Efficient Concurrency Control for Broadcast Environments

Jayavel Shanmugasundaram* jai@cs.wisc.edu

Arvind Nithrakashyap nithraka@cs.umass.edu

Rajendran Sivasankaran sivasank@cs.umass.edu

Krithi Ramamritham krithi@cs.umass.edu

Department of Computer Science
University of Massachusetts
Amherst, MA 01002

Abstract

A crucial limitation in environments where data is broadcast to clients is the low bandwidth available for clients to communicate with servers. Advanced applications in such environments do need to read data that is mutually consistent as well as current. However, given the asymmetric communication capabilities and the needs of clients in mobile environments, traditional approaches to meeting these requirements are too restrictive, unnecessary, and impractical. Hence weaker alternatives that are sufficient and practical for such environments are needed. We use a correctness criterion that ensures (1) the \textit{mutual consistency} of data maintained by the server and read by clients, and (2) the \textit{currency} of data read by clients. With these, clients can obtain data that is current and mutually consistent “off the air”, i.e., without contacting the server to, say, obtain locks. Even though mutual consistency is ensured using a correctness criterion called \textit{update consistency}, which is weaker than serializability, determining the legality of histories with respect to update consistency is still NP-Complete. So, \textit{APPROX}, a polynomial time algorithm to efficiently detect (a subset of) update consistent histories, is outlined. \textit{F-Matrix}, a protocol to implement \textit{APPROX} in broadcast disk environments, while ensuring the currency of broadcast data, is proposed. In order for a client to ensure the mutual consistency of data that it uses, \textit{F-Matrix} broadcasts some control information along with the data. To minimize the resulting overheads, \textit{R-Matrix}, a simpler version of \textit{F-Matrix}, is proposed. Experimental results confirm the hypothesis that update consistency would lead to substantially lower response times compared to using serializability, as exemplified by the concurrency control algorithm used in the \textit{Datacycle} architecture. Also, pleasantly surprising is the fact that, in spite of \textit{F-Matrix}’s higher overheads, compared to \textit{R-Matrix}, it leads to better response times and is also more scalable than \textit{R-Matrix} and \textit{Datacycle}. Finally, one of the attractions of the approach presented in the paper is that if caching is possible at a client, weaker forms of currency can be obtained, while still satisfying the mutual consistency of data.

* Currently at the Department of Computer Sciences, University of Wisconsin, Madison, WI 53706
1 Introduction

Many emerging database applications, especially those with numerous concurrent clients, demand the broadcast mode for data dissemination. For example, in electronic commerce applications, such as auctions, it is expected that a typical auction might bring together millions of interested parties even though only a small fraction may actually offer bids. Updates based on the bids made must be disseminated promptly and consistently. Fortunately, the relatively small size of the database, i.e., the current state of the auction, makes broadcasting feasible. But, the communication bandwidth available for a client to communicate with servers is likely to be quite restricted. Thus, an attractive approach is to use the broadcast medium to transmit the current state of the auction while allowing the clients to communicate their updates (to the current state of the auction) using low bandwidth uplinks with the servers. The problem addressed in this paper and the techniques outlined are motivated by such applications. In particular, we are concerned with the problem of providing readers with current and mutually consistent data while ensuring the consistency of updates.

Broadcast-based data dissemination is also likely to be a major mode of information transfer in mobile computing and wireless environments [4, 14, 28]. Many such systems have been proposed [21, 17] and commercial systems such as Vitria [22] already support broadcasting. As these systems continue to evolve, they will be used to run sophisticated applications, many of which will involve data whose consistency must be maintained in spite of updates, some of which may originate from mobile clients. Other applications of broadcasting, include stock trading, next generation road traffic management systems and automated industrial plants [20, 26]. Given the limited amount of bandwidth available for clients to communicate with the broadcast server in such environments, achieving data consistency efficiently in such environments is a challenging research issue.

[13] and [2] are among the few papers motivated by similar considerations. Herman et. al. [13] discuss transactional support in the Datacycle architecture, which is also an asymmetric bandwidth environment. However, they use serializability as the correctness criterion, which we show is very expensive, restrictive, and unnecessary in such environments. In [2], the authors discuss the tradeoffs between currency of data and performance issues when some of the broadcast data items are updated by processes running on the server. However, the updates do not have transactional semantics associated with them either at the server or at the clients. The updates are made only by processes running on the server, while the processes on clients are assumed to be read-only.

In this paper, we propose and evaluate protocols appropriate for broadcast environments. The protocols satisfy two properties: (1) mutual consistency and (2) currency. Mutual consistency ensures that (a) the server maintains mutually consistent data while (b) clients can read mutually consistent data. Currency ensures that clients see data that is current (as of the beginning of a broadcast cycle). We ensure mutual consistency by adapting a correctness criterion called update consistency in [6] and external consistency in [24] for transaction processing in broadcast environments. Our protocols, presented in the context of broadcast disks [28], are intended for applications similar to the auction application, where the size of the database is relatively small but the number of clients is very large. These protocols permit read-only transactions running on mobile clients

\footnote{For the rest of the paper, we refer to this correctness criterion as update consistency.}
to always read current and consistent values without contacting the server (to acquire locks or to validate their reads), i.e., they are able to read the values “off-the-air”. Our main contributions are:

- motivating the need for consistency requirements that are weaker than serializability for broadcast environments
- adopting a correctness criterion that ensures (a) the mutual consistency of data maintained by the server and read by clients, and (b) the currency of data read by clients. Mutual consistency is ensured using an adaptation, for use in broadcast environments, of a correctness criterion called update consistency proposed in the context of multiversion concurrency control [6, 24].
- identifying that update consistency is too expensive a property to check for and hence using an approximation called APPROX.
- proposing two protocols for the practical realization of APPROX: F-Matrix and R-Matrix, both of which satisfy the currency requirement as well, and are suitable for broadcast environments. R-matrix is a lower overhead version of F-Matrix.
- extending F-Matrix and R-Matrix to exploit weak currency requirements by using client caching techniques.
- evaluating the performance of F-Matrix and R-Matrix and comparing them with the performance of (a) the algorithm used in Datacycle and (b) an ideal (but non-realizable) version of F-Matrix. Simulation results show that both R-Matrix and F-Matrix outperform Datacycle in all the experiments. Also, surprisingly, in spite of its larger overheads, F-Matrix outperforms R-Matrix and also in many cases its performance profile is very close to F-Matrix-No. Furthermore, F-Matrix is highly scalable with respect to client transaction length, server transaction length, and server transaction rate. All of these auger well for using F-Matrix as a mechanism to achieve consistency and currency of disseminated data.

In an earlier work [20], we had performed a preliminary study of correctness criteria appropriate for broadcast environments. This paper builds upon the earlier work by adding currency to the requirement, developing concrete protocols to enforce the requirements and by performing a detailed evaluation of these protocols.

One of the issues to be considered in broadcast environments is the security of the data items transmitted. This issue, however, falls outside the scope of this paper.

The rest of the paper is organized as follows. In section 2, we outline the characteristics of broadcast environments and describe why existing approaches to concurrency control are not applicable to such environments. We then motivate the need for a consistency criterion weaker than serializability and show that update consistency is more appropriate for broadcast environments. In section 3, we describe a polynomial time approximation algorithm APPROX that provides an efficient way to check for update consistency. We then proceed to outline mechanisms to implement the algorithm in broadcast disk environments in such a way that the currency requirement is also satisfied. In section 4, we evaluate the performance of these mechanisms and in Section 5, we summarize the paper and outline future work.
2 Correctness of Transactions in Broadcast Environments

In this section, we first outline the characteristics of broadcast environments and then describe why most existing concurrency control techniques are not applicable in broadcast environments. We then argue that one of the main causes for the poor performance of the few concurrency control mechanisms designed for broadcast environments is that serializability as a correctness criterion is too expensive to enforce in such environments. Finally, we identify the need to satisfy update consistency [6, 24], a weakening of serializability, and currency of data seen by clients.

2.1 Characteristics of Broadcast Environments

In this section, we first describe broadcast disks, a particular type of broadcast environment. Using this example, we then illustrate key characteristics of broadcast environments.

Broadcast disks [28] are a form of data dissemination systems that are well suited for wireless and mobile computing. In this framework, the server periodically broadcasts all the data items in the database to a large number, potentially millions, of possibly mobile clients. The clients view this broadcast as a disk and can read the values of data items being broadcast and cache them locally. In order to write onto objects, the clients contact the server with the appropriate information. Different data items may be broadcast at different rates. Thus, for instance, hot data items may be transmitted more often than cold data items. This could be modelled in terms of many broadcast disks with different speeds of rotation. In this paper, we consider only single speed disks. In any case, the size of the database being transmitted cannot be too large or intolerable delays may be experienced at the client waiting for a data item. Fortunately, for many applications like online auctions and traffic control, the number of data items being transmitted are not too large (of the order of hundreds, sometimes thousands, of objects) thus making broadcast disks a very useful technology.

In such environments, though the server to client bandwidth is relatively plentiful, the bandwidth from clients to the server is likely to be very limited because:

- The number of clients listening to a server could be of the order of millions. Thus, a server cannot handle high bandwidth communication from all the clients.
- Battery power is a scarce resource for mobile clients. Since transmissions require substantial battery power (which is more than is needed for reception), this limits the transmissions from a client.

Thus, efficient techniques for concurrency control in broadcast environments would have to take this asymmetry in bandwidth into account. In the next section, we show that existing concurrency control techniques do not efficiently satisfy these requirements because they are not designed for differential bandwidth environments.

2.2 Inapplicability of Serializability for Broadcast Environments

Serializability [5] is the commonly accepted correctness criterion for transactions in database systems. This correctness criterion would be ideal in broadcast environments because (a) the data
at the server, i.e., the data that is broadcast, would be mutually consistent because all update transactions are serializable and (b) transactions reading information being broadcast would read mutually consistent data. Apart from the disseminated data being mutually consistent, clients would also like the data to be current so that, for example, the stock quotes presented to the clients reflect their latest values.

However, serializability is intrinsically a global property - the effect of concurrent transaction execution should be as though all the transactions executed in some serial order. This global property of serializability (i.e., involving all transactions) is particularly difficult to achieve in broadcast environments, where transactions may be executed at distributed clients and servers. This is because ensuring a global property like serializability in a distributed environment either (a) requires excessive communication between the distributed entities, to obtain locks, for example, or (b) requires the protocol that ensures the global property to be overly conservative thus disallowing certain correct executions. The first alternative is expensive in broadcast environments because of the limited bandwidth that clients have available to communicate with the server. The second alternative leads to unnecessary transaction aborts, which again is undesirable. We examine these two alternatives in detail.

We now show that three fundamental techniques, at least one of which is used by virtually any proposed concurrency control mechanism to satisfy serializability in distributed/client-server environments, are inapplicable for broadcast environments.

- **Locking:** Many concurrency control protocols proposed in the literature in the context of distributed/client-server systems [8, 23, 25, 10, 16] use locking even for read-only transactions. In broadcast environments, this would translate to acquiring read locks for every data item read by transactions executing at a client. Clearly, this would swamp the server with lock requests and expend the scarce client to server bandwidth even for read-only transactions.

- **Cache Consistency Mechanisms:** In order to ensure that transactions at the clients read recent data, the techniques for concurrency control in client-server systems [8, 23, 25, 10] predominantly assume that the server is aware of the data items cached at the clients so that changes to data items can be invalidated/propagated to clients. Clearly, these techniques would not be applicable in broadcast environments because (a) the server has to keep track of the caches of a large number of clients and (b) the clients would have to inform the server every time a data item is read, leading to high overhead even for read-only transactions. [12] considers using old versions of data at the clients, but, in addition to the fact that the server has to keep track of the cache contents of the clients, this compromises on the currency of data items read.

- **Timestamp Mechanism:** Some mechanisms proposed for distributed systems [24] use timestamp based concurrency control protocols that require an object to keep track of both read and write timestamps. This is infeasible in broadcast environments because this would require clients to communicate with the server every time an object is read.
To the best of our knowledge, the Datacycle approach [13] is the only concurrency control technique proposed in the literature aimed at broadcast environments. This approach ensures that all transactions executing at clients and the server are globally serializable. But, as we just argued, it would still lead to poor performance because serializability is very expensive to achieve in broadcast environments. Experimental results presented in Section 4 support this argument.

Using specific histories, the following examples show that if substantial communication costs are to be avoided, clients have to be conservative, leading to unnecessary aborts.

