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Abstract

Recovery support in database transaction processing systems is provided to ensure consis-
tency and correctness under failures, logical as well as physical. As the transactional model is
extended to advanced, nontraditionalapplications, recovery acquires even more importance. In
spite of the broad experience building recovery for conventional systems, a look at the literature
on recovery reveals that there is a semantic gap between high level requirements (such as the
all-or-nothing property) and how these requirements are implemented, in terms of buffers and
their policies, volatile and persistent storage, shadows, etc.

Thus, there is a need for a formal framework for recovery that brings together the necessary
building blocks and tools for the methodical construction of recovery in traditional as well as
advanced transaction systems. Our work is a first step toward addressing the lack of adequate
conceptual tools by providing a framework to properly understand and describe recovery and
its interactions with other system components. Our main goals are to understand, specify, and
reason about the different facets of recovery in terms of a small set of essential ingredients.

�
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1 Introduction

Recovery support in database transaction processing systems (TP) is provided to ensure consistency

and correctness under failures, logical as well as physical. Even when we confine ourselves to

the Failure Atomicity (FA, the all or nothing) property of transactions, several considerations

determine how recovery is achieved. Different versions of ARIES [7] as well as the lessons from

the case study reported in [2] attest to this. The case study demonstrates the need for different

policies and hence different recovery protocols and mechanisms – depending on the size of the

objects, frequency of access, and the system architecture, to list a few considerations. Furthermore,

when failure atomicity is to be achieved in parallel and distributed platforms, traditional recovery

approaches do not perform well since they lead to unnecessary transaction aborts. This necessitates

new recovery approaches [8]. For these reasons, it is necessary to develop systematic methods

to craft recovery even for the FA correctness criterion. The recovery requirements of advanced

transaction models and applications demand even more flexibility from the recovery subsystem.

The current state of the art in recovery, however, presents an interesting paradox:

� On the one hand, there is considerable experience in building systems that successfully

support recovery. This experience, for example has been summarized in ARIES [7] wherein

the algorithm description appears at a very detailed implementation level.

� On the other hand, at a very high level of abstraction, recovery research has tackled problems

in advanced transaction models where the notion of logical compensations plays an important

part [10, 5].

In many ways, the two represent two ends of the spectrum. Indeed, a look at the literature on

recovery reveals that there is a semantic gap between high level requirements (such as the all-

or-nothing property) and how these requirements are implemented, in terms of buffers and their

policies, volatile and persistent storage, shadows, etc. In the long run, the absence of formal

methods hampers the rigorous description of what a system achieves in terms of correctness and a

demonstration of the fact that it does achieve the requirements.

Thus, there is a need for a formal framework for recovery that brings together the necessary

building blocks and tools for the methodical construction of recovery in traditional as well as

advanced transaction systems. Such a framework will allow us to modularize and reuse recovery

components. Our work addresses the lack of adequate conceptual tools by providing a framework

to properly understand and describe recovery and its interactions with other system components.

Our main goals are to understand, specify, and reason about the different facets of recovery in terms

of a small set of essential ingredients.
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Figure 1: Durability, Failure Atomicity, and Recovery Ingredients

1.1 Summary of the Main Results

Our primary contribution is a rigorous method for describing recovery – the correctness desired, and

what the system must ensure to achieve this correctness – in a way that it improves our understanding

of the building blocks of recovery and brings out the requirements one component places on the

rest of the system. To this end, we present a formal framework to describe recovery that bridges

the semantic gap between abstract recovery requirements and their low-level implementations,

integrating them with various known policies and protocols in a uniform notation and conceptual

hierarchy.

At the highest level, a transaction processing system must satisfy failure atomicity and

durability (see Figure 1). To this end, it uses specific

(a) protocols to commit/abort transactions and operations,

(b) protocols to execute operations,
�

and

(c) protocols to effect recovery.

Failure atomicity is primarily the concern of (a); durability is primarily the concern of

(c). Thus the specifications of the abort and commit protocols are needed to demonstrate failure

atomicity while the specifications of the recovery protocol are needed to demonstrate durability.

Also, failure atomicity requires certain assurances from (b) and (c) that they will also work towards

achieving failure atomicity while durability requires certain assurances from (a) and (b) that they

will also work towards achieving durability. That these assurances hold must be demonstrated
�

This is affected by both concurrency control policies and recovery policies.
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given the specifications of the corresponding protocols.

At the next level we show that a given protocol protocol meets the sepcifications. This can

also be done through a process of refinement. For instance, given that recovery protocols operate

in phases, we specify the properties of each phase and show that a conjunction of these properties

along with the assurances given by (a) and (b) satisfy the specifications associated with the crash

recovery protocol. The details of each phase (say, specified via pseudo-code) can then be used to

demonstrate that the properties associated with each phase in fact hold.

