
XQuery Full-Text extensions
explained

&

S. Amer-Yahia

C. Botev

J. Dörre

J. Shanmugasundaram

There has been recent interest in developing XML query languages, such as XPath and

XQuery, to tap the vast amount of information represented and stored in Extensible

Markup Language (XML). These query languages, however, have focused mainly on

querying the structure of XML documents and provide only rudimentary support for

querying text content. To fill this void, XQuery Full-Text has been developed as a full-

text extension to XQuery (and also XPath, which is a subset of XQuery). Consequently,

XQuery Full-Text can be used to seamlessly query over both the structure and the text

content of XML documents. This paper explains the design principles behind XQuery

Full-Text, describes its evolution, and illustrates its core features with examples. It is

intended as a reference that is shorter and more accessible than the current World

Wide Web Consortium working draft.

INTRODUCTION

One of the key benefits of Extensible Markup

Language (XML) is its ability to represent a mix of

structured and unstructured text data. One can find

many real XML data repositories that contain such a

mix; for example, the IEEE Initiative for the

Evaluation of XML (INEX)
1

data collection contains

IEEE papers in XML form, including structured

information (such as the names of authors, date of

publication, sections, subsections, and references)

and also unstructured information (such as the text

content of the paper). Other examples of such XML

repositories are Library of Congress documents in

XML,
2

DBLP in XML,
3

SIGMOD Record in XML,
4

and

Shakespeare’s plays in XML.
5

Furthermore, appli-

cation domains, such as the field of library science,

have a growing need to seamlessly query over both

the structured and text parts of XML documents.

Although current XML query languages, such as

XPath
6

and XQuery,
7

can express powerful struc-

tured queries over XML documents, they can

express only a very rudimentary full-text search. For

instance, full-text search in XQuery is expressed

using the function: contains ($e, keywords), which

returns TRUE if and only if the XML element bound

to the variable $e contains the substring keywords

(see Reference 8 for a precise definition of

contains). Although this function is sufficient for

simple substring matching, it is inadequate for more

complex searches. For instance, consider the fol-

lowing example in the W3C** (World Wide Web

�Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 � 2006 IBM

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 AMER-YAHIA ET AL. 335

Consortium) XPath and XQuery Full-Text Use Cases

document.
9

(Use Case 10.2.8 Q8): Consider an XML document

that contains books. Find the titles and contents of

books whose content contains the phrases ‘‘usability’’

and ‘‘Web site’’ in that order, in the same paragraph,

using stemming if necessary to match the tokens.

The XQuery contains function is obviously too

limited to express the above search, which includes

phrase matching, order specifications, paragraph

scope, and stemming. The contains function also

cannot express other full-text operations specified in

the Use Cases document, such as general Boolean

connectives, distance predicates, synonyms, and

thesauruses. Finally, the contains function cannot

score or rank results, such as returning the top 10

results for a given search.

A full-text extension to both XQuery and XPath,

called XQuery 1.0 and XPath 2.0 Full-Text
10

(XQFT),

is currently being developed at the W3C to address

these issues. XQFT enables users to combine full-

text queries with regular XQuery/XPath queries.

XQFT makes two extensions to XQuery and XPath.

First, XQFT introduces ftcontains, a new expres-

sion that supports a Boolean full-text search by

using a set of fully composable full-text operations.

Second, XQFT enhances the XQuery and XPath

FLWOR expression (explained later) to support scor-

ing of full-text expressions and also other XQuery

and XPath expressions.

XQFT was designed by the Full-Text Task Force

(FTTF), a W3C XML Query Group task force initiated

in the fall of 2002. In February 2003, the FTTF

published the working draft of the Use Cases

document,
9

which contains a set of use case queries,

and in May 2003, the FTTF published the Full-Text

Requirements document,
11

which specified the

requirements for XQFT. The use cases, written both

in English and in XQFT, were inspired by the Library

of Congress Use Cases.
12

After the publication of

these two initial documents, several language

proposals were put forth and discussed by the FTTF

participants. The TeXQuery proposal
13

was adopted,

with changes, and a first draft of XQFT was

published in July 2004. Finally, after incorporating

internal and public comments, new versions of the

use cases and the language documents were pub-

lished in April, September, and November 2005.
10

A few implementations of XQFT have already

started to emerge. We are aware of two such

implementations: GalaTex is a conformant open-

source implementation built on top of Galax,
14

an

open-source XQuery system, and Quark, an open-

source implementation of XQFT.
15

The remainder of this paper describes XQFT in more

detail. We first provide a brief overview of XQuery

and outline the requirements for XQFT. We then

describe the various aspects of XQFT based on the

November 2005 Working Draft. We finally present

some concluding remarks.

XQUERY BACKGROUND
This section presents a high-level introduction to the

basic concepts of XQuery and XPath, a subset of

XQuery. Only those concepts necessary to under-

stand the full-text extensions are covered here. An

introduction to the complete functionality of XQuery

is beyond the scope of this paper and can be found

elsewhere.
16,17

Note that when we introduce XQuery

concepts and XQuery expressions in the following,

those concepts and expressions are equally valid for

XPath, except when explicitly stated otherwise. The

following section is adapted from Don Chamberlin’s

introduction to XQuery,
16

with his permission.

XQuery data model

Formally, the input and output of XQuery are

defined in terms of a data model (described in

Reference 16). The query data model provides an

abstract representation of one or more XML docu-

ments or document fragments. The data model is

based on the notion of a sequence. A sequence is an

ordered collection of zero or more items. An item

may be a node or an atomic value. An atomic value

is an instance of one of the built-in data types

defined by XML Schema, such as strings, integers,

decimals, and dates. A node conforms to one of

seven node kinds—element, attribute, text, docu-

ment, comment, processing instruction, and name-

space. A node may have other nodes as children,

thus forming one or more node hierarchies.

Sequences may be heterogeneous; that is, they may

contain mixtures of various types of nodes and

atomic values.

Consider the sample XML document borrowed from

Reference 9 and shown in Figure 1. We will use it

throughout the paper to illustrate the functionality

of the query language. The data model for this

AMER-YAHIA ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006336

sample is given in Figure 2. This is the representa-

tion of the input document on which XQuery

expressions operate.

XQuery expressions

XQuery is a functional language; that is, it consists of

expressions that can be composed by using oper-

ators, terms, or function application syntax into

more complex expressions. Each expression returns

a unique value and has no side effects. The value of a

complex expression is determined by first determin-

ing the values of the embedded expressions and then

applying the composing operator or function call to

those values. XQuery expressions are fully compos-

able; therefore, at any place where an expression is

expected, any kind of expression may be used.

Literals and variables—Literals and variables are the

simplest kinds of expressions. Literals are of one of

the primitive types: integer, decimal, double, and

string. String literals need to be quoted by using

either single quotation marks or double quotation

marks. "This is a string" and "one more" are

examples of string literals. Numeric literals are

written as plain numbers, where a decimal literal is

assumed when the number contains a decimal

point, and a literal of type double is assumed when

it contains an exponent; for example, 42 is a very

simple XQuery expression representing an integer. A

variable in XQuery is a name that begins with a

dollar sign. A variable may be used as a placeholder

for a value that may be used in several places. We

will see how variables are used when we describe

iterations in the FLWOR expression paragraph.

