that this type is nonempty? For example,

how can one prove thatsimplestF lea ∈ SimplestF leas? This is nontrivial question.

We should find a typeX satisfyingo ∈ X C M(X). We will need another constructor.

7.4 Extensibility

Definition 7.9 has one important disadvantage: objects of the typeO Self .M [Self] are

not extensible, in the sense that we cannot add new methods to them.

Example 7.11 Leta be an arbitrary object of the type{|move : Self |}. Consider another

object

b = {|move = a|}.

Thenb is also an object of the type{|move : Self |}. The problem withb is thatb is not

83

extensible. For instance an extension

b′ = {|move = a; new method = t|}

does not have a type{|move : Self ; new method : T |} becauseb′◦move◦new method is

undefined.

Extensible objects should have typeT such that not onlyT C M(T), but also any

extensions (subtype)X of T should meetX C M(X).

7.5 Updatable Fields

Another problem with Definition7.9is that we can not update fields and methods of the

objects of the typeOX.M [X].

Example 7.12 Suppose we want to update a fieldx of an objectobj of the type{|x :

Z; y : Z|}. That is, we want to prove thatobj◦x := 1 has the same type. We cannot

always do that. For example let

o = {|x = 0; y = if x = 0 then 1 else error|}.

This object has type{|x : Z; y : Z|}, butobj◦x := 1 does not have this type.

So to be able to update fields, we will need some additional restrictions on the object

type. To deal with this problem we need

Definition 7.13 Letx be a label,A andT be types. Let us define the following relation

onx, A, T :

{|x : A|} ≺ T iff ∀a : A.∀t : T.(t◦x := a) ∈ T

Note that this is a ternary relation, not a binary relation between types.

84

Informally speaking{|x : A|} ≺ T gives a lower bound for a type of fieldx in T . It

plays the same role as Hickey’s≺-relation [21] and Zwanenburg’s#-relation [39].

We are going to define a type ofextensibleobjects satisfying conditions of the form

P (T) = {|x : A|} ≺ T . More precisely, for a given declarationM(X) and a given

conditionP (X) we define a type of extensible objectsEP M . HereM ∈ U → U and

P (X) is a predicate on types. We cannot give this definition for an arbitraryM andP .

M should be monotone and continuous andP should be closed under intersection (see

below).

7.6 Topology

Subtyping relation forms a partial order over the types inU. Partial order forms a topol-

ogy: the topology is formed by intervals

[A; B]
∆
= {X : U | A ⊆ X ⊆ B}

7.6.1 Continuous functions

Usually the following definition is used for continuity of monotone operators:

Definition 7.14 Monotone type operatorM is continuousiff for any non-empty family

of types{Xi}i:I

M(
⋂
i:I

Xi) =
⋂
i:I

M(Xi)

Most of the monotone type constructors are continuous:X + Y , X × Y , and most

important{x : X; y : Y } are continuous.

85

7.6.2 Semicontinuous functions

We will need to iterateN(X) = X → M(X). Unfortunately, this operator is not

monotone and not continuous in any sense. For example,N(X) = ¬X is clearly not

continuous. So we will need a less strict definition.

Definition 7.15 A type operatorN is (upper) semicontinuousiff for any non-empty fam-

ily of types{Xi}i:I

N(
⋂
i:I

Xi) ⊇
⋂
i:I

N(Xi)

It is clear that any continuous function is semicontinuous. We can also prove that if

M(X) is semicontinuous thenN(X) = X → M(X) is also semicontinuous. It follows

from the following two lemmas.

Lemma 7.16 If F (X, Y) is a function that is anti-monotone in its first argument and

semicontinuous in its second argument, thenN(X) = F (X,Y) is semicontinuous.

Lemma 7.17 X → Y is a monotone and continuous inY and anti-monotone inX.

Note that a monotone function is semicontinuous iff it is continuous.