The salient aspects of our framework include:

� It enables the formal specification of the correctness of transaction executions during normal

run-time as well as during recovery after a crash.

� It provides a systematic delineation of the different components of recovery.

� It allows the formalization of the behavior of recovery – through a process of refinement

involving multiple levels of abstraction. This leads to a demonstration of correctness.

The concepts used in the formalization of recovery in this paper have their foundations in ACTA

[3] which has been shown to be a powerful framework to deal with concurrency and correctness

issues in (advanced) transaction models. Whereas ACTA worked with the abstract notion of history

of events, here, to deal with recovery it was necessary to introduce abstractions that are related to

stable databases, logs, crashes, etc. This has been accomplished by the work reported in this abstract

without forcing one to delve into the details of the implementation but through the refinement of

different levels of abstraction (see Figure 2). Being built on the foundation provided by ACTA, a

major advantage of the approach presented in this paper is that we are now in a position to use a

uniform framework for both concurrency and recovery.
�

1.2 Significance and Relevance of the Results

By identifying and formalizing the essentials of recovery, our work will contribute to a better

understanding of the tradeoffs involved in the choice of recovery methods. A good model of

recovery paves the way to better assess (and quantify) both existing and novel recovery methods.

Mainly, this will allow designers to only incur costs for properties/guarantees they need, and to

make the tradeoffs according to their expectations and needs, adapting the recovery for depending

on the types of objects, execution platforms, etc.. Some of these issues may not be new, but so
�

This abstract focuses on the correctness issues arising only form recovery requirements
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far they have been treated in an entirely ad-hoc manner. Our recovery model makes it possible to

tailor recovery to emerging applications with novel needs and constraints in clearer, more abstract

terms than is current practice, where the recovery is built from scratch and adjusted at low level to

achieve the semantics (and performance) the applications require.

A few researchers have dealt with the formalization of some aspects of recovery. For example,

[4] uses I/O automata to formally describe a recovery system based on ARIES. By using the well

understood notion of histories and by using the building blocks of ACTA, we believe that with

our approach we can reap the advantages of a uniform and familiar framework. Focusing on the

redo portion of recovery, the authors of [6] derive and prove the correctness of a redo recovery

algorithm based on an installation graph that imposes an ordering significantly weaker than the

usual concurrency control conflict graph. From this characterization they develop algorithms to

manage the volatile storage, a test to choose which operations from the log must be redone, and an

idempotent recovery algorithm that uses this test. Using the ingredients of our formal model we

should be able to capture the behavior of their redo algorithm.

2 The Formal Model

We model recovery in a transaction processing system by examining the different facets of histo-

ries of operations invoked by transactions on database data and transaction management events.

Specifically, we focus on the properties of its different histories; each history applies to different

entities in a transaction processing system. These histories are arranged in a hierarchy and are

related to each other by projections, and it is the properties of these projections that describe the

particulars of a recovery scheme.

For ease of explanation, in this section, we focus on database systems that

� utilize atomic transactions,

� use serializability as the correctness criterion for concurrent transaction executions, and

� It is assumed that operations are atomic and perform in-place updates and logging for

recovery.

In Section 3, we briefly discuss the extensions to the formal model that can deal with relaxations

of these assumptions.
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2.1 Operations, Events, States, and Histories

Consider a database as a set of data objects each of which has a state that can be modified by

operations executed on behalf of transactions. These objects may be stored in persistent storage

(e.g., magnetic disk) or in volatile storage; we generally assume that all objects exist in persistent

storage (some possibly in an outdated version), but some may be “cached” in faster volatile memory.

Usually the system only manipulates objects in volatile memory, and this is what raises the recovery

issues.

DEFINITION 2.1 Object and Transaction Events

Invocation of an operation on an object is termed an object event. The type of an object

defines the object events that pertain to it. We use ���������
	 to denote the object event corresponding

to the invocation of the operation � on object ��� by transaction � . We write ��� when ��� is clear

from context or irrelevant. (For simplicity of exposition we assume that a transaction does not

invoke multiple instances of � � �����	 .)
Committing or aborting a transaction, committing or aborting an operation performed

by a transaction are all transaction management events. � ������� ������ and � ����� ������ denote the

commit and abort of transaction � respectively. � ������� � � � � �����	�	 and � ����� � � � � �����	�	 denote the

commit and abort of operation � performed by transaction � on object ��� , respectively. We add

a super index � when an operation is issued by the recovery system.

The event Crash denotes the occurrence of a system failure; the event Rec denotes that

the system has recovered from a failure. All events are totally ordered with respect to both

Crash and Rec.