Figure 1
Sample XML data

<books>

<book number="1">
 <title shortTitle="Improving Web Site Usability">Improving the Usability of a Web Site
 Through Expert Reviews and Usability Testing</title>
 <author>Millicent Marigold</author>
 <author>Montana Marigold</author>
 <editor>Véra Tudor-Medina</editor>
 <content>
 <p>The usability of a Web site is how well the site supports the users in achieving
 specified goals. A Web site should facilitate learning, and enable efficient and
 effective task completion, while propagating few errors.
 </p>
 <note>This book has been approved by the Web Site
 Users Association.
 </note>
 </content>
</book>

...
</books>

books

author

books

Figure 2
Data model of XML data

number

title author

pshortTitle

Document

Element

Attribute

Text Text Text

editor content

• • •

• • •

• • •Text Text

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 AMER-YAHIA ET AL. 337

Function calls—Another basic form of expression is

the call to a function. XQuery allows the use of

predefined or user-defined functions; for example,

the contains function mentioned earlier is prede-

fined.

Path expressions—When dealing with hierarchical

data like XML, one of the most important capabil-

ities of a query language is to make it very easy to

select parts of the hierarchy. XQuery uses path

expressions for this purpose. A path expression

consists of one or more steps, separated by a ‘‘/’’. A

step can be thought of as a means to navigate

through the hierarchy of nodes of the data model,

allowing the selection of certain sets of nodes based

on their position in the hierarchy. XQuery supports

steps along various axes, the most prominent one

being the child axis. A step along the child axis

allows—given a context node—the selection of

certain (direct) children nodes of that node. Each

step in a sequence of steps takes the result of the

previous step as its context. If the previous result is a

sequence of nodes, each of them is taken as a

context node in turn, and the union over these

different evaluations of the step is returned. The

following is an example of three steps along the

child axis:

/child::books/child::book[child::author ¼
"Montana Marigold"]

/child::title

Starting with the document node, the top-level node

in the hierarchy, the first step selects the unique

books element. The next step selects from that

element all its book element children that have some

author child element with the text Montana

Marigold. Finally, the last step takes as context all

those book elements and selects all of their title

children elements. Those title elements are the

result of the whole expression.

Apart from the child axis, XQuery supports up to 11

other axes that allow navigation in one step from an

element to its attribute nodes, its parent, all of its

descendant element nodes, its preceding or follow-

ing sibling in the hierarchy, and so on. For

navigating along the most common axis, XQuery has

an abbreviated syntax. The child axis is the default

when no axis is specified using ‘‘::’’, allowing the

previous example to be written as:

/books/book[author ¼ "Montana Marigold"]/title

Here are two more examples of path expressions,

illustrating the abbreviated syntax. In $books//

note, all note elements that are descendants of the

nodes bound to $books over one or more levels are

selected. The book/@number path shows how to

select attribute nodes (@ is simply short-hand for

attribute::).

Predicates—Predicates are used to further refine the

selection of a step expression. A predicate is an

expression, written in square brackets, that returns a

Boolean value. The predicate expression inside [] is

evaluated for each of the items resulting from the

step that it is refining. Only the items for which the

predicate expression evaluates to TRUE are retained.

The preceding example contains a predicate that

filters the sequence of all book elements so that the

only elements kept are those that have an author

element with the given text.

All the concepts and expressions introduced so far

are common to XQuery and XPath. The following

form of expression is an XQuery expression only and

hence, is the major difference between XPath and

XQuery.

FLWOR expression—FLWOR (pronounced as flow-

er)—an expression for iteration, sorting, and varia-

ble binding—is one of the most powerful constructs

in the XQuery expression language. Its name comes

from the keywords of the clauses of which it

consists: for, let, where, order by, return.

The for and let clauses are used to generate a tuple

stream, where each tuple is simply an ordered

sequence of the bindings for each of the specified

variables. An iteration over the subsequent clauses

is performed, using each tuple of the stream in turn.

With the optional where clause, the tuple stream can

be filtered, and with the optional order by clause, it

can be reordered. Finally, for each remaining tuple,

the return clause is evaluated, and the result is

concatenated to the overall result sequence of the

whole expression.

For example, the following FLWOR query causes an

iteration with the variable $book being bound in

turn to each of the book elements in the given

document under the path /books/book. It returns

the book numbers of those books that have a date

AMER-YAHIA ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006338

attribute larger than "2003–12–31" and have more

than one author element, sorted by date:

for $book in doc("library.xml")/books/book

where $book/@date .

"2003–12–31" and count ($book/author) . 1

order by $book/@date

return $book/@number

As we shall see, the FLWOR expression is also key to

integrating the part of the full-text functionality that

has to do with scoring (and hence ranking) results.

XQFT REQUIREMENTS AND ALTERNATIVE
APPROACHES
In this section, we briefly describe the main

requirements that influenced the design of XQuery

Full-Text and highlight related work in these areas.

For more details, we refer the reader to the FTTF

Requirements document.
11

In light of the FTTF

requirements, we classify previous approaches based

on how well they satisfy the requirements and also

discuss the limitation of a function-based approach

that was originally considered within the FTTF.

XQFT Requirements
Searching over semistructured data—Users should

be able to specify both the search context (the set of

nodes over which the full-text search is to be

performed) and the return context (the part of the

document collection that is to be returned). In

traditional full-text search,
19

both the search and

return contexts are usually the entire document

collection. However, in the case of structured or

semistructured XML documents, it is often desirable

to search over and return document fragments, for

example, searching only on a book abstract rather

than an entire book to return the book title and

authors.

Expressive power and extensibility—Users should be

able to express complex full-text searches, and the

language should be extensible. For example, full-

text primitives are Boolean connectives, distance

predicates, phrase matching, stemming, and the-

sauruses. Further, users should be able to compose

these primitives arbitrarily.

Scores and ranking—Users should be able to obtain

relevance scores for the results of full-text searches,

control how scores are computed, obtain the top-K

results, and specify a scoring condition, which is

possibly different from the full-text search condition.

Many measures, such as TF*IDF (term frequency

times inverted document frequency)
19

and term

proximity, can be used to obtain the relevance scores.

Integration with XQuery—Users should be able to

embed full-text searches in XQuery expressions and

vice versa without extending the XQuery data

model. This enables users to query seamlessly over

both structured data (using XQuery) and full-text

data (using full-text search).

Language properties and efficiency—The language

syntax should allow for static type checking and

inference, and the language should not preclude an

efficient implementation.

Overview of prior approaches
Various ranking models have been proposed for

XML in the information retrieval (IR) literature.

Particularly influential among these approaches are

XIRQL
20

and XXL,
21

which extend the probabilistic

model,
22,23

and JuruXML
24

and ELIXIR,
25

which

extend the vector space model.
26

The INEX initia-

tive
1

was also established to systematically evaluate

various ranking methods for XML. These methods

& XQFT can be used to
seamlessly query over both the
structure and the text content
of XML documents &

have shaped the design of XQFT, but while the focus

of these methods is on ranking, XQFT provides a

framework in which these ranking methods can be

implemented.

