
1

Use of Recurrent Neural Networks for Strategic Data Mining of Sales
Information

Jayavel Shanmugasundaram
University of Wisconsin

M. V. Nagendra Prasad
Andersen Consulting

Sanjeev Vadhavkar
Amar Gupta

Massachusetts Institute of Technology

An increasing number of organizations are involved in the development of strategic
information systems for effective linkages with their suppliers, customers, and other channel
partners involved in transportation, distribution, warehousing and maintenance activities. An
efficient inter-organizational inventory management system based on data mining
techniques is a significant step in this direction. This paper discusses the use of neural
network based data mining and knowledge discovery techniques to optimize inventory
levels in a large medical distribution company. The paper defines the inventory patterns,
describes the process of constructing and choosing an appropriate neural network, and
highlights problems related to mining of very large quantities of data. The paper identifies
the strategic data mining techniques used to address the problem of estimating the future
sales of medical products using past sales data. We have used recurrent neural networks to
predict future sales because of their power to generalize trends and their ability to store
relevant information about past sales. The paper introduces the problem domain and outlines
how data mining helps to formulate the strategic vision of information technology (IT) in the
company. In the technical part of the paper, we first describe the implementation of a
distributed recurrent neural network using the real time recurrent learning algorithm. We
then describe the validation of this implementation by providing results of tests with well-
known examples from the literature. The description and analysis of the predictions made on
real world data from a large medical distribution company are then presented.

1 Introduction
With the advent of data warehousing, companies have started storing large amounts of historical
data. One way of exploiting this information is by using such data to predict the future. In this
paper, we address the specific problem of predicting future sales using information about past
sales. An accurate prediction of future sales could lead to significant savings in inventory costs
etc. In this project, we used recurrent neural networks to predict future sales using past sales
obtained from a medical company, Medicorp [1,2]. The results of this experiment suggest that
recurrent neural networks are a good way to predict trends in sales. However, it appears that this
technique is not appropriate for predicting accurate sales figures for this application. This
limitation could mostly be attributed to (a) the insufficiency of data, which makes it difficult to
detect long-term dependencies and (b) the uncertainty and pronounced effects of exogenous
variables in the real world data, rather than to a deficiency in the technique itself. We provide a

2

justification for the above statement by studying the predictive performance of recurrent neural
networks on noisy mathematical functions, where the noise is intended to model the effects of
exogenous factors. We show that recurrent neural networks are very effective at learning functions
with a small amount of noise and that the performance degrades substantially as the noise level
increases. The major phases of the projects involved the following. First, a general recurrent
neural network was implemented. This implementation, which could easily be adapted to run in
distributed environments, was done using C++. The real-time recurrent learning algorithm, with
appropriate modifications made to make the implementation distributed, was used. This
implementation was then tested on some standard problems from the literature. Recurrent neural
networks were then used to predict some real world data provided by Medicorp. The nature of the
predicted results were then investigated and possible explanations for these results were put forth
based on the ability of recurrent neural networks to learn noisy mathematical functions.

The main contributions of the paper are
• Data mining techniques for strategic information systems.
• Distributed design of a recurrent neural network architecture for strategic data mining
• Building of a general recurrent neural network simulator which can be instantiated with

different network topologies and node activation functions.
• Investigation, analysis and explanation of the predictions and results based on real world data

from a large medical distribution company.
• Suggestions for alternative data mining architectures which could prove useful.

The rest of the project report is organized as follows. Section 2 describes the problem to be solved
in some detail and section 3 explains why the recurrent neural network architecture was chosen
over other architectures for this problem. The implementation of the recurrent neural network is
described in section 4. Section 5 presents and analyzes the prediction results on Medicorp data.
Section 6 provides the conclusions and the lessons learned from this endeavor.