7.6.3 Closed properties and sets

Definition 7.18 We will say that a propertyP of types isclosed (under intersection)iff

for any family of types{Xi}i:I if P is true for all Xi’s thenP is true for intersection of

Xi’s, i.e.

(∀i : I.P (Xi)) ⇒ P (
⋂
i:I

Xi)

In other words it means thatP is semicontinuous function fromU to propositions.

86

Definition 7.19 We will say that a subtypeV of U is closed (under intersection)iff for

any family of types{Xi}i:I whereXi ∈ V , intersection of allXi’s is also inV .

Note that it follows from this definition that ifP is closed thenP is true for Top and

Top is in any closed set of types (since Top=
⋂

i:Void
Void).

Example 7.20 P (T) = {|x : A|} ≺ T is a closed predicate.

7.7 Extensible objects: Formal definitions

Now we are going to give a formal definition ofEP M .

Definition 7.21 LetP : U→ P be a property of types. DefineUP
∆
= {X : U | P (X)}.

Definition 7.22 LetV be a subtype ofU, andA andB be types. Define

V [A; B]
∆
= {X : V | A ⊆ X ⊆ B}.

Definition 7.23 Let M be a continuous monotone type operator. LetP be a closed

proposition andT be a type. Define a relation

T ∝P M
∆
= ∀X : UP . ∃Y : UP [X ∩ T ; X]. Y C M(Y).

We will refer to suchY asM∗(X).

Definition 7.24 LetM andP be as in definition7.23. Define

EP M
∆
=

⋃
{T : U′ | T ∝P M}

We cannot prove that for any typeT if T ∝P M thenT C M(T). But we can prove

the following

Lemma 7.25 Let M andP be as in definition7.23. For any typeT , if T ∝P M then

there is a typeT ′ in UP , such thatT ⊆ T ′ andT ′ C M(T ′).

87

Proof TakeT ′ = M∗(Top).

Corollary 7.26 EP M ⊆ OM

Lemma 7.27 T ∝P M is anti-monotone inT and monotone inM , i.e.,

• T1 ⊆ T2 ∝P M impliesT1 ∝P M and

• If M1(X) ⊆ M2(X) for all X thenT ∝P M1 impliesT ∝P M2

Corollary 7.28 EP M is monotone inM .

Lemma 7.29 T ∝P Top for any typeT .

Lemma 7.30 Let{Mi}i:I be a family of continuous functions. IfT ∝P Mi for all i ∈ I

thenT ∝P

⋂
i:I

Mi (i.e. T ∝P M is continuous inM).

Proof SinceT ∝P X.Mi(X) we have a family of functionsM∗
i , s.t. M∗

i (X) ∈
UP [X ∩ T ; X] andM∗

i (X) C Mi(M
∗
i (X)) for anyX ∈ UP .

Now, we want to proveT ∝P X.
⋂
i:I

Mi(X). We are givenX ∈ UP . We want to find

Y ∈ UP [X ∩ T ; X] such thatY C
⋂
i:I

Mi(Y).

Let Ni(X) = X → Mi(X). We now thatNi’s are semicontinuous. Note that

Y C
⋂
i:I

Mi(Y) iff Y ⊆ ⋂
i:I

Ni(Y).

Define a family of sequences of typesY i
n by induction:

• Y i
0 = M∗

i (X)

• Y i
n+1 = M∗

i (
⋂
j:I

Y j
n)

Then we prove the following:

0. Yn ∈ UP

88

Proof: straightforward induction using facts thatM∗
i : UP → UP andUP is closed

under intersection.

1. Y i
n+1 ⊆ Y j

n for any indexesi, j.

Proof:Y i
n+1 = M∗

i (
⋂
j:I

Y j
n) ⊆ ⋂

j:I

Y j
n ⊆ Y j

n

As a corollary we have:

2.
⋂
n:N

Y i
n =

⋂
n:N

Y j
n for any indexesi, j.

Now, defineY as this intersectionY =
⋂
n:N

Y i
n.