Several languages have been proposed for process-

ing XML data on structure and text. Some of these

solutions explore a few full-text search primitives at

a time (e.g., Boolean term retrieval,
27,28

term

similarity,
21,25

proximity distance,
22

and relevance

ranking
20,22,24,25,29,30

). Other languages, including

XIRQL,
20

TIX,
31

and TOSS,
32

extend XQuery with

ranking and a few full-text primitives. Table 1

classifies existing XML full-text search languages and

systems according to desired search primitives and

scoring methods. From the table, we can see that

XQFT fills a gap in the space of expressiveness of

query languages for XML. Most of the existing

languages include limited XPath navigation in the

input query and allow Structured-Query-Language-

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 AMER-YAHIA ET AL. 339

(SQL)-like queries (ELIXIR, XXL, XIRQL). Other

languages have considered a more simple and

intuitive query syntax by specifying the query either

as an XML fragment (JuruXML) or in a Google**-like

style through a list of pairs: element name and term

(XSearch). There are different approaches to the

granularity of query output. XXL and ELIXIR are able

to return document fragments. In contrast, XIRQL

and JuruXML focus more on relevance-oriented

search and let the engine decide which nodes to

return. Some existing languages incorporate explicit

or implicit textual and context (element names)

similarity operators used in the ranking method.

Limitations of extending XQuery with full-text

functions

XQuery is a functional language. It is thus natural to

think of using functions to extend it with full-text

search capabilities. In this section, we describe two

different function-based approaches that were con-

sidered within the FTTF and discuss their limita-

tions.

In the first approach, we create a new contains-like

function for each full-text primitive (such as Boolean

connectives and distance predicates) and compose

these functions to create complex full-text queries.

As an example, consider a query that finds all nodes

(bound to variable $n) that contain the search token

‘‘usability’’ and either the search token ‘‘testing’’

or the search token ‘‘analysis’’. Further, the search

terms should be within a window of size 10 (i.e., a

window of at most 10 terms should contain all

the search terms). This query can be written as

follows:

Table 1 Classification of existing IR engines for XML

IR Engines XML
Query
Engine

Search Primitives Weighting
on Query
Terms

Similarity
Operator

Scoring

TeXQuery
13

(Quark)
�

XQuery Phrase matching, Boolean
connectives, order specifier,
proximity distance, number
of occurrences, match
options (stemming, regular
expressions, stop words,
case sensitive)

Yes Implicit Probabilistic or
vector-based model

XQuery Full-Text
10

(GalaTex)
�

XQuery Phrase matching, Boolean
connectives, order specifier,
proximity distance, number
of occurrences, match
options (stemming, regular
expressions, stop words,
case sensitive)

Yes Implicit Probabilistic or
vector space model

XIRQL
18

(HyREX)
�

XQL Phrase matching, Boolean
connectives, sounds_like
operator

Yes
(Query terms
and document
terms)

Textual and
context

Probabilistic model

Flexible XML
Search

19
(XXL)

�
XML-QL Phrase matching, limited

Boolean connectives,
LIKE operator

No Textual and
context
(similarity join)

Probabilistic model

ELIXIR
23

XML-QL Phrase matching, limited
Boolean connectives

No Textual
(similarity join)

Vector space model

JuruXML
22

Juru Phrase matching, limited
Boolean connectives
(negation)

No Implicit, textual
and context

Vector space model

� Language names are followed by system or prototype names in parentheses.

AMER-YAHIA ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006340

distance(contains ($n, "usability")

and (contains ($n, "testing")

or contains ($n, "analysis")),10)

The main problem with using this approach in the

context of XQuery is that it requires an extension of

the XQuery data model. This is because the distance

function cannot determine if the search terms are

within a distance of 10 from each other based solely

on Boolean values returned by the contains

function unless some extra information about search

token positions is somehow returned with the

Boolean value—this is essentially a fundamental

extension to the XQuery data model and violates the

requirement for tight integration with existing

XQuery expressions.

In the second approach, we extend the contains

function so that this single function is used to embed

all full-text primitives, similar to SQL/MM.
33

SQL/

MM extends SQL to express queries on text, images,

and spatial data (see also Reference 32 for a related

abstract-data-type-based approach). By adopting the

same approach, all the processing related to full-text

search (including distance-based predicates) is ex-

pressed entirely within the contains function, and

the XQuery data model would not have to be

extended. For instance, the preceding example can

be written as follows in SQL/MM-like syntax:

contains($n,"usabilityand(testingoranalysis)

distance 10")

The main problem with this approach is that the

full-text search is specified in an uninterpreted string

that is opaque to the rest of the XQuery language.

This causes a problem when we wish to embed

XQuery within full-text searches, such as in a query

that finds all articles that mention the title of one of

Richard Dawkin’s books. Here the search terms—

the words in the titles of Richard Dawkin’s books—

are themselves the result of an XQuery expression,

and there is no natural way to embed these results

into the full-text search string, thereby violating the

composability of XQuery and Full-Text. One could

think of generating the full-text search string during

query evaluation by using string concatenation on

the results of the XQuery expression as follows:

contains ($n, concat (//book[author ¼
"Dawkins"]/title, "and"))

However, this implies that full-text search string will

not be created until runtime, which means that even

simple syntax errors in the string cannot be checked

until runtime (such as an and operator with only one

operand in the preceding example).

XQFT OVERVIEW

The XQFT language, which satisfies all of the

requirements outlined in the previous section,

makes two extensions to XQuery. First, XQFT

introduces a new XQuery expression, called

FTContainsExpr. The FTContainsExpr expression

enables users to search over XML nodes with an

arbitrary combination of full-text primitives. Be-

cause FTContainsExpr is an XQuery expression, it

also can be arbitrarily composed with other XQuery

expressions.

Second, XQFT extends the XQuery FLWOR clause to

score and rank the results of an FTContainsExpr

expression. The extension to FLWOR can also score

XQuery expressions besides FTContainsExpr, but a

discussion of this capability is beyond the scope of

this paper.

In the next two sections, we describe the

FTContainsExpr expression and the scoring exten-

sions in more detail.

XQFT: FTContainsExpr

The FTContainsExpr expression consists of two

parts. The first part specifies the sequence of XML

nodes over which the full-text search is to be

performed. We call this sequence the search context.

The second part specifies the full-text search

condition. The full-text search condition is specified

using expressions called FTSelection, which ex-

press simple term search queries as well as more

complex phrase matching, such as Boolean con-

nectives, proximity operators, stemming, and the-

sauruses.

The FTContainsExpr expression has the following

syntax:

FTContainsExpr ::¼
Expr "ftcontains" FTSelection

Expr is an XQuery expression that specifies the

search context, which is the sequence of XML nodes

over which the full-text search is to be performed.

(The issue of whether the search context can contain

atomic values is still under discussion at the FTTF.)

FTSelection specifies the full-text search condition.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 AMER-YAHIA ET AL. 341

FTContainsExpr returns a Boolean value that is true

if and only if some node in the search context

satisfies the full-text search condition.

In order to evaluate a full-text search condition over

a search context node, all textual content of that

node is (conceptually) transformed into a sequence

of words, or more generally, tokens, by a process

called tokenization. Those tokens are the units that

search predicates ultimately can ‘‘look for.’’ In

XQFT, the process of tokenization is left to be

defined by the implementation, as it is highly

language- and domain-dependent. Note, however,

that the tokenization process establishes the most

fundamental difference between pure substring

matching and full-text search. We use ‘‘word’’ and

‘‘token’’ interchangeably, and when we talk about

matching a word or a phrase, we generally mean

matching a token or a sequence of tokens.