Example 1. Assume that in a broadcast environment, clients only know the local transaction execution history and the history of updates at the server. Consider two stock trading transactions t_1 and t_3 at two different clients A and B respectively that read the stock prices of IBM and Sun. Also let t_2 and t_4 be transactions at the server that update the prices of IBM and Sun respectively. Now consider the following execution history:

$$r_1(IBM) \ w_2(IBM) \ c_2 \ r_3(IBM) \ r_3(Sun) \ w_4(Sun) \ c_4 \ r_1(Sun) \ ... \ (1.1)$$

If transactions running on clients do not inform the server about the operations performed by them – a reasonable assumption given the limited uplink bandwidth from clients to the server – then the server would only be aware of the history of its own operations:

$$w_2(IBM) \ c_2 \ w_4(Sun) \ c_4$$

If a server broadcasts this history along with the data, client A would be aware of the history:

$$r_1(IBM) \ w_2(IBM) \ c_2 \ w_4(Sun) \ c_4 \ r_1(Sun)$$

and Client B would be aware of the history:

$$w_2(IBM) \ c_2 \ r_3(IBM) \ r_3(Sun) \ w_4(Sun) \ c_4$$

If both t_1 and t_3 commit, then the server and both the clients would see serializable histories (the serialization orders are $t_2; t_4; t_4; t_1; t_2$ and $t_2; t_3; t_4$ respectively). However, the global history would not be serializable. Thus, either t_1 or t_3 would have to be aborted. However, since the read operations performed by a client transaction are not communicated to other clients or the server, and assuming that there exists no way to inform clients t_1 and t_3 except by expensive message passing, both t_1 and t_3 would have to be aborted – since each client must assume the worst-case history at the other. This is wasteful since the abortion of either t_1 or t_3 would have ensured a serializable history. Unnecessary aborts would occur even if the system history is

$$r_1(IBM) \ w_2(IBM) \ c_2 \ w_4(Sun) \ c_4 \ r_1(Sun) \ ... \ (1.2)$$

because Client A would be aware of this history and would not be able to distinguish it from the previous case. In this case too, t_1 would have to be aborted. A similar argument can be made for t_3. Essentially, in the absence of communication from read-only transactions, to preserve serializability, the read-only transactions will have to be aborted even in cases like history 1.2 because other clients would have to assume worst case scenarios as in history 1.1.

Example 2. Consider the following history that is a modification of the history used in Example 1 (it has the additional operation $w_1(DEC)$, so that t_1 is not read-only any more, and a commit operation for transaction t_3). Again assume that transactions t_1 and t_3 are executed at two different clients and that transactions t_2 and t_4 are executed at the server.
\[r_1(IBM) \ w_2(IBM) \ c_2 \ r_3(IBM) \ r_3(Sun) \ c_3 \ w_4(Sun) \ c_4 \ r_1(Sun) \ w_1(DEC) \ldots (2.1) \]

Let us assume that transaction \(t_1 \) now desires to commit. At the commit time, the server would be aware of the following history.

\[r_1(IBM) \ w_2(IBM) \ c_2 \ w_4(Sun) \ c_4 \ r_1(Sun) \ w_1(DEC) \ldots (2.2) \]

This is because the server needs to be aware of the reads and writes of all update transactions, whether they originate at the client or the server, in order to ensure consistency. In the absence of high client to server bandwidth, however, the server would not know about any read-only transactions. The sub history (2.2) is serializable when \(t_1 \) commits even though the entire history (2.1) is not. The implication of this example is that, even if the actual history of execution is like (2.2), update transactions such as \(t_1 \) would not be allowed to commit under serializability because a worst case scenario, such as (2.1), would have to be assumed. Clearly this is wasteful in terms of unnecessary transaction aborts.

The above two examples illustrate that, in broadcast environments, serializability is very expensive to achieve, both for read-only and update transactions. This is because of the unnecessary aborts serializability might induce or because of the excessive communication it entails if such aborts are to be avoided.

In the next section, we identify the desirable properties of correctness criteria appropriate for broadcast environments and then show how a correctness criterion proposed in the context of multiversion concurrency control can be useful here.

2.3 In Search of Appropriate Correctness Criteria

From the discussion in the previous section, we can see that serializability fails to be an appropriate correctness criterion because of two main reasons. The first reason (as exemplified by Example 1) is that all read-only transactions executing at possibly different clients are required to see the same serial order of update transactions. The second reason (as exemplified by Example 2) is that read-only transactions are required to be serializable with respect to all the update transactions, even those whose updates do not affect the values read by read-only transactions. What seems to be required (and, as we shall show, to be sufficient) is a correctness criterion that relaxes these notions.

In this context, a correctness criterion proposed in the literature in the context of multiversion concurrency control, called update consistency in [6] and external consistency\(^2\) in [24], appears ideal for use in broadcast environments. This is because a history is said to satisfy these consistency requirements iff both of the following conditions hold (for a more formal definition, see [7] or Appendix A):

- All update transactions are serializable.
- Each read-only transaction is serializable with respect to the subset of update transactions it (directly or indirectly) reads from.

Though weaker than serializability, these conditions maintain consistency of the database and of the values read by transactions. In the rest of this section, we give the intuition behind these

\(^2\)The concurrency control techniques outlined in [6] and [24], however, are not applicable to broadcast environments for reasons outlined in Section 2.1.
conditions using the examples introduced in the previous section and comment on the applicability of consistency based on these conditions to broadcast environments.

Consider the history from Example 1 in Section 2.2. As mentioned earlier, if transactions t_1 and t_3 were to commit, then the history would not be serializable. However, the history would still be acceptable because the sub history involving only the update transactions t_2 and t_4 is serializable (the serialization order could be either $t_2; t_4$ or $t_4; t_2$). Further, each read-only transaction is serializable with respect to all the update transactions (not just a proper subset of the update transactions). For read-only transaction t_1, the serialization order is $t_4; t_1; t_2$ while for read-only transaction t_3, the serialization order is $t_2; t_3; t_4$.

Even though the history is not serializable, each transaction still reads consistent data because of update consistency. For instance, read-only transaction t_1 sees a consistent state of the database - the committed state corresponding to a transactional update to Sun’s stock. Similarly, read-only transaction t_3 sees a transactional update to IBM’s stock. Update transactions, being serializable, also see and produce consistent database states. Thus, consistency is not compromised even though the two read-only transactions see different serial orders.

Consider now the history from Example 2 in Section 2.2. If transaction t_1 were allowed to commit, then this history would not be serializable. However, the history would still be acceptable because all update transactions are serializable (the serialization order is $t_4; t_1; t_2$) and the read-only transaction t_3 is serializable with respect to the update transaction t_2 (the serialization order is $t_2; t_3$). Again, consistency is not compromised because update transactions are serializable and read-only transactions (in this case t_3) see the serializable effects of the update transactions they directly or indirectly read from (in this case t_2).

The fact that the histories in Examples 1 and 2 are acceptable implies that read-only transactions need not ever contact the server. This is because the server does not require this information to perform the validation of transactions while still maintaining (update) consistency. We thus see that achieving the update consistency of data at the server, on the one hand, and of data read by a client, on the other hand, addresses the problems with serializability as discussed in Section 2.2.

The only issue about update consistency that might seem to be of potential concern is the fact that transactions executing at the same client can see different serial orders of execution of update transactions. There are two cases to be considered here. In the first case, concurrently executing read-only transactions at a client see different serial orders of update transactions (consider Example 1 where t_1 and t_3 execute at the same client). This, however, does not lead to any inconsistencies because the transactions are allowed to see different orders of updates precisely because the updates are unrelated. Furthermore, because the mechanisms proposed to implement mutual consistency also satisfy the currency requirement, they ensure that if a read-only transaction (say t_i) starts executing after the completion of another read-only transaction (say t_j) at a client, then t_i and t_j see the serial ordering of transactions they both depend on (directly or indirectly) in a consistent fashion. Thus, two transactions, one of which is executed based on the results of another, will not see inconsistent histories.

The second case is when read-only transactions and update transactions see different serial
orders of execution (all update transactions themselves are globally serializable). As explained in the previous case, it is acceptable for independent concurrently executing transactions to see different serial orders (consider Example 2 where t_1 and t_3 execute at the same client). In the case that the concurrently executing transactions are not independent, i.e., a read-only transaction reads from an update transaction, however, update consistency ensures that the read-only transaction and the update transaction see the same serial ordering. Thus, the problem arises only when (a) a read-only transaction starts executing after the completion of an update transaction or (b) a update transaction starts executing after the completion of an read-only transaction. The mechanisms that we use to enforce update consistency, however, satisfy the currency requirement and hence ensure that the two transactions see consistent serial orderings of the transactions they both depend on. Thus, update consistency along with the implementation proposed in this paper do not result in the two related transactions executing at the same client seeing different serial orders of execution of update transactions.

Having shown that update consistency is well suited for broadcast environments, we now outline mechanisms that ensure that (a) transactions are update consistent and (b) the data values read by transactions are current.

3 Mechanisms to Guarantee Correctness

In this section, we address the practical issues involved in enforcing update consistency and currency in broadcast environments. It can be shown (see Appendix B) that even if all the update transactions are serially (not to be confused with serializability) executed, it is still NP-Complete to determine whether a history is update consistent. This means that there probably does not exist an efficient way to determine whether a history is update consistent, when using virtually any serializability based concurrency control algorithm for update transactions.

We hence use a polynomial time approximation algorithm, APPROX, to efficiently determine legal histories. A mechanism to implement this algorithm in broadcast disk environments, F-Matrix, is also described. We then propose, R-Matrix, a simpler (in terms of space, time and effectiveness in determining legal histories) version of F-Matrix. Finally, we outline how F-Matrix and R-Matrix can be extended to exploit weak currency requirements by using client caching techniques.

3.1 A Simple Approximation Algorithm

Given the intractability result of the previous section, we now adapt a polynomial time algorithm [6] that accepts a set of histories that is a proper subset of update consistent histories. The fact that only a proper subset of update consistent histories is accepted implies that the algorithm accepts only update consistent histories though some update consistent histories may not be accepted.

The following concepts are useful in defining the approximation algorithm. Let t be a transaction which executes in a history \mathcal{H}. Then, the set of live transactions with respect to t in the history \mathcal{H}, $LIVE_{\mathcal{H}}(t)$, is the minimal set closed under the following two rules: (a) t is in $LIVE_{\mathcal{H}}(t)$ and (b) If t' is in $LIVE_{\mathcal{H}}(t)$, then all transactions t'' such that t' reads the value of an object written by t'' in \mathcal{H} are also in $LIVE_{\mathcal{H}}(t)$. Intuitively, the set of live transactions with respect to a transaction t is the set of transactions that t directly or indirectly reads from. The update sub history of a history
\(\mathcal{H} \), \(\mathcal{H}_{\text{update}} \), is a projection of the history \(\mathcal{H} \) which includes all and only the operations performed by transactions that perform a write operation in \(\mathcal{H} \).

The approximation algorithm APPROX determines that a history is legal iff both of the following conditions hold:

1. \(\mathcal{H}_{\text{update}} \) is conflict serializable.
2. For every read only transaction \(t_R \) in the history \(\mathcal{H} \), \(S_{\mathcal{H}}(t_R) \) is acyclic. Here \(S_{\mathcal{H}}(t_R) \) is the serialization graph consisting of only the transactions in \(LIV_{\mathcal{H}}(t_R) \).

The intuition behind this algorithm is to replace all occurrences of view serializability [27, 5, 19] in the formal characterization of update consistency (see Appendix A) with occurrences of conflict serializability. Since conflict serializability is an efficient alternative to view serializability, we would expect the algorithm APPROX to be efficient. Indeed, it can be shown (see Appendix C) that APPROX is a polynomial time algorithm. Figure 1 relates the histories accepted by the different correctness criteria by means of a partial order (the arrows point in the direction of the stronger correctness criterion).

3.2 Implementing APPROX for Broadcast Disk Environments

In this section, we first discuss how APPROX can be implemented in broadcast disks – which is a specific instance of a broadcast environment. We then propose a simpler algorithm that approximates APPROX but which is much more space efficient. We then qualitatively compare the algorithms with the existing Datacycle concurrency control algorithm [13].

Our protocol requires additional control information to be broadcast with the data items in order to ensure correctness. So, a key issue is to minimize the overheads entailed by this additional information.

3.2.1 The F-Matrix Implementation

In this section, we describe one implementation of APPROX, namely F-Matrix (short for Full Matrix), that is appropriate for broadcast disk environments. We outline the server functionality,

\(^3\)For a more precise definition of \(S_{\mathcal{H}}(t_R) \), see Appendix C.

\(^4\)The formal characterization of update consistency in [7] is not in terms of view serializability and is thus less general than our characterization.
the client functionality, the nature of the control information transmitted from the server to the clients, the client read-only transaction validation protocol and the details on how the control information is computed at the server.

Server Functionality

The server performs the following functions:

1. During each cycle, broadcasts the latest *committed* values of all data items at the beginning of the cycle. Note that this implies that the server has to maintain two versions of objects: the latest committed version and the last written version\(^5\).

2. Using a concurrency control mechanism ensure the conflict serializability of all transactions submitted to the server (some of these may originate at the clients and be submitted for validation as described later). The exact information a client must provide along with its update transaction is discussed under client functionality. We do assume that if a transaction commits, then all transactions from which that transaction has read have previously committed.

3. Transmits a *control matrix* during each cycle that helps clients determine whether read-only transactions read consistent values. The control matrix will be described shortly.

