
A TeXQuery-Based XML Full-Text Search Engine

Chavdar Botev
Cornell University

cbotev@cs.cornell.edu

Sihem Amer-Yahia
AT&T Labs–Research

sihem@research.att.com

Jayavel Shanmugasundaram
Cornell University
jai@cs.cornell.edu

ABSTRACT
We demonstrate an XML full-text search engine that imple-
ments the TeXQuery language. TeXQuery is a powerful full-
text search extension to XQuery that provides a rich set of
fully composable full-text primitives, such as phrase match-
ing, proximity distance, stemming and thesauri. TeXQuery
enables users to seamlessly query over both structure data and
text, by embedding full-text primitives in XQuery and vice
versa. TeXQuery also supports a flexible scoring construct that
scores query results based on full-text predicates and permits
top-k queries. TeXQuery is the precursor of the full-text lan-
guage extension to XPath 2.0 and XQuery 1.0 currently being
developed by W3C.

1. INTRODUCTION
One of the key benefits of XML is its ability to represent

a mix of structured and unstructured (text) data. This is il-
lustrated in many existing XML data repositories such as the
IEEE INEX data collection, Shakespeare’s plays in XML, the
Library of Congress documents in XML, and SIGMOD Record
in XML. In addition, many applications such as library science
have a growing need to support a mix of structured and full-
text queries over these document collections.

While XQuery and its core navigation language, XPath, pro-
vide powerful structured queries over XML documents, they
have only limited rudimentary capabilities for querying the
unstructured data in XML documents using full-text search.
These capabilites are primarily based on the contains function.
The expressiveness of the contains function is limited to sim-
ple keyword and phrase matching and cannot express sophisti-
cated text search primitives such as Boolean queries, proxim-
ity distance, order specification, stemming and thesauri. In ad-
dition, the contains function cannot score query results which
is necessary to compute the relevance of query answers when
querying textual content in documents.

On the other hand, as it can be seen from the W3C Full-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2004, June 1318, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 ...$5.00.

Text Use Cases Document [2], there is a significant number
of practical usages of queries that combine structured and un-
structured search. As an illustration, consider the following
use-case from [2]: Find all ’book’ XML elements that contain
the keywords ’usability’ and ’software’ within three keywords
of each other, and the keyword ’Rose’; further use stemming
for the keyword ’usability’ and case-sensitivity for the keyword
’Rose’; return the ’title’ child sub-element and the ’author’ de-
scendant sub-elements of these ’book’ elements. Clearly, this
query involves both structured search (books, titles and authors
of books) and full-text search on the content of the books.

To address the inability to express the above query (and
other complex full-text search queries) in XQuery, we have
designed and implemented TeXQuery. TeXQuery is a full-
text search extension to XQuery. It supports powerful set of
fully composable full-text primitives, supports a flexible scor-
ing construct that can return top-k results, and supports queries
over both structured data and text.

Designing a set of fully composable full-text primitives that
are tightly integrated with structured XQuery queries is a non-
trivial task because structured XML queries operate on items
(e.g., element nodes and attribute nodes), while by their very
nature, full-text queries operate on tokens and their positions
within XML nodes. TeXQuery addresses this issue by provid-
ing a set of full-text search primitives, called FTSelections,
that rely on a formal model, called FullMatch. FullMatch
represents search tokens and their positions in an XML doc-
ument. Each FTSelection takes zero or more FullMatches and
produces a FullMatch. Thus, FTSelections can be arbitrar-
ily composed, allowing complex full-text searches to be speci-
fied. The semantics of the FullMatches can be described using
XQuery functions as shown in [1]. This design fully integrates
full-text search into XQuery without requiring to modify the
XQuery data model and formal semantics [4].

Our model also allows for customizable relevance scoring
by allowing weights to be associated with each FTSelection.

To the best of our knowledge, TeXQuery is the first lan-
guage and implementation that provides such an integrated
querying of structure and text in XML documents. TeXQuery
is powerful enough to express every use case in the W3C Full-
Text Use Cases Document [2], satisfies the Full-Text Require-
ments in [3]. TeXQuery is the precursor of the full-text lan-
guage extension to XPath 2.0 and XQuery 1.0 currently being
developed by W3C.