DEFINITION 2.2 Histories, Ordering, Projections

A complete history � [1, 3] is a partially ordered set of events invoked by transactions.

Thus, object events and transaction management events are both part of the history � . We write� � � to indicate that the event � occurs in the history � . !#" denotes precedence ordering in

the history � (we usually omit the subscript � ) and $ denotes logical implication.

We write %&!(')"+* , where events %-, � , * � � , to indicate that event � does not appear

between % and * (other events may appear). Formally: .0/#1235476 .5/ 3 498;:=<?>@> .0/ 3< / 3 4�A-BC<EDFHG A . In particular, we define a recovery-interval to be the history bounded by

� � �JI�KML and �JN �
L such that � � �OI�K �L ! 'PMQSRSTVU�W � N �L . It corresponds to the period between a crash

and its corresponding recovered event, allowing for crashes during recovery (i.e., before the

Rec event).
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A projection � �
of a history � by predicate P is a history that contains all events in �

that satisfy predicate P, preserving the order. For example, the projection of the events invoked

by a transaction � is a partial order denoting the temporal order in which the related events

occur in the history. We abuse notation and write ��� �
to denote the projection that removes

all events in set
�

. For example, we are often interested in “projecting out” all uncommitted

operations.

� ) , is the projection of history � until (totally ordered) event � (it includes � ). � ) � is

� ) but excludes � . �

DEFINITION 2.3 Object Projection and State

Let � ���
	��
denote the projection of � with respect to the operations on a single object��� .  Thus, a state I of an object equals the state produced by applying the history � ����	��

to the

object’s initial state I�� � I�� I ��� � N � I���, � ����	�� � � . For brevity, we will use � ����	��
to denote the state

of an object produced by � ���
	��
, implicitly assuming initial state I � .

DEFINITION 2.4 Uncommitted and Aborted Transaction Sets

We denote by � �" the set of uncommitted transactions in history � : � � � ��"��
� � ����� ��������� � . The set of aborted transactions � � " in history � : � � � � " � � ����� ���S�� � � .

Similarly we define the set of uncommitted and unaborted transaction operations � � � " ,

the set of aborted operations � � � " and the set of recovery operations � � � " . Formally:
����� �"!$#&%(')�$� 3 6 >+* �-,.,./+01� �2��� �"!$#3# D%54 A�8 >�6 !7�-8"09� ����� �"!$#3# D%:4 A , �2�
� �"!$#;%=<>�$� 3 6?6 !7�-8"09� ����� �"!$#3#@%:4
and ��A� � �"!$#@%.B)�C� 3 6 ��A� �D�E!$#F%.4 We drop the subindex, � , when it is clear from context.

DEFINITION 2.5 Physical and Logical States

The physical state of an object ob after history � is the state of ob after � �G��	��
is applied

to the initial state of ob. The physical database state after � is the physical state of all the

objects in the database after � is applied.

Consider the history � � P �IHKJ�L �NM �OH-J
that results from removing from a history � all object

operations performed by the recovery system and all aborted operations. The logical database

state is the physical state that results from ��� P �OH-JPL �QM �OH-J
.

R
Formally, S 2UT S 2CVXWZY

.[ S]\�^+_�` Tba
�

WFa
�

Wdc�c�c1WFa�eQf
indicates both the order of execution of the operations, (

ahg
precedes

a�gji
� ), as well as

the functional composition of operations.
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DEFINITION 2.6 Equivalence of Histories

Two histories � � , � ��� are equivalent when the state of the database after the execution of � �
is the same as the state after the execution of � ��� on the same initial state. Different equivalence

relations result when the logical (
�
) or physical (� ) state of the database are considered for each

of � � and � ��� . We define three: � � H��)H � ��� ; � ��� ��H � ��� ; and � ��� � � � ���
Two histories � � ,�� ��� are operation commit equivalent when they are equivalent and all

operations committed in one are committed in the other and vice-versa. Corresponding to each

of the three logical and physical history equivalences we have a commit equivalence definition.

We denote them � � H �	�H � ��� , � � � �	�H � ��� , � � � �	�� � ��� .

2.2 A Hierarchy of Histories

In defining the following hierarchy of histories, we ignore the presence of checkpoints. Checkpoints

can be considered as described in Section 3.

SD
ob 1

D
ob 1

SD obN

DobN
. . .

. . . 

H

L

SL

Figure 2: Modeling Recovery with Histories

This hierarchy helps in understanding the different facets of recovery (see Figure 2).

� The history � records all the events that occur in the system – including crashes. Clearly,

this is an abstraction.

��
 denotes the history known to the system, one that is lost in the event of a crash. 
 is a

projection of � ; it contains the suffix of � starting from the most recent crash event. ( 
 can

be visualized as the system log).