In summary, the server is responsible for transmitting the latest (to within a cycle) committed values of data items, ensuring the conflict serializability of transactions submitted to it and transmitting enough control information so that read-only transactions at clients can validate their reads – which may span multiple cycles.

Client Functionality

Clients handle two types of transactions: read-only transactions and update transactions. Read, write, commit and abort operations performed by a transaction are handled as follows:

- *Read Operation*: Before a read operation is performed on a data item broadcast during a cycle, the control information transmitted during that cycle is consulted to determine whether the read operation can proceed (the exact details about the nature of this check will be described shortly). If the read operation cannot proceed the transaction is aborted.

- *Write Operation*: When a data item is written, the write is performed on a local copy of the data item in the client. No checks are made.

- *Commit*: If the transaction has not performed any write operation, then the commit operation does not have to do anything and the commit succeeds. In case the transaction has performed a write operation, a list of all the objects written and the values written are sent to the server. In addition, the list of all read operations performed and the cycle numbers in which they are performed are sent to the server. The server checks to see whether the update transaction can be committed and communicates the result to the client.

If so, the transaction is committed, else it is aborted. This method of handling update transactions is similar to the method proposed in [15].

\(^5\)The maintenance of two versions of objects has some commonality with multiversion concurrency control [5]. Our concern here is about *clients* which maintain only a single version.
• **Abort:** If the transaction has not performed any write operation, then the abort does nothing.

In case the transaction has written to a data item, then all the copies of the data items written to are discarded and further execution of the transaction is stopped.

Nature of Control Information

We now describe the nature of the control information transmitted by the server and show how it is updated at the end of each cycle. The control information matrix at any point in time is an $n \times n$ matrix, C, where n is the number of objects. If objects are assumed to be have ids ob_i through ob_n, each entry $C(i, j)$ is set to a cycle number determined as follows.

Let H be the history of execution of the committed update transactions at the server. Also, let t_j be the last committed update transaction that wrote onto ob_j. We assume that a transaction t_0 writes onto all data items at cycle 0 (before the beginning of the broadcast). Then:

$$C(i, j) = \max_{t' \in LIV E_H(t_j) \cap t'} \text{writes object } ob_j \text{ (cycle number in which } t' \text{ committed)}$$

As defined earlier, $LIV E_H(t_j)$ refers to the set of transactions (including t_j) that t_j directly or indirectly reads from. Thus, $LIV E_H(t_j)$ is the set of transactions that “affect” the latest committed value of ob_j (because t_j writes the latest committed value of ob_j). $C(i, j)$ is thus the latest cycle number in which some transaction that affects the latest committed value of ob_j and also writes to ob_i, commits. The following example illustrates how the entries in the C matrix are determined.

Example 4: Consider the following history:

$$w_1(ob_1)w_1(ob_2)c_1r_2(ob_1)w_2(ob_1)c_2r_3(ob_2)w_3(ob_2)c_3$$

and assume that the commit operation c_i occurs during the i^{th} broadcast cycle.

In the above scenario $C(1, 1) = 2$ because t_2 was the last transaction to write onto ob_1 (thus “affecting” the value of ob_1) and it committed during cycle 2 of the broadcast. For similar reasons, $C(2, 2) = 3$. The value of $C(1, 2) = 1$. This is because t_3 was the last committed transaction to write onto ob_2 and $LIV E_H(t_3) = \{t_1, t_3\}$ and t_1 is the only transaction in $LIV E_H(t_3)$ to write onto ob_1 and it does so during cycle 1 of the broadcast. For similar reasons, $C(2, 1) = 1$.

So far, we have assumed that each entry of the C matrix has to store the cycle number relative to the first cycle ever broadcast. This could be avoided if we know the maximum number of cycles that a transaction could span (max_cycles). In that case, we need to store only cycle numbers from 0 to max_cycles and perform modulo $max_cycles + 1$ arithmetic and comparisons. This would reduce the size of each entry in the C matrix. The issue of how the control information is to be split across the broadcast cycles also needs to be addressed. One effective way to partition the C matrix is to broadcast the j^{th} column right after broadcasting the object ob_j. This would minimize the amount of time the client would have to wait for control information, as will become apparent in the next section.

Client Read-Only Transaction Validation Protocol

For a read-only transaction t at the client, the following protocol is followed before each read operation. Let R_i be the set of $(ob_i, cycle)$ pairs such that transaction t previously read object ob_i from broadcast cycle $cycle$, i.e., t read the latest committed value of ob_i at the beginning of cycle $cycle$. Then a read operation on an object ob_j is allowed to proceed in a cycle iff the following
condition, \(\text{read-condition}(ob_j) \), holds (thereby preserving conflict serializability):

\[
\forall (ob_j, \text{cycle}) \in R_t \ [C(i, j) < \text{cycle}]
\]

where \(C \) is the matrix at the beginning of the current cycle. If the \text{read-condition} fails, the transaction is aborted. Intuitively, a read operation performed by a transaction \(t \) on object \(ob_j \) is allowed to be performed iff no transaction in \(\text{LIVE}(t) \) wrote onto \(ob_i \) after \(t \) read from the \(ob_i \).

Theorem 1 A read-only transaction \(t_R \) is allowed to commit by the protocol described above iff \(S(t_R) \) is acyclic.

Proof: If Part: Assume that \(S(t_R) \) is acyclic. Then the sub history consisting of transactions in \(\text{LIVE}(t_R) \) is conflict serializable. Now, for the sake of contradiction, assume that the protocol detailed above aborts \(t_R \). From the working of the protocol, we can infer that \(t_R \) must have read an object \(ob \) during a cycle \(c_1 \) and some transaction \(t' \in \text{LIVE}(t_R) - \{t_R\} \) that committed at some cycle \(c_2 \geq c_1 \) must have written to \(ob \). Further, the transaction \(t_R \) must have attempted to read an object \(ob' \) at some cycle \(c_3 \geq c_2 \) and the last transaction (say \(t'' \)) that wrote onto \(ob' \) before the begin of cycle \(c_3 \) must have directly or indirectly read from \(t' \). However, this would mean that there exists arcs of the form \(t_R \rightarrow t', t' \rightarrow t'', t'' \rightarrow t_R \) which causes a cycle in the serialization graph \(S(t_R) \), a contradiction. Thus, the protocol allows \(t_R \) to commit.

Only If Part: Assume that a read-only transaction \(t_R \) is allowed to commit. Since all the update transactions are conflict serializable at the server, we know that the sub history consisting only of transactions in \(\text{LIVE}(t_R) - \{t_R\} \) is conflict serializable. If we now add the read operations performed by \(t_R \) to this sub history, the only way this history would not be conflict serializable (i.e., \(S(t_R) \) is not acyclic) is if there exists some write operation performed by some transaction \(t' \in \text{LIVE}(t_R) - \{t_R\} \) on an object \(ob_i \) after \(t_R \) performs a read operation on \(ob_i \).

However, since \(t' \) is in \(\text{LIVE}(t_R) - \{t_R\} \), there must exist some object \(ob_j \) and a transaction \(t'' \) such that \(t'' \in \text{LIVE}(t_R) - \{t_R\}, t' \in \text{LIVE}(t'') \) and \(t'' \) writes to \(ob_j \) and \(t_R \) reads this value of \(ob_j \). Since \(t' \) wrote onto \(ob_j \) after \(t_R \) read \(ob_i \), \(t' \) must have committed in a cycle (say \(c_2 \)) that is greater than or equal to the cycle (say \(c_1 \)) in which \(t_R \) read \(ob_i \) (for if not, \(t_R \) would have read the value of \(ob \) written by \(t' \)). Also, at the cycle (say \(c_3 \)) at which \(t_R \) reads \(ob_j \), \(t' \) must have committed (because \(t_R \) reads the committed value of \(ob_j \) written by \(t'' \) and \(t'' \) directly or indirectly reads from \(t' \)). Thus, by the definition of the matrix \(C, c_1 \leq c_2 \leq C(i, j) < c_3 \) at cycle \(c_3 \). Thus, by the protocol, at cycle \(c_3 \), the transaction \(t_R \) would have been aborted because \(C(i, j) \notin c_1 \), a contradiction. Thus, \(S(t_R) \) is acyclic.

Computing Control Information

As a transaction commits, the entries affected by it are updated by the server. For simplicity, we consider only the simple case where the entries are updated as per a serialization order (see Section 5 for other options).

We now show how the matrix \(C \) can be incrementally constructed. At the beginning of the broadcast, each entry in \(C \) is set to the cycle number 0. Let \(C_{old} \) be the matrix that considers all the committed transactions in a serial order up to a certain point in time in a broadcast cycle \(c_1 \). Now, let \(t \) be a newly committed transaction that occurs immediately after all previously committed
transactions in the update transaction serialization order. Also, let \(c_2 \geq c_1 \) be the cycle in which \(t \) commits. Let \(RS_t \) be the set of objects read by \(t \) and let \(WS_t \) be the set of objects written by \(t \). Then the new matrix \(C_{\text{new}} \) is computed as follows:

- \(C_{\text{new}}(i, j) = c_2 \) if \(ob_i, ob_j \in WS_t \)

 Since transaction \(t \) writes to objects \(ob_i, ob_j \) and it is the last transaction to write onto \(ob_j \) in the serial order of execution, \(t \) is the last transaction that affects the latest value of \(ob_j \) and also writes to \(ob_i \). Thus, the entry is set to the cycle in which \(t \) commits.

- \(C_{\text{new}}(i, j) = \max_{ob_k \in RS_t} \{ C_{\text{old}}(i, k) \} \), \(ob_i \notin WS_t \) and \(ob_j \in WS_t \)

 Since transaction \(t \) reads from objects in \(RS_t \), the transactions \(t \) depends on is the set of all transactions that directly or indirectly affected the latest values of items written to the objects in \(RS_t \). Thus, each entry is updated to reflect this fact. If the transaction \(t \) does not read any object, then this \(C \) entry is set to 0.

- \(C_{\text{new}}(i, j) = C_{\text{old}}(i, j) \) otherwise

 If an object \(ob_j \) is not updated, entries in column \(j \) are untouched.

Theorem 2 The above incremental algorithm preserves the semantics of the \(C \) matrix.

Proof: We prove the by induction of the position of a committed transaction transaction \(t \) in a serialization order that the \(C \) matrix on being incrementally updated as per the algorithm has the desired values in its entries.

For the basis, when no transaction is considered, the \(C \) matrix has all entries set to 0. This trivially preserves the semantics of \(C \). For the induction hypothesis, assume that the claim is true for a transaction that is at position \(k \) in the serialization order. Now consider the transaction \(t' \) at position \(k + 1 \) in the serialization order that commits at cycle \(c_2 \). By induction hypothesis, we know that \(C_{\text{old}} \) satisfies the semantics of the matrix for all transactions that committed before \(t' \) in a serial order. For all objects \(ob_j \) not in \(WS_t \), the entries \(C_{\text{new}}(i, j) \) should not change because \(t \) does not write to object \(ob_j \). This is preserved by the algorithm.

For all objects \(ob_i, ob_j \) that are in \(WS_t \), the entry \(C(i, j) \) should be set to the time of the last write to \(ob_i \) by a committed transaction that \(t \) directly or indirectly reads from (in this case \(t \) itself). Thus, \(C_{\text{new}}(i, j) \) should be set to \(c_2 \) as in the algorithm.

For all objects \(ob_j \) that are present in \(WS_t \), the values written by \(t \) are dependent on the values of objects in \(RS_t \) that are read by \(t \). Thus the entry \(C_{\text{new}}(i, j) \), where \(ob_i \notin WS_t \), by induction hypothesis, needs to be set to the maximum value of the entries \(C_{\text{new}}(i, k) \), where \(ob_k \in RS_t \). This is precisely what is done in the algorithm.

Since the above three cases are mutually exclusive and exhaustive, the theorem follows. \(\blacksquare \)

There are a few potential drawbacks of \textit{F-Matrix}. One is that computing the matrix may be expensive in terms of server time. We, however, do not expect this problem to be as severe. In practice, because \textit{APPROX} is based on a validation based approach to effecting clients’ updates, it is unlikely to perform well when the number of update transactions run at the server is large (for the same reason that an optimistic method is unlikely to perform well in high contention...
environments). Thus, the computation of the matrix may very well be feasible within the working limits of APPROX.

The other potential drawback of the F-Matrix mechanism is that the bandwidth required to transmit the C matrix during each broadcast cycle. The space requirements for the C matrix in F-Matrix is $n^2 \times \log(\text{max.cycles})$ bits per broadcast cycle, where n is the number of objects in the database and max.cycles is the maximum number of broadcast cycles spanned by a transaction. This cost can be significant for large values of n. Quantitatively, if the size of each object is s bits, then the fraction \[\frac{n^2 \times \log(\text{max.cycles})}{n \times \log(\text{max.cycles}) + n \times s} = \frac{s}{\log(\text{max.cycles}) + s} \] of the broadcast cycle time is spent on control information. If s is small, this overhead can be significant. The overhead may not be significant for large values of s. This problem is actually slightly worse than it seems. It can be shown (see Appendix D) that regardless of the compression technique used, in the worst case, the number of bits to be transmitted in order to represent the C matrix during each broadcast cycle is quadratic in the number of objects broadcast.