Examples

We now present several examples of queries that

use the FTContainsExpr expression:

//bookftcontains"web"&&"usability"

The above query returns TRUE if and only if some

book in the search context //book (which is an

XQuery expression) contains the search terms web

& XQFT is a full-text extension
to XQuery (and also XPath,
which is a subset of XQuery) &

and usability. Here "web" && "usability" is a

simple example of an FTSelection. Note how

FTContainsExpr can limit the search context by

using an XQuery expression (//book in the above

example). Further, because FTContainsExpr returns

a result in the XQuery data model (a Boolean atomic

value), it can be arbitrarily nested within other

XQuery expressions. A more complex example

illustrating this aspect is given below (Query 4.2.1 in

Reference 9):

book[.//@shortTitle ftcontains "improve" &&

"web" && "usability"]/title

The above query returns the titles of those books

whose short title contains the search terms improve,

web, and usability. Note how the FTContainsExpr

expression (.//@shortTitle ftcontains "improve"

&& "web" && "usability") is nested within the

XQuery expression book [. . .]/title.

There are two other interesting aspects to note about

the preceding query. First, the query shows how

XQFT can specify a return context, or the part of the

selected XML items that are to be returned.

Specifically, the return context is only the titles of

the selected books (and not the contents of these

books). Second, XQFT takes advantage of existing

XQuery constructs, such as path expressions, to

specify the search context (.//@shortTitle) and

the return context (/title).

We can use the composability of the FTContainsExpr

expression with XQuery to construct more sophisti-

cated queries with which we can search in multiple

search contexts, as illustrated below:

//book[(metadataftcontains"usabilitytests")and

(content/part/chapter/title ftcontains

"web-site usability")] /title

The above query returns the titles of books that

contain the phrase usability tests in their metadata

and the phrase web-site usability in a chapter title.

Finally, the following example shows how an

XQuery expression can be used also inside the

FTSelection of an FTContainsExpr expression:

//book[.//section ftcontains

f//article[@id ¼ 10]/titleg all words]

The above query returns the books that contain at

least one section such that the section contains all

the words in the title (or titles) of the article with id

¼ 10. Here, the full-text search condition is f//
article[@id ¼ 10]/titleg all words and is based

on the XQuery expression //article[@id ¼ 10]/
title. The keywords all words state that all the

words in the title (or titles) should be present in the

relevant section of the book.

FTSelection expressions

As mentioned above, FTSelection expressions are

used to specify the full-text condition in an

FTContainsExpr expression. There are many types

of FTSelection expressions and they are fully

composable, so that users can construct complex

AMER-YAHIA ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006342

full-text conditions. We now describe the

FTSelection expressions supported in XQFT.

Word and phrase matching: The simplest

FTSelection expression contains a single word or

phrase in a search string. The following two queries

return books that contain the word usability and the

phrase usability testing, respectively:

//book[. ftcontains "usability"]

//book[. ftcontains "usability testing"]

As mentioned earlier, an FTSelection expression

can also be the result of an XQuery query (the latter

must be enclosed in curly braces fg). The following

query returns books that contain an occurrence of

one of the section titles of the article with id ¼ 10

matched as a phrase:

//book[. ftcontains

f//article[@id ¼ 10]/section/titleg any]

For example, if the expression in curly braces

evaluates to the sequence ("site usability",

"testing"), books are required to contain the

phrase site usability or the word testing.

Other possible options are any word, all, all word,

and phrase. The difference between the any and any

word options is that in the latter case, the elements

of the sequence are not matched as phrases, but are

tokenized into separate words and searched indi-

vidually. Therefore, if in the preceding example any

word would be used instead of any, the query would

require only that books contain any of the words

site, usability, or testing. Likewise, if the all option

is used on a sequence, then all elements of the

sequence are required to be contained simultane-

ously as phrases (site usability and testing in our

example), whereas the all word option requires

only that all of the individual words be contained

(site, usability, and testing in our example). Finally,

the phrase option requires that all strings from the

sequence returned by the nested XQuery expression

be concatenated into a single phrase, which is to be

matched. For example, the next query requires that

books contain the phrase site usability testing:

//book[. ftcontains

f//article[@id ¼ 10]/section/titleg phrase]

Boolean operators—FTSelection expressions can be

combined by using Boolean operators to create more

complex full-text search conditions: && specifies a

conjunction of words, jj specifies a disjunction, !

specifies negation or absence of a word, and not in

(also called mild negation) specifies that a word or

phrase is not considered a match if occurring in a

given context. For example, the following query

returns books that contain both the word usability

and the word testing:

//book[. ftcontains "usability" && "testing"]

Note that the FTSelection expression in the above

query ("usability" && "testing") contains two

simpler FTSelection expressions ("usability" and

"testing") combined by using a &&. As a more

complex example, the following query combines the

&& and jj operators to return books that contain both

site and usability or both usability and testing:

//book[. ftcontains ("site" && "usability") jj
("usability" && "testing")]

The negation ! specifies that a full-text search

condition must not be satisfied in the search context.

For example, the following query returns books that

contain the phrase New Mexico but not the phrase

Mexico City:

//book[. ftcontains "New Mexico" && !"Mexico City"]

Sometimes the negation ! can be too restrictive and

can produce unexpected results. As an illustration,

consider a user who is interested in books about

Mexico, but not about New Mexico. Assume the

user expresses the query using ! as follows:

//book[. ftcontains "Mexico" && ! "New Mexico"]

The query will not return a book about Mexico if it

contains a statement such as Mexico shares a border

with New Mexico. Clearly, this is not what the user

intended. To address this issue, XQFT supports a

weaker notion of negation using the not in

FTSelection. The binary operator not in returns

nodes from the search context that contain words

satisfying the left operand, so long as the same

words are not part of a match that satisfies the right

operand. For example, the following query will

return the books that contain an occurrence of the

word Mexico that is not part of the phrase New

Mexico:

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 AMER-YAHIA ET AL. 343

//book[. ftcontains "Mexico" not in "New Mexico"]

Distance predicates—In many applications, users

may wish to specify the distance between words in

the full-text condition. For example, a user may

wish to search for books where the words site and

usability occur close to each other. XQFT supports

three ways to specify such distance predicates.

The first approach uses the same sentence,

different sentence, same paragraph, and

different paragraph FTSelection operators, which

specify that the words should occur in the same

sentence, different sentence, same paragraph, or

different paragraph, respectively. The boundaries of

a sentence and paragraph are determined by an

implementation-dependent tokenizer that operates

& Although current XML query
languages can express powerful
structured queries over XML
documents, they can express
only a very rudimentary full-text
search &

on the search context, as these concepts may vary

across languages. Apart from the Boolean operators,

all FTSelection operators are postfix operators that

are appended to an FTSelection expression to form

a new FTSelection expression. For example, the

following query returns books that contain the

words site, usability, and testing in the same

paragraph:

//book[. ftcontains

("site" && "usability" && "testing")

same paragraph]

Similarly, the following query returns books that

contain the words site, usability, and testing such

that each of them appears in a different sentence:

//book[. ftcontains

("site" && "usability" && "testing")

different sentence]

The second approach to specifying distance predi-

cates is using the distance FTSelection operator,

which specifies the distance between every two

consecutive occurrences of the matching words in

units of words, sentences, or paragraphs. For

example, the following query returns books that

contain the words site, web, and testing in the same

sentence, so that there is a triple occurrence of these

three words where every two consecutive occur-

rences do not have more than one intervening term:

//book[. ftcontains ("site" && "web" && "testing")

same sentence distance at most 1 words

Note that the distance is given as a range (between 0

and 1 in this example). Other options available for

specifying the allowable range of distances are at

least E (denoting the range [E, þ‘]), exactly E

(denoting the range [E, E]), and from E1 to E2
(denoting the range [E1, E2]). Here E, E1, and E2 are

XQuery expressions that evaluate to an integer

number.