���
 denotes the history known to the system in spite of crashes. This is a projection of 
 .

( ��
 can be visualized as the portion of the log that has been moved to stable storage).
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�
� ��	 is a projection of 
 containing just the operations on ��� . It denotes the state of ��� known

to the system. (
� ��	 can be visualized as the volatile state of ��� ).

�� � ��	 is the state of ��� that survives crashes. It is a projection of
� ��	 ; it contains the prefix of

� ��	 . ( � � ��	 can be visualized as the stabilized state of ��� ).

2.3 Specification of Requirements

In transaction processing systems that adopt the traditional transaction model, transactions must

be failure atomic, i.e., satisfy the all or nothing property. Failure atomicity requires that (a) if a

transaction commits, the changes done by all its operations are committed � and (b) if a transaction

aborts unilaterally (logical failure) or there is a system failure before a transaction commits, then

none of its changes remain in the system. Durability requires that changes made by a transaction

remain persistent even if failures occur after the commit of the transaction.

Thus, the goals of recovery are to ensure that enough information about the changes made

by a transaction is stored in persistent memory to enable the reconstruction of the changes made

by a committed transaction in the case of a system failure. It should also enable the rolling back

of the changes made by an aborted transaction by keeping appropriate information around. These

two goals must be accomplished while interfering as little as possible with the normal (“forward”)

operation of the system.

Failure Atomicity

Transaction � is failure atomic if the following two conditions hold:

All � � ������� ������ � � � $�� ��� � � ��� �M� �����	 � � �-$ � � � ����� � � �=�@�����	�	 � � ��� ,
i.e., all updates by a committed transaction are committed.

Nothing � � ����� ���S�
� � � � $�� ��� � � � � �M� �����	 � � �-$ � � ����� � � �M� �����	�	 � � � � ,
i.e., all operations invoked by an aborted transaction are aborted.

Durability

Durability requires that committed operations should persist in spite of crashes.
�
This is one of the reasons we prefer to have ways by which the commitment of an operation can be dealt with in

addition to the commitment of transactions. Furthermore, we desire a formalism that can uniformly deal with recovery

in advanced transaction models (where a transaction may be able to commit even if some of its operations do not).
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1. When recovery is complete (after recovery-interval � � � �JI�K �L , �JN �L�� ), the state is equivalent

to the state produced by committed operations just before � � �JI�K �L :
� � � ��� R���� J��

WT � � � � � R� � �@QSR T �
2. After recovery, the physical state of 
 mirrors the logical state of � at that point:

� � � �JN �
L � � $ 
 � Q�RST H � � � � Q�RST �

2.4 Specification of Assurances

Restrictions on recovery mechanisms to provide assurances for FA

1. No aborted operation should be committed by the recovery mechanism:
: � : 0 : �"! >�6 !7�K8"01� ����� �"!$#3#F%.4 B >�* �K,.,./�0 A � �2�
� �"!$#3# D%.4 AVA

2. No committed operation should be aborted by the recovery mechanism:
: � : 0 : �"! >�* �K,.,./+01� ����� �"!$#3#F%.4 B >�6 !7�K8"0 A � �2�
� �"!$#3# D%.4 AVA

3. Outside of a recovery-interval, object, commit, and abort operations cannot be invoked by

the recovery system.
: �	�1�"!
�$0 > G %��C� A� �D�E!$#� * �K,.,./�0 A � � � � �"!$#3#�� 6 !7�K8-0 A � � � � �"!$#3#�� A?B :��M> 8 <-*�� / 12* 8 6���� �� i

�

A
We define 8 <-*��

to precede all events in 4 so that
� F�� covers the interval before the first crash.

4. If the recovery system aborts an operation performed by a transaction, then it will eventually

abort the transaction.
: �	�1�"!
�C0 >�6 !7�-8"0�AF� ����� �"!$#3# % 4 B 6 !7�K8"0�A;� 0 #@%.4 A

Assurances provided to the recovery component to achieve durability

1. All operations between two consecutive crashes � � �OI�K�� and � � �JI�K�� (or between the initial

state and � � �OI�K � ) which appear in � R���� J��� � also appear in ! R���� J"�� � , and they appear in the

same order.

2. No operations are invoked by other systems during the recovery period (the recovery system

may invoke operations to effect recovery).
: � : 0 : �"! :�# >�# DF B 8 G %$�C��%2� �"!$#�� * �-,.,./+0�% � ���C� �"!$#3#�� 6 !7�K8K0�% � ����� �"!$#3#�� A B :�� �$/ >�* 8 6&�'� g � / 12 8 <-* � A

3. Base of induction: history and log are both empty at the beginning � � �(! � �*)
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4. No other part of the system commits an operation which was previously aborted.:�# : � : 0 : �"! >�# DF B 8.6 !7�K8E09� ����� �"!$#3#F%.4 B � >�6 !7�-8"09� ����� �"!$#3# / 3 * �-,.,./+0 % � ����� �"!$#3# A@A
S refers to different components of the transaction processing system.