The above result, however, assumes for simplicity that the entire C matrix is transmitted in each broadcast cycle. The number of bits to be transmitted may be drastically reduced if we transmit only changes (deltas) over the previous C matrix transmission. This approach, however, has the disadvantage that the client has to store the previous transmitted C matrix. More importantly, the client should listen to the last broadcast of the C matrix and the subsequent deltas regardless of whether it wanted to read any data in those broadcast cycles, thus increasing the usage of scarce client resources (like battery power). We do not investigate the details of this approach in detail in this paper but plan to study it as part of future work (see Section 5).

3.2.2 The R-Matrix and Datacycle Implementations

In the previous section, we described the F-Matrix mechanism to implement the APPROX algorithm in broadcast disk environments and also outlined some of the potential overheads of computing and transmitting the C matrix. In order to get around the drawbacks of F-Matrix mentioned above, F-Matrix could be modified as follows. Instead of viewing each object as a separate entity, we can partition them into groups of objects. The C matrix will now not be a $n \times n$ matrix, where n is the number of database objects, but would be a $n \times g$ matrix, where g is the number of groups in the database, thus reducing the size of the control information. Further, the fact that there are fewer entries to update would make it more efficient to update the matrix.

Each entry of the modified C matrix, $MC(i,s)$, where s is a set of objects, is defined by:

- $MC(i,s) = \max_{j \in s}(C(i,j))$

Intuitively, for the purposes of the matrix, we consider all database items in the set s to be indistinguishable. In the client, the check is performed as in the F-Matrix case, with the following modification to account for the grouping of objects. Let R_t be the set of $(ob_i, cycle)$s such that transaction t previously read object ob_i in cycle $cycle$. Then read-condition(ob_j) becomes:

$$\forall (ob_i, cycle) \in R_t \forall s \ (ob_j \in s \Rightarrow MC(i,s) < cycle)$$

where MC is the matrix at the beginning of the current cycle and the domain of s is the set of database partitions. s being tunable, we have a spectrum of mechanisms implemented by varying the size of the database partitions (in the extreme case, where all database partitions are singleton
sets, we have the the implementation F-Matrix). There is a tradeoff in choosing the size of the partition: increasing the partition size would mean that certain unnecessary conflicts would be detected, while reducing the partition size would imply increased control information overhead. In this paper, we concentrate on the two extreme cases: (a) all database partitions are singleton sets (F-Matrix) and (b) all database items fall under one partition.

In case (b), the matrix entry associated with each object is just the latest cycle number in which a committed value was written to it (i.e., the matrix is in fact just a vector). Thus, read-condition(obj) is simplified to:

$$\forall (ob_i, cycle) \in R_t \ (MC(i, db) < cycle)$$

where db is the set of all the objects in the database. In other words, a transaction can proceed to read an object only if no previously read value has been updated. This corresponds to the Datacycle approach for concurrency control [13] and ensures serializability. For the rest of this paper, we call this approach Datacycle. The Datacycle approach, however, does not fully realize the potential of the matrix reduction. We can in fact weaken read-condition(obj) for a read on an object obj_j performed by a transaction that read the first data item at cycle c_1 to:

$$\forall (ob_i, cycle) \in R_t \ (MC(i, db) < cycle) \ \lor \ (MC(j, db) < c_1)$$

where db is the set of all the objects in the database. We call this modified algorithm R-Matrix (for reduced matrix). The idea behind this algorithm is that a transaction reads consistent values if either (a) no values it has previously read have been overwritten by other transactions or (b) (even though previously read values may have been overwritten by other transactions) the current value being read has not been overwritten since the beginning of the transaction. The first condition ensures that the transaction sees the database state at the time of the last read while the second condition ensures that the transaction sees the database state at the time of the first read. It can be shown (see Appendix D) that R-Matrix accepts only schedules accepted by APPROX.

Optimizations similar to those done in Datacycle could also be done for R-Matrix. Thus, a bit could be set by hardware if any of the previously read values of a transaction are changed. For a future read operation invoked on an object, if the bit is set and if the object being read has been changed during or after the cycle in which the first read operation was performed by the transaction, the transaction is aborted. Otherwise, the read operation is allowed to proceed. Note that this mechanism, besides reducing the number of unnecessary aborts of read-only transactions, has a nice “stability” property unlike Datacycle where a transaction may be aborted even though it does not perform any further reads.

3.3 Exploiting Weak Currency Requirements

In the discussion above, we have assumed that the read operations of client transactions would like to see data that is current to at least the beginning of the broadcast cycle in which the read operation was performed. Thus, each read operation had to read data items off the broadcast. This is not necessary, however, if the client currency requirement is such that data items read have to be current to only within T time units, where T could be much larger than the broadcast cycle.
time. In this case, data items read off the broadcast disk could be cached at clients so that future accesses to the same data items can just be read from the local cache \(^6\) without having to wait for the data item to appear again in the broadcast. A data item is removed from the cache as soon as the currency of the data item cached exceeds \(T\) time units. Note that this decision to invalidate items in the cache can be done locally by the client without need for any communication.

Different clients may have different currency requirements and even for a given client, there may be different currency requirements for different data items. Since the invalidation of the cache at clients is purely local, the invalidation interval can be tailored on a per client per object basis and the invalidation performed accordingly. Thus, clients with vastly different currency requirements can coexist in a broadcast medium without any need for extra communication. This caching technique is a specific instance of a more general technique called quasi-caching, introduced in [3].

The main problem that is to be solved in this context is to ensure that transactions see mutually consistent even when they read cached data items. Previous approaches for maintaining the consistency of cached data items [3, 2] do not ensure the mutual consistency of objects read by transactions. In order to achieve this in our framework, we only need to store the columns of the matrix corresponding to the data items cached, along with the cycle at which the data items were cached. In this way, a transaction that accesses cached data items (in addition to possibly data items read off the broadcast medium) has all the information necessary for validation when using the \(F-Matrix\) and \(R-Matrix\) mechanisms.

In summary, weak currency requirements can be effectively exploited in broadcast environments using client caching. With minor modifications, our mechanisms can be extended to maintain inter-object consistency by storing the relevant columns of the concurrency control matrix.

4 Simulation Results

Our simulation based experiments are aimed at comparing the performance of four different algorithms (\(Datacycle\), \(F-Matrix\), \(R-Matrix\) and \(F-Matrix-No\)) for concurrency control of client read-only transactions in broadcast disk environments. The first three algorithms are described in the previous section. The last algorithm is used as a baseline and implements the functionality of \(F-Matrix\), but ignores the cost of broadcasting the control information associated with each object in the database. Hence, the broadcast cycle lengths are shorter for runs of this algorithm as compared to those for \(F-Matrix\). We do not consider the effects of caching in this performance study but plan to explore this as part of future work (see Section 5).

The performance of these algorithms can be compared relative to the following metrics:

- **Transaction Response Time** – the time the transaction is submitted by a client to the time the transaction commits. This includes the time involved in restarting the transaction (perhaps more than once, if necessary), if it aborts.

- **Transaction Restart Ratio** – the number of times a transaction, before it completes successfully, is aborted and restarted because the data it read was inconsistent.

\(^6\)In case the client cache is not large enough to hold all the date items needed by transactions, cache replacement policies similar to those suggested in [2] could be employed
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Transaction Length (number of read operations)</td>
<td>4</td>
</tr>
<tr>
<td>Server Transaction Length (number of read/write operations)</td>
<td>8</td>
</tr>
<tr>
<td>Transaction Rate at Server (rate of completion of transactions at server)</td>
<td>1 in 250000 bit-units</td>
</tr>
<tr>
<td>Number of Objects in Database</td>
<td>300</td>
</tr>
<tr>
<td>Size of Objects in Database</td>
<td>1 KB</td>
</tr>
<tr>
<td>Server Read Operation Probability</td>
<td>0.5</td>
</tr>
<tr>
<td>Mean Client Inter-Operation Delay (exponential distribution)</td>
<td>65536 bit-units</td>
</tr>
<tr>
<td>Mean Client Inter-Transaction Delay (exponential distribution)</td>
<td>131072 bit-units</td>
</tr>
<tr>
<td>Client Restart Delay (after an abort)</td>
<td>0 bit-units</td>
</tr>
<tr>
<td>Timestamp Size</td>
<td>8 bits</td>
</tr>
</tbody>
</table>

Table 1: Parameters for the Simulation

4.1 Experimental Setup

Our simulator consists of a server, a client, a broadcast disk structure and an event queue. Read-only transactions alone execute on the client. The server executes update transactions, which read and write to the database. Only one client was simulated because the performance of the outlined concurrency control mechanisms for read-only transactions is independent of the number of clients. The objects that the transactions access are determined using a uniform distribution on the objects in the database. Table 1 lists the simulation parameters. For a broadcast medium with bandwidth of 64 Kbits/s, the inter-operation delay translates to 1 second and the client inter-transaction delay translates to 2 seconds.

The server fills the broadcast disk with the data at the beginning of a cycle. To simulate the database objects being broadcast at different times, a time entry exists for each object. This is set to the time at which the object is actually broadcast. The client waits until this time to read the corresponding object. Each cycle consists of a broadcast of all the objects in the database along with the associated control information. For F-Matrix, the control information consists of an \((n \times n)\) matrix, where \(n\) is the number of objects. Each column of the matrix is broadcast along with the corresponding object. For R-Matrix and Datacycle, the control information consists of an array of length \(n\). Each element in the array is broadcast along with the corresponding object.

The time to broadcast one bit (one bit-unit) was used as the unit of time. All response times were measured in terms of this unit. We systematically evaluated the algorithms with respect to different settings of the first 5 parameters. For each simulation, the parameter that was being studied was varied while the other parameters were fixed at the default value. Each experiment consisted of 1000 client transactions and the simulations were run until all of them committed successfully. The data was derived from the last 500 transactions to ensure that it was “steady-state” data. In these experiments, 95% confidence intervals were obtained, whose widths are less than 10% of the point estimates of the response times.

For all the experiments, for F-Matrix the fraction of the cycle used for the control information (in bits) is given by \(\frac{n^2 \times TS}{n^2 \times TS + n \times OBJ} = \frac{\frac{n \times TS}{n \times TS + OBJ}}{\frac{\frac{n^2 \times TS}{n^2 \times TS + OBJ}}{\frac{n \times TS}{n \times TS + OBJ}}}\), where \(TS\) is the size of a timestamp and \(OBJ\)
is the size of an object. For a timestamp size of 8 bits and an object size of one kilo Byte and 300 objects in the database, the overheads work out to about 23%. For R-Matrix and Datacycle, the fraction of cycle time used for control information is $\frac{n \times TS}{n \times TS + n \times OHJ} = \frac{TS}{TS + OHJ}$. For the same parameters as above, the overheads in this case are only about 0.1%.

4.2 Effect of Client Transaction Length

Until client transaction length 4, all the algorithms have similar performance (see Figures 2(a) and 2(b)). But after that, and especially beyond a value of 6, the Datacycle algorithm performs very poorly so much so that for a length of 10, its response time was outside the limits of the Y-axis and hence is not shown. Even though R-Matrix is far better than Datacycle, F-Matrix shows even better behavior. As can be seen from the graph, for a client transaction of 8, R-Matrix has a response time of 122.68×10^6 while F-Matrix has a response time of 14.6×10^6 units (about 12% of R-Matrix’s response time). This is because F-Matrix reduces the number of client transaction aborts to almost zero (see Figure 2(b)) by using the weaker read condition made possible by the extra control information that is broadcast along with the data. Also, note that the performance curve for F-Matrix is flat, indicating that it scales very well with increasing client transaction sizes.

These curves (because of the scale of the Y-axis) do not bring out the small differences that do exist between the performance of F-Matrix and F-Matrix-No. These differences, magnified in Figure 4(a), arise because in F-Matrix-No the time it takes to transmit the control information is ignored. So, read transactions wait for a shorter time for the broadcast data to be available for reads. The number of update transactions per cycle is also reduced and hence, there are lesser read conflicts in each cycle. These factors lower the response times for the ideal F-Matrix-No.

As can be seen from Figures 2(a) and 2(b), there is a high correlation between the response time and the number of aborts. This is true for all the experiments we conducted and thus, in the rest of this paper, we show only the graphs corresponding to the response times.
4.3 Effect of Server Transaction Length
Longer server transactions lead to more updates at the server for each cycle. Hence, the response time tends to increase with server transaction length in Figure 3(a). However, F-Matrix shows very little increase in response time compared to Datacycle and even R-Matrix. Once, again this demonstrates the scalability properties of F-Matrix.

4.4 Effect of Transaction Rate at Server
In Figure 3(b), the server transaction rate (X-axis) decreases as we go from left to right. This graph shows that, as expected, response time tends to improve with a decrease in server transaction rates. It can also be seen that F-Matrix has a performance that is very close to that of F-Matrix-No and is better that R-Matrix, which in turn is much better than Datacycle. Also, F-Matrix displays almost no degradation in performance as server transaction rates increase. This scalability is in complete contrast with Datacycle which has very poor performance at higher transaction rates.

