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Abstract: XML is rapidly emerging as a standard for exchanging business data on the World Wide 

Web. For the foreseeable future, however, most business data will continue to be stored in relational 

database systems. Consequently, if XML is to fulfill its potential, some mechanism is needed to publish 

relational data as XML documents. Towards that goal, one of the major challenges is finding a way to 

efficiently structure and tag data from one or more tables as a hierarchical XML document. Different 

alternatives are possible depending on when this processing takes place and how much of it is done 

inside the relational engine. In this paper, we characterize and study the performance of these 

alternatives. Among other things, we explore the use of new scalar and aggregate functions in SQL for 

constructing complex XML documents directly in the relational engine. We also explore different 

execution plans for generating the content of an XML document. The results of an experimental study 

show that constructing XML documents inside the relational engine can have a significant performance 

benefit. Our results also show the superiority of having the relational engine use what we call an "outer 

union plan" to generate the content of an XML document. 
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1. Introduction 

XML is rapidly emerging as a standard for exchanging business data on the World Wide 

Web. Its nested, self-describing structure provides a simple yet flexible means for 

applications to exchange data. In fact, there are already many industry proposals [5] to 

standardize Document Type Descriptors (DTDs) [26], which are essentially schemas for 

XML documents. These DTDs are being developed for domains as diverse as electronic 

commerce [4] and real estate [18]. Despite the excitement surrounding XML, it is important 

to note that most operational business data, even for new web-based applications, continues to 

be stored in relational database systems. This is unlikely to change in the foreseeable future 

because of the reliability, scalability, tools, and performance associated with relational 

database systems. Consequently, if XML is to fulfill its potential, some mechanism is needed 

to publish relational data in the form of XML documents.  
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There are two main requirements for publishing relational data as XML documents. The 

first is the need for a language to specify the conversion from relational data to XML 

documents. The second is the need for an implementation to efficiently carry out the 

conversion. The language specification describes how to structure and tag data from one or 

more tables as a hierarchical XML document. One of this paper’s contributions is a language 

specification based on SQL, with minor extensions in the form of new scalar and aggregate 

functions for XML document construction. These extensions can be easily added to existing 

relational systems without departing from existing SQL semantics. Also, as a result of 

extending SQL in this manner, standard APIs like ODBC can be used to query and retrieve 

XML documents. This allows existing tools and applications to easily integrate relational data 

and XML documents. 

Given a language specification for converting relational tables to XML documents, an 

implementation to carry out the conversion raises many challenges. Relational tables are flat, 

while XML documents are tagged, hierarchical and graph-structured. What is the best way to 

go from the former to the latter? In order to answer this question, we characterize the space of 

alternatives based on whether tagging and structuring are done early or late in query 

processing. We then refine this space based on how much processing is done inside the 

relational engine and explore various alternatives within this space. Our performance 

comparison of the alternatives using a commercial database system (DB2) shows that an 

“unsorted outer union” approach – based on late tagging and late structuring – is attractive 

when the resulting XML document fits in main memory, while a “sorted outer union” 

approach – based on late tagging and early structuring – performs well otherwise. Our results 

also show that constructing an XML document inside a relational engine is far more efficient 

than doing so outside the engine. Thus, constructing an XML document inside the relational 

engine has a two-fold advantage – not only does it allow existing SQL APIs to be reused for 

XML documents, but it is also much more efficient. 

The rest of this paper is organized as follows. In Section 2 we provide a brief overview of 

XML and in Section 3 we present our SQL-based language approach for publishing relational 

data as XML. In Section 4 we explore a range of implementation alternatives and in Section 5 

we evaluate the performance of the alternatives and show the superiority of the “outer union” 

plans. In Section 6 we outline the algorithm to generate the “outer union” plans from the SQL 

query specification proposed in this paper. In Section 7 we discuss related work, and in 

Section 8, we present our conclusions and ideas for future work. 
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2. An XML Primer 
Extensible Markup Language (XML) [26] is a hierarchical format for information exchange 

in the World Wide Web. An XML document consists of nested element structures starting 

with the root element. Each element has a tag associated with it. In addition to nested 

elements, an element can have attributes and values or sub-elements. Figure 1 shows an XML 

document representing a customer in a simple e-commerce application, where each customer 

has a set of accounts and a set of purchase orders, and each purchase order in turn has a set of 

items and a set of payments. The customer is represented by the <customer> element, which 

appears at the root of the document. The customer has an id attribute, which is a special kind 

of attribute that uniquely identifies an element in an XML document. Each customer has a 

name, represented by the <name> sub-element nested under customer. A customer element 

also has nested sub-elements representing the accounts and purchase orders associated with 

the customer. Each of these has other attributes and sub-elements. 

An interesting feature to note in Figure 1 is that the purchase order elements have an 

attribute called “acct”. This is a field that is of type IDREF (such typing information is 

specified in a Document Type Descriptor [26] – not shown here – associated with an XML 

document), and it logically points to an element having the same value as its ID. Thus, the 

first purchase order points to the second account, while the second purchase order points to 

the first account. Another key feature of the XML model is that elements can be ordered. For 

example, purchase orders could be ordered by date to make the most recent purchases appear 

first in the document. More details on XML can be found in [26]. 

Figure 1: An XML Document Describing a Customer 

<customer id=“C1”> 
    <name> John Doe </name> 
    <accounts> 
         <account id=“A1”> 1894654 </account> 
         <account id=“A2”> 3849342 </account> 
    </accounts> 
    <porders> 
         <porder id=“P01” acct=“A2”>    // first purchase order 
              <date> 1 January 2000 </date> 
              <items> 
                   <item id=“I1”> Shoes </item> 
                   <item id=“I2”> Bungee Ropes </item> 
              </items> 
              <payments> 
                   <payment id=“P1”> due January 15 </payment> 
                   <payment id=“P2”> due January 20 </payment> 
                   <payment id=“P3”> due February 15 </payment> 
              </payments> 
    </porders> 
    <porder id=“P02” acct=“A1”>    // second purchase order 
        .... 
    </porder> 
</customer> 
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3. A SQL-based Language Specification 
A key requirement for converting relational data to XML documents is a language to specify 

the conversion. Our approach to designing this langauge is to harness and extend the power of 

SQL for this purpose. Nested SQL statements are used to specify nesting, and SQL functions 

are used to specify XML element construction. 

Consider the relational schema shown in Figure 2, which models the customer 

information of Figure 1 in relational form. As shown, there are customer, account, purchase 

order, item and payment tables. Each table has an id and other attributes associated with it, 

and there are foreign key relationships (shown by means of arrows) relating the tables. To 

convert data in this relational schema to the XML document in Figure 1, we can write a SQL 

query that follows the nested structure of the document, as shown in Figure 3. 

The query in Figure 3 produces both SQL and XML data – each result tuple contains a 

customer’s name together with the XML representation of the customer. The overall query 

consists of several correlated sub-queries. The easiest way to understand the query is to look 

at it from the top down. The top-level query retrieves each customer from the customer table. 

For each customer, a correlated sub-query is used to retrieve the customer’s accounts (lines 2-

4) and purchase orders (lines 5-14). Assume for the moment that each correlated sub-query 

returns an XML document fragment. The next step then is to create the customer XML 

elements. This is done by calling the CUST XML constructor (lines 1-14), which takes a 

customer name, account information (in XML form), and purchase order information (in 

XML form) as input and produces a customer XML element as output. 

The definition of the CUST XML constructor is shown in Figure 4. Conceptually, it 

should be viewed as a scalar function returning XML. For each input tuple, CUST tags the 

columns as specified and produces an XML fragment. 

The correlated sub-queries can be interpreted similarly, with the ACCT, PORDER, ITEM 

and PAYMENT constructors defined much like CUST. Each nested query finally has to 

C u sto m er ( id       in te g e r ,
n a m e   v a rc h a r (20 ))

A c co u n t ( id     v a rc h a r (2 0 ) ,
cu stI d      in te g e r ,
a c c tn u m in te g e r )

P u rchO rd e r ( id            in te g e r ,
cu stid  in te g e r ,
a c c tId    v a r c h a r (2 0 ) ,
d a t e v a rc h a r (1 0 ) )

I tem ( id           in te g e r ,
p o I d      in te g e r ,
d e s c      v a r c h a r (1 0 ) )

P a ym e n t ( id           in te g e r ,
p oId      in te g e r ,
d e sc     v a r c h a r (1 0 ))

Figure 2: Customer Relational Schema 
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return one XML fragment. This is done using the aggregate function XMLAGG, which 

concatenates the XML fragments (e.g., ITEM fragments) produced by XML constructors. 

To order XML fragments, the XMLAGG aggregate function needs to work on ordered 

inputs. For example, to order all the purchase orders associated with a customer by their date, 

we need to ensure that the XMLAGG aggregate function in line 5 of Figure 3 aggregates the 

purchase orders in that order. Since ordered inputs to aggregate functions are not currently 

supported in SQL, we propose an extension to SQL that would make this possible. Using our 

extension, a “group order by” clause is used in conjunction with an order-sensitive aggregate 

function to specify the order in which the aggregate function is to operate on its inputs. This 

use of the “group order by” clause is illustrated in line 12 of Figure 3, where the purchase 

orders of a customer are ordered by their date before being aggregated by the XMLAGG 

function. 

4. Implementation Alternatives 
In the previous section we presented one possible language for specifying the conversion 

from relational data to XML documents. The rest of the paper is more general in scope – we 

examine different implementations to carry out the conversion, independently of the 

specification language. 

In order to understand the various alternatives for publishing relational data as XML 

documents, we characterize the solution space based on the main differences between 

01. Select  cust.name, CUST(cust.id, cust.name, 
02.                                           (Select  XMLAGG(ACCT(acct.id, acct.acctnum)) 
03.                                            From   Account acct 
04.                                            Where acct.custId = cust.id), 
05.                                           (Select   XMLAGG(PORDER(porder.id, porder.acct, porder.date, 
06.                                                                                              (Select   XMLAGG(ITEM(item.id, item.desc)) 
07.                                                                                               From   Item item 
08.                                                                                               Where item.poId = porder.id), 
09.                                                                                              (Select  XMLAGG(PAYMENT(pay.id, pay.desc)) 
10.                                                                                                From   Payment pay 
11. Where pay.poId = porder.id))) 
12.                                                         group order by porder.date 
13.                                            From    PurchOrder porder 
14.                                            Where  porder.custId = cust.id)) 
15. From  Customer cust 

Figure 3: SQL Query to Construct XML Documents from Relational Data 

Figure 4: Definition of an XML Constructor 

create function CUST (custId: integer, custName: varchar(20), acctList: xml, porderList: xml) 
     returns xml language xml return 

 <customer id={custId}> 
  <name> {custName} </name> 
  <accounts> {acctList} </accounts> 
  <porders> {porderList} </porders> 
 </customer> 
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relational tables and XML documents, namely, XML documents have tags and nested 

structure, while relational tables do not. Thus, in converting from relational tables to XML 

documents, tags and structure have to be added somewhere along the way. One approach is to 

do tagging as the final step of query processing (late tagging), while another approach is to do 

it earlier in the process (early tagging). Similarly, structuring can be done as the final step of 

query processing (late structuring) or it can be done earlier (early structuring). These two 

dimensions of tagging and structuring give rise to a space of alternatives shown pictorially in 

Figure 5. 