5. No other part of the system aborts an operation which was previously committed.:�# : � : 0 : �"! >�# DF B 8.* �K,.,./�09� ����� �"!$#3#F%.4 B � >�* �K,.,./�09� ����� �"!$#3# / 3 6 !7�K8"0�%2� ����� �"!$#3# A@A
S refers to different components of the transaction processing system.

2.5 Specification of Recovery Mechanisms

1. After recovery, history 
 reflects the effects of all committed operations, all aborted op-

erations, all transaction management operations and all system operations (which includes

undos of aborted operations). Those operations invoked by transactions, which have neither

been committed nor aborted, are given by � � � I��������
	�� WT U which we denote � �
� � � I . None of

these operations are reflected.
:��M>���������������� >���������! #"� V A V�$ � � ^

� �@A
2. During recovery, an operation performed by a transaction which is neither committed nor

aborted before the crash is aborted by the recovery system.: � : 0 : �"! :��M> �2�C� �"!$# % > < * 0��C� ��A B >�* 8 6���� �� / 3 6 !7�K8"0 A � ����� �"!$#3# / 3 8 <-* � AVA@A

3. An operation invoked by a transaction committed before a crash is not aborted by the recovery

system.
: 0 : � : �"! :��M>�* �K,.,./+01� ����� �"!$#3#F%  �������� %"� V B � >�* 8 6&�'� �� / 3 6 !7�-8"0 A � ���
�D�E!$# # / 3 8 <-* � A@A
(for each recovery pair

>�* 8 6&�'�'&g �$8 <K*�(�A
)

4. If an operation invoked by a transaction was uncommitted before a crash, it is not committed

by the recovery system.
: 0 : � : �"! :��M>�* �K,.,./+01� ����� �"!$#3# D% )�������� %"� V B � >�* 8 6&�'� �� / 3 * �K,.,./�0+A&� ���
�D�E!$# # / 3 8 <-* � A@A

5. The recovery system does not invoke any operations outside the recovery-interval.: �	�1�"!
�$0 > G %$�C�2A� �D�E!$#� * �K,.,./�0+A � �2�C� �"!$#3#�� 6 !7�K8-0+AF� ����� �"!$#3#�� A B :��M> 8 <-* � / 12 * 8 6&�'� �� i
�
A

6. If the recovery system aborts an operation invoked by a transaction in a recovery interval, it

also aborts the transaction before the end of that recovery interval.: �	�1�"!
�$0 � �M>V>�* 8 6&�'� �� / 6 !7�K8E0 A � ����� �"!$#3# / 8 <K* � A B >+* 8 6&�'� �� / 6 !7�K8E0 A � 0O# / 8 <K* � A@A
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2.6 Sample Proofs

Proof of Restriction 1: Consider first the case where no other component of the system performs

a � ��� ��� � � �M� �����
	 	 . Then, by Specification 1, � � ����� � P � �M�@�����
	 	 �� � .

Now consider the case where component T of the system other than R, performs � ����� � � � � �M�������
	 	
and Requirement 1 does not hold. Then by Assurance 4, we know that � ������� � � � � � �����	�	 ! "
� ����� � � �M�������
	 	 . By Assurance 5, � ��� � � � �M�������	�	 could have been performed only by R. Thus we know

that � ����� � � � � � � �����
	 	 ! " � ��� � � P � � � �����	�	 . By Assurance 2 and Specification 5, we know that
��� � � ����� � � � � �=�������	�	 ! " � � �JI�K �L ! " � ��� � � P � �M�������	�	 ! " �ON �L � . By Specification 1, we know that

� � ����� � � � �M�@�����
	 	 � 
 R�� � J"�
WT � . This contradicts Specification 3.

Restriction 3 follows from Specification 5; Restriction 2 and Requirement 2 are proved in the

Appendix.

Proof of Durability Requirement 1: By Specification 2, all operations invoked by transactions,

that are neither committed nor aborted, in � R���� J��
WT � are aborted in between � � �OI�K �L and �JN � L .

Further, we know that no committed operations are aborted (Specification 3) and no uncommitted

operations are committed (Specification 4).

Also, by Assurance 2, no transaction operations are performed between � � �JI�K �L and �JN �L .
Hence, by definition of committed logical equivalence of histories, Requirement 1 follows.

2.7 Dealing with a Specific Recovery Protocol

In this section, we show how the framework deals with a specific recovery protocol, namely ARIES.