4.5 Effect of Number of Objects
As the number of objects in the database increases, the probability of the transactions accessing an object decreases. The length of the cycle, however, increases with the number of objects. The increase in the control information to be sent (owing to the increase in the number of objects) also increases the length of the broadcast cycle. This increases the number of server transactions per cycle and hence, increases the number of possible conflicts. For these reasons, the response times increase with the size of the database. But, as can be seen from Figure 4(a), the relative ordering of the four protocols remains the same with F-Matrix displaying the best response times (about 9.6×10^6 units for a database size of 400, as compared to nearly 11.3×10^6 for R-Matrix) among the three practical protocols. The rate of increase in response time with increase in the number of objects is also smaller for F-Matrix.

4.6 Effect of Object Size
The relative behavior of the algorithms with increasing size of objects is shown in Figure 4(b). The length of the broadcast cycle increases with object size and hence the response time increases
along with object size. F-Matrix has better performance and also scales better with object size than R-Matrix and Datacycle. As object size increases, the effect of the control information tends to decrease. Hence, F-Matrix and F-Matrix-No approach each other as object size increases. Here again, the rate of increase in response time with increase in the number of objects is also smaller for F-Matrix than that for the other two protocols.

4.7 Summary of Results

R-Matrix outperforms Datacycle and F-Matrix outperforms R-Matrix in all the experiments. Thus, the experimental results confirm the hypothesis that a weaker abort condition would lead to better response times. Furthermore, F-Matrix is highly scalable with respect to client transaction length, server transaction length, and server transaction rate. All the protocols display increased response times with increase in broadcast cycle lengths (either due to increase in the number of objects or due to increase in the size of the objects), but the rate of increase in the case of F-Matrix is lower than that of R-Matrix as well as Datacycle. These impressive performance features of F-Matrix are observed in spite of F-Matrix requiring more bits to transmit the control information in each cycle. Also, in many cases its performance profile is very close to F-Matrix-No which ignores all communication costs for the control information.

F-Matrix and R-Matrix represent two ends of a spectrum. F-Matrix has the overhead of transmitting control information of size $O(n^2)$, where n is the number of objects. R-Matrix presents a cheaper alternative, though it does not perform or scale as well as F-Matrix. In general, the choice of the algorithm to be used would depend on the capacity of the broadcast medium as well as the profile (number of objects, frequency of updates, etc.) of the database that is to be used.

5 Conclusions and Future Work

There are several possible applications of broadcast based database systems. One such application involves a server that stores stock trading data for a stock market. It continuously broadcasts information about current prices and trading volumes of various financial instruments and current values of various market indexes. Clients (brokers, stock traders, market regulators) use mobile
workstations to access this data and perform a wide variety of financial transactions. Since it is important to keep data (e.g., stock trades or liability of a broker) consistent at both server and clients, operations performed by clients must have suitable consistency semantics. Catering to such requirements through efficient concurrency control is the subject of this paper. Figure 5 shows the development of ideas in this paper.

We plan to follow a number of threads in terms of future work: efficient parallel computation and incremental transmission of the control matrix, quantitative evaluation of the performance in the presence of caching at the clients, and extensions to optimize for update transactions at clients.
References

23

A Formalizing Update Consistency

In this appendix, we first outline the update consistency requirements and then formally characterize the histories satisfying these requirements.

Throughout this paper, we assume that an execution trace of a transaction is a totally ordered sequence of events (which may be reads or writes on database items, commit or abort). This execution trace is determined by the associated transaction program, which could have conditional statements. Also, we assume that each history of transaction programs has an initial transaction t_0, which writes onto all the data items accessed (read or written) by transactions in the history. This transaction t_0 does not read any data item.

A.1 Update Consistency Requirements

A history \mathcal{H} of operation events and transaction management events satisfies update consistency iff:

1. The final state of the database after the occurrence of all the operations of committed transactions in \mathcal{H}, in the same order as in \mathcal{H}, is the same as the state of the database on running each committed update transaction in \mathcal{H} in some serial order, S.

2. Given such an S, at least one of the following two statements holds:
 - Each transaction in S reads the same values of objects and performs the same transformation on the database as it does in the history \mathcal{H}
 - There exists some suffix of transactions in S such that when these transactions are run in the same order as in S on any state reached by the serial executions of transactions on the initial state of the database, they read the same values of objects and perform the same transformation on the database as they did in the history \mathcal{H}.

3. Each committed transaction in \mathcal{H} reads the same values of objects as in the state after some serial execution of some subset of committed transactions in \mathcal{H} (which set of committed transactions is not important).

4. Requirements 2 and 3 also hold for each prefix \mathcal{H}' of \mathcal{H}.

The first requirement states that the final state of the database should be the same as that obtained by running all the committed update transactions in some serial order. Intuitively, this means that all the update transactions are in effect run in isolation, one after the other.

The second requirement states that all the update transactions in the serial order of execution that affect the final state of the database should read the same values of objects in the serial order as they do in the history. More precisely, there are two ways in which this requirement can be satisfied. In the first case, all the update transactions read the same values of objects and perform the same transformations in the serial order as they do in the history. In the second case, the effects of the transactions in some prefix of the serial order do not affect the final state of the database (i.e., the net effect, of the transactions occurring later in the serial order, on the database does not depend on the transformation performed by the transactions occurring in this prefix). In this case, only the transactions that occur after this prefix in the serial order need read the same
values of objects and perform the same transformations in the serial order as they do in the history. This requirement ensures that the transactions that actually affect the final state of the database do perform the same transformation on the database in the serial order as they do in the history. Thus, the updates performed by update transactions are propagated to the database in a consistent fashion.

The third requirement states that each transaction is serialized after a subset of committed update transaction. This serial order need not be consistent with the serialization order of update transactions. Note that this requirement neither says that read-only transactions have to be serialized with respect to all the update transactions nor places any restriction on the subset of update transactions with respect to which a read-only transaction needs to be serialized.

The final requirement ensures the prefix commit closed property of the correctness criterion, useful when we talk about the possibility of failures [5]. This requirement has been mentioned here just for completeness and we shall not worry about this requirement for the rest of this paper. This requirement, however, is satisfied by the mechanisms outlined in Section 3.

It is easy to see that update consistency is weaker than serializability, i.e., every history that is serializable also satisfies update consistency (for a formal proof of this statement, see [20]). We now illustrate, through examples, that certain non-serializable histories also satisfy update consistency.

Consider the history in Example 2. As mentioned earlier, this history is not serializable. However, this history satisfies update consistency. This is because the final state of the database is the same as the state obtained after running the update transactions t_2 and t_4 in some serial order (satisfies requirement 1). Also, each update transaction (vacuously) reads the same values of objects in the history as it does in the serial order (satisfies requirement 2). Further, each read-only transaction is serialized after the update transaction it reads from - t_1 after update transaction t_4 and t_3 after update transaction t_2 (satisfies requirement 3). The above three properties can also be verified for every committed prefix of the history (satisfies requirement 4).

As another example, consider the history in Example 3. This history is again not serializable. However, all update transactions are serializable (satisfies requirements 1 and 2). Also, the read-only transaction t_3 is serializable with respect to the update transaction t_2 it read from (satisfies requirement 3). Further, every prefix of the history satisfies requirements 1 through 3 (satisfies requirement 4). The history thus satisfies update consistency.

A.2 Formal Characterization of Histories Satisfying Update Consistency
We syntactically characterize the set of histories that satisfy update consistency. This characterization captures the essence of this correctness criterion and is useful in determining the complexity of recognizing histories satisfying the correctness criterion (in Section B). Readers not interested in the proofs can skip to Theorem 3 at the end of this appendix, which gives the formal characterization.

Let t be a transaction which executes in a history H. Then, the set of live transactions with respect to t in the history H, $LIVE_H(t)$, is the minimal set closed under the following two rules:
(a) t is in $LIVE_H(t)$ and (b) If t' is in $LIVE_H(t)$, then all transactions t'' such that t' reads the value of an object written by t'' in H are also in $LIVE_H(t)$. Intuitively, the set of live transaction
with respect to a transaction \(t \) is the set of transactions that \(t \) directly or indirectly reads from. The \textit{update sub history} of a history \(\mathcal{H} \), \(\mathcal{H}_{\text{update}} \), is a projection of the history \(\mathcal{H} \) which includes all and only the operations performed by transactions that perform a write operation in \(\mathcal{H} \).

We assume that all read operations performed by a transaction precede all write operations performed by the same transaction. We also assume that a transaction does not read from or write to the same object more than once. Further, we assume that objects can be created dynamically or equivalently, that either the scheduler does not know the number of database objects or that there are potentially infinite objects. These assumptions are made in order to keep the abstract characterization simple. The computational results proved in Section B, however, are unaffected by these simplifying assumptions. Further, the mechanism outlined in Section 3 are general and do not rely on these assumptions.

In order to proceed with the formal characterization of the correctness criterion, we make the following assumptions about transactions and the knowledge available to the scheduler that determines legal histories.

\textbf{Assumption 1} A transaction is a deterministic program, i.e., its actions depend only on the values it reads from the database.

\textbf{Assumption 2} The scheduler which determines legal histories knows nothing about the internals of a transaction except that each transaction terminates when run in isolation on a consistent state.

\textbf{Assumption 3} The scheduler which determines legal histories does not know the values read from and written to the database.

\textbf{Assumption 4} The scheduler does not know the identities of transaction programs. In particular, the scheduler cannot detect that two instances of the same transaction program in a history are indeed two instances of the same transaction program.

Before we formally characterize the correctness criterion, we define a few terms.

\textbf{Definition 1} The \textit{reads from relation} associated with a history \(\mathcal{H} \), \(\text{READS_FROM}_{\mathcal{H}} \), is the set \(\{(t',ob,t'')|t' \text{ reads the value written to variable } ob \text{ by } t'' \text{ in } \mathcal{H}\} \).

The \(\text{READS_FROM} \) relationship captures the relationship between two transactions, one of which reads the value of a data item written by the other.

\textbf{Definition 2} Let \(\mathcal{H} \) be some history. Then the \textit{affects set} of a read operation \(r_i[ob] \) in \(\mathcal{H} \), denoted by \(\text{AS}_{\mathcal{H}}(r_i[ob]) \), is the set of operations recursively defined by the following rules:

- \(r_i[ob] \) is in \(\text{AS}_{\mathcal{H}}(r_i[ob]) \)
- If \(r_v[ob] \) is in \(\text{AS}_{\mathcal{H}}(r_i[ob]) \) and \(r_v[ob] \) reads from \(w_{v'}[ob] \) in \(\mathcal{H} \), then \(w_{v'}[ob] \) is in \(\text{AS}_{\mathcal{H}}(r_i[ob]) \)
• If \(w_{\nu}[ob] \) is in \(AS_H(h_t[ob]) \) then all operations of the form \(r_{\nu'}[ob'] \) where \(ob' \) is some object and \(r_{\nu'}[ob'] \rightarrow_H w_{t'}[ob] \) are in \(AS_H(r_t[ob]) \)

• No other operations other than those included by the above three rules are in \(AS_H(r_t[ob]) \)

Intuitively, the affects set of a read operation is the set of operations that “affected” (directly or indirectly) the value of the data item read.

Definition 3 Let \(\mathcal{H} \) be some history. Then the affects set of a write operation \(w_{t}[ob] \) in \(\mathcal{H} \), denoted by \(AS_H(w_{t}[ob]) \), is the set of operations recursively defined by the following rules:

• \(w_{t}[ob] \) is in \(AS_H(w_{t}[ob]) \)

• If \(w_{\nu}[ob] \) is in \(AS_H(w_{t}[ob]) \) then all operations of the form \(r_{\nu'}[ob'] \) where \(ob' \) is some object and \(r_{\nu'}[ob'] \rightarrow_H w_{t'}[ob] \) are in \(AS_H(w_{t}[ob]) \)

• If \(r_{\nu}[ob] \) is in \(AS_H(w_{t}[ob]) \) and \(r_{\nu}[ob] \) reads from \(w_{\nu'}[ob] \) in \(\mathcal{H} \), then \(w_{\nu'}[ob] \) is in \(AS_H(w_{t}[ob]) \)

• No other operations other than those included by the above three rules are in \(AS_H(w_{t}[ob]) \)

Intuitively, the affects set of a write operation is the set of operations that “affected” (directly or indirectly) the value of the data item written.

Lemma 1 Let \(w_{\nu}[ob] \) be the operation \(r_t[ob] \) read from in a history \(\mathcal{H} \). Then \(AS_H(r_t[ob]) = \{ r_t[ob] \} \cup AS_H(w_{\nu}[ob]) \).

Proof: Follows from definitions 2 and 3. ■

Lemma 2 Let \(R \) be the set of read operation performed by a transaction \(t \) before it performs an operation \(w_t[ob] \) in a history \(\mathcal{H} \). Then \(AS_H(w_t[ob]) = \{ w_t[ob] \} \cup \bigcup_{p \in R} (AS_H(p)) \).

