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Abstract. We study the expressiveness and performance of full-text search lan-
guages. Our motivation is to provide a formal basis for comparing full-text search
languages and to develop a model for full-text search that can be tightly inte-
grated with structured search. We design a model based on the positions of tokens
(words) in the input text, and develop a full-text calculus (FTC) and a full-text
algebra (FTA) with equivalent expressive power; this suggests a notion of com-
pleteness for full-text search languages. We show that existing full-text languages
are incomplete and identify a practical subset of the FTC and FTA that is more
powerful than existing languages, but which can still be evaluated efficiently.

1 Introduction

Full-text search is an important aspect of many information systems that deal with
large document collections with unknown or ill-defined structure. The common full-text
search method is to use simple keyword search queries, which are usually interpreted
as a disjunction or conjunction of query keywords. Such queries are supported by tradi-
tional full-text search systems over “flat” text documents [1], over relational data [2, 16],
and more recently over XML documents [9, 13, 25]. Many new and emerging applica-
tions, however, require full-text search capabilities that are more powerful than simple
keyword search. For instance, legal information systems (e.g., LexisNexis R©)1 and large
digital libraries (e.g., such as the Library of Congress (LoC))2 allow users to specify a
variety of full-text conditions such as the ordering between keywords and keywords
distance. For example, a user can issue a query to find LoC documents that contain the
keywords “assignment”, “district”, and “judge” in that order, where the keywords “dis-
trict” and “judge” occur right next to each other (i.e., within a distance of 0 intervening
words), and the keyword “judge” appears within 5 words of the keyword “assignment”.
In a recent panel at SIGMOD 2005,3 a librarian at the LoC mentioned that support

1 http://www.lexisnexis.com/
2 http://thomas.loc.gov/
3 http://cimic.rutgers.edu/ sigmod05/
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for such “structured” full-text queries is one of the most important requirements for
effectively querying LoC documents.

Given structured full-text queries, one of the practical problems that arises is be-
ing able to model, optimize and efficiently evaluate such queries. This problem has
been studied for simple structured full-text queries in the information retrieval com-
munity [5], and more recently, for more complex structured full-text queries using text
region algebras (TRAs) [10]. TRAs explicitly model keyword positions and pre-defined
regions such as sentences and paragraphs in a document, and develop efficient evalua-
tion algorithms for set operations between regions such as region inclusion and region
ordering. While TRAs are an excellent first step, they have a fundamental limitation:
they are not expressive enough to write certain natural structured full-text queries that
combine inclusion and ordering of multiple regions. Further, since TRAs are based on
a different algebraic model than the relational model, it is difficult to tightly integrate
structured full-text search with structured search (which is usually relational).

To address the above issues, we propose a new model for structured full-text search.
Specifically, we develop a Full-Text Calculus (FTC) based on first-order logic and an
equivalent Full-Text Algebra (FTA) based on the relational algebra, and show how scor-
ing can be incorporated into these models. Based on the FTC and FTA, we define a
notion of completeness and show that existing query languages, including those based
on TRAs, are incomplete with respect to this definition. The key difference that results
in more expressive power for the FTA when compared to TRAs, is that the FTA deals
with tuples of one or more positions, while TRAs only only keep track of the start and
end positions of a region during query evaluation, and lose information about individ-
ual keyword positions within regions. Further, since the FTA is based on the relational
algebra, it can be tightly integrated with structured query processing.

Our next focus in the paper is on efficiency: since the FTA (or equivalently, the FTC)
is based on the relational algebra, not all queries can be efficiently evaluated in time
that is linear in the size of the input database. To address this issue, we identify PPRED,
a practical subset of the FTC, which strictly subsumes TRAs. We also propose an al-
gorithm that can efficiently evaluate PPRED queries in a single pass over inverted lists,
which are a common data structure used in information retrieval.We also experimentally
evaluate the performance of the algorithm.

In summary, the main contributions of this paper are:

– We introduce a new formal model for structured full-text search and scoring based
on first-order logic (FTC) and the relational algebra (FTA), and define a notion of
completeness for full-text languages (Section 2).

– We show that existing languages are incomplete with respect to the above definition
of completeness (Section 3).

– We define a practical subset of the FTC and FTA called PPRED, which subsumes
TRAs and can be evaluated in a single pass over inverted lists (Section 4).

– We experimentally study the performance of the PPRED algorithm (Section 5).

2 Related Work

There has been extensive research in the information retrieval community on the effi-
cient evaluation of full-text queries [1, 23, 27], including structured full-text queries [5].



Expressiveness and Performance of Full-Text Search Languages 351

However, the work on structured full-text queries only develops algorithms for specific
full-text predicates (such as window) in isolation. Specifically, existing proposals do
not develop a fully composable language for many full-text predicates, and also do not
study the expressiveness and complexity of the language. This observation also applies
to XML full-text search languages such as XQuery/IR [4], XSEarch [9], XIRQL [13],
XXL [25] and Niagara [29]. Our proposed formalism is expressive enough to capture
the full-text search aspects of these existing languages, and is in fact, more powerful
(see Section 4.1).

More recently, there has been some work on using text region algebras (TRAs) to
model structured full-text search [7, 10, 17, 20, 22, 28]. A text region is a sequence of
consecutive words in a document and is often used to represent a structural part of
a document (e.g., a chapter). It is identified by the positions of the first and the last
words in the region. TRAs operate on sets of text regions which may contain overlap-
ping regions ([7]) or strict hierarchies ([20]). Common operators are the set-theoretic
operators, inclusion between regions and ordering of regions [28] as defined below:

– A region s is represented as the ordered pair (s.l, s.r), where s.l is the left end-point
of the region, and s.r is its right end-point.