3. Y i
n ⊆ Ni(Y

i
n)

Proof: SinceN∗
i (X) ⊆ Ni(N

∗
i (X)) for anyX ∈ UP .

4. Y ⊆ Ni(Y)

Proof:Ni(Y) = Ni(
⋂
n:N

Y i
n) ⊇ ⋂

n:N
Ni(Y

i
n) ⊇ ⋂

n:N
Y i

n = Y .

5. Y i
n ⊆ X

Proof: By induction.

6. Y i
n ⊇ X ∩ T

Proof: By induction.

So we have thatY ∈ UP [X ∩ T ; X] andY ⊆ Ni(Y).

Corollary 7.31 EP is continuous inM .

In particular,

EP (M1 ∩M2) = (EP M1) ∩ (EP M2).

This establishes the following rule

o ∈ EP M1 o ∈ EP M1

o ∈ EP (M1 ∩M2)

89

Lemma 7.32 Let P be a closed proposition,M1 be a continuous function fromUP to

UP andM2 be a continuous monotone function. Let

T =
⋂

X:UP
X⊆M1(X)

M2(X)

Let N2(X) = X → M2(X). If N2 ∈ {X : UP |X C M1(X)} → UP , then for anyT ′

such thatT ′ ∝P M1 we have thatT ′ ∩ T ∝P M2.

Proof SinceT ′ ∝P X.M1(X), there is a functionM∗
1 , s.t. M∗

1 (X) ∈ UP [X ∩
T ′; X] andM∗

1 (X) C M1(M
∗
1 (X)) for anyX ∈ UP .

Let N2(X) = X → M2(X).

Now, we want to proveT ∩ T ′ ∝P X.N2(X). That is for any typeX ∈ UP we

should find a typeY s.t.Y ∈ UP [X ∩ T ∩ T ′; X] andY ⊆ N2(Y).

Define the following sequence:

• Y0 = M∗
1 (Top)

• Yn+1 = M∗
1 (N2(Yn) ∩X)

DefineY =
⋂
n:N

Yn. Then we can prove the following:

1. Yn ∈ UP andYn C M1(Yn).

Proof: straightforward simultaneous induction.

2. T ⊆ N2(Yn)

Proof: By definition ofT .

3. T ∩ T ′ ∩X ⊆ Xn

Proof: Two cases:

Y0 = M∗
1 (Top) ⊇ T ′ ⊇ T ∩ T ′ ∩X

Yn+1 = M∗
1 (N2(Yn) ∩X) ⊇ N2(Yn) ∩X ∩ T ′ ⊇ T ∩ T ′ ∩X

90

4. N2(Yn) ⊇ Yn+1

Proof:Yn+1 = M∗
1 (N2(Yn) ∩X) ⊆ N2(Yn).

5. Y ⊆ N2(Y)

Proof:N2(Y) ⊇ ⋂
n:N

N2(Yn) ⊇ ⋂
n:N

Yn+1 ⊇ Y .

6. Y ⊆ X

Proof:Y ⊆ Y1 = M∗
1 (N2(Y0) ∩X) ⊆ N2(Y0) ∩X ⊆ X.

7. Y ∈ UP [X ∩ T ∩ T ′; X]

Proof: By (1), (3) and (6).

So we are done.

Corollary 7.33 If P , M1, M2 andT are as in Lemma7.32then

T ∩ EP M1 ⊆ EP (M1 ∩M2)

This corollary provides a main introduction rule for objects:

Γ ` o ∈ EP M1

Γ; X : U; P (X); X C M1(X) ` o ∈ M2(X)

Γ; X : U; P (X); X C M1(X) ` P (M2(X))

Γ ` o ∈ EP M1 ∩M2

7.8 Object Calculus

The rules that we proved above are represented in Table7.2.

We can make these rules more concrete substituting record types in place ofM . We

will use the notation

{|x1 : M1[Self]; . . . ; xn : Mn[Self]|}P

for EP .(λSelf .{x1 : M1[Self]; . . . ; xn : Mn[Self]}).