Proof: Follows from definitions 2 and 3. ■

The following lemma states sufficient conditions for determining whether a read (write) operation in two histories reads (writes) the same value from (to) an object.

Lemma 3 Consider two histories \(H_1 \) and \(H_2 \) which are produced by running transactions on some initial state of the database. Given the above assumptions, two read operations on an object \(ob \), \(r_{t_1}[ob] \in H_1 \) and \(r_{t_2}[ob] \in H_2 \), read the same value of \(ob \) if:

1. \(AS_{H_1}(r_{t_1}[ob]) - \{ r_{t_1}[ob] \} = AS_{H_2}(r_{t_2}[ob]) - \{ r_{t_2}[ob] \} \)

2. \(r_{t_1}[ob] \) and \(r_{t_2}[ob] \) read from the same operation in \(H_1 \) and \(H_2 \).

3. Each read operation in \(AS_{H_1}(r_{t_1}[ob]) - \{ r_{t_1}[ob] \} \) (and hence also in \(AS_{H_2}(r_{t_2}[ob]) - \{ r_{t_2}[ob] \} \)) reads from the same write operation in both histories \(H_1 \) and \(H_2 \).
Also, given the above assumptions, two write operations on an object \(ob \), \(w_{t_1}[ob] \in H_1 \) and \(w_{t_2}[ob] \in H_2 \), write the same value to \(ob \) if:

1. \(t_1 = t_2 \)
2. \(AS_{H_1}(w_{t_1}[ob]) = AS_{H_2}(w_{t_2}[ob]) \)
3. Each read operation in \(AS_{H_1}(w_{t_1}[ob]) \) (and hence also in \(AS_{H_2}(w_{t_2}[ob]) \)) reads from the same write operation in both histories \(H_1 \) and \(H_2 \).

Proof: We prove the theorem only for write operations. The proof for the case of read operations is very similar. Let there be \(n \) operations in \(AS_{H_1}(w_{t_1}[ob]) \). Consider a topological order of the operations in \(H_1 \). We can associate an index \(1 \leq i_{op} \leq n \) with each operation \(op \in AS_{H_1}(w_{t_1}[ob]) \) such that for two distinct operations \(op_1 \) and \(op_2 \) in \(AS_{H_1}(w_{t_1}[ob]) \), \(i_{op_1} < i_{op_2} \) iff \(op_1 \) occurs before \(op_2 \) in the topological order of \(H_1 \). We now prove by induction on the index \(i_{op} \) that

1. Every read operation \(r_{v'}[ob'] \) in \(AS_{H_1}(w_{t_1}[ob]) \) reads the same value of \(ob \) in \(H_1 \) and \(H_2 \).
2. Every write operation \(w_{v'}[ob'] \) in \(AS_{H_1}(w_{t_1}[ob]) \) writes the same value for \(ob \) in \(H_1 \) and \(H_2 \).

Basis. Consider the case when the operation with index 1 is a read operation \(r_{v'}[ob'] \). In this case, no transaction which did not abort before \(r_{v'}[ob'] \) was performed could have written on to \(ob \) in \(H_1 \). This is because, if such a write operation did exist, \(r_{v'}[ob'] \) would not have been the operation with index 1. Also, since \(r_{v'}[ob] \) reads from the same operation in both \(H_1 \) and \(H_2 \), no such write operation could exist in \(H_2 \) also. Hence \(r_{v'}[ob'] \) in both \(H_1 \) and \(H_2 \) reads the initial state of the object \(ob \) and hence reads the same state of the object \(ob \).

Now consider the case when the operation with index 1 is a write operation \(w_{v'}[ob'] \). In this case, this operation occurs before the first read operation of \(t' \) in \(H_1 \) (and by our assumption about transactions, this means that \(t' \) does not perform a read operation on the database). This is because if there exists a read operation \(r_{v'}[ob'] \) before \(w_{v'}[ob'] \) in either \(H_1 \) or \(H_2 \), then \(r_{v'}[ob'] \) would have been in \(AS_{H_1}(w_{v'}[ob']) \) and would have had a lower index. \(w_{v'}[ob'] \) also occurs before any read operation of \(t' \) in \(H_2 \) by assumption 1. Hence, we can infer that \(w_{v'}[ob'] \) will write the same value to \(ob \) in both \(H_1 \) and \(H_2 \) (again by assumption 1).

Induction Hypothesis. Assume that the claim holds for all operations in \(AS_{H_1}(w_1[ob]) \) with index less than or equal to \(k \), such that \(1 \leq k \leq n - 1 \).

Induction Step. Consider the operation with index \(k + 1 \). If this operation is a read operation \(r_{v'}[ob'] \), then we know that \(r_{v'}[ob'] \) either reads the initial state of \(ob \) in both \(H_1 \) and \(H_2 \) or reads the state of the object written to by some operation \(w_{v'}[ob'] \) which occurs before \(r_{v'}[ob'] \) in both \(H_1 \) and \(H_2 \). In the first case, it is easy to see that the values of \(ob \) read by \(r_{v'}[ob'] \) in \(H_1 \) and \(H_2 \) are the same. In the second case too, they are the same since we can infer that \(w_{v'}[ob'] \) writes the same value in both \(H_1 \) and \(H_2 \), by induction hypothesis.
Now consider the case when the operation is a write operation $w_{t'}[ob']$. By assumption 1 and
by the induction hypothesis, we can conclude that all read operations performed by t' which occur
before $w_{t'}[ob']$ in H_1 also occur in the same order and see the same values in H_2 and vice-versa.
Again by assumption 1, this means that $w_{t'}[ob']$ writes the same value to ob' in both H_1 and H_2.

Since $w_{t_1}[ob]$ is in $AS_{H_1}(w_{t_1}[ob])$ (and hence, also in $AS_{H_2}(w_{t_1}[ob])$), it follows that it writes the
same value to ob in both H_1 and H_2. ■

Definition 4 [18] A *polygraph* $P = (N, A, B)$ is a digraph (N, A) together with a set B of bipaths,
that is, pairs of arcs - not necessarily in A - of the form $((v, u), (u, w))$ such that $(w, v) \in A$.

Alternatively, a polygraph (N, A, B) can be viewed as a family $D(N, A, B)$ of digraphs. A
digraph (N, A') is in $D(N, A, B)$ iff $A \subseteq A'$ and for each bipath $(a_1, a_2) \in B$, A' contains at least
one of a_1, a_2.

Definition 5 [18] A polygraph (N, A, B) is acyclic iff there is an acyclic digraph in $D(N, A, B)$.

Definition 6 The *polygraph associated with a transaction* t in a history H, $P_H(t)$, is the polygraph
(N, A, B) where:

1. $N = LIVE_H(t)$
 The set of nodes is the set of all the transactions that t directly or indirectly reads from in
 the history H.

2. $A = \{(t', t''): t', t'' \in N \land \exists ob((t', ob, t'') \in READS FROM_H)\}$
 There is an arc from a transaction t' to a transaction t'' iff t'' reads the value of some object
 from t' in the history H.

3. $B = \{(t', t''), (t''', t''): t', t'' \in N \land \exists ob((t'', ob, t''' \in READS FROM_H \land w_{t'}[ob] \in H)\}$
 There is a bipath of the form $((t', t''), (t''', t'))$ iff t' writes to some data item which t''' reads
 from t'' in H.

Intuitively, a transaction polygraph associated with a transaction t is acyclic if t is serializable
with respect to all the transactions it directly or indirectly reads from. When the history is evident
from the context, we denote the polygraph associated with a transaction t by $P(t)$. The following
two lemmas illustrate the relationship between the polygraph associated with a transaction in a
history and the existence of serial orders involving that transaction.

Lemma 4 Consider a transaction t in a history H. If $P_H(t)$ is acyclic, then there exists a serial
ordering of a subset of transactions occurring in H, that includes t, such that each transaction in
the serial ordering performs the same read operations and each read operation reads from the same
write operation in the serial ordering as it does in H. 30
Proof: Let $P_H(t) = (N,A,B)$. Since $P_H(t)$ is acyclic, there must exist a topological order of all the transactions in N which satisfies all the edges and bipaths of the polygraph. Consider any such topological order, say TO. We now prove by induction on the position of a transaction in TO that each transaction in N performs the same sequence of operations in the serial order TO as it does in the history H. Further, we prove that each operation performed by a transaction in TO has the same affects-set as the corresponding operation in H and read operations in the affects-sets reads from the same write operations in both TO and H. This implies the above lemma.

Basis: Consider the first transaction in the sequence TO. This transaction t' is either t_0 or a transaction which does not read any value from the database (for if it did, there would be a write-read edge from the transaction it read from to itself and it could not be the first transaction in TO). In either case, we know that t' does not perform any read operation and by assumption 1, we know that t' performs the same sequence of write operations in TO as it does in the history H. Since, the affects-set of write operations of t' is ϕ in either case, the basis is proved.

Induction Hypothesis: Assume that the claim is true for all transactions in position k in the sequence TO, where $1 \leq i$.

Induction Step: Consider the transaction t' at position $k+1$ in the sequence TO. By induction hypothesis, all transactions with index $\leq k$ perform operations in the same order in TO as they did in the history H. Further, the affects-set of the each operation in performed by transactions with index $\leq k$ in TO is the same as the affects-set of the corresponding operation in the history H and each read operation in affects-set read from the same write operation in both TO and H. We now prove by induction on the index of the sequence of operations performed by t' in H that t' performs the same sequence of operations in TO and that each operation performed by t' in H has the same affects-set as the corresponding operation performed by t' in TO, and the read operations in the affects-sets read from the same write operations in both H and TO.

Basis: Suppose the first operation performed by t' in H is $r_{v'}[ob]$. In this case, by assumption 1, the first operation performed by t' in TO is also $r_{v'}[ob]$. If $r_{v'}[ob]$ reads from $w_{v'}[ob]$ in H, then, by the definition of $P_H(t')$, $r_{v'}[ob]$ and induction hypothesis (of outer induction), it also reads from $w_{v'}[ob]$ in TO. This is because all transactions which write onto ob in H either occur before t' or after t' in the topological order and each. By induction hypothesis (of the outermost induction), we know that $w_{v'}[ob]$ in both H and TO have the same affects set and that each read operation in the affects-sets reads from the same write operation in both histories. Thus, by lemma 1, we know that $r_{v'}[ob]$ has the same affects-set in both H and TO, and that each read operation in the affects-sets reads from the same write operation in both H and TO.

Suppose the first operation performed by t' in H is $w_{v'}[ob]$. In this case, by assumption 1, the first operation performed by t' in TO is also $w_{v'}[ob]$. Thus, the affects-set of $w_{v'}[ob]$ is ϕ in both cases (by lemma 2), thus proving the basis.

Induction Hypothesis: Assume that the claim holds for all operations performed by transaction t' with index $\leq l$.

Induction Step: Let $r_{v'}[ob]$ the $(l + 1)^{st}$ operation performed by transaction t' in history H. By induction hypothesis (of inner induction), lemma 3 and assumption 1, we can infer that t'
performs \(r'_V[ob] \) as the \((l + 1)^{st}\) in \(TO \). By reasoning similar to the basis (of inner induction), we can conclude that \(r'_V[ob] \) has the same affects-set in both \(H \) and \(TO \), and that each read operation in the affects-set reads from the same write operation in both \(H \) and \(TO \).

If \(w'_V[ob] \) is the \((l + 1)^{st}\) operation performed by \(t' \) in history \(H \), then by induction hypothesis (of inner induction), lemma 3 and assumption 1, we can infer that \(t' \) performs \(w'_V[ob] \) as the \((l + 1)^{st}\) in \(TO \). Also, by induction hypothesis (of inner induction) and lemma 2, we can infer that \(w'_V[ob] \) has the same affects-set in both \(H \) and \(TO \), and that each read operation in the affects-set reads from the same write operation in both \(H \) and \(TO \), thus extending the induction.

\begin{lemma}
Consider a transaction \(t \) in a history \(H \). If \(P_H(t) \) is not acyclic, then there exists no serial ordering including the transactions in \(LIV E_H(t) \) such that each transaction in \(LIV E_H(t) \) performs the same set of read operations in the serial order and in \(H \) and each such read operation reads from the same write operation in the serial order and in \(H \).

\textbf{Proof:} Let \(P_H(t) \) be an acyclic polygraph \((N,A,B)\). Consider any serial ordering \(S \) including the transactions in \(N \). There are now two cases: (a) the serial ordering \(S \) is not consistent with a topological sort of the digraph \((N,A)\) or (b) the serial ordering \(S \) is consistent with a topological sort of the digraph \((N,A)\). We consider each case in turn.

In case (a), there exist two transactions \(t' \) and \(t'' \) in \(N \) such that \(t'' \) reads some object \(ob \) from \(t' \) in \(H \) (causing the edge \((t',t'')\) to be present in \(A \)) and \(t'' \) occurs before \(t' \) in the serial order \(S \). Thus, \(t'' \) does not read \(ob \) in \(S \) or it does not read the value of \(ob \) written by \(t' \).