– A query operator has the form {s ∈ S | ∃d ∈ D Pred(s, d)}, where S and D are
sets of regions and Pred is a Boolean expression with the logical operators ∨ and
∧ and containing clauses of the form (x � y), where � ∈ {=, <,>,≤,≥}, x ∈
{s.l, s.r, s.l + const, s.l − const, s.r + const, s.r − const}, y ∈ {d.l, d.r}, and
const is a constant.

Efficient algorithms have been devised to evaluate TRA queries. However, while
TRAs are useful in a number of scenarios (e.g. search over semi-structured SGML and
XML documents), they have limited expressive power. Consens and Milo [10] showed
that TRAs cannot represent simultaneously inclusion and ordering constraints. For ex-
ample, the query: find a region that contains a region s from a set S and a region t from
a set T such that s comes before t, cannot be represented in TRAs. As we shall show in
Section 4.2, similar queries arise in structured full-text search, for instance, when trying
to find two windows nested inside another window.

Besides TRAs, there has also been a significant amount of work on using relational
databases to store inverted lists, and in translating keyword queries to SQL
[6, 12, 16, 18, 21, 29]; however, they do not study the completeness of languages and
do not develop specialized one-pass query evaluation algorithms for structured full-text
predicates.

3 The FTC and the FTA

Unlike SQL for querying relational data, there is no well-accepted language for ex-
pressing complex full-text search queries. In fact, many search systems use their own
syntax for expressing the subset of complex queries that they support.4 Instead of us-
ing one specific syntax, we adopt a more general approach and model full-text search

4 http://www.lexisnexis.com/, http://www.google.com, http://thomas.loc.gov, http://www.verity.
com
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queries using calculus and algebra operations. Specifically, we use a Full-Text Calculus
(FTC) based on first order logic and an equivalent Full-Text Algebra (FTA) based on
the relational algebra.

The FTC and the FTA provide additional expressive power when compared to pre-
vious work on TRAs. The increased expressive power stems from the fact that the FTC
and FTA deal with tuples of positions, instead of just start and end positions as in TRAs.
Further, since the FTA is based on the relational algebra, it can be tightly integrated with
structured relational queries.

3.1 Full-Text Search Model

We assume that full-text search queries are specified over a collection of nodes (which
could be text documents, HTML documents, XML elements, relational tuples, etc.).
Since our goal is to support structured full-text predicates such as distance and order,
which depend on the position of a token (word) in a node, we explicitly model the
notion of a position that uniquely identifies a token in a node. In Figure 1, we have
used a simple numeric position for each token, which is sufficient to answer predicates
such as distance and order. More expressive positions may enable more sophisticated
predicates on positions such as sentence- and paragraph-distance predicates.

More formally, let N be the set of nodes, P be the set of positions, and T be the
set of tokens. The function Positions : N → 2P maps a node to the set of positions
in the node. The function Token : P → T maps each position to the token at that
position. In the example in Figure 1, if the node it is denoted by n, then Positions(n) =
{410, ..., 423, ...}, Token(412) = “judge′′, Token(423) = “service′′, and so on.

We also have the following requirement for completeness: The full-text search lan-
guage should be at least as expressive as first-order logic formulas specified over
the positions of tokens in a context node. The above requirement identifies tokens
and their positions as the fundamental units in a full-text search language, and essen-
tially describes a notion of completeness similar to that of relational completeness [8]
based on first-order logic. Other notions of completeness can certainly be defined based
on higher-order logics, but as we shall soon see, defining completeness in terms of

<html> <head> ... </head>
<body>

<p>HR-212-IH (104)</p>
<p><center>109th(105) Congress (106)</center></p>
<h3><center>January(107) 4(108), 2005(109)

</center></h3>
...
<h3>SEC (404). 7(405). ASSIGNMENT(406) OF(407)

CIRCUIT(408) JUDGES(409).</h3>
<p><it> Each (410) circuit (411) judge (412) of (413)

the (414) former (415) ninth (416) circuit (417)
who (418) is (419) in (420) regular (421) active (422)
service (423) ...</it></p>

</body>

Fig. 1. Positions Example
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first-order logic allows for both efficient evaluation and tight integration with the re-
lational model. We also note that each context node is considered separately, i.e., a
full-text search condition does not span multiple context nodes. This is in keeping with
the semantics of existing full-text languages.

3.2 Full-Text Calculus (FTC)

The FTC defines the following predicates to model basic full-text primitives.

– SearchContext(node) is true iff node ∈ N
– hasPos(node, pos) is true iff pos ∈ Positions(node).
– hasAsToken(pos, tok) is true iff tok = Token(pos).

A full-text language may also wish to specify additional position-based predicates,
Preds. The FTC is general enough to support arbitrary position-based predicates.
Specifically, given a set V arPos of position variables, and a set Consts of constants,
it can support any predicate of the form: pred(p1, ..., pm, c1, ..., cr), where p1, ...pm ∈
V arPos and c1, ..., cr ∈ Consts. For example, we could define

Preds ={distance(pos1, pos2, dist), ordered(pos1, pos2), samepara(pos1, pos2)}.

Here, distance(pos1, pos2, dist) returns true iff there are at most dist intervening to-
kens between pos1 and pos2 (irrespective of the order of the positions); ordered(pos1,
pos2) is true iff pos1 occurs before pos2; samepara(pos1, pos2) is true iff pos1 is in
the same paragraph as pos2.