2 The Problem Domain
With hundreds of chain stores and with revenues of several billion dollars per annum, Medicorp is
a large retail distribution company that dispenses pharmaceutical drugs to customers in a number
of states in the United States. Just as any other retailer in its position, Medicorp is forced to carry
a large standing inventory of products ready to deliver on customer demand. The problem is how
much quantity of each drug should be kept in the inventory at each store and warehouse.
Medicorp incurs significant financial costs if it carries excess quantities of drugs relative to the
customer demand. Unsatisfied customers frequently turn to competing stores, and Medicorp loses
potential profits in such cases. Because of negative experiences, unsatisfied customers may
switch company loyalties, relying on other pharmaceutical chains to serve them. On the other
hand, Medicorp incurs a financial cost if it carries excessive inventory levels, especially because
pharmaceutical drugs have limited shelf-lives Historically, Medicorp has maintained an inventory
of approximately a billion dollars on a continuing basis and has used traditional regression models
to determine inventory levels for each item. The corporate policy of Medicorp is governed by two
competing principles: minimize total inventory and achieve highest level of customer satisfaction.
The former principle is not quantified in numerical terms. On the latter issue, Medicorp strives to
achieve a 95% fulfillment level. That is, if a random customer walks into a random store, the

3

probability for the availability of the particular item is 95%. The figure of 95% is based on the
type of goods that Medicorp carries, and the service levels offered by competitors of Medicorp for
the same items. Medicorp has about 1000 stores, and maintains information on what is sold, at
what price, and to whom. The last piece of data has not been utilized in any inventory-modeling
endeavor at Medicorp. After reviewing various options, Medicorp adopted a “three-weeks of
supply” approach [1]. This approach involves the regression study of historical data to compute a
seasonally – adjusted estimate of the forecasted demand for the next three week period. This
estimated demand is the inventory level that Medicorp keeps, or strives to keep, on a continuing
basis. Each store within the Medicorp chain orders replenishments on a weekly basis and receives
the ordered items 2-3 days later. Overall, this model yields the 95% target for customer
satisfaction. Medicorp would like to explore the use of strategic data mining techniques to
achieving the strategic corporate goals for customer satisfaction and cutting down on the current
inventory.

The best way to manage an inventory is to be able to develop better techniques for predicting
customer demands and stock inventories accordingly. In this way, the size of the drug inventory
can be optimized to keep up with demand. To find the best solution to the inventory problem, we
looked at the transactional data warehouse at Medicorp. The Medicorp data warehouse is
hundreds of gigabytes in size containing all sales information from 1986 to the present. From this
vast data warehouse, we extracted a portion of the recent fields (Jan. 1995 - Sept 1996) which we
felt would provide adequate raw data for a preliminary statistical analysis:

Date field – Indicates the date of the drug transaction
Customer number – Uniquely identifies a customer (useful in tracking repeat customers)
NDC number – Uniquely identifies a drug (equivalent to a drug name)
Quantity number – Identifies the amount of the drug purchased
Days of Supply – Identifies how long that particular drug purchased will last
Sex fields – Identifies the sex of the customer
Cost Unit Price – Establishes the per unit cost to Medicorp of the particular drug
Sold Unit Price – Identifies per unit cost to the customer of the particular drug

The preliminary statistical analysis was utilized to help search for seasonal trends, correlation
between field variables and significance of variables, etc. Our preliminary statistical data provided
evidence for the following conclusions:

• Women are more careful about consuming medication than men.
• Sales of most drugs showed no or little correlation to seasonal changes.
• Drug sales are heaviest on Thursdays and Fridays.
• Drug sales (in terms of quantity of drug sold) show differing degrees of variability:

Maintenance type drugs (for chronic ailments) show low degrees of sales
variability.
Acute type drugs (for temporary ailments) show high degrees of sales variability.