91

Table 7.2:Basic typing rules of object calculus

Γ ` o ∈ EP M1

Γ; X : U; P (X); X C M1(X) ` o ∈ M2(X)

Γ; X : U; P (X); X C M1(X) ` P (M2(X))

Γ ` o ∈ EP M1 ∩M2

Γ; X : U; P (X) ` M1(X) ⊆ M2(X)

Γ ` EP M1 ⊆ EP M2

Γ; i : I ` o ∈ EP Mi

Γ ` o ∈ EP

⋂
i:I

Mi

Γ ` o ∈ EP M

Γ ` o ∈ OX.M(X)

In these rulesP are closed predicates andM ’s are monotone continuous functions.

92

Table 7.3:Some derived rules of object calculus

Γ ` o(o){|xn = mn[self]|} ∈ {|x1 : M1[Self]; . . . ; xn−1 : Mn−1[Self]|}P

Γ;X : U; P (X);X C {x1:M1[X]; . . . ; xn−1:Mn−1[X]}; self : X ` mn[self] ∈ Mn[X]

Γ;X : U;P (X);X C {x1:M1[X]; . . . ; xn−1:Mn−1[X]} ` P (X → Mn[X])

Γ ` o(o){|xn = mn[self]|} ∈ {|x1 : M1[Self]; . . . ; xn : Mn[Self]|}P

Γ ` X C {x1 : M1[X]; . . . ; xn : Mn[X]} Γ ` o ∈ X

Γ ` o◦xi ∈ Mi[X]

Γ ` o ∈ obj ∈ {|x1 : M1[Self]; . . . ; xn : Mn[Self]|}P

Γ ` o ∈ obj ∈ {|x1 : M1[Self]; . . . ; xn : Mn[Self]|}

Γ ` o ∈ obj ∈ {|x1 : M1[Self]; . . . ; xn : Mn[Self]|}

Γ ` o◦xi ∈ Mi[X]

Γ ` {|x : A|} ≺ X Γ ` o ∈ X Γ ` a ∈ A

Γ ` o◦x := a ∈ X

Γ ` x 6= y

Γ ` {|x : A|} ≺ (X → {y : B})

Γ ` A ⊆ B

Γ ` {|x : A|} ≺ (X → {x : B})

In these rulesP is a closed predicates andM ’s are monotone continuous functions.

93

7.9 Example

Now we show how rules of Table7.3works. Let us prove thatmovableF lea has type

MovableF leas =

{| getX : Z;

getNextX : Z;

move : Self

|}

Remember

movableF lea =

{|x = 0;

getX = x;

getNextX = getX + 1;

move = (x := getNextX);

|}
Let P (T) = {|x : Z|} ≺ T . It is enough to prove thatmovableF lea ∈ {|x : Z; getX :

Z; getNextX : Z; move : Self |}P . Applying introduction four times we get four main

subgoals:

X : U; P (X); self : X ` 0 ∈ Z
X : U; P (X); X C {x : Z}; self : X ` self ◦x ∈ Z
X : U; P (X); X C {x : Z; getX : Z}; self : X ` self ◦getX + 1 ∈ Z
X : U; P (X); X C {x : Z; getX : Z; getNextX : Z}; self : X ` self ◦x :=

self ◦getNextX ∈ X

and four goals with the conclusions:P (X → {x : Z}), P (X → {getX : Z}), and

so on. These subgoals are momentary proved by introduction rules for≺.

94

The first main subgoal is trivial. The second and the third one are proved by elimi-

nation rules forC. And finally, the last one is proved by the elimination rule for≺.

BIBLIOGRAPHY

[1] Martín Abadi and Luca Cardelli. A semantics of object types. InProceedings of
9th IEEE Symposium on Logic in Computer Science, pages 332–341, Paris, France,
July 1994. IEEE, IEEE Computer Society Press.