An FTC query is of the form: {node|SearchContext(node)∧QueryExpr(node)}.
Intuitively, the query returns nodes that are in the search context, and that satisfy
QueryExpr(node). QueryExpr(node), hereafter called the query expression, is a
first-order logic expression that specifies the full-text search condition. The query ex-
pression can contain position predicates in addition to logical operators. The only free
variable in the query expression is node.

As an illustration, the query below returns the context nodes that contain the key-
words “district”, “judge”, and “assignment”:

{node|SearchContext(node) ∧ ∃pos1, pos2, pos3
(hasPos(node, pos1) ∧ hasAsToken(pos1,

′ district′) ∧
hasPos(node, pos2) ∧ hasAsToken(pos2,

′ judge′) ∧
hasPos(node, pos3) ∧ hasAsToken(pos3,

′ assignment′))}

In subsequent examples, we only show the full-text condition since the rest of the query
is the same. The following query represents the query in the introduction (find context
nodes that contain the keywords “assignment”, “district”, and “judge” in that order,
where the keywords “district” and “judge” occur right next to each other, and the key-
word “judge” appears within 5 words of the keyword “assignment”):

∃pos1, pos2, pos3(hasPos(node, pos1) ∧ hasAsToken(pos1,
′ assignment′) ∧

hasPos(node, pos2) ∧ hasAsToken(pos2,
′ district′) ∧

hasPos(node, pos3) ∧ hasAsToken(pos3,
′ judge′) ∧

ordered(pos1, pos2) ∧ ordered(pos2, pos3) ∧
distance(pos2, pos3, 0) ∧ distance(pos1, pos3, 5))
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3.3 Full-Text Algebra (FTA)

The FTA is defined based on an underlying data model called a full-text relation, which
is of the form R[node, att1, ..., attm], m ≥ 0, where the domain of node is N (nodes)
and the domain of atti is P (positions). Each tuple of a full-text relation is of the form
(n, p1, ..., pm), where each pi ∈ Positions(n). Intuitively, each tuple represents a list
of positions p1, ..., pm that satisfy the full-text condition for node n. Since positions are
modeled explicitly, they can be queried and manipulated.

An FTA expression is defined recursively as follows:

– Rtoken(node, att1), for each token ∈ T , is an expression. Rtoken contains a tuple
for each (node,pos) pair that satisfies: node ∈ D ∧ pos ∈ Positions(node) ∧
token = Token(pos). Intuitively, Rtoken is similar to an inverted list, and has
entries for nodes that contain token along with its positions.

– If Expr1 is an expression, πnode,atti1 ,...,attij
(Expr1) is an expression. If Expr1

evaluates to the full-text relation R1, the full-text relation corresponding to the new
expression is: πnode,atti1 ,...,attij

(R1), where π is the traditional relational projec-
tion operator. Note that π always has to include node because we have to keep track
of the node being queried.

– If Expr1 and Expr2 are expressions, then (Expr1 � Expr2) is an expression,
If Expr1 and Expr2 evaluate to R1 and R2 respectively, then the full-text relation
corresponding to the new expression is: R1 �R1.node=R2.node R2, where
�R1.node=R2.node is the traditional relational equi-join operation on the node at-
tribute. The join condition ensures that positions in the same tuple are in the same
node, and hence can be processed using full-text predicates.

– If Expr1 and Expr2 are expressions, then σpred(att1,...,attm,c1,...,cq)(Expr1),
(Expr1 − Expr2), (Expr1 ∪ Expr2) are algebra expressions that have the same
semantics as in traditional relational algebra.

An FTA query is an FTA expression that produces a full-text relation with a single
attribute which, by definition, has to be node. The set of nodes in the result full-text
relation defines the result of the FTA query.

We now show how two FTC queries in Section 3.2 can be written in the FTA:

πnode(Rdistrict � Rjudge � Rassignment)

πnode(σdistance(att2,att3,5)(
σordered(att3,att1)(σordered(att1,att2)(

σdistance(att1,att2,0)(Rdistrict � Rjudge) � Rassignment)))

3.4 Equivalence of FTC and FTA and Completeness

Theorem 1. Given a set of position-based predicates Preds, the FTC and FTA are
equivalent in terms of expressive power.

The proof of equivalence is similar to that of the relational algebra and calculus and is
thus omitted (see [3]). We now formally define the notion of full-text completeness.
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Definition (Full-Text Completeness). A full-text language L is said to be full-text com-
plete with respect to a set of position-based predicates Preds iff all queries that can be
expressed in the FTC (or the FTA) using Preds can also be expressed in L.

The above definition of completeness provides a formal basis for comparing the
expressiveness of full-text search languages, as we shall do in Section 4. To the best
of our knowledge, this is the first attempt to formalize the expressive power of such
languages for flat documents, relational databases, or XML documents.

3.5 Scoring

Scoring is an important aspect of full-text search. However, there is no standard agreed-
upon method for scoring full-text search results. In fact, developing and evaluating dif-
ferent scoring methods is still an active area of research [13, 14, 15, 19, 25, 30]. Thus,
rather than hard-code a specific scoring method into our framework, we describe a gen-
eral scoring framework based on the FTC and the FTA, and show how some of the
existing scoring methods can be incorporated into this framework. Specifically, we now
show how TF-IDF [24] scoring can be incorporated, and refer the reader to [3] for how
probability-based scoring [14, 30] can be incorporated. We only describe how scoring
can be done in the context of the FTA; the extension to the FTC is similar.