4

3 Reasons for Choosing Recurrent Neural Networks
In this section, we explain the rationale behind choosing recurrent neural networks as the
prediction technique for the problem at hand. After a survey of the time series prediction
literature, we found that neural networks performed at least as well as other techniques in a
majority of cases. For example, the results of the Santa Fe competition on time series prediction
[11] suggest that the performance of neural networks is better than that of other techniques for
predicting the future trends in stock prices. A paper authored by Mozer [9], which explains the
details of the neural network architectures used in that competition, served as a starting point for
the exploration of different neural network architectures. The problem of predicting future sales,
as with other time series prediction problems, requires the network to maintain some sort of state1

so that it can detect and use trends in the data to make future predictions. Of the neural network
architectures with state, we decided to choose from either recurrent neural networks or time-delay
neural networks because they seemed to be the most well studied, with a large body of work
describing how to set parameters etc.

The results in [9] indicate that the predictive performance of recurrent neural networks and time
delay networks do not differ greatly. We chose the recurrent neural network architecture because
the length of the delay in time-delay networks has to be set in advance [7] and because recurrent
neural networks are more general than time delay networks. The reason for the latter is that
recurrent neural networks could learn to delay the inputs to any arbitrary length in time2.

4 Implementation of Recurrent Neural Networks
In this section, we first describe the reasons for choosing a particular learning algorithm for
recurrent neural networks. We then explain the details of this algorithm and the modifications
made to make the algorithm distributed. A distributed design for recurrent neural networks is also
presented. Finally, we describe experiments used to validate the implementation of the distributed
design.

4.1 Selecting the Learning Algorithm
The three main algorithms that exist for training recurrent neural networks and their advantages
and disadvantages are listed below:

1. Back Propagation through Time: This is an extension of the regular back-propagation
algorithm used in feed-forward neural networks. However, at each time instance, the back
propagation algorithm takes time proportional to the number of time ticks after the start time.
Also, the storage needs increase with time. Thus, this approach is impractical when the length
of the sequence is unbounded and is computationally expensive when input sequences are
long.

1 This is not necessary if the sales data for x days is given as input to the network, where x is large enough to subsume
the period of any pattern in the data. However, in real world situations, one is unlikely to know the periods of such
trends and hence, this workaround is not always feasible.
2 The length to which the recurrent neural network can delay the input signal increases with the number of units in the
network.

5

2. Time-Dependent Recurrent Back-Propagation: This algorithm is for training a
continuous-time recurrent network. This algorithm has very modest space and time
requirements. However, this algorithm does not allow for real-time learning.

3. Real-Time Recurrent Learning: This algorithm can be used to train general recurrent neural
networks and has space and time requirements which are independent of time (though still
more than the requirement for Time-Dependent Recurrent Back-Propagation algorithm). An
advantage of this algorithm is that it can be run on-line without waiting for the sequence to be
complete.

Since we wanted to have a general implementation which could be used for many time series
prediction tasks, we chose to use the Real-Time Recurrent Learning [14, 13] (RTRL) algorithm.
Though this implementation is more expensive in terms of space and time when compared to the
time-dependent recurrent Back-Propagation algorithm, the on-line nature of the RTRL algorithm
allows for continuous learning and prediction over arbitrarily long sequences (such as what might
be expected in our domain of interest).

4.2 Design of the Neural Network
The design of the neural network was made to facilitate implementation in a distributed
environment. Nodes and Edges in the neural network were modeled as objects and interactions
between these components occurred only through well-defined interfaces. These interactions
could be directly translated into messages in a distributed environment. Modifications were also
made to the RTRL learning algorithm so that maximum parallelism could be exploited in a
distributed implementation. These modifications ensure that nodes in a network have to
communicate only with nodes connected to them (the output nodes, however, have to
communicate with all the nodes in the network).

The implementation of this distributed design was done using C++ because the object-oriented
concepts in the language matched the design well. The implementation was made general enough
so that arbitrary topologies of networks could be instantiated and activation functions could be
specified independently for every node. The learning rate can also be varied and a momentum
term can be specified to filter out high frequency disturbances on the error surface that the
network traverses during the learning phase.