The third approach to distance predicates is using

the window FTSelection operator. It specifies that

words or paragraphs must be matched (or not

matched) within a certain number of consecutive

words, sentences, or paragraphs within the text. The

following first query returns books that contain the

words site and usability within a window of at most

three words, whereas the second query requires an

occurrence of web site such that neither the sentence

preceding it nor the sentence following it contains

the word testing:

//book[. ftcontains ("site" && "usability")

window 3 words]

//book[. ftcontains ("web site" && ! "testing")

window 2 sentences]

Order of the words—The ordered FTSelection

operator specifies whether the words in the search

context should occur in the same order as they

appear in the query. For example, the following

query returns books that contain the word site

before the word usability within a window of three

words:

//book[. ftcontains ("site" && "usability")

ordered window 3 words]

Number of occurrences—The occurs FTSelection

operator can be used to specify the number of

distinct occurrences of a full-text search condition.

For example, the following query returns books that

contain at least two distinct instances of occurrences

AMER-YAHIA ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006344

of the words site and testing within a window of

three words:

//book[. ftcontains ("site" && "testing")

window 3 words occurs at least 2]

String content—The FTContent operator is used to

find matches in which the words and phrases are the

first, last, or all of the words and phrases in the

tokenized string value of the element being

searched. For example,

/books//title[. ftcontains

"improvingtheusabilityofawebsite"atstart]

finds title elements starting with the phrase im-

proving the usability of a web site. If at end was used

instead of at start, the query would find title

elements ending with the phrase improving the

usability of a web site. Finally, the entire content

option would return title elements where the phrase

improving the usability of a web site constitutes the

entire content of the title.

Match options

Although FTSelection expressions are used to find

search context nodes that contain exact matches for

the query words, in many cases, users may also be

interested in context nodes that do not contain exact

matches for the query words, but contain similar

matches. For example, a user searching for search

context nodes that contain the word usability may

also be interested in search context nodes that

contain the word usage (with the same stem as

usability, namely use), or the word Usability (with

the same spelling as usability, but with an uppercase

character), or the word easy-to-use (with the same

semantic meaning as usability). Match options are

used to specify such relaxations on the query words

so that they can be matched in a more flexible

manner with the search context nodes.

Match options can be seamlessly composed with

FTSelection expressions. A match option applied

on a (possibly complex) FTSelection expression

applies to all query words and distance predicates

within the FTSelection expression. We now

describe the match options supported in XQFT.

Stemming—Implementations of full-text search

usually have a means to extend the result set by

looking for linguistic variants of the query terms,

such as use, used, and using. In XQFT, the ‘‘with

stemming’’ match option is used for this purpose,

and the ‘‘without stemming’’ match option is used to

disable this feature. For example, the following

query returns books that contain the word achieve

as well as all words that share the same stem as

achieve (such as achieving):

//book[. ftcontains "achieve" with stemming]

Stemming can also be selectively disabled, as

illustrated in the following query that returns books

which contain the word Tudor-Medina without

applying stemming, and contain the words site and

testing in the same sentence, using stemming to

match site and testing:

//book[. ftcontains

("Tudor-Medina" without stemming &&

("site" && "testing" same sentence))

with stemming]

Note that the outermost ‘‘with stemming’’ applies to

the entire FTSelection, except where it is explicitly

overridden within (for Tudor-Medina).

The exact method used to perform stemming is

implementation defined. Hence, implementations

are free to provide more sophisticated linguistic

matching than a simple stemming approach, which

in many languages gives poor results.

Character case variations—The case sensitive,

case insensitive, lowercase, and uppercase

match options deal with variations in the character

case of words. By default, the case insensitive

match option is used, which means that the case of

the words is not considered when interpreting the

full-text search condition. For example, the follow-

ing two queries are equivalent and will return books

that contain the words Usability and testing, ignor-

ing the case of the words:

//book[. ftcontains "Usability" && "testing"]

//book[. ftcontains ("usability" && "testing")

case insensitive]

Although the case insensitive match option is the

default, users may wish to explicitly specify it

because the default can be overridden in the query

prologue or by using another case match option at a

higher level of the query.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 AMER-YAHIA ET AL. 345

The case sensitive match option is used to match

the search context nodes that contain exactly the

same word (in the same case) as the query. For

example, the following query returns books that

contain the word LaTeX in which each character of

the word is spelled in exactly the same way:

//book[. ftcontains "LaTeX" case sensitive]

The lowercase and uppercase match options match

words that appear as all lowercase or all uppercase

in the search context. For example, the following

query returns books that contain all the words from

each title of the article with id ¼ 10, with all the

words being interpreted as uppercase words:

//book[. ftcontains f//article[@id¼ 10]/titleg
all words uppercase]

Diacritics—The diacritics sensitive, diacritics

insensitive, with diacritics, and without

diacritics match options deal with diacritical

marks in characters, such as accents, diaeresis, and

cedillas (see the Unicode standard
35

for a definition

of diacritical marks). By default, the diacritics

insensitive match option is used, which means

that when matching a word in a search context node

against a query word, diacritical marks are ignored.

For example, the following three queries return the

same set of books—books that contain the word

Vera, possibly including diacritics:

//book[. ftcontains "Véra"]

//book[.ftcontains"Véra"diacriticsinsensitive]

//book[.ftcontains"Vera"diacriticsinsensitive]

The diacritics sensitive match option requires

words in the search context nodes to contain exactly

the same characters as the respective query words,

including diacritics. The with diacritics and

without diacritics match options both imply a

diacritics insensitive match option, but in the

with diacritics case, only matching words in the

search context nodes that contain at least one

diacritical character are considered, while in the

without diacritics case, matching words must not

contain any diacritical character. Note that any

diacritics in the query words have no impact on the

result in both cases. For example, the following

query returns books that contain the word naive

with at least one diacritical character (such as naı̈ve,

näive, etc.):

//books[. ftcontains "naive" with diacritics]

Character wildcards—The with wildcards match

option allows certain character sequences in a query

word to be interpreted as character wildcards. The

following wildcard character sequences are sup-

ported by XQFT:

� "." stands for any single character.
� ".?" stands for zero or one character.
� ".*" stands for zero or more characters.
� ".þ" stands for one or more characters.
� ".fn,mg" stands for n to m characters (where n

and m are numbers)

This notation is a subset of the regular expression

notation used elsewhere in XQuery. When the with

wildcards match option is used and a wildcard is

present in a query word, it means that the query

word matches a word in a document if and only if

the document word can be obtained from the query

word by replacing the wildcard character sequence

by a sequence of arbitrary characters with a length

as allowed by the wildcard. The match between

query words and document words is always one to

one. A wildcard, therefore, does not allow a query

word to match multiple words simultaneously. If the

with wildcards match option is not used, then

wildcard characters are simply matched as regular

characters in the document.

As an illustration, the following query returns books

that contain at least one word that matches the

query word "eff.c.þ", where "." and ".þ" are

interpreted as wildcards (e.g., books that contain

words such as efficient and effective):

//book[. ftcontains "eff.c.þ" with wildcards]

Another interesting example is the following query:

//book//*[. ftcontains "site.* user."

with wildcards]

It contains a multiword query term containing the

wildcards ".*" and ".". The tokenizer should break

this up into two words (the wildcard sequences are

to be considered token-internal characters). Hence,

if applied to our sample document, this query

returns only the note element. The word sequence

site supports the users in the paragraph above is not

matched, because "site.*" can only match a single

word.