Our scoring framework is based on two extensions to the FTA: (1) per-tuple scoring
information and (2) scoring transformations. Per-tuple scoring information associates
a score with each tuple in a full-text relation, similar to [14]. However, unlike [14],
the scoring information need not be only a real number (or probability); it can be any
arbitrary type associated with a tuple. Scoring transformations extend the semantics of
FTA operators to transform the scores of the input full-text relations.

We now show how TF-IDF scoring can be captured using our scoring framework.
We use the following widely-accepted TF and IDF formulas for a node n and a token
t: tf(n, t) = occurs/unique tokens and idf(t) = ln(1 + db size/df), where occurs
is the number of occurrences of t in n, unique tokens is the number of unique tokens
in n, db size is the number of nodes in the database, and df is the number of nodes
containing the token t. The TF-IDF scores are aggregated using the cosine similarity:
score(n) = Σt∈qw(t) ∗ tf(n, t) ∗ idf(t)/(||n||2 ∗ ||q||2), where q denotes query search
tokens, w(t), the weight of the search token t and || · ||2, the L2 measure.

To model TF-IDF, we associate a numeric score with each tuple. Intuitively, the
score contains the TF-IDF score for all the positions in the tuple. Initially, Rt relations
contain static scores: the idf(t) for the token t at that position divided by the product
of the normalization factors unique tokens ∗ ||n||2. This is the L2 normalized TF-IDF
score for each position containing the token t. Thus, if we sum all the scores in Rt, we
get exactly the L2-normalized TF-IDF score of t with regards to n.

We now describe the scoring transformations for some of the FTA operators. For
traditional TF-IDF, the interesting operators that change the scores are the join and
the projection. First, consider the relation R that is the result of the FTA expression
(Expr1 � Expr2), where the scored full-text relations produced by Expr1 and Expr2
are R1 and R2, respectively. Then, for each tuple t ∈ R, formed by the tuples t1 ∈
R1 and t2 ∈ R2, t.score = t1.score/|R2| + t2.score/|R1|, where |R| denotes the
cardinality of R. We need to scale down t1.score and t2.score because their relevance
decreases due to the increased number of tuples (solutions) in the resulting relation. For
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projections, the new relation should have the same total score as the original one. More
formally, let the relation R be the result of the expression πCNode,att1,...,atti(Expr1) and
let Expr1 produces the relation R1. Then, for any tuple t ∈ R which is the result of the
aggregation of the tuples t1, ..., tn ∈ R1, t.score = Σi=1,..,nti.score.

It can be shown that the above propagation of scores preserves the traditional seman-
tics of TF-IDF for conjunctive and disjunctive queries [3]. Further, this scoring method
is more powerful than traditional TF-IDF because it can be generalized to arbitrary
structured queries by defining appropriate scoring transformations for each operator.
For instance, we can define a scoring transformation for distance selection predicates
thereby extending the scope of TF-IDF scoring.

4 Incompleteness of Existing Full-Text Search Languages

We show the incompleteness of existing full-text languages, including TRAs.

4.1 Predicate-Based Languages

We first consider traditional full-text languages that have position-based predicates in
addition to Boolean operators [1, 5]. A typical syntax, which we call DIST, is:

Query := Token | Query AND Query | Query OR Query | Query AND NOT Query |
dist(Token,Token,Integer)

Token := StringLiteral | ANY

We can recursively define the semantics of DIST in terms of the FTC. If the query is a
StringLiteral ’token’, it is equivalent to the FTC query expression
∃p(hasPos(n, p) ∧ hasAsToken(p,′ token′)). If the query is ANY, it is equivalent
to the expression ∃p(hasPos(n, p)). If the query is of the form Query1 AND NOT
Query2, it is equivalent to Expr1 ∧ ¬Expr2, where Expr1 and Expr2 are the FTC
expressions for Query1 and Query2. If the query is of the form Query1 AND
Query2, it is equivalent to Expr1∧Expr2, where Expr1 and Expr2 are FTC expres-
sions for Query1 and Query2 respectively. OR is defined similarly. The
dist(Token,Token,Integer) construct is the equivalent of the distance predicate intro-
duced in the calculus (Section 3.2), and specifies that the number of intervening tokens
should be less than the specified integer. More formally, the semantics of
dist(token1,token2,d) for some tokens token1 and token2 and some integer d is given
by the calculus expression: ∃p1(hasPos(n, p1) ∧ hasAsToken(p1, token1)∧
∃p2(hasPos(n, p2)∧hasAsToken(p2, token2)∧ distance(p1, p2, d))). If token1 or
token2 is ANY instead of a string literal, then the corresponding hasAsToken predicate
is omitted in the semantics.

As an example, the query dist(’test’,’usability’,3) is equivalent to the FTC query
expression: ∃p1∃p2(hasPos(n, p1) ∧ hasAsToken(p1,

′ test′) ∧
hasPos(n, p2) ∧ hasAsToken(p2,

′ usability′) ∧ distance(p1, p2, 3)).
We now show that DIST is incomplete if T is not trivially small. We can also prove

similar incompleteness results for other position-based predicates.