4.3 Validation of the Implementation
We tested the implementation of the recurrent neural network by making it learn (a) Exclusive Or
with Delay [14] and (b) to be a Shift Register [10]. We present the learning results on the Delayed
Exclusive Or problem in this report.

4.3.1 The Delayed Exclusive Or Problem
This problem involves giving the network a continuous stream of two inputs. The Exclusive Or of
the inputs at time t is the required output at time t + 2. Thus, the recurrent neural network should
not only learn that the output is the Exclusive Or of the inputs but should also learn that the output
is to be delayed by two time units. No information other than the input and the expected output is

6

given to the network. Table 1 shows an example trace of inputs and outputs presented to the
network.

Time Input 1 Input 2 Output Comments
1 1 0 0.5 Output undefined, so arbitrarily set to 0.5
2 1 1 0.5 Output undefined, so arbitrarily set to 0.5
3 0 0 1 Exclusive Or of inputs at time 1
4 1 1 0 Exclusive Or of inputs at time 2
... … … … …
N 0 1 0 Exclusive Or of inputs at time N-2

N+1 1 0 0 Exclusive Or of inputs at time N-1
N+2 0 0 1 Exclusive Or of inputs at time N

Table 1: Traces of Input and Output in Delayed Xor

4.3.2 Experimental Results
A recurrent neural network with 3 nodes was presented with the time delayed Exclusive Or
patterns. A learning rate of 0.1 was used and training was done over 100000 test inputs. The
momentum term was set to 0.5. The output of the network at some time t was said to be correct if

it differed from the actual output by no more than 0.25 (thus, the squared error for a ``correct''
output should be less that 0.0625). As figure 1 shows, the network learned the relationship
between the inputs and the output. We also tried training a five node recurrent neural network
with a 3-time delay Exclusive Or pattern and this function too was effectively learnt. The results
that we obtained are consistent with those presented in [14]. A recurrent neural network with three

Figure 1: Squared Error on Output for two delay XOR

7

nodes was also trained to be a shift register with two time delays between input and output. From
the positive outcome of these experiments, and by carefully studying the execution traces of the
program, we concluded that the implementation of recurrent neural networks was ‘‘correct’’ and
could be used for real-world problems.

5 Sales Predictions
In this section, we present the prediction results on real-world data obtained using recurrent neural
networks. We first discuss how the recurrent neural network was trained and how over-fitting was
avoided. We then discuss the value of parameters chosen for the predictions and reasons for the
choice. Finally, we present an analysis of the prediction results and investigate the appropriateness
of recurrent neural networks for this prediction task.

5.1 Architecture and input/output format
Since the requirement was to predict the sales one-day in advance, we chose to treat each day as
one unit of time. Thus, we had 365 data points, which corresponded to each day in 1995, as the
training data set. At each time instance t, the sales for the day t were given to the network and the
sales for day t + 1 were obtained as the output of the network. No other input was given because
Medicorp provided no information about other variables. We used an implicit representation of
time [6], i.e., time was not an explicit parameter, which was input to the recurrent neural network
but was implicitly represented as the training period of the network.

The input sales were scaled between –1 and +1 using the formula:

scaled_sales = 2 * (actual_sales / max_sales) – 1 (1)

where scaled_sales is the scaled value of actual_sales, given that the maximum sales of the
product in a day is max_sales. The output sales predicted by the neural network, which lies
between 0 and 1 for logistic units, were scaled to give the predicted sales using the formula:

predicted_sales = (predicted-value – x) * max_sales / (1 – 2 * x) (2)

where predicted-value is the value predicted by the network corresponding to the sales for the
next day (the day after the current time step with respect to the network). The value of x served to
scale the output to between x and 1 – x because logistic units have difficulty predicting extreme
values (near 0 and 1).

The information about the actual value of the next day sales is provided to the network for
updating its weights. The transformation performed to these sales before being given as the
required output to the network is the inverse transformation of the one presented above. Required
prediction sales is determined the formula:

required prediction = x + [actual_future_sales * (1 – 2 * x) / max_sales] (3)

where actual_future_sales is the actual value of sales on the day of after the current day.