AMER-YAHIA ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006346

Thesaurus expansions—In some cases, when users

issue a full-text search query with query words such

as canine, they are also looking for results that

contain semantically related words such as dog and

poodle. The with thesaurus match option specifies

such full-text search conditions, where relationships

as defined in a standard thesaurus—such as

synonyms, broader terms, and narrower terms (see

References 34–38 for thesaurus standards)—are

exploited. In XQFT, a thesaurus expansion can be

specified in a query by providing three things: a

Uniform Resource Identifier (URI) reference to the

thesaurus to be used, the relationship to be used,

and an optional depth parameter. As with

thesaurus is a match option, it can be specified at

any level of the query and applied to all query words

mentioned in that part of the query. The application

of a thesaurus expansion to a query word means

that the full-text search is performed as though the

disjunction of related words has been specified in

place of the query word.

As an example, the following query returns books

that contain a synonym of the word canine:

//book[. ftcontains "canine"

with thesaurus at

"http://bstore1.example.com/

BSThesaurus.xml"

relationship "synonyms"]

The actual technique used for thesaurus expansion

is implementation defined, including whether the

thesaurus URI refers to a system-defined or user-

defined thesaurus.

Stop words—When performing a search, search

engines often have a built-in means to disregard

words that do not carry their own meaning, such as

articles, prepositions, and function words (such as

but and if). Such words are called stop words. The

advantage of disregarding stop words is that queries

can be processed faster (because common stop

words do not need to be processed), and the

returned results are of higher relevance (as stop

words typically carry little meaning). Further, if stop

words are not indexed, the size of the full-text

indexes may be considerably smaller, depending on

the kind of encoding used.
39

However, if stop words

are ignored, then queries where stop words are

relevant, as in the phrase query to be or not to be,

can no longer be answered. In XQFT, the with stop

words match option can be used to control the list of

stop words to be employed. The stop words can be

specified either as a URI that points to a stop word

list or by directly listing the stop words in the query.

In addition, the lists can be combined dynamically

by using the set operations union and except. For

example, the following query returns books that

contain the phrase planning then conducting while

ignoring stop words that are specified in the URI

http://bstore1.example.com/StopWordList.xml:

//book[. ftcontains "planning then conducting"

with stop words at

"http://bstore1.example.com/StopWordList.xml"]

The with default stop words match option can be

used to select a system-provided default stop word

list, and the without stop words match option

switches off stop-word processing in the part of the

query to which this option is applied.

Language option—The stemming, thesaurus, and

stop words match options may not produce sensible

results if the language of the documents or query

words is unknown. For example, but in English is

likely to be a stop word, whereas in French this

& Formally, the input and output
of XQuery are defined in
terms of a data model &

word means aim, which is not likely to be a stop

word. It is therefore necessary to be able to specify

the language of the words in a query. In XQFT, the

language is specified using the language match

option. The following query selects the French

language for language-dependent features, such as

the selection of the default stop-word list:

$book[. ftcontains "salon de the"

with default stop words language "fr"]

The set of valid language identifiers (such as fr) is

implementation defined.

FTIgnore—The match options we have described so

far all relate to the matching of single words or

phrases. Using the FTIgnore option, it is possible to

modify which parts of the XML structure are

available for a single match of FTSelection. The

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 AMER-YAHIA ET AL. 347

FTIgnore option can be specified only on the top-

level FTSelection, basically extending the syntax of

FTContainsExpr to the following:

FTContainsExpr ::¼Expr "ftcontains" FTSelection
["without" "content" Expr]

The Expr following without content specifies a

sequence of nodes, the containing text of which

should be ignored when searching the search

context nodes. For instance, the following query

allows us to search the content element of a book,

including all its descendant elements, but not

including descendants of type footnote:

//book[. ftcontains "web site testing"

without content .//footnote]

There are two aspects to this exclusion of text

material from the search context. First, when the

phrase web site testing appears in a footnote element

(or descendant element thereof), it should not be

found. Second, when eliminating footnotes, the

distances of terms in the remaining text are affected.

For instance, when ignoring a footnote that happens

to stand between web site and testing, as in the

example below, the terms become adjacent and can

be matched as a single phrase:

,p.Web site,footnote.only sample.com here

,/footnote.

testing . . .,/p.

XQFT: Scoring

The FTContainsExpr expression returns a Boolean

value that indicates whether the search context

nodes satisfy the full-text search condition. How-

ever, FTContainsExpr does not indicate how well

the search context nodes satisfy the full-text

condition. For instance, in a query that looks for

books that contain the word usability, a book that

contains one thousand occurrences of usability

likely matches the query better than a book that

contains only one occurrence of the word. In XQFT,

a scoring construct is used to return a score (a

floating-point value between 0 and 1, with 1 being

the best match) to indicate how well search context

nodes satisfy the full-text search condition. The

search results can also be ranked (ordered) based on

the score, so that only top-ranked results are

returned to the user. This can be particularly useful

when many nodes satisfy the full-text search

condition.

A large number of scoring algorithms for full-text

search have been proposed in the litera-

ture
20,21,30,40–42

and scoring for XML documents is

still an active area of research. The goal of XQFT is

not to standardize a specific scoring algorithm, but

rather, to provide a language framework so that

implementors can plug in the appropriate scoring

algorithm for an application. Consequently, XQFT

specifies only two high-level properties that every

scoring mechanism must satisfy, as specified in the

XQFT Requirements document:
11

� The score values must be of type xs:float in the

range [0, 1].
� For nodes in the search context that satisfy the

expression used for scoring, a higher score should

imply a higher degree of relevance to the

expression.

Until recently, scoring has been an evolving part of

XQFT, and different alternative approaches for

scoring have been devised in the published W3C

working drafts for XQFT over time. The approach

we describe here, the extension of the XQuery FLWOR

expression with scoring variables was published

September 15, 2005.

This approach to scoring extends the for-clause and

the let-clause in the FLWOR expression. Specifically,

the for-clause and the let-clause are extended to

optionally bind to a score variable, in addition to

binding to a regular variable. The presence of the

score variable has no effect on the value or sequence

of values that get bound to the regular variable.

However, parallel to the evaluation of the expres-

sion in the for-clause or let-clause that determines

those values, a score value has to be computed for

each such binding in an implementation-dependent

way.

The following query computes a sequence of books

that satisfy the FTSelection "usability" &&

"testing" together with scores and returns those

books in descending order of their score:

for $book score $score in //book[. ftcontains

"usability" && "testing"]

order by $score descending

return $book

AMER-YAHIA ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006348

Note that in this query the fact that scores are

computed has no impact on which books are part of

the result sequence, but only on the order in which

the books are returned.

The following query returns books in decreasing

order of the score of how well they match

FTSelection "usability" && "testing":

for $book in //book

let score $score :¼ $book ftcontains

"usability" && "testing"

order by $score descending

return $book

The let-clause binds $score to the score of

FTContainsExpr. Here the form of the extended let-

clause is used in which the regular variable that

would be bound to the Boolean value of

FTContainsExpr is omitted. Note that all books, not

just the books that satisfy FTSelection, are returned

here.