Theorem 2. If | T |≥ 3, there exists a query that can be expressed in FTC with
Preds = {distance(p1, p2, d)} that cannot be expressed by DIST.
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Proof Sketch: We shall show that no query in DIST can express the following FTC
query: ∃p1, p2, p3(hasPos(n, p1) ∧ hasAsToken(p1, t1) ∧ hasPos(n, p2) ∧ hasAs-
Token(p2, t2)∧hasPos(n, p3)∧hasAsToken(p3, t3)∧distance(p1, p2, 0)∧distance
(p2, p3, 0)) (find context nodes that contains a token t1 that occurs right next to a token
t2 that in turn occurs right next to a token t3). For simplicity, we use distances with at
most 0 tokens but the example can be generalized to arbitrary distances. The proof is by
contradiction. Assume that there exists a query Q in DIST that can express the calculus
query. We now construct two context nodes CN1 and CN2 as follows. CN1 contains
the tokens t1 followed by t2 followed by t3 followed by t1. CN2 contains the tokens
t1 followed by t2 followed by t2 followed by t3 followed by t3 followed by t1. By the
construction, we can see that CN1 satisfies the calculus query, while CN2 does not. We
will now show that Q either returns both CN1 or CN2 or neither of them; since this
contradicts our assumption, this will prove the theorem.

Let CQ be the calculus expression equivalent to Q. We show that by induction on the
structure of CQ, every sub-expression of CQ (and hence CQ) returns the same Boolean
value for CN1 and CN2. If the sub-expression is of the form ∃p(hasPos(n, p) ∧
hasAsToken(p, token)), it returns the same Boolean value for both CN1 and CN2
since both documents have the same set of tokens. Similarly, if the sub-expression
is of the form ∃p(hasPos(n, p)), it returns true for both CN1 and CN2. If the sub-
expression is of the form ¬Expr, then it returns the same Boolean value for both CN1
and CN2 because Expr returns the same Boolean value (by induction). A similar ar-
gument can also be made for the ∧ and ∨ Boolean operators. If the sub-expression is
of the form ∃p1(hasPos(n, p1) ∧ hasAsToken(p1, token1) ∧ ∃p2(hasPos(n, p2) ∧
hasAsToken(p2, token2)∧distance(p1, p2, d))), there are two cases. In the first case,
token1 �∈ {t1, t2, t3} ∨ token2 �∈ {t1, t2, t3}, and it is easy to see that the sub-
expression returns false for both CN1 and CN2. In the second case, token1, token2 ∈
{t1, t2, t3}. Since distance(token1, token2, 0) is true for both CN1 and CN2, and
hence distance(token1, token2, d) is true for d ≥ 0, the sub-expression returns true
for both CN1 and CN2. Since we have considered all sub-expressions, this is a contra-
diction and proves the theorem. �

4.2 Text Region Algebras

We now show that TRAs are incomplete.

Theorem 3. There exists a query that can be expressed in FTC with Preds = {ordered
(p1, p2), samepara(p1, p2)} that cannot be expressed in TRA (as defined in [10]).

Proof Sketch: The following FTC query cannot be expressed using TRA:
∃pos1, pos2(hasPos(node, pos1)∧hasAsToken(pos1, t1)∧hasPos(node, pos2)∧
hasAsToken(pos2, t2)∧ordered(pos1, pos2)∧samepara(pos1, pos2)) (find context
nodes that contain the tokens t1 and t2 in that order within the same paragraph). The
proof is very similar to the proof by Consens and Milo [10], who have shown that TRAs
cannot represent simultaneously inclusion and ordering constraints. In particular, they
prove that the query: find documents with regions s ∈ S that contain two other regions
t ∈ T and u ∈ U such that t comes before u, cannot be represented using TRA. When
we consider S to be the regions with the same start and end positions which correspond
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to the occurrences of the keyword k1, and similarly for T for keyword k2, and set U to
be regions representing paragraphs, the theorem follows. �

5 PPRED: Language and Query Evaluation

The evaluation of FTC queries corresponds to the problem of evaluating Quantified
Boolean Formulas (QBF), which is LOGSPACE-complete for data complexity (com-
plexity in the size of the database) and PSPACE-complete for expression complexity
(complexity in the size of the query) [26]. Since whether LOGSPACE is a strict sub-
set of PTIME (polynomial time), and whether PSPACE is a strict subset of EXPTIME
(exponential time) are open questions, we can only devise a query evaluation algorithm
that is polynomial in the size of the data and exponential in the size of the query. This
evaluation complexity is clearly unacceptable for large data sets and hence motivates
the need to find efficient subsets of FTC.

In this section, we present PPRED (for Positive PREDicates), a subset of FTC which
includes most common full-text predicates, such as distance, ordered and samepara,
and is more powerful than existing languages such as DIST and TRAs. Further, PPRED
queries can be evaluated in a single pass over inverted lists.

The key observation behind PPRED is that many full-text predicates are true in a
contiguous region of the position space. For instance, distance applied to two position
variables is true in the region where the position values of those variables are within
the distance limit, and false outside this region. For ordered, a region specifies the part
of the position space where the positions are in the required order. Other common full-
text predicates such as samepara, and window also share this property. We call such
predicates positive predicates. These predicates can be efficiently evaluated by scanning
context nodes in increasing order of positions, which can be done in a single scan over
the inverted list entries because they are typically stored in increasing order of positions.

We now formally define the PPRED language, and describe efficient query evaluation
algorithms that also consider score-based pruning.