Each alternative in this space has variants depending on how much work is done inside 

the relational engine. Note that “inside the engine” means that tagging and structuring are 

done completely inside the relational engine, whereas “outside the engine” means that part, 

though not necessarily all, of that work is done outside the relational engine. Also note that 

early tagging with late structuring is not a viable alternative because adding tags to an XML 

document without having its structure makes no sense. We now explore the space of 

alternatives in detail by means of concrete examples. 

4.1. Early Tagging, Early Structuring 

In this class of alternatives, tagging and structuring are both done early in query processing. 

We first describe an “outside the engine” approach, where a significant amount of processing 

is done as a stored procedure, and then we describe two approaches where more processing is 

done inside the relational engine. 

4.1.1. The Stored Procedure Approach 

Perhaps the simplest technique for structuring relational data as an XML document is for an 

application or stored procedure to iteratively issue a nested set of queries that matches the 

structure of the desired XML document. Consider the XML document example shown in 

Figure 1. First a query is issued to retrieve the desired root level elements (customers). 

Figure 5: Space of Alternatives for Publishing XML 

Outside Engine 

Late Tagging Early Tagging 

Late 
Structuring 

Early 
Structuring 

Inside Engine 

Outside Engine 

Inside Engine 

Outside Engine 

Inside Engine 
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Information about a customer such as their customer ID and customer name are retrieved and 

tagged. Then, using the customer’s ID, a query is issued to retrieve the customer’s account 

information, which is then tagged and output. Next, while still on the same customer, a query 

is issued to retrieve the customer’s purchase orders ordered by their date. This ensures that 

the purchase orders associated with the customer are in the desired order. For each purchase 

order retrieved, a separate query is then issued for the purchase order’s items and the 

purchase order’s payment information. Once this is done, the processing for one customer is 

complete. The same procedure is repeated for the next customer until the entire XML 

document has been constructed. 

The Stored Procedure approach essentially performs a nested-loop join outside the engine 

by issuing queries for each nested structure within the desired XML document. It falls under 

the category of early structuring because the queries that are issued mimic the structure of the 

result. Also, since tagging is done as soon as each nested structure becomes available, this 

approach falls under the category of early tagging. 

Although the Stored Procedure approach is commonly used today, a major problem with 

it is that one or more SQL queries are issued per tuple for tables that have nested structures in 

the resulting XML document. Thus, to construct large documents, thousands of queries may 

need to be issued. The overhead of issuing so many queries can cause serious inefficiencies, 

as will be confirmed by the performance study in Section 5. Another significant problem with 

this approach is that it always dictates both a particular join order and the nested-loop join 

method even when other join orders and/or join methods might be superior. 

4.1.2. The Correlated CLOB Approach 

One way to eliminate the overhead of issuing many SQL queries is to move processing inside 

the relational engine so that one large query with sub-queries, rather than many top-level 

queries, is executed. The challenge is then to have the relational engine tag and build up the 

nested structures so that processing which was previously performed in a stored procedure 

now occurs inside the engine. This can be accomplished by adding engine support for the 

XML constructors and XMLAGG function that we described in Section 3. The query to 

produce the XML result can then be executed as a nested SQL query. The query’s execution 

would basically follow the language specification shown in Figure 3 by executing correlated 

sub-queries for nested queries. This is depicted pictorially in Figure 6. Since the XML 

document fragments created by the XML constructors (such as CUST() and ACCT()) can be 

of arbitrary size, the obvious choice is to represent them as large objects, such as Character 

Large Objects (CLOBs), inside the relational engine. 
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Because of correlation during execution, the Correlated CLOB approach still performs a 

nested-loop join. However, it is likely to out-perform the Stored Procedure approach because 

a single query is issued to the relational engine. Nonetheless, the fact that intermediate XML 

structures are represented as CLOBs can lead to performance problems. This is because 

CLOB columns are typically stored separately from the tuples they belong to. Thus, in 

parallel environments, fetching CLOBs (scattered around different nodes) can lead to 

significant performance degradation. Further, CLOBs often need to be written to a separate 

storage area on disk during sorts. Finally, each invocation of an XML constructor copies its 

inputs, which may include CLOBs, to a new CLOB. This repeated creation and copying of 

CLOBs can be costly. 

4.1.3. The Decorrelated CLOB Approach 

One disadvantage of the Correlated CLOB approach is that, because of its correlated sub-

queries, it naturally implies a nested-loop join strategy. This can be avoided by performing 

query de-correlation [21] inside the relational engine to give the relational optimizer more 

flexibility. The query execution plan obtained by de-correlating the query in Figure 3 is 

shown in Figure 7. 

Figure 6: SQL Query Execution Plan for the Correlated CLOB Approach 

Customer

CUST()

(custXML)

(custId, custName)

Groupby:
XMLAGG(ACCT())

Account

Join
custId = po.custId

PurchOrder

Groupby:
XMLAGG(PORDER())

Item Payment

Join
poId = pay.poId

Join
poId = item.poId

Groupby:
XMLAGG(PAY())

Groupby:
XMLAGG(ITEM())

Join
custId = acct.custId

Data flow

Correlation

custId custId

(acctId, acctNum)

(custId, acctId, acctNum)

(acctXML)

(custId, poId, poAcct, poDate)

(poId, poAcct, poDate)

Legend

(poXML)

poId

(poId, itemId, itemInfo) (poId, payId, payInfo)

(itemId, itemInfo) (payId, payInfo)

(itemXML) (payXML)

poId
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To create the de-correlated query, first each path from the root-level table to a leaf-level 

table is computed by joining the tables along the path. In our example, these join paths are (a) 

Customer joined with Account, (b) Customer joined with Purchase Order joined with Item 

and (c) Customer joined with Purchase Order joined with Payment. These join paths are 

represented by boxes 4, 8 and 9 respectively in Figure 7. Outer joins are used because the 

information about a parent has to be preserved even if it has no children (for example, an 

XML element for a customer should be produced even if there are no accounts associated 

with that customer). Where possible, common sub-expressions are used so that redundant 

computation is avoided. Thus, for example, the join between Customers and Purchase Orders 

is shared between two path computations. 

Once the root to leaf paths are computed, the set of leaf-level XML elements 

corresponding to each leaf-level table is then built up. This is done by tagging the leaf-level 

XML elements and then aggregating them by grouping on the id columns (e.g., custId and 

poId) of the ancestor tables on the path from the root-level table to the leaf-level table. This is 

done in boxes 10, 11 and 12 in Figure 7. Higher-level structures are built up by joining on 

these id fields and using an XML constructor. This is done till the root level is reached. 

(boxes 13-15 in Figure 7). 

Figure 7: SQL Query Execution Plan for the De-correlated CLOB Approach 

CustomerAccount PurchOrder

Right Outer Join
acct.custId = cust.id

Left Outer Join
cust.id = po.custId

Item Payment

Right Outer Join
item.poId = po.id

Left Outer Join
pay.poId = po.id

Groupby: custId, poId
XMLAGG(ITEM())

Groupby: custId, poId
XMLAGG(PAY())

Join
custId = custId and poId = poId

Groupby: custId
XMLAGG(ACCT())

Groupby: custId
XMLAGG(PORDER())

Join: CUST()
custId = custId

(custId, custName, acctId, acctNum) (custId, poId, poAcct, poDate)

(custId, custName, acctXML)
(custId, poId, poAcct, poDate, itemId, itemInfo) (custId, poId, payId, payInfo)

(custId, poId, poAcct, poDate, itemXML) (custId, poId, payXML)

(custXML)

(custId, poId, poAcct, poDate, itemXML, payXML)

(custId,porderXML)

(custId, acctId, acctNum) (custId, custName) (custId, poId, poAcct, poDate)

2 1 3

4 56 7

8 9
10

11 12

13

14

15
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Despite the fact that this approach is more flexible in allowing the engine to explore join 

strategies, it shares the same problems as the Correlated CLOB approach with respect to 

repeated copying, parallelism and materialization of CLOBs. This is because tagging and 

structuring are done early, thus creating large, opaque intermediate objects. Is it possible to 

defer tagging and structuring to arrive at a more efficient alternative? We explore this class of 

alternatives next. 

4.2. Late Tagging, Late Structuring 

In the class of alternatives that defer tagging and structuring, both tagging and structuring are 

done as the final step of constructing an XML document. The construction of an XML 

document is therefore logically split into two phases: (a) content creation, where relational 

data is produced, and (b) tagging and structuring, where the relational data is structured and 

tagged to produce the XML document. We first deal with content creation. We consider only 

“inside the engine” approaches so that database functionality, such as joins, can be exploited. 

4.2.1. Content Creation: The Redundant Relation Approach 

One simple way to produce the needed content is to join all of the source tables using join 

predicates to relate parents to their children. In our example, this would be done by joining 

the Customer, Accounts, Purchase Order, Item and Payment tables using the relevant 

predicates. The SQL query to do this is shown in Figure 8. 

This approach has the advantage of using regular, set-oriented relational processing, but it 

also has a serious pitfall – it has both content and processing redundancy. To see this, 

consider what the result of the query in Figure 8 would look like. Each customer’s account 

information would be repeated PO × IT × PA times, where PO is the number of purchase 

orders associated with the customer, IT is the number of items per purchase order, and PA is 

the number of payments per purchase order. The problem here is that multi-valued data 

dependencies [9] are created when we try to represent a hierarchical structure as a single 

table. This increases both the size of the result and the amount of processing to produce it, 

both of which are likely to severely impact performance. 