8

The 365 data points available for the year 1995 were used as the training data set. Since repeated
training (many epochs) was sometimes required when we used small learning rates, the outputs of
each unit was set to 0.5 (a neutral value between the extremes 0 and 1) at the beginning of each
epoch.

5.2 Avoiding Over-fitting
One of the problems faced in training neural networks is over-fitting to the data used for training.
After the network learns the general trends present, it tries to fit its predictions to the actual data
that is presented for training. This leads to prediction results that are skewed to the idiosyncrasies
of the training data set. To avoid this, we used the half-year data available for 1996 as the test data
set to avoid over-fitting. The sum of the squared errors of the predicted sales for the first half of
1996 was measured after each training epoch. When this error started rising, it meant that the
neural network was starting to over-fit with respect to the training data [12]. This technique
proved to be very effective for most of the predictions. This was because the minimum sum of the
squared errors on the test data set far exceeded the sum of the squared errors on the test data set
when the network ``converged''. Figure 2 shows a typical over-fitting curve.

5.3 Determining Appropriate Parameters for the Architecture
There are four parameters, which have to be determined before using a recurrent neural network to
predict values. They are
(a) The number of nodes in the recurrent neural network.

Figure 2: An Example Overfitting Curve

9

(b) The learning rate of the neural network
(c) The momentum rate used to remove high frequency variations in the error surface
(d) The variable x defined in section 5.1.

The momentum term was not experimented with as part of this project and was set to 0 in all the
simulations. The details as to how the other parameters were determined are given below:

5.3.1 Learning Rate
The learning rate was chosen to be low enough so that the curve got by plotting the mean square
error on the test data set (and the training data set) versus the number of training epochs was a
smooth curve. What this meant was that the mean square error on the training data set
monotonically decreased over time and the mean square error on the test data set decreased
monotonically till the point of over-fitting, after which it increased monotonically. We
experimented with various learning rates for the problem at hand and finally arrived at the
learning rate of 0.001 for fast moving drugs and 0.01 for slow moving drugs. These learning rates
give rise to smooth mean square error curves like the one given in figure 2. A higher learning rate
of 0.01 for fast moving drugs gives rise to noisy error curves like the one shown in figure 3. Even
a higher learning rate of 0.1 does not lead to any learning at all.

5.3.2 Number of Nodes
Initially, we hypothesized that the larger the number of nodes in the neural network, the better the
prediction is likely to be. However, on running experiments, we found that this was not the case
and that there were networks with a certain number of nodes that were better suited for the task
than other networks. We feel that the reason for this is over-generalization when there are too few

Figure 3: A Noisy Error Curve

10

nodes and under-generalization when there are too many nodes. That is, when there are too few
nodes, the network is unable do enough processing and has enough information to detect trends
and predict good output. However, when there are too many nodes, the network acts like a lookup
table and stores specific variations in output. Thus, the network is unable to generalize and pick up
trends. In the case of fast moving drugs, surprisingly, the recurrent neural network with just 4
nodes performs better than most architectures with more number of nodes. This is probably
because trends are more short-term in fast moving drugs and/or because a lot of generalization is
required. Figure 4 shows how the error varies with the number of nodes in the network for a
particular fast moving drug. This pattern was roughly followed for the other fast moving drugs too
(only in one out of the 4 cases did the error for the four node network exceed the error of a
network with a different number of nodes). We also notice that the error starts to decrease as the
number of nodes is increased past 10. This decrease is however very gradual and the error of the 4
node network continues to be better than networks having any reasonable number of nodes. In our
experiments, we used networks with 4, 10 and 20 nodes for predicting fast moving drugs. For
slow moving drugs, the variation in error is roughly similar to the variation in figure 4 with the
exception that the error for networks with 10 nodes is almost the same as the error for networks
with 4 nodes. We used networks with 4, 10 and 20 nodes for predicting the sales of slow moving
drugs too.