[2] Stuart F. Allen. A Non-type-theoretic Definition of Martin-Löf’s Types. In
D. Gries, editor,Proceedings of the 2nd IEEE Symposium on Logic in Computer
Science, pages 215–224. IEEE Computer Society Press, June 1987.

[3] Stuart F. Allen. A Non-Type-Theoretic Semantics for Type-Theoretic Language.
PhD thesis, Cornell University, 1987.

[4] Lennart Augustsson. Cayenne — a language with dependent types. InInterna-
tional Conference on Functional Programming, pages 239–250, 1998.

[5] Gustavo Betarte and Alvaro Tasistro. Extension of Martin-Löf’s type theory
with record types and subtyping. In Giovanni Sambin and Jan M. Smith, edi-
tors,Twenty-Five Years of Constructive Type Theory, volume 36 ofOxford Logic
Guides, pages 21–39, Oxford, 1998. Clarendon Press.

[6] Mark Bickford and Jason J. Hickey. Predicate transformers for infinite-state au-
tomata in NuPRL type theory. InProceedings of3rd Irish Workshop in Formal
Methods, 1999.

[7] Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing object encod-
ings. InProceedings of FOOL 3, 1996.

[8] Robert L. Constable. Types in logic, mathematics and programming. In Sam Buss,
editor,Handbook of Proof Theory, chapter 10. Elsevier Science, 1998.

[9] Robert L. Constable et al.Implementing Mathematics with the NuPRL Develop-
ment System. Prentice-Hall, NJ, 1986.

[10] Robert L. Constable and Jason Hickey. NuPRL’s class theory and its applica-
tions. In Friedrich L. Bauer and Ralf Steinbrueggen, editors,Foundations of Se-
cure Computation, NATO ASI Series, Series F: Computer & System Sciences,
pages 91–116. IOS Press, 2000.

[11] Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of the basic
functionality theory for theλ-calculus. Notre-Dame Journal of Formal Logic,
21(4):685–693, October 1980.

[12] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.Introduction to
Algorithms. MIT Press/McGraw-Hill Book Company, Cambridge, Massachusetts,
1994.

95

96

[13] Judicäel Courant. An applicative module calculus. InTAPSOFT, Lecture Notes in
Computer Science, pages 622–636, Lille, France, April 1997. Springer-Verlag.

[14] J-Y. Girard. Une extension de l’interpretation de Gödel a l’analyse, et son appli-
cation a l’elimination des coupures dans l’analyse et la theorie des types. In2nd
Scandinavian Logic Symposium, pages 63–69. Springer-Verlag, NY, 1971.

[15] J-Y. Girard. Interprétation fonctionnelle etélimination des coupures de
l’arithmétique d’ordre suṕerieur. PhD thesis, Université Paris VII, 1972.

[16] Leo J. Guibas and Robert Sedgewick. A dichromatic framework for balanced trees.
In IEEE Symposium on Foundations of Computer Science, pages 8–21, October
1978.

[17] C. A. Gunter and J. C. Mitchell, editors.Theoretical Aspects of Object-Oriented
Programming, Types, Semantics and Language Design. Types, Semantics, and
Language Design. MIT Press, Cambridge, MA, 1994.

[18] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order
modules with sharing. InConference record of POPL ’94: 21st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 123–137,
Portland, OR, January 1994.

[19] Jason Hickey, Aleksey Nogin, Robert L. Constable, Brian E. Aydemir, Eli Barzi-
lay, Yegor Bryukhov, Richard Eaton, Adam Granicz, Alexei Kopylov, Christoph
Kreitz, Vladimir N. Krupski, Lori Lorigo, Stephan Schmitt, Carl Witty, and Xin
Yu. MetaPRL — A modular logical environment. Accepted to the TPHOLs 2003
Conference, 2003.

[20] Jason J. Hickey. Formal objects in type theory using very dependent types. In
Foundations of Object Oriented Languages 3, 1996. Available electronically
through theFOOL 3 home page.

[21] Jason J. Hickey. A predicative type-theoretic interpretation of objects. Unpub-
lished, 1997.