Given space limitations, we just give a glimpse of what is involved. To this end, we first state

the properties ensured by non-ARIES components of recovery, specify the correctness properties

satisfied by ARIES and finally show that these two together conforms to the specifications that

recovery protocols in general must satisfy.

Assurances given by non-ARIES Recovery Components to achieve Durability

1. � � � ��� � � � �M� �����	 � 
 $ ������� � P � �M�������	 � � 
 � � ����� � P � �=�������
	 � � 
 � �
The undo of an operation is equated with the abort of the operation.

2. � � � � ��� � ��� � � ����� � ��� �M�S�����	 � � � R���� J��
W� � �-$ � �M� �����	 � ��
 R�� � J"� W� ���

All the committed operations are in the stable log at the time of a crash.
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Specification of ARIES: The ARIES recovery method follows the repeating history paradigm

and consists of three phases. Immediately after a crash, ARIES invalidates the volatile database.

Analysis identifies which transactions must be rolled back (losers) and which must be made

persistent (winners). Redo repeats history, redoing all transaction updates that had taken place

up to the crash. Finally, using the analysis information, undo removes the updates from loser

transactions.

In the following, � � I ���$� � refers to the postcondition that a particular phase � of ARIES satisfies.

1. After a crash, 
 �*)
2. � � I ��� � � � � � I � I � $ � � � ��� � ���� � �M�S�����	 � ��
�� � � ����� ��� �=�������	 �X�� ��
 �d� �=������	 � ! � I N� I ���
3. � � I ��� � � � � � I � I � $ � � � ��� � �� � P� �����	 � ��
 � � P� �����	 � ! � I N� I �
4. � � I ��� � � � � � I � I � $ � � � ��� � ���� �M� �����	 � ��
�� � ������� ��� �M�������
	 � � ��
 � � �M� �����	 ��� � � � N� I �
5. � � I ��� �ON � � � $ � 
 � ��
 �
6. � � I ����� � � � � $ � � � ��� � � � �����	 � ! � I N
� I �-$ ��� � � � P � � �����	 � � 
 � � ��� � ��� ��� �����	 ! � � �����	 $

����� � P � � �����
	 � ! � ��� � � P ��� �����	 ��� �
Here � �����	 and � �����
	 indicate operations that may be done by a transaction or the system.

7. � � ��� � ��� � ����� � P � � � �����	�	 � � ����� � P � � � �����	�	 �
8. � � I ����� � � � � $ 
 �@Q
	 � � �J�ON��M�� � 
 �
9. ARIES is not active outside the recovery period.

Proof Sketches

These show that ARIES specifications conform to the specification of recovery protocols. For

example,

� ARIES Specification 9 can be used to show that the recovery Specification 5 holds.

� As a more involved example, Assurance 2 ensures that at a crash, all committed operations

are indeed in ��
 . From ARIES Specifications 2, 3 and 6, we can infer that all uncommitted

transaction operations and recovery system operations are undone. Further, these are the only

operations that are undone. Recovery system operations include undos of aborted operations.
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Hence, these operations are also undone. Further these operations are undone in an order

consistent with ARIES Specification 6. Hence, we can infer recovery Specification 1.

Proving that an implementation of the ARIES protocol satisfies ARIES specifications involves:

1. modeling the dirty page table, the transaction table, checkpoints, and different types of LSNs.

2. translating the abstract requirements stated above in terms of the requirements/properties

of these entities with respect to the transaction management events and object events (i.e.,

during normal transaction processing) as well as during recovery steps.

3. given the pseudo-code that provides the details of transaction processing in terms of these

concrete entities, demonstrating that the correctness requirements on these entities in fact

hold.

In the following specifications of mechanisms we assume that the STEAL and NO-FORCE

combination has been chosen. That is, the restrictions associated with NO-STEAL
�

and FORCE
�

do

not apply.

WAL: No update to the stable database can be installed before a corresponding record of the

update is stored in the persistent log. This is called the Write-Ahead Log (WAL) rule. Formally:
:��

\�^+_�` % ��8 <�� /�� >� \�^�_�`
A : G % �

\�^�_�`
> �2�
� �"!$# /	��
����� G A B > ����� �"!$# / %�� 
 ����� G A@A

Semantics of Transaction Abort: If a transaction I is aborted, no other transaction � can

operate on the same object until I ’s operations are aborted. Formally:

� I ��� ��� J �����	 ! � � � �����	 � � ����� ��� I � ! � � � �����	 �0$ � ��� � � � � J �����
	 	 ! � � � �����	
Commit: The system considers a transaction committed when it has persistently logged all

the operations and the commit record for the transaction. Formally::�� % ��8 <�� /�� >� A=:�� % #�
>�* �K,.,./�0 > 0 A /	� �@A B >�* �K,.,./�0 > 0 A / %�� �@A 8&: ���;% �-> ��� / %�� �@A