5.1 Positive Predicates

Definition (Positive Predicates). An n-ary position-based predicate pred is said to be
a positive predicate iff there exist n functions fi : Pn → P (1 ≤ i ≤ n) such that:

∀p1, ..., pn ∈ P (¬pred(p1, ..., pn) ⇒
∀i∀p′i ∈ P pi ≤ p′i < fi(p1, ..., pn) ⇒

∀p′1, ..., p
′
i−1, p

′
i+1, ..., p

′
n ∈ P

p1 ≤ p′1, ..., pi−1 ≤ p′i−1,
pi+1 ≤ p′i+1, ..., pn ≤ p′n ⇒ ¬pred(p′1, ..., p

′
n)

∧
∃j fj(p1, ..., pn) > pj)

Intuitively, the property states that for every combination of positions that do not
satisfy the predicate: (a) there exists a contiguous boundary in the position space such
that all combinations of positions in this boundary do not satisfy the predicate; this
contiguous area is specified in terms of the functions fi(p1, ..., pn), which specify the
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lower bound of the boundary for the dimension corresponding to position pi, and (b)
there is at least one dimension in the position space where the boundary can be advanced
beyond the current boundary, i.e., at least one fi(p1, ..., pn) has value greater than pi;
this ensures that the boundary can be pushed forward in search of a combination of
positions that do satisfy the predicate.

For example, for distance(p1, ..., pn, d), we can define the fi functions as
follows fi(p1, ..., pn) = max(max(p1, ..., pn) − d + 1, pi). Similarly, for ordered,
fi(p1, ..., pn) = max(p1, ..., pi). For samepara, fi(p1, ..., pn) = min{p ∈ P |
para(p) = max(para(p1), ...,max(para(pn))) where para is a function that returns
the paragraph containing a position.

Language Description. We now define the PPRED language, which is a strict superset
of DIST. Thus, simple queries retain the same conventional syntax, while new con-
structs are only required for more complex queries.

Query := Token | Query AND Query | Query OR Query | Query AND NOT Query* | SOME Var
Query | Preds

Token := StringLiteral | ANY | Var HAS StringLiteral | Var HAS ANY
Preds := distance(Var,Var,Integer) | ordered(Var,Var) | ...

The main additions to DIST are the HAS construct in Token and the SOME construct
in Query. The HAS construct allows us to explicitly bind position variables (Var) to
positions where tokens occur. The semantics for ’var1 HAS tok’ in terms of the FTC,
where tok is a StringLiteral is: hasAsToken(var1, tok). The semantics for ’var1 HAS
ANY’ is: hasPos(n, var1). While the HAS construct allows us to explicitly bind posi-
tion variables to token positions, the SOME construct allows us to quantify over these
positions. The semantics of ’SOME var1 Query’ is ∃var1(hasPos(n, var1) ∧ Expr),
where Expr is the FTC expression semantics for Query. Query* refers to a Query with
no free variables.

For example, the following PPRED query expresses the second sample query from
Section 3.2 SOME p1 HAS ’assignment’ SOME p2 HAS ’district’
SOME p3 HAS ’judge’ ordered(p1,p2) AND ordered(pos2,pos3)
AND distance(p2,p3) AND distance(p1,p3,5).

Although PPRED is not complete (e.g., it does not support universal quantification
and arbitrary negation), it is still quite powerful. For instance, it can specify all of the
queries used in the incompleteness proofs in Section 4 (since ordered, distance and
samepara are all positive predicates). In fact, PPRED is a strict superset of DIST (since
it contains all of the constructs of DIST) and of TRAs (see [3] for the proof).

5.2 Query Evaluation

We describe the PPRED query evaluation model and algorithm.

Query Evaluation Model. Each Rtoken relation is represented as an inverted list asso-
ciated to token. Each inverted list contains one or more entries. Each entry in Rtoken

is of the form: (node, PosList, score), where node is the identifier of a node that con-
tains token, PosList is the list of positions of token in node, and score is the score
of node. We assume that the inverted lists are sorted on node identifiers. Note that
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they could be sorted on scores. Figure 2(a) shows example inverted lists for the words
“district”, “judge”, and “assignment”. Inverted lists are typically accessed sequentially
using a cursor. Advancing the cursor can be done in constant time.

Query Evaluation Overview. We now illustrate how positive predicates enable effi-
cient query evaluation. Consider the simple query πnode(σdistance(att1,att2,1)
(Rdistrict � Rjudge)) (return nodes that contain the words ”district” and ”judge” within
at most 1 word of each other). The naı̈ve evaluation approach over the inverted lists
shown in Figure 2(a) would compute the Cartesian product of the positions for each
node and then apply the distance predicate. For the node 1, this corresponds to com-
puting 9 pairs of positions (3 in each inverted list), and then only selecting the final
pair (139,140) that satisfies the distance predicate. However, using the property that
distance is a positive predicate, we can determine the answer by only scanning 6 pairs
of positions (3 + 3 instead of 3 * 3), as described below.

The query evaluation starts with the smallest pair of positions (80, 90) for node 1 and
check whether it satisfies the distance predicate. Since it does not, we move the smallest
position to get the pair (99, 90). Since this pair still does not satisfy the predicate, we
again move the smallest position until we find a solution: (99, 105), (139, 105), (139,
140). Note that each position is scanned exactly once, so the complexity is linear in the
size of the inverted lists. The reason the smallest position could be moved is because
the distance predicate is true in a contiguous region, and if the predicate is false for
the smallest position in the region, one can infer that it is also false for other positions
without having to explicitly enumerate them.

Let us now consider a slightly more complex example using the ordered predicate:
πnode(σordered(att1,att2,att3)(Rdistrict � Rjudge � Rassignment)) (return nodes that con-
tain the words “district”, “judge” and “assignment” in that order). For node 1, the first
combination of positions (80, 90, 85) does not satisfy ordered. However, unlike the win-
dow predicate, we cannot move the cursor corresponding to the smallest position to get
the combination (99, 90, 85); doing so will cause the solution (80, 90, 97) to be missed!
(note that we cannot move a cursor back if we want a single scan over the positions).
Rather, for ordered, we need to move the smallest position that violates the order. In
our example, we should move the third cursor to get the combination (80, 90, 97).

