
Triggers over XML Views of Relational Data

Feng Shao Antal Novak∗ Jayavel Shanmugasundaram
Cornell University

{fshao, afn, jai}@cs.cornell.edu

1. Introduction
XML has emerged as a dominant standard for informa-

tion exchange on the Internet. However, a large fraction of
data continues to be stored in relational databases. Conse-
quently, there has been a lot of interest in publishing re-
lational data as XML. While there exist many systems that
support XML views of relational databases [4, 5], these sys-
tems are passive in the sense that they can only support user-
initiated queries over the views. By contrast, in this paper
we propose an active system, which allows users to create
triggers on XML views.

At a high level, there are two approaches to support-
ing triggers over XML views. The first is to materialize the
entire view and store it in an XML database with support
for XML triggers. However, this approach suffers from the
overhead of replicating and incrementally maintaining the
materialized XML on every relational update affecting the
view, even though users may only be interested in relatively
rare events. Another practical downside is that this approach
requires a full-function XML DBMS supporting incremen-
tal updates and triggers, even though the underlying rela-
tional database supports all of this functionality. Therefore,
in this paper, we propose the alternative approach of trans-
lating XML triggers into SQL triggers. The primary benefits
of this approach are that it fully leverages sophisticated re-
lational technology, does not require an XML database, and
avoids having to materialize the XML view. There are some
challenges involved in this approach, however, because trig-
gers can be specified over complex XML views with nested
predicates, while SQL triggers can only be specified over
flat tables. Consequently, even identifying the parts of an
XML view that could have changed due to a (possibly
deeply nested) SQL update is a non-trivial task, as is the
problem of computing the old and new values of an updated
fragment of the view.

In this paper, we address the above challenges and pro-
pose a system architecture and an algorithm for supporting
triggers over XML views of relational data. We implement
and evaluate our system; the performance results indicate
our techniques are a feasible approach to supporting trig-

∗ Currently at Stanford University.

<db>
<product>

<row><pid>P1</pid><name>CRT 15</name></row>
· · ·

</product>
<vendor>

<row><vid>Amazon</vid><pid>P1</pid></row>
· · ·

</vendor>
</db>

Figure 1. Default view

<catalog>
<product name=''CRT 15''>

<vendor>
<vid>Amazon</vid><price>100.00</price>

</vendor>
<vendor>

<vid>Bestbuy</vid><price>120.00</price>
</vendor>
· · ·

</product>
<product name=''LCD 19''>
· · ·

</catalog>

Figure 2. MultiVendorProducts view.

gers over XML views of relational data.

2. System Overview
We have developed our trigger processing tech-

niques in the context of the Quark system, which is sim-
ilar to XPERANTO [5] in its support for querying XML
views. At a high level, XPERANTO allows users to de-
fine application-specific views over an automatically cre-
ated default view of relational data; for example, a user
can create the MultiVendorProducts view based on the de-
fault view, materialized in Figure 1 and Figure 2 respec-
tively, to obtain products which are sold by at least two
vendors. Note that although our techniques are imple-
mented in Quark, they are applicable to any XML publish-
ing system.

We use XQGM (the XML Query Graph Model) [5] to
represent XQuery queries and views. XQGM consists of
a set of operators and functions, and directed edges which
connect the operators. Each operator produces zero or more
output tuples (computed from its inputs), whose column
values are XML nodes/values. In the case of views over re-



Trigger Parser

Event Pushdown

Affected-Node Graph 
Generator

XQuery Trigger

Event/Path 
XQGM

Path XQGM & 
Relevant Relational 

Update Events

Action/Condition 
XQGM

Affected-node 
XQGM

XML 
Fragments

Trigger Pushdown

RDBMS

SQL Triggers Tuples 
(When trigger fires)

Trigger Grouping
Affected-node 

XQGM Tagger

Trigger
Activation

Action

Figure 3. System architecture.

lational data, the default view is produced by a single Ta-
ble operator, while a user-defined view has a more complex
XQGM graph.
2.1. XML Trigger Specification Language

We use a subset of the trigger specification language pro-
posed by Bonifati et al. [1], whose syntax is shown below:

CREATE TRIGGER Name AFTER Event
ON Path WHERE Condition DO Action

Briefly, each trigger has a unique Name; an Event type
(UPDATE, INSERT, or DELETE); a Path (an XPath expres-
sion identifying a fragment of a view); a boolean Con-
dition (which is an XQuery expression); and an Action,
whose semantics are implementation-defined: in our sys-
tem, it is a call to an external function, faction, whose param-
eters are arbitrary XQuery expressions. Finally, two vari-
ables, OLD NODE and NEW NODE, are bound to the value
of the node specified by Path before and after the Event;
they may be referenced in the Condition and in the parame-
ters to faction. (When the Event is INSERT or DELETE, only
the NEW NODE or OLD NODE, respectively, can be used.)
2.2. Architecture

Our system architecture is shown in Figure 3. When a
user creates a trigger on a view, the Trigger Parser con-
verts the Path, Condition and Action into their respective
XQGM graphs. The trigger Event and the Path graph are
then analyzed by the Event Pushdown module to determine
the minimal set of base relations on which inserts, updates,
or deletes could cause the trigger to be fired. This is done by
adapting existing techniques for view and constraint main-
tenance [2, 3].

For each of these tables, the Affected-Node Graph Gen-
erator constructs a new XQGM graph which, when evalu-

ated, will produce the parameters to pass to faction. This al-
gorithm, discussed in detail in [6], takes as input the Path
XQGM graph, G, and recursively builds up a new graph,
Gkey, which identifies the keys of the XML nodes affected
by the relational update. It then joins Gkey with G on the key,
to produce the entire affected node. The result is an XQGM
graph which evaluates to a 2-tuple, (OLD NODE, NEW NODE),
for each affected XML node. Next, it grafts on the graphs
corresponding to the Condition (to filter out uninteresting
updates) and Action (to compute faction’s parameters from
OLD NODE and NEW NODE). Finally, XQGM rewrite rules
are applied to minimize unnecessary computation. The re-
sult is an XQGM graph, Gparams, which, when evaluated for
a given relational update, will produce one tuple for each
call to faction.

Gparams is then fed into the Trigger Grouping module,
which groups similar triggers together for improved scala-
bility.

Finally, the Trigger Pushdown module takes this XQGM
graph and, using the selection pushdown and tagger pull-up
transformations described in [5], produces a set of SQL trig-
gers, one for each relational event.

When activated, an SQL trigger issues a single SQL
query to retrieve the relational data required for the actions
of the XML triggers. The constant-space Tagger then con-
verts these results to XML. Finally, the Trigger Activation
module activates the appropriate XML triggers and passes
in the XML results as parameters to their actions.

In our implementation, we support a powerful subset of
XQuery. Specifically, we support arbitrarily complex nested
views with FLWOR expressions, quantified expressions,
XPath expressions with child/descendant axes, arithmetic
operators, comparison operators, and element constructors.

3. Conclusion
We have presented a systematic way of translating trig-

gers over XML views of relational data into SQL triggers,
and for translating relational updates into their correspond-
ing XML updates. We have implemented our techniques in
the context of the Quark system built over IBM DB2. Our
performance results [6] indicate that our proposed tech-
niques are a scalable and feasible approach to supporting
triggers over XML views of relational data.

References
[1] A. Bonifati, D. Braga, A. Campi, S. Ceri, “Active XQuery”, ICDE

2002.
[2] S. Ceri, J. Widom, “Deriving Production Rules for Constraint Main-

tenance”, VLDB 1990.
[3] S. Ceri, J. Widom, “Deriving Production Rules for Incremental View

Maintenance”, VLDB 1991.
[4] M. Fernandez, D. Suciu, W. Tan , “SilkRoute: Trading between Rela-

tions and XML”, WWW 2000.
[5] J. Shanmugasundaram, J. Kiernan, E. Shekita, C. Fan, J. Funderburk.

“Querying XML views of relational data”, VLDB 2001
[6] F. Shao, A. Novak, J. Shanmugasundaram, “Triggers over XML

Views of Relational Data”, Cornell Technical Report available at
http://www.cs.cornell.edu/database/quark/Triggers-full.pdf, 2004.