The extended let-clause enables users to filter based

on one full-text search condition and score based on

another full-text search condition. As an illustration,

the following query returns books that contain the

words usability and testing (filtering full-text search

condition) ordered in descending order of their score

with respect to the words usability and analysis

(scoring full-text search condition):

for $book in

//book[. ftcontains "usability" && "testing"]

let score $score :¼
$book ftcontains "usability" && "analysis"

order by $score descending

return $book

In many cases, users may not wish to obtain all the

results, but only the top few highest-ranked results

in terms of score. The following query returns only

the top 10 highest-ranked documents with respect to

the full-text search condition:

for $result at $rank in

for $book score $score in

//book[. ftcontains "usability" && "testing"]

order by $score descending

return $book

where $rank ,¼ 10
return $result

The inner FLWOR expression is the same as in the first

example in this section and returns the books in

descending order of their score. The outer FLWOR

expression iterates over this ordered list of books

and returns only those in the top 10 positions.

Users can also specify weights in FTSelection

expressions, which can be used to emphasize or

deemphasize different parts of the full-text search

conditions in computing the score. A weight is a

floating-point number and can be applied individu-

ally to each FTSelection expression, with higher

weights meaning higher importance in computing

the score. As an illustration, the following query

returns books in descending order of the score,

where the score is computed with a weight of 0.8 for

the word usability and a weight of 0.3 for the word

testing:

for $book score $score in

//book[. ftcontains "usability" 0.8 &&

"testing" 0.3]

order by $score descending

return $book

The exact means by which the scoring algorithm

uses weights is implementation defined.

CONCLUSION AND LOOKING FORWARD

We have presented an overview of XQFT, which is

being specified by the W3C for full-text search

querying in XML. XQFT gracefully combines struc-

tured search (such as in XPath and XQuery) with a

wide range of powerful full-text search primitives,

ranging from simple term search to more complex

term proximity combined with stemming and

thesaurus features. The information presented in

this document is intended to be in a shorter, more

accessible form than the current W3C working draft.

Several open issues are still under consideration at

the W3C regarding XQFT. In particular, issues related

to the composability of full-text primitives are under

consideration. The W3C also invites public com-

ments on XQFT: comments can be entered into the

issue tracking system (http://www.w3.org/XML/

2005/04/qt-bugzilla) or, if access to that system is

not possible, comments can be sent by e-mail to the

W3C mailing list (E-mail: public-qt-comments@w3.

org, http://lists.w3.org/Archives/Public/

public-qt-comments/) with ‘‘[FT]’’ at the beginning

of the subject field of the e-mailed message.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 AMER-YAHIA ET AL. 349

ACKNOWLEDGMENTS
Chavdar Botev and Jayavel Shanmugasundaram

were partially supported by the Cornell/AFRL

Information Assurance Institute and NSF CAREER

Award IIS-0237644.

**Trademark, service mark, or registered trademark of Google
Inc. or Massachusetts Institute of Technology in the United
States, other countries, or both.

CITED REFERENCES
1. Initiative for the Evaluation of XML (INEX) Retrieval,

http://inex.is.informatik.uni-duisburg.de/.

2. Legislative Documents in XML at the United States House
of Representatives, http://xml.house.gov/.

3. The DBLP Records in XML, http://dblp.uni-trier.de/xml/.

4. Association for Computing Machinery Special Interest
Group on Management of Data (ACM SIGMOD) Record:
XML Version, http://www.dia.uniroma3.it/Araneus/
Sigmod/.

5. The Plays of Shakespeare in XML, http://xmlcoverpages.
org/bosakShakespeare200.html.

6. XML Path Language (XPath) 2.0, A. Berglund, S. Boag,
D. Chamberlin, M. F. Fernández, M. Kay, J. Robie, and
J. Siméon, Editors, W3C Working Draft (April 4, 2005),
http://www.w3.org/TR/2005/WD-xpath20-20050404/.

7. XQuery 1.0: An XML Query Language, S. Boag, D.
Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and
J. Siméon, Editors, W3C Working Draft (April 4, 2005),
http://www.w3.org/TR/2005/WD-xquery-20050404/.

8. XQuery 1.0 and XPath 2.0 Functions and Operators,
A. Malhotra, J. Melton, and N. Walsh, Editors, W3C
Working Draft (April 4, 2005), http://www.w3.org/TR/
2005/WD-xpath-functions-20050404/.

9. XQuery 1.0 and XPath 2.0 Full-Text Use Cases, S. Amer-
Yahia and P. Case, Editors, W3C Working Draft (July 9,
2004), http://www.w3.org/TR/2004/
WD-xmlquery-full-text-use-cases-20040709/.

10. XQuery 1.0 and XPath 2.0 Full-Text, S. Amer-Yahia,
C. Botev, S. Buxton, P. Case, J. Doerre, D. McBeath,
M. Rys, and J. Shanmugasundaram, Editors, W3C
Working Draft (April 4, 2005), http://www.w3.org/TR/
2005/WD-xquery-full-text-20050404/.

11. XQuery and XPath Full-Text Requirements, S. Buxton and
M. Rys, Editors, W3C Working Draft (May 2, 2003),
http://www.w3.org/TR/
xmlquery-full-text-requirements/.

12. P. Case, Library of Congress Use Cases and Recommen-
dations for XQuery Text Operators and Functions,
Presentation to the XML Government Working Group,
Washington, D.C. (October 17, 2001), http://xml.gov/
presentations/loc/xmlquery.htm.

13. S. Amer-Yahia, C. Botev, and J. Shanmugasundaram,
‘‘TeXQuery: A Full-Text Search Extension to XQuery,’’
Proceedings of the 13th International World Wide Web
Conference, New York (2004), pp. 583–594.

14. GalaTex: An XML Full Text Search Engine, http://www.
galaxquery.com/galatex/.

15. Cornell Database Group, The Quark Project, http://www.
cs.cornell.edu/database/quark/quark_main.html.

16. D. Chamberlin, ‘‘XQuery: An XML Query Language,’’ IBM
Systems Journal 41, No. 4, 597–615 (2002).

17. H. Katz, D. Chamberlin, D. Draper, M. Fernandez,
M. Kay, J. Robie, M. Rys, J. Simeon, J. Tivy, and
P. Wadle, XQuery from the Experts: A Guide to the W3C
XML Query Language, H. Katz, Editor, Addison-Wesley,
Boston, MA (2003).

18. XQuery 1.0 and XPath 2.0 Data Model, M. Fernández,
A. Malhotra, J. Marsh, M. Nagy, and N. Walsh, Editors,
W3C Working Draft (November 3, 2005), http://www.
w3.org/TR/xpath-datamodel/.

19. G. Salton and M. J. McGill, Introduction to Modern
Information Retrieval, McGraw-Hill, New York (1986).

20. N. Fuhr and K. Grossjohann, ‘‘XIRQL: An Extension of
XQL for Information Retrieval,’’ Proceedings of the ACM
SIGIR Workshop on XML and Information Retrieval,
Athens, Greece (2000), pp. 172–180.

21. A. Theobald and G. Weikum, ‘‘The Index-Based XXL
Search Engine for Querying XML Data with Relevance
Ranking,’’ Proceedings of the 8th International Conference
on Extending Database Technology (EDBT), Prague,
Czech Republic (2002), pp. 477–495.

22. E. W. Brown, ‘‘Fast Evaluation of Structured Queries for
Information Retrieval,’’ Proceedings of the 18th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval, Seattle, WA
(1995), pp. 30–38.