�
NO-STEAL requires that no uncommitted updates be propagated to the stable database. If an update is stable, its trans-

action must have committed. Formally: ���X\�^�_�` � a�!#"#$�%�&('*) \ ^�_�`,+-� Y �.��\�^+_�` '�a ��/ 0�1�243 � 
����� Y +�5 '*6 0#787 %�9:'�9 + 3 � 
�����Y +,+ . Notice that this specification of NO-STEAL does not impose an ordering or logging strategy; nor does it say how to

record that a transaction is considered committed.;
FORCE prescribes that updated objects must be in the persistent database for a transaction to commit. Formally:

����\ ^�_�` � a<!#"=$<%�&('*) \�^+_�`,+-� Y �.��\�^+_�` '>6 0#7.7 %�9:'�9 + 3 � 
 ����� Y +,+�5 '�a �:/ 0�1?2@3 � 
 ����� Y + .
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With these specifications it is possible to formally show that the Undo phase of ARIES

will have the proper information to do its task. Specifically, notice that by WAL the information

necessary to undo an uncommitted change to the database is available on the stable log.

3 Relaxation of the Assumptions made thus far

We showed how our recovery framework can be used to deal with the basic recovery methods

for atomic transactions that work in conjunction with in-place updates, the Write-Ahead Logging

(WAL) protocol and the no-force/steal buffer management policies. Also, for ease of exposition,

we assumed that recovery processing was completed before new transactions were allowed. But

the building blocks developed in Section 2, namely, histories, their projections, and the properties

of the (resulting) histories are sufficient to deal with situations where these and other assumptions

are relaxed. This section summarizes some of the main points underlying these relaxations.

Beyond in-place updates. Some recovery protocols are based on the presence of shadows in

volatile storage. Updates are done only to shadows. If a transaction commits, changes made to the

shadow are installed in the stable database. If it aborts, the shadow is discarded. To achieve this

each object ��� in such an environment is annotated by its version number ��� �

, ��� �

,.. ��� �

where each

version is associated with a particular transaction. When intention lists are used, some protocols

make use of intention lists whereby operations are explicitly performed only when a transaction

commits. The properties of these protocols can be stated by defining projections of � for each

active transaction along with a projection with respect to committed transactions.

Considering object to page mapping issues. The model of Section 2 assumed that the object was

both the unit of operation as well as the unit of disk persistence. In general, multiple objects may

lie in a page or multiple pages may be needed to store an object. To model this, one more level of

refinement must be introduced: the operations on objects mapping to operations on pages.

Reducing delays due to crash recovery. Checkpointing is used in practice to minimize the amount

of redo during recovery. We can model checkpoints as a projection of the history ��
 and using that,

redefine the requirements of the redo part of the protocol. Some protocols allow new transactions

to begin before crash recovery is complete. After the transactions that need to be aborted have been

identified and the redo phase is completed, new transaction processing can begin. However, objects

with operations whose abortions are still outstanding cannot be accessed until such abortions are

done. This can be modeled by unraveling the recovery process further to model the recovery of

individual objects and and by placing constraints on operation executions.

Avoiding unnecessary abortions. In a multiple node database system, the recovery protocol must
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be designed to abort only the transactions running on a failed node [8]. This implies that not all

transactions that have not yet committed need be aborted. To model this, the crash of the system

must be refined to model crash of individual nodes and the recovery requirement as well as the

protocols must be specified in a way that only the transactions running on the crashed nodes are

aborted.

Beyond failure atomicity. The separation of operation commitment from transaction commitment

allows us the flexibility to go beyond failure atomicity, needed to handle advanced transaction

models. For example, in these models, the responsibility for an operation performed by one

transaction can be delegated to another transaction. The latter then commits or aborts the delegated

operation. With the framework developed here, we are in a position to handle the extended notion

of failure atomicity that results. In [9] we have shown how ARIES can be extended to deal with

delegation. The informal arguments used there to show the correctness of ARIES as well as the

extension to deal with delegation can be formalized using the framework.

4 Summary and Further Work

We have used histories, the mainstay of formal models underlying concurrent systems, as the

starting point of our framework to deal with recovery. The novelty of our work lies in the definition

of different categories of histories, different with respect to the transaction processing entities that

the events in a history pertain to. The histories are related to each other via specific projections.

Correctness properties, properties of recovery policies, protocols, and mechanisms were stated in

terms of the properties of these histories. For instance, the properties of the transaction management

events and recovery events were specified as constraints on the relevant histories. The result then

is an axiomatic specification of recovery. We also gave a sketch of how the correctness of these

properties can be shown relative to the properties satisfied by less abstract entities. Further work

entails:

� Elaboration of the proofs.