Figure 8: SQL Query for the Redundant Relation Approach 

Select cust.id, cust.name, acct.id, acct.num, po.id, po.acctId, po.date, item.id, item.info, pay.id, pay.info 
From  Customer cust  
            left join Account acct on cust.id = acct.custId 
            left join PurchOrder po on cust.id = po.custId 
            left join Item item on po.id = item.poId 
            left join Payment pay on po.id = pay.poId 
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Outer Union

(type, custId, custName, acctId, acctNum, poId,
poAcct, poDate, itemId, itemInfo, payId, payInfo)

CustomerAccount

Right Outer Join
custId = custId

PurchaseOrder

Left Outer Join
custId = custId

PaymentItem

(acctId, acctNum) (custId, custName) (poId, poAcct, poDate)

(custId, poId, poAcct, poDate)

Right Outer Join
poId = poId

Left Outer Join
poId = poId

(custId, poId, poAcct,
poDate, itemId, itemInfo) (custId, poId, payId, payInfo)

(custId, custName, acctId, acctNum)

(poId, acctId, acctInfo) (poId, payId, payInfo)

12 3

4 5

6 7

8 9

10

4.2.2. Content Creation: The (Unsorted) Path Outer Union Approach 

The basic problem with the Redundant Relation approach is that the number of tuples in the 

relational result grows as the product of the number of children per parent. If we could limit 

the result’s size to be the sum of the number of children per parent, redundancy would be 

reduced dramatically. To do this, we need to separate the representation of a given child of a 

parent from the representation of the other children of the same parent. For example, one 

tuple of the relational result should represent either an account or a purchase order associated 

with the customer, not both. 

Figure 10 shows a SQL query that reduces content redundancy for the query of Figure 3. 

The query execution plan corresponding to this SQL query is also shown in Figure 9. First, as 

in the De-Correlated CLOB approach, each path from the root-level table to a leaf-level table 

is computed by means of joins. In our example query, there are three such paths – Customer-

Account, Customer-PurchaseOrder-Item and Customer-PurchaseOrder-Payment. Thus, 

Customers are joined with Accounts (one path), Customers are joined with Purchase Orders 

which are in turn joined with Items (another path) and Customers are joined with Purchase 

Orders which are in turn joined with Payments (final path). These join paths are represented 

by boxes 4, 8 and 9 respectively in Figure 9, and correspond to lines 5-8, 13-17 and 18-21 

respectively in the SQL query of Figure 10 (these are defined as the inline views custAcct, 

custPorderItem and custPorderPay in the SQL query using the “with” statement [1][3]). As in 

Figure 9: SQL Query Execution Plan for the (Unsorted) Path Outer Union Approach 
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the De-correlated CLOB approach, common sub-expressions are used so that redundant 

computation is avoided where possible. Thus, the join between Customers and Purchase 

Orders is shared between two path computations. 

Each join path produces one tuple per data item in the leaf level of the XML tree. Each 

tuple describing a leaf level data item also includes information about its ancestors in the 

XML tree (see the lists of columns above each join box in Figure 9). A separate tuple 

describing a parent needs to be present only if the parent has no children. The use of outer 

joins to relate a parent with its children ensures this semantics. 

The final step in the process of creating the relational content is to glue together all the 

tuples representing leaf level elements in the XML tree into a single relation. The obvious 

way to do this is to union the content corresponding to each leaf level element. There are, 

however, some complications with this strategy since the tuples corresponding to different 

leaf level elements need not have the same number or types of columns. For example, tuples 

representing accounts have only four columns, while tuples representing items have six 

columns. In order to handle this heterogeneity, a separate column is allocated in the union’s 

output for each distinct column in the union’s input. For each tuple representing a particular 

Figure 10: SQL Query for the (Unsorted) Path Outer Union Approach 

-- First compute all the paths from the root to the leaves 
01. with cust (custId integer, custName varchar(20)) as ( 
02.    select cust.id, cust.name 
03.    from Customer cust 
04. ), 
05. custAcct (custId integer, custName varchar(20), acctId integer, acctNum integer) as ( 
06.    select cust.id, cust.name, acct.id, acct.acctnum 
07.    from Account acct right join cust on (acct.custId = cust.id) 
08. ), 
09. custPorder (custId integer, poId integer, poAcct varchar(20), poDate varchar(10)) as ( 
10.    select cust.id, po.id, po.acctId, po.date 
11.    from cust left join Purchorder po on (cust.id = po.custId) 
12. ), 
13. custPorderItem (custId integer, poId integer, poAcct varchar(20), poDate varchar(10), itemId integer, 
14.                            itemInfo varchar(20)) as ( 
15.    select custpo.custId, custpo.poId, custpo.poAcct, custpo.poDate, item.id, item.info 
16.    from Item item right join custPorder custpo on (item.poId = custpo.poId) 
17. ), 
18. custPorderPay (custId integer, poId integer, payId integer, payInfo varchar(20)) as ( 
19.    select custpo.custId, custpo.poId, pay.id, pay.info 
20.    from custPorder custpo left join Payment pay on (custpo.poId = pay.poId) 
21. ), 
22. -- The following is the main query which performs the (path) outer union 
23. select 0, custId, custName, acctId, acctName, null, null, null, null, null, null, null 
24. from custAcct 
25.    union all 
26. select 1, custId, null, null, null, poId, poAcct, poDate, itemId, itemInfo, null, null 
27. from custPorderItem 
28.    union all 
29. select 2, custId, null, null, null, poId, null, null, null, null, payId, payInfo 
30. from custPorderPay 
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Outer Union

(type, custId, custName, acctId, acctNum, poId,
poAcct, poDate, itemId, itemInfo, payId, payInfo)

CustomerAccount

Join
custId = custId

(custId, acctId, acctNum)

PurchaseOrder

Join
custId = custId

Join
poId = poId

Join
poId = poId

PaymentItem

(custId, poId,
itemId, itemInfo)

(custId, custName)(custId, acctId, acctNum) (custId, poId, poAcct, poDate)

(custId, poId, poAcct, poDate)

(poId, payId, payInfo)

(custId, poId, payId, payInfo)

(poId, itemId, itemInfo)

leaf level element and its ancestors, only a subset of these columns will be used and the rest 

will be set to null (hence the name outer union by analogy to outer join). This is done by the 

outer union box in Figure 9 and corresponds to lines 23-30 in Figure 10. 

To keep track of the origin of each tuple, e.g. to distinguish an account tuple from an item 

tuple, a type column is added to the result of the outer union as well. We call this approach 

the Path Outer Union approach because it computes each path from the root-level table to a 

leaf-level table and outer unions them. 

4.2.3. Content Creation: The (Unsorted) Node Outer Union Approach 

The Path Outer Union approach that was just described eliminates much of the data and 

computational redundancy of the Redundant Relation approach. This is because children of 

the same parent are represented in separate tuples. However, there is still some data 

redundancy present. In particular, all parent information is replicated with every child tuple. 

For example, a customer’s information, such as full name, address, etc., is replicated in every 

account associated with the customer. One way to get around this is to feed the parent 

information directly into the outer union operator and to carry only the parent ids along with 

the children (and their descendants). We refer to this option as the Node Outer Union 

approach to distinguish it from the preceding Path Outer Union approach. 

Figure 11 shows the query execution plan for the Node Outer Union approach for our 

running example. Figure 12 shows the corresponding SQL query. Note how all the parent 

Figure 11: SQL Query Execution Plan for the (Unsorted) Node Outer Union Approach 
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information (customer, and customer-purchase order information) is fed directly to the outer 

union operator and how only the ids of the parents (customer id and purchase order id) are 

propagated along with their respective children and descendants. Since all the parent 

information is fed directly to the outer union operator, it is sufficient to perform a regular join 

(as opposed to an outer join) to relate a parent to its children without potentially losing 

information. 

The Node Outer Union approach reduces data redundancy as compared to the Path Outer 

Union approach because information about a parent is not replicated with all the children. 

However, the Node Outer Union approach increases the number of tuples in the result 

because each parent is now represented by a separate tuple. One concern with both of the 

Outer Union approaches is that the number of columns in the result increases with the depth 

Figure 12: SQL Query for the (Unsorted) Node Outer Union Approach 

-- First compute all the paths from the root to the leaves 
01. with cust (custId integer, custName varchar(20)) as ( 
02.    select cust.id, cust.name 
03.    from Customer cust 
04. ), 
05. custAcct (custId integer, acctId integer, acctNum integer) as ( 
02.    select cust.id, acct.id, acct.acctnum 
03.    from Account acct, cust 
04.    where acct.custId = cust.id 
05. ), 
06. custPorder (custId integer, poId integer, poAcct varchar(20), poDate varchar(10)) as ( 
07.    select cust.id, po.id, po.acctId, po.date 
08.    from cust, Purchorder po 
09.    where cust.id = po.custId 
10. ), 
11. custPorderItem (custId integer, poId integer, itemId integer, itemInfo varchar(20)) as ( 
12.    select custpo.custId, custpo.poId, item.id, item.info 
13.    from Item item, custPorder custpo 
14.    where item.poId = custpo.poId 
15. ), 
16. custPorderPay (custId integer, poId integer, payId integer, payInfo varchar(20)) as ( 
17.    select custpo.custId, custpo.poId, pay.id, pay.info 
18.    from custPorder custpo, Payment pay 
19.    where custpo.poId = pay.poId 
20. ), 
21. -- The following is the main query which performs the (node) outer union 
22. select 0, custId, custName, null, null, null, null, null, null, null, null, null 
23. from custRoot 
24     union all 
25. select 1, custId, null, acctId, acctName, null, null, null, null, null, null, null 
26. from custAcct 
27.    union all 
28. select 2, custId, null, null, null, poId, poAcct, poDate, null, null, null, null 
29. from custPorder 
30     union all 
31. select 3, custId, null, null, null, poId, null, null, itemId, itemInfo, null, null 
32. from custPorderItem 
33.    union all 
34. select 4, custId, null, null, null, poId, null, null, null, null, payId, payInfo 
35. from custPorderPay 
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and width of the XML document. Though only a subset of the columns in a given tuple will 

have data values, in the absence of null value compression, this may lead to increased 

processing overhead due to larger tuple widths. 

4.2.4. Structuring/Tagging: The Hash-based Tagger 

In the previous three sections, we discussed techniques to produce the relational content 

necessary for creating an XML document. The final step in the Late Structuring Late Tagging 

alternatives is to tag and structure the relational content to form the results. This can be done 

either inside or outside the relational engine. If it is performed inside the relational engine, it 

can be implemented as an aggregate function. Such a function would be invoked as the last 

processing step, after the relational content has been produced. This (single) aggregate 

function would logically perform the function of all the XML constructors and XMLAGGs in 

the user query. This would ensure that large objects are not carried around during processing, 

which is one of the potential disadvantages of the CLOB approaches. 

In order to tag and structure the results, either inside or outside the engine, we need to do 

two things: (a) group all siblings in the desired XML document under the same parent (and 

eliminate duplicates in the case of the Redundant Relation approach) and (b) extract 

information from each tuple and tag it to produce the XML result. An efficient way to group 

siblings is to use a main-memory hash table to look up the parent of a node, given the parent’s 

type and id information (including the ids of ancestors of the parent). 