23. S. E. Robertson, ‘‘The Probability Ranking Principle in
IR,’’ Journal of Documentation 33, No. 4, 294–304 (1977).

24. D. Carmel, Y. S. Maarek, M. Mandelbrod, Y. Mass, and
A. Soffer, ‘‘Searching XML Documents via XML Frag-
ments,’’ Proceedings of the 26th Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval, Toronto, Canada (2003),
pp. 151–158.

25. T. T. Chinenyanga and N. Kushmerick, ‘‘Expressive and
Efficient Ranked Querying of XML Data,’’ Proceedings of
the 4th International Workshop on the Web and Data-
bases (WebDB), Santa Barbara, CA (2001), pp. 1–6.

26. G. Salton, A. Wong, and C. S. Yang, ‘‘A Vector Space
Model for Automatic Indexing,’’ Communications of the
ACM 18, No. 11, 613–620 (1975).

27. D. Florescu, D. Kossmann, and I. Manolescu, ‘‘Integrating
Keyword Search into XML Query Processing,’’ Proceed-
ings of the 9th International World Wide Web Conference,
Amsterdam, The Netherlands (2000), pp. 119–135.

28. C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and
G. Lohman, ‘‘On Supporting Containment Queries in
Relational Database Management Systems,’’ Proceedings
of the ACM SIGMOD International Conference on Man-
agement of Data, Santa Barbara, CA (2001), pp. 425–436.

29. J.-M. Bremer and M. Gertz, ‘‘XQuery/IR: Integrating XML
Document and Data Retrieval,’’ Proceedings of the 5th
International Workshop on the Web and Databases
(WebDB), Madison, WI (2002), pp. 1–6.

30. Y. Hayashi, J. Tomita, and G. Kikui, ‘‘Searching Text-Rich
XML Documents with Relevance Ranking,’’ Proceedings
of the ACM SIGIR Workshop on XML and Information
Retrieval, Athens, Greece (2000), pp. 32–40.

31. S. Al-Khalifa, C. Yu, and H. V. Jagadish, ‘‘Querying
Structured Text in an XML Database,’’ Proceedings of the
ACM SIGMOD International Conference on Management
of Data, San Diego, California (2003), pp. 4–15.

32. E. Hung, Y. Deng, and V. S. Subrahmanian, ‘‘TOSS: An
Extension of TAX with Ontologies and Similarity

AMER-YAHIA ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006350

Queries,’’ Proceedings of the 23rd ACM SIGMOD Interna-
tional Conference on Management of Data, Paris, France
(2004), pp. 719–730.

33. J. Melton and A. Eisenberg, ‘‘SQL Multimedia and
Application Packages (SQL/MM),’’ SIGMOD Record 30,
No. 4, 97–102 (2001).

34. L. J. Brown, M. P. Consens, I. J. Davis, C. R. Palmer, and
F. W. Tompa, ‘‘A Structured Text ADT for Object-
Relational Databases,’’ Theory and Practice of Object
Systems 4, No. 4, 227–244 (1998).

35. The Unicode Consortium, The Unicode Standard, Version
4.0, Addison-Wesley Developers Press, Boston, MA
(2003); for the latest version, see http://www.unicode.
org/unicode/standard/versions/.

36. ISO 5964-1985 (E), Documentation—Guidelines for the
Establishment and Development of Multilingual Thesauri,
International Organization for Standardization.

37. ISO 2788-1986(E), Documentation—Guidelines for the
Establishment and Development of Monolingual The-
sauri, International Organization for Standardization.

38. ANSI/NISO Z39.19 Monolingual Thesaurus Creation
Standard, http://www.niso.org/standards/resources/
Z39-19.html.

39. I. H. Witten, A. Moffat, and T. C. Bell, Managing
Gigabytes: Compressing and Indexing Documents and
Images, Van Nostrand Reinhold, New York (1994).

40. W. W. Cohen, ‘‘Integration of Heterogeneous Databases
Without Common Domains Using Queries Based on
Textual Similarity,’’ Proceedings of the ACM SIGMOD
International Conference on Management of Data, Seat-
tle, WA (1998), pp. 201–212.

41. L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram,
‘‘XRANK: Ranked Keyword Search over XML Docu-
ments,’’ Proceedings of the ACM SIGMOD International
Conference on Management of Data, San Diego, CA
(2003), pp. 16–27.

42. S. H. Myaeng, D.-H. Jang, M.-S. Kim, and Z.-C. Zhoo, ‘‘A
Flexible Model for Retrieval of SGML Documents,’’
Proceedings of the 21st ACM SIGIR International Confer-
ence on Research and Development in Information
Retrieval, Melbourne, Australia (1998), pp. 138–145.

Accepted for publication October 28, 2005.

Sihem Amer-Yahia
AT&T Labs Research, 180 Park Avenue, Florham Park, New
Jersey 07932 (sihem@research.att.com). Dr. Amer-Yahia is a
Senior Technical Specialist. She received her Ph.D. degree in
computer science from the University Paris XI-Orsay and
INRIA, France. She has worked on various aspects related to
XML query processing and recently has been focusing on XML
full-text search. She is the author of various conference and
journal publications and conducts tutorials on the patents
discussed in this paper. She is a coeditor of the XQuery Full-
Text Language Specification and Use Cases published by the
W3C Full-Text Task Force. Dr. Amer-Yahia is also the leader
of the GalaTex project, a conformance implementation of
XQuery Full-Text.

Chavdar Botev
Department of Computer Science, Cornell University, 4130
Upson Hall, Ithaca, New York 14850 (cbotev@cs.cornell.edu).
Mr. Botev is a Ph.D. student in computer science. He received

B.S. and M.S. degrees in informatics from Sofia University,
Bulgaria. He has been an invited expert of the W3C Full-Text
Task Force since 2003 and an editor of XQuery 1.0 and XPath
2.0 Full-Text since 2004.

Jochen Dörre
IBM Deutschland Entwicklung GmbH, Schönaicherstrasse 220,
71032 Böblingen, Germany (doerre@de.ibm.com). Dr. Dörre
is a software engineer with a background in text search and
text-mining technology. He joined IBM in 1997 and has
worked on several software development projects in fields
specializing on text categorization, text analytics integration,
search over XML documents, and core search engine design
and performance issues. He received his M.S. degree in
computer science and his Ph.D. degree from the University of
Stuttgart, Germany. Dr. Dörre is a member of the W3C XQuery
Working Group and its Full-Text Task Force working on the
XQuery and XPath Full-Text language.

Jayavel Shanmugasundaram
Department of Computer Science, Cornell University, 4105A
Upson Hall, Ithaca, New York 14853 (jai@cs.cornell.edu). Dr.
Shanmugasundaram is an Assistant Professor. He obtained a
B.S. degree from the Regional Engineering College,
Tiruchirappalli, India, an M.S. degree from the University of
Massachusetts-Amherst, and a Ph.D. degree from the
University of Wisconsin-Madison, all in computer science.
Prior to joining Cornell University, he spent two years at the
IBM Almaden Research Center. His research interests include
Internet data management, information retrieval, and query
processing in emerging system architectures. He is the author
of several publications and patents on these topics, and his
research ideas have been implemented in commercial data
management products. He is an invited expert and coeditor of
the XQuery and XPath Full-Text language currently being
developed by the W3C. Dr. Shanmugasundaram is the
recipient of a National Science Foundation CAREER Award, an
IBM Faculty Award, and the James and Mary Tien Excellence
in Teaching Award. &

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 AMER-YAHIA ET AL. 351

Published online May 17, 2006.