5.3.3 Output Scaling
Since each node in the recurrent neural network has a logistic activation function, it is very
difficult for the network to output extreme values (i.e., near 0 and 1). In order to overcome this
difficulty, we studied the effect of scaling output in the range x to 1-x linearly so that the effective

Figure 4: Squared Errors versus Number of Nodes in the Network

11

output range was between 0 and 1. Figure 6 gives the minimum sum of the squared error on the
test set of a fast moving drug for different values of x. This figure is similar for slow moving
drugs. We see that the error increases with the value of x. The reason for this is twofold:

(a) As the value of x increases, even slight differences in the output are magnified when the scale
is adjusted to the [0, 1] range.

(b) The networks do not make high amplitude predictions for this application (reasons will be
given in later sections).

Since the error when x = 0 is about the same as the error when x = 0.1 and because slow moving
drugs require the network to predict 0 sales, we chose to use the latter setting for our experiments.

5.4 Prediction Results
In this section, we present some graphs, which show the prediction results of the recurrent neural
network. For the sake of brevity, sales prediction results are shown for only two of Medicorp’s
products. These two were selected as representative samples from the ten products whose sales
were predicted. Figure 6 shows the actual sales of drug 1 (a fast moving drug) on each day of the
year 1995 and figure 7 shows the actual sales of drug 1 for the first half of 1996. Figure 8 shows
the predicted results of a recurrent neural network having 4 nodes (this prediction had the
minimum square error on the test set). Figures 9 and 10 show the predictions of architectures with
10 and 20 nodes. The predictions of these two architectures do not minimize the squared error on
the test set but these figure are included so that the predictions of recurrent neural networks with
varying number of nodes could be compared. Note that the scales of the graphs are different
because each graph was scaled to show the maximum amount of detail. Thus, for example, figures
7 and 8 look different although they show the same trends.

Figure 5: Effect of Output Scaling on Error

12

Figure 6: Sales of Drug 1 in 1995

Figure 7: Sales of Drug 1 in 1996

13

Figure 9: Predicted Sales of Drug 1 in 1996 (10 node network)

Figure 8: Predicted Sales of Drug 1 in 1996 (4 node network)

14

5.5 Analysis of Prediction Results
On interacting with Medicorp management, we found out that they were interested primarily in
two prediction results:

(a) The trend of the sale for the next day, i.e., whether sales were going to increase, decrease or
remain the same and

(b) The actual amount of sales for the next day. An accurate determination of would automatically
provide the information requested in (a).

However, the Medicorp management suggested that trend analysis would be very useful even if
accurate prediction for the next day were not possible. This is because any indicator of trends is
likely to lead to savings. In this section, we determine how the predictions of the recurrent neural
networks measure against these two metrics.

5.5.1 Trend Analysis
In general, the predicted results seem to follow the trends well for fast moving drugs. The
predictions in figure 8 follow the actual trends 70% of the time. If the prediction was always up or
always down (fast moving drugs rarely have the same sales for two consecutive days), the
expected percentage of correct trend predictions is 50%. Thus, we can see that the neural network
uses regularities in the data to predict future trends. In general, the prediction of trends was good
for all the fast moving drugs we investigated. Table 2 shows the percentage of correct trend
predictions for four fast moving drugs.

Figure 10: Predicted Sales of Drug 1 in 1996 (20 node network)

15

Fast Moving Drug Number % of Right Trend Predictions
1 60.55%
2 62.77%
3 70.00%
4 65.00%

Table 2: Trend Predictions for Fast Moving Drugs

The trend prediction in the case of slow moving drugs is also good. For instance, the predictions
in drug 4 match the actual trends 52.78% of the time. This is better than always predicting that the
sales would remain the same (the most frequent category), which gives only 46.11% accuracy.
Thus, we see that the neural networks learn some sort of patterns in the sales of slow moving
drugs too. The percentage of correct trend predictions for four slow moving drugs is given in table
3.