Whenever a tuple containing information about an XML element is seen, it is hashed on 

the element’s type and the ids of its ancestors in order to determine whether its parent is 

already present in the hash table. If the parent is present, a new XML element is created and 

added as a child of the parent. If the parent is not present (note that this is possible because 

the result tuples do no appear in any particular order), then a hash is performed on the type 

and ids of all ancestors except that of the parent. This is to determine if the grandparent exists. 

If the grandparent is present, a place-holder is created for the parent (to be filled in with the 

parent tuple when it arrives) and then the child is created under the place-holder for the 

parent. If the grandparent is also not present, the procedure is repeated until an ancestor is 

present in the hash table or the root of the document is reached. 

After all the input tuples have been hashed, the entire tagged structured result can be 

written out as an XML file. If a specific order is required for the elements of the resulting 

XML document, such as ordering purchase orders by their date, then that order can either be 

maintained as children are added to a parent or it can be enforced by a final sort before 

writing out the XML document. 
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The main limitation of using a hash-based tagger is that performance can degrade rapidly 

when there is insufficient memory to hold the hash table and the intermediate result. 

However, it may be possible to partition the data into memory-sized chunks, much like in a 

hash join [23]. Exactly how to do this partitioning (and merging) is left for future work. 

4.3. Late Tagging, Early Structuring 

The main problem with the Late Tagging Late Structuring approaches we just considered is 

that complex memory management needs to be performed by the hash-based tagger when 

memory is scarce. To eliminate this problem, the relational engine can be used to produce 

“structured relational content”, which can then be tagged in constant space. We first explore a 

technique to produce structured content before describing the constant space tagger. 

4.3.1. Structured Content Creation: The Sorted Outer Union Approaches 

The key to structuring the relational content is to order it the way that it needs to appear in the 

result XML document. This can be achieved by ensuring that: 

1) All of the information about a node X in the XML tree occurs either before or along with 

the information about the children of X in the XML tree. This essentially says that parent 

information occurs before, or with, child information. 

2) All tuples representing information about a node X and its descendants in an XML tree 

occur contiguously in the tuple stream. This ensures that information about a particular 

node and its descendants is not mixed in with information about non-descendant nodes. 

3) All tuples representing information about a node X of a given type in the XML tree occur 

before any tuples representing information about a sibling node of X of a different type 

that appears after X in the XML tree. This ensures that siblings of different types will 

appear in the desired order because order is significant in an XML document. For 

example, all accounts associated with a customer should occur before all purchase orders 

associated with the same customer. 

4) The relative order of the tuples matches that of any user-specified order. This rule is 

included to handle user-defined ordering requests. 

We now show that performing a single (final) sort of the unstructured relational content is 

sufficient to ensure these properties. Our discussion here will be based on the (Unsorted) 

Node Outer Union approach for constructing unstructured relational content. The solution for 

the Path Outer Union Approach is actually simpler because it always satisfies (the along-with 

case of) condition 1. It will also be easy to see how the technique generalizes to the 

Redundant Relation approach. 
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Outer Union
(type, custId, custName, acctId, acctNum, poId, poAcct, poDate, itemId, itemInfo, payId, payInfo)

CustomerAccount

Join
custId = custId

(custId, acctId, acctNum)

PurchaseOrder

Join
custId = custId

Join
poId = poId

Join
poId = poId

PaymentItem

(custId, poId, poDate
itemId, itemInfo)

(custId, custName)(custId, acctId, acctNum) (custId, poId, poAcct, poDate)

(custId, poId, poAcct, poDate)

(poId, payId, payInfo)

(custId, poId, poDate.
payId, payInfo)

(poId, itemId, itemInfo)

Orderby: custId, poDate, poId, acctId, payId, itemId
(type, custId, custName, acctId, acctNum, poId, poAcct, poDate, itemId, itemInfo, payId, payInfo)

To ensure that conditions 1 through 4 above are satisfied, all that is required is to sort the 

result of the Node Outer Union on the id fields and the user-specified sort fields such that (a) 

the id field of a parent node occurs before the id fields of its children nodes in the sort 

sequence, (b) the id fields of sibling nodes appear in the sort sequence in the reverse order as 

the siblings are to appear in the XML document (the significance of the reverse sort sequence 

will be explained shortly), and (c) the user defined order fields on a node (if any) appear 

immediately before the id field of that node in the sort sequence. Thus, in our running 

example, sorting the node outer union result on the sort sequence (CustId, PODate, POId, 

AcctId, PaymentId, ItemId) will ensure that result is in document order. The query execution 

plan performing this sort and the corresponding SQL query are shown in Figure 13 and 

Figure 14 respectively. 

For correctness, it is important to propagate the user-specified sort fields (purchase order 

date) of a parent (purchase order) to all its descendants (items and payments) before 

performing the outer union, as shown in Figure 13. It is also important that tuples having null 

values in the sort fields occur before tuples having non-null values (i.e., nulls must sort low). 

As we shall explain next, this is necessary to ensure that parents and siblings appear in the 

desired order. 

Let us now see how the above mentioned sort order ensures that conditions 1 through 4 

are satisfied. Condition 1 will be satisfied because a tuple corresponding to a parent node 

(say, customer) will have null values for the child id columns (say, account id). Since we 

Figure 13: SQL Query Execution Plan for the Sorted Node Outer Union Approach 
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ensure that tuples with null values in their sort columns occur first, parent tuples (customers) 

will always occur before child tuples (accounts). Also, condition 2 is satisfied because the 

parent’s id (customer id) occurs before a child’s id (account id) in the sort sequence, thus 

ensuring that the children of a parent node are grouped together after the parent. 

Condition 3 is satisifed because the ids of the siblings appear in the reverse order in the 

sort sequence as the siblings are to appear in the result XML document, and because nulls sort 

low. To see why this is the case, let us return to our example, where a customer’s accounts 

Figure 14: SQL Query for the Sorted Node Outer Union Approach 

-- Lines 1-37 compute the node outer union as in Figure 12 
01. with cust (custId integer, custName varchar(20)) as ( 
02.    select cust.id, cust.name 
03.    from Customer cust 
04. ), 
05. custAcct (custId integer, acctId integer, acctNum integer) as ( 
02.    select cust.id, acct.id, acct.acctnum 
03.    from Account acct, cust 
04.    where acct.custId = cust.id 
05. ), 
06. custPorder (custId integer, poId integer, poAcct varchar(20), poDate varchar(10)) as ( 
07.    select cust.id, po.id, po.acctId, po.date 
08.    from cust, custRoot po 
09.    where cust.id = po.custId 
10. ), 
11. custPorderItem (custId integer, poId integer, poDate varchar(10), itemId integer, itemInfo varchar(20)) as (
12.    select custpo.custId, custpo.poId, custpo.poDate, item.id, item.info 
13.    from Item item, custPorder custpo 
14.    where item.poId = custpo.poId 
15. ), 
16. custPorderPay (custId integer, poId integer, poDate varchar(10), payId integer, payInfo varchar(20)) as ( 
17.    select custpo.custId, custpo.poId, custpo.poDate, pay.id, pay.info 
18.    from custPorder custpo, Payment pay 
19.    where custpo.poId = pay.poId 
20. ), 
21. outerUnion (type integer, custId integer, custName varchar(20), acctId integer, acctNum integer, 
22.                     poId integer, poAcct varchar(20), poDate varchar(10), itemId integer, itemInfo varchar(20), 
23.                     payId integer, payInfo varchar(20)) as 
23.      select 0, custId, custName, null, null, null, null, null, null, null, null, null 
24.      from cust 
25.         union all 
26.      select 1, custId, null, acctId, acctName, null, null, null, null, null, null, null 
27.      from custAcct 
28.         union all 
29.      select 2, custId, null, null, null, poId, poAcct, poDate, null, null, null, null 
30.      from custPorder 
31.         union all 
32.      select 3, custId, null, null, null, poId, null, poDate, itemId, itemInfo, null, null 
33.      from custPorderItem 
34.         union all 
35.      select 4, custId, null, null, null, poId, null, poDate, null, null, payId, payInfo 
36.      from custPorderPay 
37. ), 
38. -- This is the main query that sorts the outer union result 
39. select type, custId, custName, acctId, acctNum, poId, poAcct, poDate, itemId, itemInfo, payId, payInfo 
40. from outerUnion 
41. order by custId, poDate, poId, acctId, payId, itemId 
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need to occur before the customer’s purchase orders in the result XML document. By 

ensuring that the purchase order id occurs before account id in the sort sequence, and that 

nulls sort low, tuples representing accounts (which are tuples with null values for purchase 

order id) occur before tuples representing purchase orders (which are tuples having non-null 

values for purchase order id). Finally, condition 4 is satsified because user-defined sort fields 

(purchase order date) are added immediately before the id (purchase order id) of the node 

being ordered in the sort sequence. It is important to propagate the sort fields (purchase order 

date) of a parent (purchase order) to all its descendants (items and payments) before 

performing the outer union because this ensures that all the descendants of the parent are 

sorted in the same way as the parent and thus prevents condition 2 from being violated. 

The Sorted Outer Union approaches have the advantage of scaling to large data volumes 

because relational database sorting algorithms are designed to be “disk-friendly”. These 

approaches can also produce user-specified orderings with little additional cost. However, 

they do do more work than necessary; a total order is always produced even when only a 

partial order is needed. This is because we do not require elements of the same type (say, 

accounts) to be ordered in the absence of user-specified ordering requirements. 

4.3.2. Tagging Sorted Data: The Constant Space Tagger 

Once the structured relational content has been created, as described in the previous two 

sections, the final step is to tag and construct the result XML document. Since tuples arrive in 

document order, they can be immediately tagged and written out as they are seen. The tagger 

only requires enough memory to remember the parent ids of the last tuple seen. These ids are 

used to detect when all the children of a particular parent node have been seen so that the 

closing tag associated with the parent can be written out. For example, after all the items and 

payments of a purchase order have been seen, the closing tag for purchase order (</porder>) 

has to be written out. To detect this, the tagger stores the id of the current purchase order and 

compares it with that of the next tuple. It should be clear that the storage required by the 

constant space tagger is proportional only to the level of nesting and is independent of the 

size of the XML document. 

5. Performance Comparison of Alternatives for Publishing XML 

We have outlined a number of alternatives for creating XML documents from a relational 

database. These are summarized in Figure 15. Our qualitative assessments indicate that every 

alternative has some potential disadvantage. In this section, we will conduct a performance 

evaluation of the alternatives to determine which ones are likely to win in practice (and in 
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what situations). Towards this end, we will first identify a set of parameters that are simple 

and yet can model a wide range of relational to XML conversions. In the experiments 

reported below, we do not consider queries with user-defined sort orders. 