In the above examples depending on the full-text predicate, different strategies may
have to be employed to produce the correct results efficiently. This becomes harder with
complex full-text queries (i.e., where different predicates are combined). Furthermore,
the problem becomes even more complex when the query contains multiple predicates
over possibly overlapping sets of positions. Which cursors should be moved in this
case? Does the order in which cursors used by different predicates are moved matter?
Is there a general strategy for evaluating arbitrary combinations of FTA queries with
positive predicates? We answer these questions in the next section.

One aspect to note is that our query evaluation algorithms efficiently evaluate full-
text predicates a node at a time before moving on to the next node. An important conse-
quence of this is that our algorithms can be combined with any existing top-k evaluation
technique (e.g. [11]), which prunes nodes from consideration based on their score (our
algorithms will just not evaluate queries over the pruned nodes).
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"judge"   inverted list

n         PosList

75      81    
1        90  105 140

n         PosList

"assignment"   inv. list

1         85    97  
75       83   210    

51       56   59
89       96  102  108

"district"   inverted list

n         PosList

1         80   99  139

(a) Inverted Lists
Examples

scan ("district") scan ("judge")

R1

join (R1, R2)

R2

R

R1

join (R1, R2)

R2

R

scan ("assignment")

ordered (p1, p2)

distance(p1, p2, 0)

R

project (R, node)
R

distance (p2, p3,5)
R

ordered (p2, p3)

(b) Example Query Plan

Fig. 2. Sample Inverted Lists and Query Plan

Query Evaluation Algorithms. A query is first converted to FTA operators and is
rewritten to push down projections wherever possible so that spurious positions are not
propagated. Figure 2(b) shows a sample FTA operator plan for the query in Section 1.
Since we do not want to materialize the entire output full-text relation corresponding to
an operator, each operator exposes a new API for traversing its output. This API ensures
that successive calls can be evaluated in a single scan over the inverted list positions. We
denote the output full-text relation for an operator o, R which has n position columns.
The API, defined below, maintains the following state: node, which tracks the current
node, and p1, ..., pn, which track the current positions in node.

– advanceNode(): On the first call, it sets node to be the smallest value in πnode(R)
(if one exists; else node is set to NULL). It also sets position values, p1, ..., pn

such that: (node, p1, ..., pn) ∈ R ∧ ∀p′1, ..., p
′
n(node, p′1, ..., p

′
n) ∈ R ⇒ p′1 ≥

p1 ∧ ... ∧ p′n ≥ pn (i.e., it sets positions p1, ...pn to be the smallest positions that
appear in R for that node; we will always be able to find such positions due to the
property of positive predicates). On subsequent calls, node is updated to the next
smallest value in πnode(R) (if one exists), and p1, ..., pn are updated as before.

– getNode(): Returns the current value of node.
– advancePosition(i,pos): It sets the values of p1, ..., pn such that they satisfy:

(node, p1, ..., pn) ∈ R ∧ pi > pos ∧ ∀p′1, ..., p
′
n(node, p′1, ..., p

′
n) ∈ R ∧ p′i ≥

pos ⇒ (p′1 ≥ p1 ∧ ... ∧ p′n ≥ pn) (i.e., the smallest values of positions that appear
in R and that satisfy the condition pi > pos), and returns true. If no such positions
exist, then it sets pis to be NULL and returns false.

– getPosition(i): Returns the current value of pi.

Given the operator evaluation tree in Figure 2(b), the general evaluation scheme
proceeds as follows. To find a solution advanceNode is called on the top project
operator which simply forward this call to the distance selection operator below it. The
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Algorithm 1. Join Evaluation Algorithm
Require: inp1, inp2 are the two API inputs to the join, and have c1 and c2 position columns,

respectively
1: Node advanceNode() {
2: node1 = inp1.advanceNode(); node2 = inp2.advanceNode();
3: while node1 != NULL && node2 != NULL && node1 != node2 do
4: if node1 < node2 then node1 = inp1.advanceNode();
5: else node2 = inp2.advanceNode(); endif
6: end while
7: if node1 == NULL ‖ node2 == NULL then return NULL;
8: else [node1 == node2]
9: set pi (i < c1) to inp1.getPosition(i);

10: set pi (i ≥ c1) to inp2.getPosition(i − c1);
11: node = node1;
12: return node1; endif }
13:
14: boolean advancePosition(i,pos) {
15: if (i < c1)then
16: result = inp1.advancePosition(i,pos);
17: if (result)then pi = inp1.getPostion(i);endif
18: return result;
19: else //Similary for inp2 end if }

latter tries to find a solution by continuously calling advancePosition on the ordered
predicate below it until it finds a satisfying tuple of positions. The ordered predicates
behaves in a similar manner: it advances through the result of the underlying operator
until it finds a tuple that satisfies it. The evaluation proceeds down the tree until the
leaves (the scan operators) are reached. The latter simply advances through the entries
in the inverted lists. The entire evaluation is pipelined and no intermediate relation needs
to be materialized.

We now show how different PPRED operators can implement the above API. The
API implementation for the inverted list scan and project operators are straightforward
since they directly operate on the inverted list and input operator API, respectively.
Thus, we focus on joins and selections. The implementation for set difference and union
is similar to join, and is not discussed here.