TeXQuery
data structures

TeXQuery Parser

TeXQuery
Query sequence of

context nodes

XQuery
Engine

Scoring
Engine

TeXQuery FunctionsFullMatch Engine FullMatch

items
sequence of

sequence of
nodes scores

sequence of

Figure 1: Architecture of the TeXQuery Engine

2. DEMONSTRATION OVERVIEW
We demonstrate a complete implementation of the TeXQuery

in the context of the Quark system 1. The Quark system is
implemented in C++ and is capable of running both regular
XQuery queries as well as a mix of TeXQuery and XQuery
queries. Using this system, we will demonstrate the following
features of TeXQuery:

Visualizing Input documents: Users can visualize and select
input documents to be queried. We provide preloaded
XML documents including Shakespeare plays, SIGMOD
Record, the 500MB IEEE INEX Collection (which con-
tains IEEE computer science publications), and the XML
documents used in the W3C Full-Text Use Cases Doc-
ument [2]. For the documents collections with DTDs,
users can visualize the corresponding DTDs.

Aids to Query Specification: Users can specify queries in three
ways. First, they can choose from a variety of sample
preloaded TeXQuery queries, including all the queries
in the W3C Full-Text Use Cases Document. Second,
they can write their own TeXQuery query in a specified
window. Finally, they can input their queries in a form
interface in which they specify: (i) The context expres-
sion as an XPath/XQuery expression whose result is a
set of element nodes that identify the context in which
the full-text expression is applied; (ii) The search ex-
pression that specifies the full-text conditions combined
with any XQuery condition; (iii) The return expres-
sion as in XPath/XQuery to identify expected answers;
(iv) The score expression as a weighted full-text condi-
tion that will be used to assign scores to query answers;
(v) The value of K or threshold if the user is interested
in top-K answers or answers whose score exceeds a cer-
tain threshold. If the user does not specify a scoring
expression, answers are returned in document order.

Visualizing the Evaluation Plan: While a query is being eval-
uated by the TeXQuery engine, users can visualize its
evaluation plan. The system displays a graphical repre-
sentation of FullMatches at each step of the evaluation
process which allows users to follow every step of the
query evaluation.

Answer Explanation: An element or attribute node qualifies
as a query answer if it satisfies the full-text condition
specified in the query. The system displays all the hits

1http://www.cs.cornell.edu/database/Quark

found along with each node. A query result is converted
into an HTML document in which hits are highlighted
and answers are ranked by document order or by rele-
vance order.

3. SYSTEM ARCHITECTURE
Figure 1 depicts the architecture of the TeXQuery imple-

mentation. At the core of our implementation, is the TeX-
Query engine that interacts with the Quark XQuery engine
through a set of functions, one for each FTSelection. These
functions take the XML representation of one or more Full-
Matches and return the XML representation of a FullMatch.

When a TeXQuery query is entered, the system parses the
query and first identifies and evaluates any nested XQuery ex-
pressions in the full-text query. The TeXQuery query eval-
uation proceeds as follows. First, for each search term in the
query, using inverted list indices, a FullMatch is generated that
contains the positions of the full-text terms in the input docu-
ment. These FullMatches are then composed by the functions
that implement each FTSelection. When the final FullMatch is
built, it is used to filter the context nodes evaluated in XQuery
and returns qualified context nodes as answers. If needed, rel-
evance scoring is performed by the scoring engine that uses
the weights specified in the query. In this case, the relevance
scores are returned as a sequence of floats to the XQuery en-
gine that can be used to rank the query answers.

4. REFERENCES
[1] S. Amer-Yahia, C. Botev, and J. Shanmugasundaram.

TeXQuery: A Full-Text Search Extension to XQuery.
WWW Conference, New York, New York, 2004.

[2] The World Wide Web Consortium. XQuery and XPath
Full-Text Use Cases. W3C Working Draft. Available at
http://www.w3.org/TR/xmlquery-full-text-use-cases/,
Feb. 2003.

[3] The World Wide Web Consortium. XQuery and XPath
Full-Text Requirements. W3C Working Draft. Available
from http://www.w3.org/TR/xmlquery-full-text-
requirements/, May 2003.

[4] The World Wide Web Consortium. XQuery 1.0 and
XPath 2.0 Data Model. Working Draft. Available from
http://www.w3.org/TR/xpath-datamodel/, May 2003.