� Details of how the formalism applies when assumptions made in Section 2 are relaxed. A

flavor of what is involved was provided in Section 3.
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Appendix

Proof of Restriction 2: Assume to the contrary that restriction 2 does not hold. Then, we
know that

� � � � � ��� � � ��� ��� � � � � �����	�	 � � � � ����� � P � �M�������	�	 � � � . From Specification 4, we know
that the recovery system does not commit an operation that has not been committed outside a
recovery interval. Hence,

� � � � � ��� � � � � �� � � � ������� � � � �=�������
	 	 � � � � ����� � P � �M�@�����
	 	 � � � .
By Assurance 4, we know that

� � � � � ��� � � � � �� � � � ����� � � � � �M� �����
	 	 ! " � ����� � P � �M�������	�	 � . By
Specification 5 and Assurance 2, we know that

� � � � � ��� � � ��� � � �� � � � ������� � � � � � �����	�	 ! "
� � �JI�K �L ! " � ����� � P � � � �����	�	 ! " �JN � L � . By Specification 1 and Assurance 1, we know that
� � � � ��� � ��� � � ������� � � �=�S�����	�	 ! "+� � �OI�K �L $ � ����� � � � �M� �����	�	 ��
 R���� J�� WT ��� . The last two statements
provide a contradiction in light of Specification 3.

Proof of Requirement 2

We prove a stronger statement that � � � �JN � � � � $ 
 �@Q�R � H � �� � � Q�R � � . The proof proceeds by
induction on i, the index of the recovery point.
Consider the base case when i = 1.
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1. We know that initially, 4 � F  � F �
(Assurance 3). Together with Assurance 1, we know that �������� "" V F�� �������! "" V .

2. From Specification 1, we know that
 ����� " ������ >� �������� %"" V A V $ � � ^

� �

3. Consider that:

� All uncommitted transaction operations in
 �������! "" V are the same as the uncommitted operations

in 4 �������! "" V (from result 1).
� All uncommitted and unaborted transaction operations in

 �������! "" V are aborted between
* 8 6&�'� �

�

and 8 <K*
� (by using Specification 2).

� No object events are invoked by transactions between
* 8 6&�'� �

� and 8 <K*
� (Assurance 2).

Hence, the change to the logical state due to operations in 4 between
* 8 6&�'� �

� and 8 <K*
� is the guaranteed

abort of all uncommitted and unaborted transaction operations in 4 �������� %"" V . We also know that no
previously uncommitted operations are committed between

* 8 6&�'� �

� and 8 <-*
� (Specification 4) and that

no previously committed operations are aborted between
* 8 6���� �

� and 8 <-*
� (Specification 3). Hence,4 � �!� " & � �& > � �������! #"" V A V�$ � � ^

� �

4.
> 4 �������� " V A V�� ^

� �	��
�	����� ""�� & � �� >,� �������! "" A V $ � � ^
� �

(using result 1).

5. From results 2, 3 and 4, we see that
 ����� " ��� �& 4 � ��� " .

Consider ����� , and the recovery-interval
* 8 6���� �( �$8 <K*�(

1. We know
 ������� � " ��� �& � � �!��� � " (by induction hypothesis).

2. From Assurance 1 and result 1, we have
 �������! "� V � � �& � �������� "� V .

3. From Specification 1, we know that
 ����� � ��� �� >?������� �� %"� V A V $ � � ^

� �

4. Consider that:

� All uncommitted transaction operations in
 �������! "� V

are the same as the uncommitted operations

in 4 �������! "� V
(from result 2).

� All uncommitted and unaborted transaction operations in
 �������! "� V

are aborted between
* 8 6&�'� �(

and 8 <K* (
(by using Specification 2).

� No object events are invoked by transactions between
* 8 6&�'� �(

and 8 <K*�(
(Assurance 2).

Hence, the change to the logical state due to operations in 4 between
* 8 6���� �(

and 8 <K*�(
is the guaranteed

abort of all uncommitted and unaborted transaction operations in 4 �������� "� V
. We also know that no

previously uncommitted operations are committed between
* 8 6&�'� �(

and 8 <K*�(
(Specification 4) and that

no previously committed operations are aborted between
* 8 6&�'� �(

and 8 <K*�(
(Specification 3). Hence,4 � �!� � & ���& > � �������� "� V A V�$ � � ^

� �

5.
> 4 �������� " V A V�$ � � ^

� � & ���� >,���������� "� A V $ � � ^
� �

(using result 1).

6. From results 3, 4 and 5, we see that
 ����� � ��� �& 4 ����� �

. Q.E.D
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