5.1. Modeling Relational to XML Transformations 

In order to study the performance effects of converting flat relational data to nested XML 

documents, we will vary the nature of nesting of the queries that specify the construction of 

XML documents (see Figure 3 for an example query). In our experiments, the nesting of 

queries is characterized by two parameters. The first parameter is the query fan out. This 

corresponds to the maximum number of sub-queries directly nested under a parent (sub) 

query. For example, the query in Figure 3 has a query fan out of two because the (sub) 

queries in lines 1-15 and lines 5-14 each have two directly nested sub-queries (lines 2-4, 5-14 

and lines 6-8, 9-12, respectively) while the other sub-queries (lines 2-4, 6-8, 9-12) have no 

directly nested sub-queries. The second parameter used to characterize nesting is query depth. 

This corresponds to the maximum nesting level of sub-queries. In our example in Figure 3, 

Figure 15: Summary of Approaches for Publishing XML 

Classification Approach Short 
Name 

Description Potential 
Problems 

Outside 
Engine 

Stored 
Procedure 

Stored Proc Issues separate queries according 
to document structure, essentially 
doing nested loops joins outside 
the engine. 

1) Many SQL queries. 
2) Fixed join strategy 

(nested loops join). 

Inside 
Engine 

Correlated 
CLOB 

CLOB-
Corr 

The “inside the engine” 
equivalent of the Stored 
Procedure approach. Uses 
CLOBs to build up intermediate 
XML fragments. 

1) Fixed join strategy 
(nested loops join). 

2) Intermediate CLOBs 
created during query 
processing. 

 
 
 
 
Early 
  Tag 
Early 
  Structure 

Inside 
Engine 

De-Correlated 
CLOB 

CLOB-
DeCorr 

De-correlated version of CLOB-
Corr. Also requires CLOBs for 
intermediate fragments. 

1) Intermediate CLOBs 
created during query 
processing. 

Inside or 
Outside 
Engine 

Redundant 
Relation 

Redundant 
R (In/Out) 

Creates a relation with data 
redundancy because each child 
of a parent is repeated many 
times. 

1) Data redundancy. 
2) Memory overflow in 

hash-based tagger. 

Inside or 
Outside 
Engine 

Unsorted Path 
Outer Union 

Unsorted 
OU 
(In/Out) 

Creates “outer union” of leaf 
elements and avoids data 
redundancy. Inside and outside 
engine versions of hash-based 
structuring/tagging. 

1) Data redundancy (on 
a smaller scale). 

2) Memory overflow in 
hash-based tagger. 

3) Wide tuples 

 
 
 
 
Late 
  Tag 
Late 
  Structure 

Inside or 
Outside 
Engine 

Unsorted 
Node Outer 
Union 

Unsorted 
NOU 
(In/Out) 

Similar to Unsorted OU, but also 
includes tuples for non-leaf 
elements in outer union. 

1) Memory overflow in 
hash-based tagger. 

2) Wide tuples 
Inside or 
Outside 
Engine 

Sorted Path 
Outer Union 

Sorted OU 
(In/Out) 

Structures the results of Unsorted 
OU by sorting it in document 
order. 

1) Data redundancy (on 
a smaller scale). 

2) Wide tuples. 
3) Requires total order of 

relational result. 

 
 
Late 
  Tag 
Early 
  Structure Inside or 

Outside 
Engine 

Sorted Node 
Outer Union 

Sorted 
NOU 
(In/Out) 

Structures the results of Unsorted 
NOU by sorting it in document 
order. 

1) Wide tuples.  
2) Requires total order of 

relational result. 
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the query depth is three because there are three levels of query nesting – the first being the top 

level query (lines 1-15), the second being the queries in lines 2-4 and 5-14 and the third being 

the queries in lines 6-8 and 9-12. 

In our experiments, we only consider “balanced” queries, where (a) each non-leaf (sub) 

query has the same number of directly nested sub-queries and (b) all leaf (sub) queries are at 

the same depth. This results in a simple set of parameters, each of which can be studied in 

isolation. Note that the query in Figure 3 is not balanced because it satisfies condition 1 but 

not condition 2. It is important to note that the query fan out and query depth do not directly 

specify the fan out or the depth of the result XML document. Even at low values of query fan 

out and query depth, the result XML document can be wide/deep depending on the XML 

constructors used (see Figure 4). The query fan out and query depth only specify the structure 

of the repeating “set” sub-elements, such as the accounts associated with a customer.  

Our goal here is to study the effects of nesting relational data as XML documents, and not 

the complexity of the SQL used to create the data for an XML element. Hence, for this 

performance study, the relational schema we use for the experiments will mirror the nesting 

of the SQL query specifying the construction (e.g., like Figure 3 and Figure 2) and each 

relation in the schema will be a base table. Thus, the same parameters (query fan out and 

query depth) used to vary the structure of the query are also used to vary the structure of the 

underlying relational schema. Each table has an ID field, which is its primary key. It also has 

a PID (parent id) field that serves as a foreign key for its parent. To match parents with their 

children, a join is specified between the ID and PID field of the parent and child tables, 

respectively. In addition to these two fields, each table has two data fields. The first is an 

integer field (IntVal) while the second is a 20 character long string field (CharVal). 

We now identify two additional parameters that, given a schema, suffice to describe a 

specific experimental database instance. The first parameter is the number of roots, which 

specifies the number of tuples present in the table at the schema tree’s root level. The second 

parameter is the number of leaf tuples, which specifies the total number of tuples present in 

all of the leaf-level tables combined. The number of tuples in each leaf-level table is thus the 

number of leaf tuples divided by the number of leaf-level tables. These two parameters 

together determine another important derivative parameter, the instance fan out, which 

specifies the number of children tuples of each type that a parent tuple has under the 

assumption that every parent tuple has the same number of child tuples of a given type. 

We have chosen to use the number of leaf tuples as the primary parameter and the 

instance fan out as a derivative parameter because the overall number of leaf tuples (where 



22 

the bulk of the data resides) is directly related to the size of the XML document produced. 

Thus, holding the number of leaf tuples constant allows us to study how the different 

approaches behave when (essentially) the same amount of data is structured differently. The 

experimental parameters for our performance study are summarized in Figure 16. 

We now characterize the XML document result created for a given experimental 

relational database instance. The integer and character column values of each tuple in the 

relational database instance are tagged as XML elements each having a tag name that is 3 

characters long. The XML fragments of child tuples are nested under the XML representation 

of the parent tuples. The result is always a single XML document. This was done to make the 

experimental results easy to interpret. Note that we do not explicitly consider selections on 

tables since the same performance effects can be explored by varying the number of roots and 

the number of leaf tuples. 

5.2. Experimental Setup 

To conduct our performance comparison, we implemented the various alternatives discussed 

in Section 4 in the code base of the DB2 Universal Database system [3]. The XML 

constructors and XMLAGG were implemented as new built-in functions. The Stored 

Procedure approach was implemented as an “unfenced” stored procedure, i.e., it ran in the 

same address space as the relational database engine, to maximize performance. The other 

“outside the engine” approaches were each implemented as local embedded-SQL programs, 

running on the same machine as the database server, to avoid unpredictable network delays. 

We implemented the “outside the engine” approaches as stored procedures as well, but since 

this did not significantly change their performance, those results are not included here. A 

driver program, implemented as a local embedded-SQL program, was used to time the results 

on a warm DB2 cache. The XML result was always written out as an NT file. All experiments 

were performed on a 366 MHz Pentium II processor with 256 MB of main memory running 

Windows NT 4.0. 

Figure 16: Experimental Parameters 

Parameter Description 

Query Fan Out Number of sub-queries directly nested under a parent sub-query. This is 
also a measures the “bushiness” of the underlying relational schema and 
the result XML document. 

Query Depth Number of levels of nesting of sub-queries. This is also a measure of the 
“depth” of the underlying relational schema and the result XML document. 

Number of Roots Number of tuples in the root level table in the relational schema. This is 
also a measure of the number of root-level XML elements. 

Number of Leaf 
Tuples 

Number of tuples in all the leaf tables in the relational schema combined. 
This is also a measure of the size of the result XML document. 
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For the experiments, we varied the parameters discussed in Section 5.1 in the ways shown 

in Figure 17. For each experiment, we varied one of these parameters and used the default 

values for the rest. This enabled us to determine the effect of each parameter on performance. 

Indexes were created on the ID and PID fields for all of the tables in the relational schema. 

Detailed optimizer statistics were collected for each table and index before any queries were 

run. For most experiments, the sort heap and buffer pool sizes were set so that all processing 

was done in main memory (the maximum data/XML document size was 25MB); the one 

exception is the experiments in Section 5.7, where the effect of reduced memory is 

considered. Since the Node and Path Outer Union approaches behave similarly in a wide 

range of situations, we only show the performance for the Path Outer Union for most of the 

studies. The relative performance of the Node and Path Outer Union approaches is discussed 

separately in Section 5.8. 

5.3. Inside the Engine vs. Outside the Engine Approaches 

To get an initial feel for the results, we first explore the effects of varying the query fan out 

while holding the other parameters constant. The resulting time taken to construct the XML 

document for the “inside the engine” and the “outside the engine” approaches is shown in 

Figure 18 and Figure 19, respectively. The Redundant Relation approach is not shown in 

these graphs because it performs very poorly with increasing fan out due to large data 

redundancy. In fact, the time for just executing the associated relational query, ignoring the 

time for tagging and writing the XML result to disk, was about 155 seconds at a query fan out 

of 4. The performance of the Redundant Relation approach was among the worst of all 

possible approaches throughout all of our experiments, so we will not examine it further. 

The interesting thing to note in Figure 18 and Figure 19 is that while the Stored Procedure 

approach incurs a significant overhead because it issues many queries to the relational engine, 

the Correlated CLOB approach, its “inside the engine” counterpart, takes roughly one-third of 

the time. This actually points to a more general trend. For the Unsorted and Sorted Outer 

Union approaches as well, the “inside the engine” versions take less than half the time to 

execute than their corresponding “outside the engine” versions. In order to explain these 

results, we need to break down the time for creating XML document results. 

Figure 17: Parameter Settings for Experiments 

Parameter Range of Values Default 

Query Fan Out 2, 3, 4 2 
Query Depth 2, 3, 4 2 
# Roots 1, 50, 500, 5000, 40000 5000 
#  Leaf Tuples 160000, 320000, 480000 320000 
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For the “outside the engine” approaches, there are four components to generating the 

XML result: 1) the time to produce the relational content, either structured or unstructured, 2) 

the time to bind out the rows of the relational content into host variables outside the engine, 

3) the time to tag and possibly structure the relational result, and 4) the time to write the XML 

result out to a file. For the “inside the engine” approaches, there are the same components 

except that virtually no time is spent binding out the results. We measured each of these 

components independently for the various approaches. The tagging time for the CLOB 

approaches was not separated because it forms an integral part of the content computation. 