Slow Moving Drug Number % of No Changes % of Right Trend Predictions
1 52.77% 55.56%
2 51.11% 61.11%
3 50.00% 52.33%
4 46.11% 52.78%

Table 3: Trend Predictions for Slow Moving Drugs

5.5.2 Error in Sale Prediction
Unfortunately, recurrent neural networks do not predict the actual sales figures too well. This can
be seen by comparing figures 7 and 8, representing sales and predictions of fast moving drugs.
Although the predicted results follow the trends rather well, the amplitude of the predictions is
much less than that of the actual results. The results are worse in the case of slow moving drugs.
Even the constant prediction does not fall to 0 because of uncertainty about the next peak.

We use the root mean square error (scaled between 0 and 1 using the formula used to scale the
actual output sales) of the predicted sales with respect to the test set as the measure of the
deviation between the predicted output and the actual output. Tables 4 and 5 tabulate these values
for four fast moving and four slow moving drugs respectively.

Fast Moving Drug Number Root Mean Square Error
1 0.17
2 0.23
3 0.20
4 0.22

Table 4: Prediction Error for Fast Moving Drugs

16

Slow Moving Drug Number Root Mean Square Error
1 0.20
2 0.23
3 0.25
4 0.19

Table 5: Prediction Error for Slow Moving Drugs

This root mean square error for fast moving drugs is very high (approximately 20% of the total
variation). This coupled with the fact that the output varies within a range of only 0.6 about 90%
of the time suggests that the amplitudes predicted are not likely to be too useful. In the case of
slow moving drugs, although the output is usually 0, the network cannot predict this because of
uncertainty about the height of the next peak.

We feel that the prediction of the amount of future sales is not very accurate mainly due to the
uncertainty introduced due to the effects of exogenous variables. This hypothesis is consistent
with that presented in [9]. Recurrent neural networks can effectively learn some fundamental
mathematical functions and this learning rapidly deteriorates in the presence of noise (which is
intended to model the effects of exogenous variables).

The prediction results suggested in the previous sections suggest that, although recurrent neural
networks perform well in detecting trends, they do not always predict the correct magnitude of
sales. The effect of exogenous variables on Medicorp’s sales could be a major cause for this
difference in prediction and actual results. Predictions will become weaker as the amount of noise
(which could be construed as the effects of exogenous variables) becomes more pronounced.

6 Conclusions and Future Work
The rapid growth of business databases has overwhelmed the traditional, interactive approaches to
data analysis and created a need for a new generation of tools for intelligent and automated
discovery in data. Knowledge discovery in databases presents many interesting challenges within
the context of providing computer tools for exploring large data archives. Inventory control is a
nascent application for neural network based strategic data mining and knowledge discovery
techniques.

The paper presents preliminary data from research effort currently underway in the Sloan School
of Management in strategic data mining [1, 2]. Earlier efforts from this research group
concentrated on the use of multi layer perceptron (MLP) and time delay neural networks (TDNN)
for inventory control. Prototype based on these networks was successful in reducing the total level
of inventory by 50% in Medicorp, while maintaining the same level of probability that a particular
customer’s demand will be satisfied.

17

In this paper, we designed and implemented a recurrent neural network and used it to predict
sales. The predicted results were a good indicator of the trends but did not have strong (high
amplitude) predictions. We have put forth one possible explanation for this phenomenon in terms
of exogenous variables. More specifically, noise weakens the predictions of recurrent neural
networks, which otherwise are able to accurately predict data. One possible reason for the weak
prediction of Medicorp’s sales could be the pronounced effects of exogenous variables on sales.
Since the effects of these variables would appear as noise to the neural network (in the absence of
any information about the variables), the predictions are conservative and not too high in
amplitude. However, the trends in sales are predicted accurately, in spite of the influence of these
exogenous variables.