Now consider case (b). In this case, there exist some transaction \(t' \) in the serial order \(S \) that violates a bipath of the form \(((t',t''),(t''',t'))\). Thus, \(t' \) occurs between \(t'' \) and \(t''' \) in the serial order \(S \). Further, \(t''' \) reads the value of some object \(ob \) from \(t'' \), that is also written to by \(t' \), in the history \(H \). Now, we have two cases. Either (i) some transaction occurring before \(t' \) (including \(t' \)) in the serial order \(S \) that also occurs in \(H \), say \(t''' \), does not perform the same set of read operations as in \(H \) or some of the read operations performed by \(t''' \) read from different write operations in \(S \) and \(H \) or (ii) all transactions before \(t' \) (including \(t' \)) that occur in \(H \) perform the same set of read operations in \(S \) and \(H \) and each read operation performs reads from the same write operation in \(S \) and \(H \). In sub case (i), the claim holds. In sub case (ii), by lemma 3, we can infer that each read operation performed by \(t' \) in \(S \) (and hence in \(H \)) reads the same value as in \(H \). Thus, by assumption 1, \(t' \) writes to \(ob \) in \(S \). Hence \(t''' \) cannot read the value of \(ob \) from \(t'' \) in the serial order \(S \). This proves the claim.

The following lemma states a sufficient condition that the scheduler can use to determine whether a history satisfies formal requirements 1 through 3.

\begin{lemma}
A scheduler can determine that a history \(H \) satisfies requirements 1 through 3 if:

1. \(H_{update} \) is view serializable [27, 5].

2. For every read only transaction \(t_R \) in the history \(H \), \(P_H(t_R) \) is acyclic.

\end{lemma}
Proof: It is easy to see that part 1 implies formal requirements 1 and 2. This is because, if H_{update} is view serializable [5], the final state of the database after H_{update} is the same as the state after running the transactions in H_{update} in some serial order (this satisfies requirement 1) and further, each read in H_{update} reads the same value in H_{update} as it does in the serial order (this satisfies requirement 2). Further, if H_{update} is view serializable, it also satisfies formal requirement 3 for update transactions. Finally, from lemma 4 and lemma 3, we can infer that formal requirement 3 is satisfied for read only transactions in H.

The following lemma states a necessary condition that should hold for all histories determinable by a scheduler to satisfy requirements 1 through 3.

Lemma 7 A scheduler can determine that a history H satisfies requirements 1 through 3 only if:

1. H_{update} is view serializable.
2. For every read only transaction t_R in the history H, $P_H(t_R)$ is acyclic.

Proof: Consider the scenario where each transaction in the history H, on inputs different from what they read in H, (a) writes to a data item not accessed in H a value that is different from the initial value and further, (b) writes values to all objects accessed in H that are different from those written by any transaction in H. Also, assume that each write operation to an object in the history H writes a different value. From the assumptions made, this is a valid scenario.

Consider the case where H_{update} is not view serializable. This implies that there is no serial ordering of update transactions such that (a) each read operation in the serial order reads from the same write operation as in H and (b) the final write operations to objects in both H and the serial order are the same. In case part (a) is violated, then from the scenario described above, we know that in any serial order of update transactions, a variable that was not accessed in H is written to, and the value written is different from the initial value. Thus, the final state of the database after H will not be the same as the final state on executing update transactions in some serial order. This violates formal requirement 1. Now consider the case where part (b) is violated. Again, by the scenario, we know that write operations to objects by different transactions write different values. Thus, the final state of the database after H will not be the same as the final state on executing update transactions in some serial order. This again violates formal requirement 1.

Now, consider the case where $P_H(t_R)$, where t_R is a read only transaction in H, is not acyclic. From the scenario described above, it is easy to see that t_R can read the same value of objects as in a serial history S involving transaction transactions in H iff each transaction in $RAS_H(t)$ performs the same set of read operations and each read operation reads from the same write operation in S and H. However, by lemma 5, we know that this is impossible. Thus, formal requirement 3 is violated in this case for the transaction t_R.

From Lemmas 6 and 7, we can infer the following theorem which characterizes the set of histories that a scheduler can determine to satisfy requirements 1 to 3.

Theorem 3 A scheduler can determine that a history H satisfies requirements 1 through 3 iff both of the following conditions hold:
1. $\mathcal{H}_{\text{update}}$ is view serializable [27, 5, 19]

2. For every read-only transaction t_R in the history \mathcal{H}, $P_{\mathcal{H}}(t_R)$ is acyclic.

Because of (a), all update transactions are view serializable and because of (b), each read-only transaction is serialized after all the update transactions it directly or indirectly reads from.
B Computational Problems Relating to Update Consistency

In this section, we study the complexity of determining histories that satisfy update consistency.

A history is legal iff a scheduler can determine that the history satisfies requirements 1 through 3 (see theorem 3).

Theorem 4 The problem of determining whether a history \(H \) is legal is **NP-Complete**.

So, it is very unlikely that an efficient (practical) algorithm exists to determine all and only legal histories. However, because view serializability is **NP-Complete**, in practice, a stronger but polynomially checkable property, conflict serializability [5], is enforced. The question that now arises is: What is the complexity of determining whether a history \(H \) is legal, given that \(H_{update} \) is conflict serializable? We can show that this problem is also **NP-Complete**. In fact, we can prove that even if all the update transactions are **serially** (not to be confused with serializably) executed, it is still **NP-Complete** to determine whether a history is legal. This means that there probably does not exist an efficient way to determine whether a history is legal, when using virtually any serializability based concurrency control algorithm for update transactions.

Theorem 5 Consider a history \(H \) such that \(H_{update} \) is a serial history. Then the problem of determining whether \(H \) is legal is **NP-Complete**.

The proofs of Theorems 4 and 5 are given below.

B.1 Proof of Theorem 4

It is easy to see that determining whether a history \(H \) is legal is in **NP**. This is because checking whether \(H_{update} \) is view serializable is in **NP** [18]. Also, determining \(P_H(t_R) = (N, A, B) \) for every read only transaction \(t_R \) in \(H \) can be done in polynomial time and determining whether a digraph in \(D(N, A, B) \) is acyclic can be done in non-deterministic polynomial time.

We now prove that determining whether a history is legal is **NP-Hard**. This is done by a reduction from view serializability, which is **NP-Complete** [18]. Consider any history \(H \). Modify the history such that each read transaction \(t \) in \(H \) such that it writes onto a unique data item \(o_h \). Now all transactions are update transactions and it is easy to see that \(H \) is view serializable iff the modified history is legal.

We now proceed to prove Theorem 5 which states that the problem of determining legal histories \(H \) such that \(H_{update} \) is serial is **NP-Complete**.

Definition 7 [18] A clause in a boolean formula that is in conjunctive normal form is **mixed** iff it contains both variable and negations of variables.

Definition 8 [18] A boolean formula is **non-circular** iff it is in conjunctive normal form and at most one of the occurrences of each variable is in a mixed clause.

We now describe the construction of a polygraph associated with a non-circular boolean formula \(\varphi \), \(P_{\varphi} = (N, A, B) \), as follows. This construction follows the one given in [18]. Let \(\psi \) have \(m \) clauses
Consider a non-circular boolean formula φ and a variable x_j that occurs in φ. Let $P_\varphi = (N, A, B)$ be the polygraph associated with φ. φ is satisfiable with the value of x_j set to false iff there exists an acyclic digraph $(N, A') \in D(N, A, B)$ such that $(b_{x_j}, c_{x_j}) \in A'$.

Proof: This proof is adapted from [18]. Suppose there exists an acyclic digraph $(N, A') \in D(N, A, B)$ such that $(b_{x_j}, c_{x_j}) \in A'$. For each variable x_i, exactly one of the edges (c_{x_i}, a_{x_i}) and (b_{x_i}, c_{x_i}) is in A'. Consider the interpretation that if $(c_{x_i}, a_{x_i}) \in A'$ then x_i is assigned the value true and $(b_{x_i}, c_{x_i}) \in A'$ then x_i is assigned the value false. Note that this implies that x_j is assigned the value false. Now if a literal λ_{ik} is given a value false by this assignment, the arc (z_{ik}, y_{ik}) is in A'. This is because, otherwise a cycle of the form $(c_{x_i}, y_{ik}, b_{x_i})$ if $\lambda_{ik} = x_i$ or $(z_{ik}, c_{x_i}, a_{x_i})$ if $\lambda_{ik} = \overline{x_i}$ would exist in (N, A'). Thus, (N, A') will not have a cycle of the form $(z_{11}, y_{11}, z_{21}, ..., y_{31})$ only if at least one literal in each clause is assigned the value true. Since we know that x_j is assigned the value false, the if part of the lemma follows.

Now suppose that φ is satisfiable with the value of x_j set to false. Let T be some such truth assignment. We now construct an acyclic digraph $(N, A') \in D(N, A, B)$ as follows. A' is the set of all the arcs in A along with the arcs (c_{x_i}, a_{x_i}) if $T(x_i) = true$, (b_{x_i}, c_{x_i}) if $T(x_i) = false$, (z_{ik}, y_{ik}) if $T(\lambda_{ik}) = false$, (y_{ik}, b_{x_i}) if $\lambda_{ik} = x_i$ and $T(x_i) = true$, and (a_{x_i}, z_{ik}) if $\lambda_{ik} = \overline{x_i}$ and $T(x_i) = true$. It is easy to see that $(N, A') \in D(N, A, B)$. We now show that it is also acyclic. Since φ is non-circular, (N,A) is acyclic. This is because node sets corresponding to clauses containing only variables or their negations correspond to node sets with only incoming or only outgoing arcs respectively. Since no variable appears in more than one mixed clause, no two node sets corresponding to mixed clauses are reachable from each other. Thus, (N, A) is acyclic. The arcs in $A' - A$ can introduce cycles in the digraph only by the introducing cycles of the form $(z_{i1}, y_{i1}, ..., y_{i3})$. However, this would mean that the clause C_i has no true literals, a contradiction.

Lemma 9 Given a satisfiable non-circular boolean formula φ and a truth assignment T for φ, an acyclic digraph $(N, A') \in D(N, A, B)$, where (N,A,B) is the polygraph associated with φ, can be determined in polynomial time.

Proof: The proof is similar to the proof of the only if part of lemma 8.
B.2 Proof of Theorem 5

By an argument similar to that given in the proof of theorem 4, it is easy to see that the problem is in NP. We now prove that the problem is NP-Hard by a reduction from $3-SAT$\(^7\), which is known to be NP-Complete [11]. The proof borrows ideas from the proof of the NP-Completeness of view serializability that appeared in [18].

Consider a formula ψ in conjunctive normal form, with two or three literals in every clause. Now construct another formula ψ' by adding a new literal x, that does not occur in ψ, as a disjunct to every clause in ψ. It is easy to see that (a) ψ' is in conjunctive normal form (b) ψ' is satisfiable (by setting x to true) and (c) ψ is satisfiable iff ψ' is satisfiable with the value of x set to false. ψ' can now be rewritten as a formula, ψ'', in which each clause has three literals by rewriting each clause of the form $(a \lor b \lor c \lor d)$ as the conjunct $(a \lor b \lor z) \land (c \lor d \lor z)$, where z is a new variable. Again it is easy to see that (a) ψ''' is in conjunctive normal form with three literals in every clause (b) ψ''' is satisfiable (by setting x to true) and (c) ψ is satisfiable iff ψ''' is satisfiable with the value of x set to false.

Let m be the number of occurrences of a variable z in the formula ψ''' and let z_2, z_3, \ldots, z_m be new variables. Replacing the second occurrence of z by z_2, the third occurrence of z by z_3, etc. and adding the clauses $(z \lor z_2) \land (z \lor z_3) \land (z_2 \lor z_3) \land (z_2 \lor z_3) \ldots$. Repeating this for all variables we observe that (a) the resulting formula, say φ, is non-circular (b) φ is satisfiable (by setting x to true, x_2 to false, x_3 to false, etc. and giving arbitrary truth assignments for other variables) and (c) ψ is satisfiable iff φ is satisfiable with the value of x set to false. It can be verified that the above steps can be done in polynomial time.