Figure 20 shows this time break down for each approach and it is easy to see that the time 

to bind out (copy) tuples to host variables from the relational engine dominates the cost of the 

“outside the engine” approaches. These results were found hold regardless of whether the 

bind out was done in a local client program or within an unfenced stored procedure. 

Moreover, increasing the size of the communication buffer between the client application and 

the database server so that larger portions of the result could be copied over to the client 

address space in one chunk did not significantly reduce the bind-out cost. On the other hand, 

the “inside the engine” approaches eliminate the host variable bind-out cost for every tuple; 

their only bind-out is done for the final (single) result document. Consequently, the “inside 

the engine” approaches perform much better. This points to our first firm conclusion –XML 

document construction should be done inside the engine to maximize performance. 

Figure 18: Varying Query Fan Out (Inside the Engine) 

Figure 19: Varying Query Fan Out (Outside the Engine) 
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Since the “inside the engine” approaches consistently outperform the “outside the engine” 

approaches, the rest of our experimental results will consider these approaches separately. 

Note that despite their poor relative performance, the “outside the engine” approaches are 

valuable to consider because they can be used with relational database systems that do not 

have support for the new XML scalar/aggregate functions proposed in this paper. 

5.4. Effect of Query Fan Out 

We now return to Figure 18 and Figure 19 for the purpose of examining the effect of varying 

the query fan out. For the “inside the engine” techniques, increasing the query fan out 

increases the time for producing the XML result, as shown in Figure 18. This is not surprising 

since increasing the query fan out increases the number of joins that need to be performed. 

What is more interesting is the relative performance of the different approaches. The 

Correlated CLOB approach, which utilizes many correlated sub-queries, performs worse than 

the other set-oriented plans. This is because the relational optimizer has no choice but to use 

the nested loop join strategy. Among the Outer Union based plans, the Unsorted Outer Union 

approach is more efficient than the Sorted Outer Union approach. This implies that the cost of 

sorting (and using a simple constant space tagger) is more expensive than avoiding the sort 

and using a more complex hash-based tagger (given sufficient main memory). 

A rather surprising result is that the De-Correlated CLOB approach, despite having to 

repeatedly copy information and carry CLOBs during computation, performs fairly well and 

in fact, is the best strategy for low query fan outs. This is because the DB2 optimizer picked a 

query plan whereby CLOBs could be retained in main memory without having to be 

materialized. Also, since the query depth is low, the overhead of repeatedly copying CLOBs 

is not significant. 

Figure 20: Break Down of XML Construction Time 
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Figure 19 shows the effects of query fan out on the “outside the engine” approaches. The 

Stored Procedure approach performs much worse than the Outer Union approaches because 

of the overhead of issuing many separate database queries and using a fixed join strategy. 

Surprisingly, unlike for the “inside the engine” case, the execution times for the Sorted and 

Unsorted Outer Union approaches are approximately the same here (even though the Sorted 

Outer Union Approach has the extra overhead of the sort). This is because the constant space 

tagger is a streaming operator; i.e., it produces a part of the XML document as soon as it sees 

a tuple. It can thus overlap tagging with writing the XML document to disk, whereas the 

hash-based tagger has to process all input tuples before writing anything to disk. 

5.5. Effect of Query Depth 

We now turn our attention to the next parameter – query depth. Figure 21 shows the effect of 

varying the query depth parameter for the “inside the engine” approaches. While the 

execution time for all the approaches increases with query depth, it is interesting to note the 

dramatic increase for the De-Correlated CLOB approach. This is because, not too 

surprisingly, the relational query optimizer makes mistakes when dealing with very complex 

queries at higher values of query depth. For instance, the query for a producing an XML 

document of query depth 4 has 15 aggregations (XMLAGGs) and 12 joins! In these cases, the 

optimizer makes some poor decisions such as choosing to sort after an aggregation. This 

requires CLOBs to be written to a temporary space and materialized again later. This problem 

Figure 21: Varying Query Depth (Inside the Engine) 

Figure 22: Varying Query Depth (Outside the Engine) 
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is compounded by the fact that the XMLAGG aggregate function is opaque to DB2’s 

traditional relational database optimizer, so it has no good way to estimate and consider the 

size of the CLOB result. 

The effects of varying query depth for the “outside the engine” approaches are similar to 

those for the corresponding “inside the engine” approaches. This is shown in Figure 22. 

5.6. Effect of Number of Roots 

The next parameter of interest is the number of roots. At low values for this parameter, the 

performance of the Correlated CLOB approach improves dramatically, relative to the other 

“inside the engine” approaches (see Figure 23). This happens because only two correlated 

sub-queries have to be issued for constructing the XML document with one root element. 

A similar effect occurs (for similar reasons) with the Stored Procedure approach, the 

“outside the engine” counterpart of the Correlated CLOB approach (see Figure 24). The 

relative performance of the outer union approaches remains unchanged. 

5.7. Effect of Number of Leaf Tuples vs. Memory Size 

For the next set of experiments, we varied the overall size of the data set by varying the 

number of leaf tuples. When there was sufficient memory, the relative performance of the 

various approaches did not change. However, when the amount of memory available for 

processing was reduced so that the XML document construction could not be performed 

entirely in main memory, (a) the performance of the CLOB approaches degraded even further 

Figure 23: Varying Number of Roots (Inside the Engine) 

Figure 24: Varying Number of Roots (Outside the Engine) 
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because of disk-resident CLOBs, and (b) the Unsorted Outer Union approaches were unable 

to proceed because our hash-based tagger cannot (currently) handle overflows. In contrast, 

the Sorted Outer Union approaches, which are based on the highly scalable relational sort, 

adapted gracefully. 

5.8. Path Outer Unions vs. Node Outer Unions 

We now compare the performance of the Node and Path Outer Union approaches. As 

mentioned earlier, their performance is nearly identical when there is sufficient main 

memory. In fact, despite its data redundancy, the Path Outer Union approach performs 

slightly better (by less than a second) because there are fewer tuples to process (and thus to 

bind out in case of the “outside the engine” approaches).  

The main difference between the two outer union approaches occurs when memory is 

scarce. In this case, for bushy trees (having high instance fan out) the Node Outer Union 

approaches perform better – a difference of up to three seconds – while for non-bushy trees 

(having low instance fan out), the Path Outer Union approaches perform better. This is 

because there is greater data redundancy in the Path Outer Union approach for bushy trees, 

and the overhead of its having to spill the extra data to disk exceeds the advantage of 

processing fewer tuples. 

5.9. Summary of Experimental Results 

To summarize, our performance comparison of the alternatives for publishing XML 

documents points to the following conclusions: 

1) Constructing XML documents inside the relational engine is far more efficient that doing 

so outside. This is mainly because of the high cost of binding out tuples to host variables. 

2) When processing can be done in main memory, the Unsorted Outer Union approach is 

stable and always among the very best (both inside and outside the engine). 

3) When processing cannot be done in main memory, the Sorted Outer Union approach is 

the approach of choice (both inside and outside the engine). This is because the relational 

sort operator scales well. 

It is worth noting at this point that the potential disadvantage of outer union approaches – that 

of “wide” tuples (see Figure 15) – does not significantly impact their performance. The main 

reasons for this is that, for a given outer union result tuple, most of the column values are 

null. Efficient null compression is thus able to reduce the overhead of carrying around many 

columns during query processing. (For a discussion of performance on database systems that 

do not do efficient null compression, see Section 7 under the heading “Middleware queries”.) 
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6. Algorithms to Generate SQL Queries for the Outer 
Union Approaches 

The results of our performance evaluation show that the outer union approaches proposed in 

this paper provide a stable and efficient way to retrieve and structure the relational data 

needed to construct an XML document. In this section, we present algorithms that can be 

used to automatically generate outer union SQL queries. In particular, we present translation 

algorithms that take as input a SQL query specifying the construction of XML documents 

(using the SQL language extensions proposed in this paper) and produce as output an outer 

union SQL query that generates the content for the result XML documents. 

The algorithms presented here are applicable both inside the relational engine as well as 

in an application layer outside the relational engine. If the relational engine provides support 

for the SQL language extensions proposed in this paper, the SQL query rewrite module [16] 

can use the algorithms to generate outer union plans for efficient query execution. Otherwise, 

an application program can parse the user query and use the algorithms to generate outer 

union SQL queries. Since the outer union SQL queries do not use any XML-specific 

extensions, they can be executed by a standard relational database engine. 

While our focus will be on describing the algorithms in the context of the SQL query 

extensions proposed in this paper, it should be easy to see how the algorithms generalize to 

other query languages that use nested sub-queries to create nested document structures. 

Examples of such query languages include XQuery [28], XML-QL [7] and RXL [11]. 

The rest of this section is organized as follows. We first describe the parameters that are 

passed as input to the outer union SQL generation algorithms, before describing the 

algorithms themselves. 

6.1. Input Parameters for Outer Union SQL Generation 

Using the language extensions proposed in this paper, a SQL query specifying the 

construction of XML documents can be represented as the template shown in Figure 25. This 

template SQL query has the following six parameters: sqlCols is the list of SQL columns 

produced as the result of the query, xmlConstructor is the name of the XML constructor used 

to produce the XML output, xmlCols is the list of SQL columns used in xmlConstructor to 

produce the XML output, subQueries is the list of SQL sub-queries used to build up 

intermediate XML fragments needed for producing the XML output, fromList is the list of 

tables referred to in the from clause of the SQL query, and predicates is the list of predicates 

present in the where clause of the SQL query.  
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As an example, consider the SQL query shown in Figure 3. For this query, the six 

parameters are: sqlCols = [cust.id], xmlConstructor = CUST, xmlCols = [cust.id, cust.name], 

subQueries = [<acct sub-query>, <porder sub-query>], fromList = [Customer as cust], 

predicates = []. Note that predicates is represented as the empty list because the example 

SQL query does not have a where clause. 

Each sub-query in the subQueries list conforms to the template shown in Figure 26. Here 

the parameters xmlConstructor, xmlCols, subQueries, fromList, and predicates have the same 

semantics as before. orderingCols is the list of SQL columns used to specify the order in 

which XML elements are to be aggregated. 

As an example, the SQL sub-query in Figure 3 that constructs purchase order XML 

elements (lines 5-14) has the following parameters: xmlConstructor = PORDER, xmlCols = 

[porder.id, porder.acct, porder.date], subQueries = [], orderingCols = [porder.date], fromList 

= [PurchOrder as porder], predicates = [porder.custId = cust.id]). 

Using the input parameters described above, we now outline algorithms to generate outer 

union SQL queries from SQL queries specifying the construction of XML documents. We 

first outline the algorithms for generating path outer union SQL queries before turning our 

attention to algorithms for generating node outer union SQL queries. 