During the course of this project, we also investigated alternatives to the recurrent neural network
architecture. Barto et. al. [3] use Associative Reward Penalty (ARP) units instead of standard
logistic units in a neural network. A modified architecture could use these units in place of logistic
units in a neural network and use eligibility traces so that the units remember the past and use it to
predict the future. Since the ARP units are stochastic, they have fewer tendencies to get stuck in
local minima. Though using the architecture will not avoid the problems due to exogenous
variables, this architecture may be better suited for prediction tasks. Including exogenous
variables in the predictions and exploring this new architecture are plans for future work.

7 Acknowledgments
We thank Aparna Agrawal for her help in building training data for the neural network. We also
thank Gerardo J. Lemus Rodriguez, Auroop Ganguly and Neil Bhandar for their helpful ideas and
discussions. Proactive support from the top management of Medicorp throughout the endeavor is
greatly appreciated.

References

[1] Bansal, K. Vadhavkar, S. and Gupta, A., “Neural Networks based Forecasting Techniques for
Inventory Control Applications” in International Journal of Agile Manufacturing, Vol. 2. No. 1, 1998.

[2] Bansal, K. Vadhavkar, S. and Gupta, A., “Neural Networks Based Data Mining Applications For
Medical Inventory Problems” in Data Mining and Knowledge Discovery, Vol2. Issue 1, 1998, pp. 07-
102.

[3] Barto, A.G., ``Adaptive Neural Networks for Learning Control: Some Computational Experiments,''
Proceedings from the IEEE Workshop on Intelligent Control, 1985.

[4] Barto, A.G., Jordan, M.L., ``Gradient Following Without Back-Propagation in Layered Networks,''
Proceedings of the IEEE First Annual International Conference on Neural Networks, June 1987.

[5] Barto, A.G., Sutton, R.S., Anderson, C.W., ``Neuron like Adaptive Elements That Can Solve
Difficult Learning Control Problems,'' IEEE Transactions on Systems, Man and Cybernetics, Vol.
SMC-13, No. 5, Oct. 1983.

[6] Elman, J.L., ``Finding Structure in Time,'' Cognitive Science, vol. 14, pp. 179-211, 1990.
[7] Hertz, J.A., Krogh, A.S., Palmer, R.G., ``Introduction to the Theory of Neural Computation,'' Santa

Fe Institute Studies in the Sciences of Complexity, Lecture Notes vol. I, Addison-Wesley, 1991.
[8] McClelland, J.L., Rumelhart, D.E., ``Explorations in Parallel and Distributed Processing,'' MIT Press,

Cambridge, 1988.

18

[9] Mozer, M.C., ‘‘Neural Net Architectures for Temporal Sequence Processing,’’ Predicting the future
and understanding the past (Eds. A. Weigend and N. Gershenfeld), Addison-Wesley, 1993.

[10] Rumelhart, D.E., McClelland, J.L., ``Parallel Distributed Processing: Explorations in the
Microstructure of Cognition,'' MIT Press, Cambridge, 1986.

[11] Weigend, A.S., Gershenfeld, N.A., ``Time Series Prediction: Forecasting the Future and
Understanding the Past,'' A Proceedings Volume in the Santa Fe Institute Studies in the Sciences of
Complexity, Addison-Wesley, 1994.

[12] Weigend, A.S., Huberman, B.A., Rumelhart, D.E., ``Predicting the Future: A Connectionist
Approach,'' International Journal of Neural Systems, vol. 1, pp. 193-209, 1990.

[13] Williams, R.J., Peng, J., ``An Efficient Gradient-Based Algorithm for On Line Training of Recurrent
Network Trajectories,'' Neural Computation, vol. 2, pp. 490-501, 1990.

[14] Williams, R.J., Zipser, D., ``Experimental Analysis of the Real-time Recurrent Learning Algorithm,''
Connection Science, vol. 1, no. 1, pp. 87-111, 1989.