Now let $P_\varphi = (N, A, B)$ be the polygraph associated with the non-circular boolean formula φ. Construct a new polygraph $P'_\varphi = (N', A', B')$ such that $N' = N \cup \{t_R\}$, $A' = A \cup \{(y, t_R) | y \in N\}$ and $B' = B \cup \{(a_x, c_x), (t_R, a_x)\}$. We now claim that P'_φ is acyclic iff there exists an acyclic digraph $(N', A'') \in D(N', A, B)$ such that $(b_x, c_x) \in A''$. For the if part, assume that there exists an acyclic digraph $(N, A'') \in D(N, A, B)$ such that $(b_x, c_x) \in A''$. Now consider the digraph (N', A'''), where $A''' = A' \cup \{(a_x, c_x)\}$. It is easy to see that (N', A''') is acyclic because the addition of the node t_R and the arcs (y, t_R) do not harm the acyclicity of (N, A''). Further, the arc (a_x, c_x) cannot create a cycle because the arcs (a_x, b_x) and (b_x, c_x) are already present in A''. For the only if part, assume that P'_φ is acyclic. Thus, there exists an acyclic digraph $(N', A'') \in D(N', A', B')$. The arc $(a_x, c_x) \in A'''$ for if not, there would be a cycle of the form (a_x, t_R, a_x). Since (N', A''') is acyclic, the arc $(c_x, a_x) \notin A'''$ (for otherwise, there would be a cycle of the form (c_x, a_x, c_x)). Thus, $(b_x, c_x) \in A'''$. Since the set of arcs and bipaths in P'_φ is a superset of the set of arcs and bipaths in P_φ, it is easy to see that there exists an acyclic digraph $(N, A'') \in D(N, A, B)$ such that $(b_x, c_x) \in A''$.

From lemma 8 and the above result, we can infer that P'_φ is acyclic iff φ is satisfiable with the value of x set to false, i.e., iff ψ is satisfiable. We now proceed to construct a history \mathcal{H} such

\footnote{3-SAT is the problem of determining whether a boolean formula in conjunctive normal form, with three literals in a clause, is satisfiable.}

37
that H_{update} is serial and $P_{H}(t_R) = P'_{\psi}$, where t_R is the only read only transaction in H. Since we know that ψ is satisfiable iff P'_{ψ} is acyclic, by the definition of legal histories, we can infer that ψ is satisfiable iff H is a legal history. This would complete the reduction.

We construct the history H as follows. Let all the nodes in P' correspond to distinct transactions in H. To construct the set of read and write operations performed by each transaction, we initially start with the empty set for each transaction. For each arc (u, v) in A', we add the write operation $w_u[y_{uv}]$ to the operation set of u and the read operation $r_v[y_{uv}]$ to the operation set of v. For each bipath $((t, u), (v, t))$, we add the write operation $w_t[y_{uv}]$ to the operation set of t. Since we know a truth assignment for φ, we can determine an acyclic digraph $(N, A) \in D(N, A, B)$ in polynomial time (by lemma 9). Let TO be a topological sort of this acyclic digraph. Now construct the history H such that transactions are ordered as per the order TO and where all read operations performed by a transaction precede all write operations performed it. Also, add the read operation $r_{t_R}[y_{a_t, t_R}]$ immediately after the last write operation of transaction a_t and the remaining read operations of transaction t_R at the end of the history.

It is now easy to see that H_{update} is serial and that $P'_{\psi} = P_{H}(t_R)$. Further this construction takes polynomial time. This completes the proof.
C Correctness and Efficiency of APPROX

In this section, we show that (a) APPROX accepts a proper subset of legal histories and (b) APPROX is a polynomial time algorithm. We introduce some preliminaries before proving the theorem.

The following definition, in effect, defines the serialization graph of all the transactions in the history \mathcal{H} that a transaction t directly or indirectly read from.

Definition 9 The serialization graph associated with a transaction t in a history \mathcal{H}, $S_\mathcal{H}(t)$, is the digraph (N, A) where:

1. $N = LIV E_\mathcal{H}(t)$

 The set of nodes is the set of all live transactions with respect to t in the history \mathcal{H}.

2. $A = X \cup Y \cup Z$ where:

 $X = \{(t', t'') | t', t'' \in N \land \exists ob((t', ob, t'') \in READSFROM_\mathcal{H})\}$

 There is an arc from a transaction t' to a transaction t'' if t'' reads the value of some object from t' in the history \mathcal{H}.

 $Y = \{(t', t'') | t', t'' \in N \land \exists obw_{lv}[ob] \text{ occurs before } w_{lv}[ob] \text{ in } \mathcal{H}\}$

 There is an arc of the form (t', t'') if t' writes to some data item later written to by t'' in \mathcal{H}.

 $Z = \{(t', t'') | t', t'' \in N \land \exists obw_{lv}[ob] \text{ occurs before } w_{lv}[ob] \text{ in } \mathcal{H}\}$

 There is an arc from a transaction t' to a transaction t'' if t'' writes onto the same object that t' earlier read from.

It is easy to see that $S_\mathcal{H}(t_R)$ is acyclic iff t_R is serializable with respect to all the update transactions it directly or indirectly read from (see [5] for the related proof that a history is conflict serializable iff the corresponding serializability graph is acyclic).

Lemma 10 Let \mathcal{H} be a history and let t_R be a read-only transaction in \mathcal{H}. Then $P_\mathcal{H}(t_R)$ is acyclic if $S_\mathcal{H}(t_R)$ is acyclic.

Proof: Consider an acyclic serialization graph $S_\mathcal{H}(t_R)$ associated with a transaction t_R in a history \mathcal{H}. By definitions 6 and 9, we can see that the set of nodes are the same in both $S_\mathcal{H}(t_R)$ and $P_\mathcal{H}(t_R)$. Also, we can see that if an arc (t', t'') is in $P_\mathcal{H}(t_R)$ then the arc (t', t'') is also in $S_\mathcal{H}(t_R)$. Further, we can infer that if a bipath $((t', t''), (t''', t'))$ is in $P_\mathcal{H}(t_R)$, then either the arc (t', t''') or the arc (t''', t') is in $S_\mathcal{H}(t_R)$. Thus, by definition 5, it follows that $P_\mathcal{H}(t_R)$ is acyclic if $S_\mathcal{H}(t_R)$ is acyclic.

Theorem 6 APPROX accepts a proper subset of the set of legal histories.

Proof: We first prove that the set of histories accepted by APPROX is a subset of the set of legal histories. In order to see this, consider a history \mathcal{H} that is accepted by APPROX. This implies that
\(H_{update}\) is conflict serializable. But because the set of view serializable histories is a superset of the set of conflict serializable histories [18], this in turn implies that \(H_{update}\) is view serializable. Since \(H\) is accepted by APPROX, this means that for each read transaction \(t_R \in H\), \(S_H(t_R)\) is acyclic. This, by lemma 10, implies that \(P_H(t_R)\) is acyclic. This, \(H\) is a legal history. Since the choice of \(H\) was arbitrary, we can infer that the set of histories accepted by APPROX is included the set of legal histories.

In order to prove that the inclusion is proper, consider the following history:
\[
 r_{t_1}[ob_1] \quad r_{t_2}[ob_2] \quad w_{t_1}[ob_3] \quad w_{t_2}[ob_3] \quad w_{t_2}[ob_4] \quad w_{t_1}[ob_4] \quad w_{t_3}[ob_3] \quad w_{t_3}[ob_4]
\]
This history is legal but is not accepted by APPROX.

Theorem 7 APPROX is in \(P\).

Proof: Given a history \(H\), the sub history \(H_{update}\) can be determined in polynomial time. Further, determining whether \(H_{update}\) is conflict serializable can again be done in polynomial time [5]. For every read transaction \(t_R\) in \(H\), the serialization graph \(S_H(t_R)\) can be determined in polynomial time. Further, there exist polynomial time algorithms for testing the acyclicity of a graph [9]. Thus, APPROX is in \(P\).
D Properties of F-Matrix and R-Matrix

In this appendix, we prove that the minimum number of bits required to transmit the control information for F-Matrix is quadratic in the number of database objects regardless of the compression technique used. We also show the correctness of the R-Matrix implementation.

Theorem 8 In the worst case, the number of bits to be transmitted in order to represent the C matrix for F-Matrix during each broadcast cycle is at least \(\frac{(n^2-4n+3) \times \log(\text{max. cycles})}{4} \).

Proof: The idea behind this proof is to show how all C matrices satisfying a condition (the number of such C matrices being quadratic in the number of objects in the database) have a corresponding history of execution. This would prove that at least a quadratic (in the number of objects) number of bits have to be transmitted, in the worst case, to represent the C matrix during each broadcast cycle.

Consider a database with n data items, where n is an odd number (the case where n is even can be dealt with in a similar way), and assume that the objects have ids ob_1 through ob_n. Now, consider a C matrix that is partially specified as follows:

Each entry $C(i,j), 1 \leq i, j \leq \frac{n-1}{2}$ takes on arbitrary values as long as the constraint $C(i,j) \leq C(j,j)$ is satisfied.

It is easy to see that there are at least \(\frac{(n-1)^2 \times \frac{n-1}{2} - \frac{n-1}{2}}{2} \times \log(\text{max. cycles}) = \frac{n^2-4n+3}{4} \times \log(\text{max. cycles}) \) partial specifications of the C matrix satisfying the above criterion. This is because each entry $C(i,j), 1 \leq i, j \leq \frac{n-1}{2}, i \neq j$ can take on any value from 0 to $\text{max. cycles} - 1$ and each entry $C(j,j), 1 \leq j \leq \frac{n-1}{2}$ can take on the value $\text{max. cycles} - 1$ without violating the constraint.

We now show that for each such partial specification of the C matrix, there exists a fully specified C matrix (with all entries $C(i,j)$ specified) such that it is the same as the C matrix constructed by F-Matrix for some history of execution of transactions. This would mean that at least $\frac{n^2-4n+3}{4} \times \log(\text{max. cycles})$ bits would have be transmitted in each cycle, in the worst case, to distinguish between these different histories. This would prove the theorem.

Given a partial specification of the C matrix, we now incrementally construct a history such that the C matrix constructed from this history is consistent with the partial specification. We construct this history by specifying the history of execution of transactions during each broadcast cycle.

The main idea in the construction is to have a “twin” for each object $ob_k, 1 \leq k \leq \frac{n-1}{2}$, the twin being the object ob_{n-k}. The twin of each object is used to avoid unnecessary dependencies between transactions that could arise during the construction of the history. We represent the twin of an object ob_k by the symbol \bar{ob}_k.

For each entry in the C matrix of the form $C(i,j)$ where $1 \leq i, j \leq \frac{n-1}{2}$ and $i \neq j$, we add a new transaction t performing the operations $r_t[\bar{ob}_j] \ w_t[ob_i] \ w_t[\bar{ob}_j] \ c_t$ to the end of the history for broadcast cycle $C(i,j)$. This transaction, intuitively, ensures that the value of \bar{ob}_j at the end of the history for cycle $C(i,j)$ depends on a transaction that writes onto object ob_i during cycle $C(i,j)$. Also, the $r_t[\bar{ob}_j]$ operation ensures that the previous dependencies of \bar{ob}_j are not destroyed (thus,
the effects of a similar transaction added for an entry \(C(k, j) < C(i, j) \) are not lost).

To complete the construction, for each entry \(C(j, j), 1 \leq j \leq \frac{n-1}{2} \), we add a new transaction \(t' \) performing the operations \(r_v[ob_j] w_v[ob_j] c_v \) to the end of the history for cycle \(C(j, j) \). This transaction establishes the dependency between an object and its twin. Thus, the latest value of \(ob_j \) depends on the same set of transactions that write onto other objects as the latest value of \(ob_j \) does. It is easy to see from this construction that each entry \(C(i, j), 1 \leq i, j \leq \frac{n-1}{2} \) in the \(C \) matrix constructed by \(F-Matrix \) has the same value as in the partially specified \(C \) matrix, thus proving the theorem.

\[\textbf{Theorem 9} \] The \(R-Matrix \) implementation accepts only schedules accepted by \(APPROX \).

\[\textbf{Proof:} \] We prove by induction on the number of operations performed by a client read-only transaction \(t_R \) that \(t_R \) commits under implementation \(R-Matrix \) only if \(t_R \) is conflict serializable with respect to all the update transactions from which it directly or indirectly reads from (i.e., the transactions in \(LIVE(t_R) \) are conflict serializable). This would prove the lemma.

For the basis, where a client read-only transaction \(t_R \) performs just one operation, the transactions in \(LIVE(t_R) \) is trivially conflict serializable (because all update transactions are conflict serializable at the server). As the induction hypothesis, assume that the claim is true for all transactions with \(k \) or fewer read operations. Now consider a client read-only transaction with \(k + 1 \) operations, with the \((k + 1)\)th operation being invoked on an object \(ob \). If \(R-Matrix \) allows the transaction to commit, then by induction hypothesis, we can infer that the first \(k \) operations of the transaction are serializable with respect to all the update transactions the first \(k \) operations directly or indirectly read from. Now assume that there exists a cycle in the serialization graph of transactions in \(LIVE(t_R) \). This would mean that there is an arc from \(t_R \) to a transaction \(t \in LIVE(t_R) - \{ t_R \} \) (because all update transactions are conflict serializable at the server). But, this in turn would mean that some object read during the first \(k \) operations of \(t_R \) was updated by \(t \) after \(t_R \) performed a read operation on the object and further \(t \) directly or indirectly affected the value of \(ob \). This, however, implies that the value of object \(ob \) changed after \(t_R \) performed its first read operation. The last two statement imply that \(t_R \) would not have been allowed to commit under \(R-Matrix \), a contradiction.