6.2. Generating SQL Queries for the Path Outer Union Approaches 

As described in Sections 4.2.2 and 4.3.1, the basic idea in the path outer union approaches is 

to compute all paths from the root level tables to the leaf level tables by means of joins. The 

results of these join paths are then outer unioned together to produce the desired relational 

content. In the case of the sorted path outer union approach, the outer unioned results are also 

sorted on the key and ordering columns. 

Figure 25: Template of Top-level SQL Query Specifying XML Construction 

Figure 26: Template of SQL Sub-Query Specifying XML Construction 

select sqlCols, xmlConstructor(xmlCols, subQueries) 

from fromList 

where predicates 

 

select XMLAGG(xmlConstructor(xmlCols, subQueries)) 

           group order by orderingCols 

from fromList 

where predicates 
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Figure 27 shows the algorithm to generate the SQL for computing the paths from the root 

level tables to the leaf level tables. As shown, the algorithm takes the user-defined SQL query 

as input. The algorithm also takes in two other input parameters, which are used during 

recursive invocations of the algorithm. 

We will now walk through the algorithm using the example query shown in Figure 3 and 

illustrate how the SQL paths (lines 1-21) are generated for the path outer union query shown 

in Figure 10. The algorithm buildPath is first invoked with the sqlQuery parameter set to be 

equal to the top-level SQL query in Figure 3. The other two parameters, parentName and 

firstChild, are set to be equal to the values null and false, respectively. Since sqlQuery is a 

top-level query, the “if” branch of the conditional is executed (lines 4-9 in Figure 27) and this 

generates the cust inline view in the SQL query of Figure 10 (lines 1-4). Note that we use the 

Figure 27: Algorithm to Generate Paths for the Path Outer Union Approaches 

01. Algorithm buildPaths (SQLQuery sqlQuery, String parentName, Boolean firstChild) returns QueryString 
02.   // Check whether sqlQuery is a top-level query or a sub-query 
03.   if  ( sqlQuery is a top-level query )  then 
04.       // Start with creating the root of the paths 
05.       resultString = “with ” + sqlQuery.name + “ (” + <output columns and types> + “) as (” 
06.       resultString += “select ” + sqlQuery.sqlCols + “, ” + sqlQuery.xmlCols 
07.       resultString += “from ” + sqlQuery.fromList 
08.       resultString += “where ” + sqlQuery.predicates 
09.       resultString += “)” 
10.   else 
11.       // sqlQuery is a sub-query. Create an intermediate result that is outer joined with the parent. Propagate 
12.       // parent information if this is the first child 
13.       resultString = “, ” + sqlQuery.name + “ (” + <output columns and types> + “) as (” 
14. 
15.      // Check whether this is the first child. If so, propagate parent’s data columns 
16.       if (firstChild) then 
17.           resultString += “select ” + <parent’s ids and all data columns> + “, ” + sqlQuery.xmlCols 
18.       else 
19.           resultString += “select ” + <parent’s ids and ordering columns> + “, ” + sqlQuery.xmlCols 
20.       endif 
21. 
22.       // Perform outer join with parent 
23.       resultString += “from ” + parentName + “left join ” + sqlQuery.fromList 
24.       resultString += “on (” + sqlQuery.predicates + “)” 
25.       resultString += “)” 
26.   endif 
27. 
28.   // Recurse on all sub-queries of sqlQuery to produce paths till the leaf level 
29.   for (each subQuery in sqlQuery.subQueries) do 
30.        if (subQuery is first child query) then 
31.            resultString += buildPaths(subQuery, sqlQuery.name, true) // Propagate parent’s data columns 
32.        else 
33.            resultString += buildPaths(subQuery, sqlQuery.name, false) 
34.        endif 
35.   endfor 
36. 
37.   // Return the result string 
38.   return resultString 
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notation sqlQuery.x to refer to the parameter x in the template representation of sqlQuery. 

Also, for ease of exposition, we have assumed the presence of an extra field in sqlQuery, 

name, that has the name of the inline view being generated (here name has the value “cust”). 

Once the inline view for the top-level query is created, the algorithm is invoked 

recursively on all the sub-queries (lines 29-35 of Figure 27). In our example, the sub-queries 

are those that produce the account and purchase order XML fragments corresponding to a 

customer. Since in the path outer union approach, all the parent’s data columns have to be 

propagated with one of its children, a boolean flag (firstChild) is set in the recursive call 

invocation. This indicates which child is to propagate the parent data columns. The name of 

the parent inline view (cust) is also passed as a parameter (parentName) so that the children 

can join with the parent on the path from the root to the leaf. 

On a recursive invocation of the algorithm on a sub-query (such as for the account and 

purchase order sub-queries), the else branch of the first condition is executed (lines 11-25 in 

Figure 27). This produces the SQL that propagates parent data columns if necessary (lines 16-

20) and creates an outer join to relate the parent and the child (lines 22-25). In our example, 

the recursive invocations produce the custAcct and custPorder inline views (lines 5-12 in 

Figure 10). Further recursive invocations of the algorithm produce the other inline views, 

namely custPorderItem and custPorderPay. 

Once the SQL for the paths from the root level tables to the leaf level tables are generated, 

the next step in generating SQL for the unsorted path outer union approach is to outer union 

these paths (lines 23-30 in Figure 10). The high-level pseudo-code for generating the SQL for 

the outer union is given in Figure 28. This algorithm is invoked with the top-level SQL query. 

First, all the leaf sub-queries are determined. In our example, these are the sub-queries 

corresponding to accounts, items and payments. Then, for each leaf-level sub-query, a 

separate leg of the outer union is created (lines 5-18 in Figure 28). Each leg of the outer union 

has the appropriate type information to identify the leg (lines 11-12) and draws results from 

the appropriate root-to-leaf path (lines 16-17). 

The complete algorithm to generate the SQL for the unsorted path outer union approach is 

given in Figure 29. As can be seen, it first invokes the buildPaths function to build all root to 

leaf paths, and then invokes the buildPathsOuterUnion function to outer union the results. 

The algorithm for generating the SQL for the sorted path outer union approach is not 

presented here because it is actually a simplified version of the corresponding algorithm for 

the sorted node outer union approach. This will be discussed in the next section in the context 

of SQL generation for the node outer union approaches. 
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6.3. Generating SQL Queries for the Node Outer Union Approaches 

As described in Sections 4.2.3 and 4.3.1, the main difference between the path and node outer 

union approaches is that the latter avoids some data redundancy by feeding parent 

information directly to the outer union. Thus only the parent id and ordering columns have to 

be carried along with the children. This difference between the path and node outer union 

approaches results in different SQL queries for the two approaches (for example, see Figure 

10 and Figure 12) and hence requires different SQL generation algorithms. In this section, we 

thus present algorithms for generating SQL queries for the node outer union approaches. 

As in the path outer union approaches, the first step in generating SQL queries for the 

node outer union approaches is to generate paths from the root level tables to the leaf level 

tables (lines 1-20 in Figure 12 and Figure 14). The algorithm to generate the desired paths if 

given in Figure 30. This algorithm is broadly similar to the corresponding algorithm for the 

path outer union approaches (see Figure 27). There are, however, two important differences. 

First, the algorithm for the node outer union approaches does not have the logic to propagate 

Figure 28: Algorithm to Generate the Outer Union for the Path Outer Union Approaches 

Figure 29: Algorithm to Generate SQL for the Unsorted Path Outer Union Approach 

01. Algorithm buildPathOuterUnion (SQLQuery sqlQuery) returns QueryString 
02.    // Outer union all the root to leaf paths 
03.    leafSubQueries = Get all leaf sub-queries of sqlQuery 
04.    numLeafSubQueries = size(leafSubQueries) 
05.    for (index = 0; index < numLeafSubQueries; ++index) do 
06.        // Create one leg of the outer union 
07.        if (index > 0) then 
08.            resultString += “ union all ” 
09.        endif 
10. 
11.        // Add the type field for the path 
12.        resultString += “select ” + index + “, ” 
13. 
14.       // Add the other fields and create the from clause 
15.       currSubQuery = leafSubQueries[index] 
16.       resultString += <all columns of currSubQuery with null padding where necessary> 
17.       resultString += “from ” + currSubQuery.name 
18.    endfor 
19. 
20.    // Return the result string 
21.    return resultString 

01. Algorithm buildUnsortedPathOuterUnionSQL (SQLQuery sqlQuery) returns QueryString 
02.    // First build the paths from the root-level tables to the leaf-level tables 
03.    resultString = buildPaths(sqlQuery, null, false) 
04. 
05.    // Next, outer union the paths 
06.    resultString += buildPathOuterUnion(sqlQuery) 
07. 
08.    // Return the SQL string constructed 
09.    return resultString 
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parent data values along with children. This is because only the parent ids and ordering 

columns need to be propagated for node outer union approaches (line 16). Second, the node 

outer union approaches employ regular joins to relate parents and children, as opposed to the 

outer joins used in the path outer union approaches. This is shown in lines 19-21 of Figure 30. 

The next step in SQL generation for the unsorted node outer union approach is to outer 

union the paths generated in the previous step (to generate lines 21-35 in Figure 12). This 

algorithm (not shown) is very similar to the corresponding algorithm for the unsorted path 

outer union approach (Figure 28), but with one key difference. Instead of creating an outer 

union consisting of only root to leaf paths, the algorithm creates an outer union of all paths 

from the root (including paths to intermediate nodes). This is a direct consequence of having 

to feed parent information directly to the node outer union. The complete algorithm to 

generate the SQL for the unsorted node outer union approach is shown in Figure 31. 

We now turn our attention to generating SQL for the sorted node outer union approach. 