[22] Jason J. Hickey.The MetaPRL Logical Programming Environment. PhD thesis,
Cornell University, Ithaca, NY, January 2001.

[23] Jason J. Hickey, Aleksey Nogin, Alexei Kopylov, et al. MetaPRL home page.
http://metaprl.org/ .

[24] Douglas J. Howe. Equality in lazy computation systems. InProceedings of the
4th IEEE Symposium on Logic in Computer Science, pages 198–203, Asilomar
Conference Center, Pacific Grove, California, June 1989. IEEE, IEEE Computer
Society Press.

http://www.cis.upenn.edu/~bcpierce/FOOL/FOOL3.html�
http://metaprl.org/�

97

[25] T. B. Knoblock and R. L. Constable. Formalized metareasoning in type theory. In
Proceedings of the 1st Symposium on Logic in Computing Science, pages 237–248.
IEEE, 1986.

[26] Alexei Kopylov. Dependent intersection: A new way of defining records in type
theory. InProceedings of 18th IEEE Symposium on Logic in Computer Science,
2003.

[27] Alexei Kopylov and Aleksey Nogin. Markov’s principle for propositional type
theory. In L. Fribourg, editor,Computer Science Logic, Proceedings of the 10th

Annual Conference of the EACSL, volume 2142 ofLecture Notes in Computer
Science, pages 570–584. Springer-Verlag, 2001.

[28] Xavier Leroy. Manifest types, modules, and separate compilation. InProceedings
of the 21st ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 109–122. ACM Press, 1994.

[29] Per Martin-L̈of. Constructive mathematics and computer programming. InPro-
ceedings of the Sixth International Congress for Logic, Methodology, and Philos-
ophy of Science, pages 153–175, Amsterdam, 1982. North Holland.

[30] Per Martin-L̈of. Intuitionistic Type Theory. Number 1 in Studies in Proof Theory,
Lecture Notes. Bibliopolis, Napoli, 1984.

[31] P.F. Mendler.Inductive Definition in Type Theory. PhD thesis, Cornell University,
Ithaca, NY, 1988.

[32] Aleksey Nogin. Quotient types: A modular approach. In Victor A. Carreño,
Cézar A. Mũnoz, and Sophiène Tahar, editors,Proceedings of the 15th Interna-
tional Conference on Theorem Proving in Higher Order Logics (TPHOLs 2002),
volume 2410 ofLecture Notes in Computer Science, pages 263–280. Springer-
Verlag, 2002.

[33] Chris Okasaki. Red-black trees un a functional setting.Journal of Functional
Programming, 9(4):471–477, May 1999.

[34] Benjamin C. Pierce. Programming with intersection types, union types, and
polymorphism. Technical Report CMU-CS-91-106, Carnegie Mellon University,
February 1991.

[35] Benjamin C. Pierce. Programming with intersection types, union types, and
polymorphism. Technical Report CMU-CS-91-106, Carnegie Mellon University,
February 1991.

[36] Robert Pollack. Dependently typed records for representing mathematical struc-
ture. In J. Harrison and M. Aagaard, editors,Theorem Proving in Higher Order
Logics: 13th International Conference, TPHOLs 2000, volume 1869 ofLecture
Notes in Computer Science, pages 461–478. Springer-Verlag, 2000.

98

[37] Garrel Pottinger. A type assignment for the strongly normalizableλ-terms. In
Jonathan P. Seldin and J. Roger Hindley, editors,To H. B. Curry: Essays in Combi-
natory Logic, Lambda Calculus and Formalism, pages 561–577. Academic Press,
London, 1980.

[38] John C. Reynolds. Design of the programming language forsythe. Technical Re-
port CMU-CS-96-146, Carnegie Mellon University, June 1996.

[39] Jan Zwanenburg. A type system for record concatenation and subtyping. In Kim
Bruce and Giuseppe Longo, editors,Informal proceedings of Third Workshop on
Foundations of Object-Oriented Languages (FOOL 3), 1996.