As described in Section 4.3.1, the sorted node outer union approach essentially sorts the 

results of the unsorted node outer union approach on the appropriate columns so that the 

results appear in document order. Figure 32 shows the algorithm for generating the SQL 

Figure 30: Algorithm to Generate Paths for the Node Outer Union Approaches 

01. Algorithm buildPaths (SQLQuery sqlQuery, String parentName) returns QueryString 
02.   // Check whether sqlQuery is a top-level query or a sub-query 
03.   if (sqlQuery is a top-level query) then 
04.       // Start with creating the root of the paths 
05.       resultString = “with ” + sqlQuery.name + “ (” + <output columns and types> + “) as (” 
06.       resultString += “select ” + sqlQuery.sqlCols + “, ” + sqlQuery.xmlCols 
07.       resultString += “from ” + sqlQuery.fromList 
08.       resultString += “where ” + sqlQuery.predicates 
09.       resultString += “)” 
10.   else 
11.       // sqlQuery is a sub-query. Create an intermediate result that is outer joined with the parent. Propagate 
12.       // parent information if this is the first child 
13.       resultString = “, ” + sqlQuery.name + “ (” + <output columns and types> + “) as (” 
14. 
15.      // Propagate output columns 
16.      resultString += “select ” + <parent’s ids and ordering columns> + “, ” + sqlQuery.xmlCols 
17. 
18.       // Join with parent 
19.       resultString += “from ” + parentName + “, ” + sqlQuery.fromList 
20.       resultString += “where ” + sqlQuery.predicates 
21.       resultString += “)” 
22.   endif 
23. 
24.   // Recurse on all sub-queries of sqlQuery to produce paths till the leaf level 
25.   for (each subQuery in sqlQuery.subQueries) do 
26.       resultString += buildPaths(subQuery, sqlQuery.name) 
27.   endfor 
28. 
29.   // Return the result string 
30.   return resultString 
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query for the sorted node outer union approach. The first few steps (lines 2-8) essentially 

produce the SQL for the unsorted outer union approach, except that the result of the outer 

union is created as an inline view. This part of the algorithm produces lines 1-37 of the sorted 

outer union SQL query in Figure 14. 

The next part of the SQL generation algorithm (lines 10-22 in Figure 32) creates the main 

SQL query that sorts the unsorted outer union result in the desired order. This produces lines 

38-41 of the SQL query in Figure 14. In order to create the right ordering sequence, which 

satisfies the conditions outlined in Section 4.3.1, all the sub-queries are traversed in a breadth 

first manner, starting with the top-level query. This ensures that parent ids appear before child 

ids in the sort order. Further, all the siblings are traversed in right to left order so that the id 

columns of siblings appears in the sort sequence in the reverse order as the siblings appear in 

the result XML documents. Finally, the ordering columns associated with a sub-query appear 

before the ids of the sub-query. This ensures that user-specified ordering requirements are 

satisfied in the final output. 

Figure 31: Algorithm to Generate SQL for the Unsorted Node Outer Union Approach 

Figure 32: Algorithm to Generate SQL for the Sorted Node Outer Union Approach 

01. Algorithm buildUnsortedNodeOuterUnionSQL (SQLQuery sqlQuery) returns QueryString 
02.    // First build the paths from the root-level tables 
03.    resultString = buildPaths(sqlQuery, null) 
04. 
05.    // Next, outer union the paths 
06.    resultString += buildNodeOuterUnion(sqlQuery) 
07. 
08.    // Return the SQL string constructed 
09.    return resultString 

01. Algorithm buildSortedNodeOuterUnionSQL (SQLQuery sqlQuery) returns QueryString 
02.    // First build the paths from the root level tables 
03.    resultString = buildPaths(sqlQuery, null) 
04. 
05.    // Create the outer union as an inline view 
06.    resultString += “, outerUnion (” + <output columns and types> + “) as (” 
07.    resultString += buildNodeOuterUnion(sqlQuery) 
08.    resultString += “)” 
09. 
10.    // Now create the main query the orders the outer union result 
11.    resultString += “select ” + <output column names> 
12.    resultString += “from outerUnion” 
13.    resultString += “order by ” 
14. 
15.    // Create the correct sort sequence 
16.    for (each subQuery in breadth first traversal of all sub-queries of sqlQuery, 
17.                                        traversing siblings in right to left order) do 
18.         resultString += subQuery.orderingCols + “, ” + subQuery.ids 
19.    endfor 
20. 
21.    // Return the SQL string constructed 
22.    return resultString 
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The SQL generation algorithm for the sorted path outer union approach is very similar to 

the corresponding algorithm for the sorted node outer union approach described above. The 

only difference between the two is that in the sorted path outer union approach, the SQL for 

the unsorted path outer union approach is created instead of the SQL for the sorted path outer 

union approach. The algorithm to generate the ordering sequence is the same. 

7. Related Work 

In this section, we discuss other work related to the content of this paper. 

Middleware Queries for Producing XML Document Content: Fernandez et. al. [10] have 

evaluated the performance of different SQL query plans for generating XML document 

content. That work was done in the middleware context, with tagging done outside the 

database engine. Thus, the approaches proposed in [10] incur a significant data bind-out cost. 

Fernandez et. al. also report experiments which show that the sorted outer union approach 

(with tagging done outside the engine) is not always optimal for generating the content of an 

XML document in the middleware. An execution strategy based on multiple SQL queries was 

shown to perform better in some cases. However, when we reran the same experiments using 

the DB2 database system, we found that the sorted outer union plan (generated using the 

view-tree reduction technique proposed in [10]) was always optimal. On further investigation, 

we learned that Fernandez et. al. used a different database engine, one in which null values 

were not compressed. This caused the size of the outer union plan results to be inflated by up 

to a factor of 3, thereby affecting sort performance. Therefore, we believe that the results 

presented in [10] regarding the performance of the sorted outer union approach do not apply 

to database engines that handle nulls efficiently (such as DB2). In these cases, the sorted outer 

union plan is likely to be optimal. 

For database engines that do not handle null values efficiently, it is better to issue each 

individual leg of the sorted outer union plan (i.e., each path from the root to the leaves) as a 

separate SQL query. This corresponds to the fully partitioned strategy in [10] after the view-

tree reduction step (the view-tree reduction step essentially avoids the need to issue a separate 

query for children that occur at most once per parent). Each of the queries issued in this 

manner is ordered by the ids of ancestors so that the constant-space tagger in the client can 

merge the results in a single pass over the SQL results. In this strategy, since there is no need 

to union the individual query results, there are no null values produced. Hence this strategy is 

(close to) optimal when null values are not handled efficiently by the database engine. 

In contrast, when null values are handled efficiently by the database engine, the sorted 

outer union approach performs better for the following reasons. Firstly, the sorted outer union 
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approach avoids the overhead of issuing multiple queries. Secondly, the sorted outer union 

query can be optimized as a whole by the database engine. This enables the query-optimizer 

to do better memory management and exploit common sub-expression computation where 

applicable. Thirdly, the results of the individual legs of the sorted outer union are merged in 

document order by the database engine. This is better than the tagger at the client merging the 

individual legs because the database engine can do this merge more efficiently (using 

multiple disks, parallelism, buffering, etc.). 

Query Languages for Publishing Relational Data as XML: In addition to the SQL 

extensions proposed in this paper, there are other language proposals for specifying the 

conversion from relational data to XML documents [2][11][15]. SilkRoute [11] uses a 

combination of SQL and XML-QL [7] (an XML query language), to specify the construction 

of XML documents. Microsoft Corporation uses XDR Schemas [15], which are annotated 

XML Schemas [27] for specifing the mapping from relational data to the desired XML 

document structure. Oracle Corporation uses object-relational types and object views to 

specify the structure of the desired XML document, and then uses a default tagging 

mechanism to publish a complex object as an XML document [2]. 

A distinguishing feature of our approach as compared to the SilkRoute and Microsoft 

approaches is that it extends SQL naturally, thus allowing the existing APIs (such as ODBC) 

and processing infrastructure of relational database systems to be reused. Further, our 

approach requires only simple extensions in the form of new SQL scalar and aggregate 

functions, which can easily be added to most existing relational database systems. In this 

sense our approach differs from Oracle’s approach, which requires the relational database 

system to understand (and the user to create) sophisticated object-relational [25] types in 

order to publish relational data as XML documents. 

Non-First Normal Form (NF2) Databases: The content of this paper is related to work on 

non-first normal form (NF2) database systems. NF2 database systems deal with the 

construction of nested relational tables, much like we deal with the construction of nested 

XML elements. There are, however, some key differences. The first difference is regarding 

the query language used to specify the construction of nested structures. While we naturally 

extend an existing query language (SQL), query languages proposed for NF2 databases are 

either special-purpose ones, or semantics-modifying changes to existing query languages 

(such as SQL) [6][17][19]. Further, since NF2 database systems do not deal with tags, their 

query languages cannot specify user-defined tagging of XML documents [14][20]. 
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The work described in this paper also differs from the work on NF2 database systems with 

respect to implementation techniques. One of the main reasons for this difference is that, 

unlike in NF2 database systems, our focus is not on storing and querying nested objects – our 

focus is on creating and publishing nested objects from flat relations. Therefore, rather than 

developing storage and query-evaluation strategies over nested objects [6][20], we develop 

new strategies that can exploit a regular (flat) relational run-time mechanism to efficiently 

construct nested objects. Further, since tagging adds an extra dimension to the XML problem, 

we also develop new techniques to efficiently tag XML results. 

Complex Object Assembly: The work on assembling complex object in object-oriented 

database systems [13][24] is also related to the content of this paper. Our work, however, 

differs from this work in that we exploit the sophisticated (set-oriented) query processing 

power of a relational query engine to construct complex XML elements from relational data. 

Storing and Querying XML Documents using a RDBMS: There has been recent interest in 

using relational database systems to store and query XML documents [8][12][22]. The focus 

of this paper, however, is on efficiently publishing existing relational data as XML 

documents and addressing several of the key difficulties [22] encountered in that conversion. 

8. Conclusion and Future Work 
In this paper, we have studied ways to publish relational data in the form of structured XML 

documents. We proposed a SQL language extension (the XML constructor function) for 

specifying the construction of XML documents from relational data. By extending SQL in 

this manner, applications can reuse the vast infrastructure and APIs that exist today for SQL 

to extract XML documents from relational sources. 

The bulk of this paper was devoted to exploring efficient mechanisms for publishing 

relational data as XML documents, independent of the actual language used to specify the 

outbound mapping. Towards this end, we first characterized the solution space based on the 

main differences between XML documents and relational tables, namely the presence of tags 

and nested structure. We then explored various alternatives in this space, paying special 

attention to the amount of processing that can be done inside the relational engine. Our 

experimental results show that moving all processing inside the relational engine can provide 

a significant performance benefit. This is because the high cost of binding out tuples to host 

variables is eliminated. Our study also shows that the outer union approaches that we have 

proposed in this paper provide an efficient and robust way to retrieve and structure the 

relational data needed to construct an XML document. In light of the superiority of the outer 
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union approaches, we have also presented algorithms to automatically generate the SQL 

queries for these approaches. 

A number of possibilities exist for future work. These include studying the impact of 

parallelism, the addition of new runtime operators inside the relational engine to enhance the 

performance of outer union plans, and the design and analysis of techniques for efficient 

memory management to extend the useful range of the Unsorted Outer Union approach. In 

addition, we believe that the approaches outlined in this paper can be extended to handle the 

construction of recursive XML documents, such as part hierarchies and bill of material 

documents. Specifically, this last topic requires modifications to the tagger algorithms so that 

nested structures of arbitrary depth can be handled and also to the outer union approaches so 

that information about the unbounded hierarchy can be captured. 
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