Algorithm 1 shows how the API is implemented for the join operator. We only show
the implementation of the advanceNode and advancePos methods since the other
methods are trivial. Intuitively, advanceNode performs an equi-join on the node. It
then sets the positions pi to the corresponding positions in the input.
advancePosition(i,pos) moves the position cursor on the corresponding input.

Algorithm 2 shows how the API is implemented for selections implementing pred-
icate pred with functions fi defined in Section 5.1. Each call of advanceNode, ad-
vances node until one that satisfies the predicate is found, or there are no cnodes left.
The satisfying node is found using the helper method advancePosUntilSat, which
returns true iff it is able to advance the positions of the current node so that they satisfy
the predicate pred. advancePosition first advances the position on its input, and then
invokes advancePosUntilSat until a set of positions that satisfy pred are found.
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Algorithm 2. Predicate Evaluation Algorithm
Require: inp is API inputs to the predicate with c position columns
1: Cnode advanceCnode() {
2: cnode = inp.advanceCnode();
3: while cnode != NULL && !advancePosUntilSat() do
4: cnode = inp.advanceCnode();
5: end while
6: return cnode; }
7:
8: boolean advancePosition(i,pos) {
9: success = inp.advancePosition(i,pos);

10: if !success then return false; endif
11: pi = inp.getPos(i); return advancePosUntilSat(); }
12:
13: boolean advancePosUntilSat () {
14: while !pred(p1, ..., pc) do
15: find some i such that fi(p1, ..., pc) > pi

16: success = inp.advancePos(i, fi(p1, ..., pc);
17: if success then return false; end if
18: pi = inp.getPosition(i);
19: end while
20: return true; }

advancePosUntilSat first checks whether the current positions satisfy pred. If
not, it uses the fi functions to determine a position i to advance, and loops back until a
set of positions satisfying pred are found, or until no more positions are available. This
is the core operation in selections: scanning the input positions until a match is found.
Positive predicates enable us to do this in a single pass over the input.

Correctness and Complexity. We now present a sketch of the proof of correctness of
the above algorithm (see [3] for the full proof). First, it is not hard to see that every
answer returned by the algorithm results from evaluating the corresponding PPRED
query. The advancePosUntilSat function of the predicate operator does not return
until satisfying positions are found or the end of an inverted list is reached. The join
operator only returns a tuple if both input tuples correspond to the same node. The
union operator only returns a tuple if at least one of its inputs produces that tuple. The
set-difference operator only returns tuples that are produced by the first input only.

We prove that the algorithm does not miss any query results inductively on each
operator. The scan always moves the cursor to the first position of the node for
advanceNode or to the first position that is after pos for advancePosition(i,pos).
Therefore, it is trivially correct. Selection only moves the cursor pi for which pi <
fi(p1, ..., pn), and the definition of positive predicates guarantees that we do not miss
results. Similarly, the join operator moves the cursors only while one of the predicates is
violated by a higher-level operator. The correctness of project, union, and set-difference
can be proved similarly.

To calculate the query evaluation complexity, we define the following parameters:
entries per token is the maximum number of scanned entries in a token inverted
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list (this is either the entire inverted list in the case of regular query processing, or some
subset in the case of top-k processing); pos per entry is the maximum number of
positions in an entry in a token inverted list; toks Q is the number of search keywords
in a query Q; preds Q is the number of predicates in a query Q; ops Q is the number
of operations in a query Q. The complexity of a PPRED query is:
O(entries per token × pos per entry × toksQ × (predsQ + opsQ + 1)) In-
tuitively, every node and every position within a node is processed at most once. For
every combination of positions, we process each operator at most once.

6 Experiments

The main goal of our experiments is to study the performance of the PPRED query
evaluation algorithm. We also compare its performance with two other techniques:

1. BOOL, which is a restriction of DIST with an empty set of position-based predi-
cates; i.e. it only contains the Boolean operators and keyword matching. Such eval-
uation has been studied and optimized extensively in the IR community [27], and
serves as a baseline because it does not incur the cost of predicate evaluation.

2. REL, which is a direct implementation of FTA using regular relational operators,
such as proposed in [6, 12, 16, 18, 21, 29]. This helps illustrate the performance ben-
efits of the PPRED query evaluation algorithm.

6.1 Experimental Setup

We used the 500MB INEX 2003 dataset,5 which contains over 12000 IEEE papers
represented as XML documents. Since we are interested in full-text search, we ignored
the XML structure and indexed the collection as flat documents, i.e., each document
corresponds to a context node. We also ran experiments using synthetic data; since the
results were similar, we only report the results for the INEX collection.

We varied the data and query parameters described in Section 5.2 by appropriately
varying the number of documents and the query keywords. To study the effect of each
parameter on query performance, we varied only one parameter and fixed others at their
default values. The range of values for each parameter are: entries per token took
on the values 1000, 10000, 100000 (default 10000), pos per entry took on the val-
ues 25, 75, 125, 200 (default 125), toks Q took on the values 1, 2, 3, 4, 5 (default 3)
and preds Q took on the values 0, 1, 2, 3, 4 (default 2). We used distance as the repre-
sentative positive predicate. We only show the results for varying entries per token,
pos per entry, toks Q, and preds Q since the other results are similar.

All the algorithms were implemented in C++ and used TF-IDF scoring. We ran our
experiments on an AMD64 3000+ computer with 1GB RAM and one 200GB SATA
drive, running under Linux 2.6.9.

6.2 Experimental Results

Figures 3(a) and 3(b) show the performance of the algorithms when varying toks Q
and preds Q, respectively. The performance of BOOL and PPRED scales linearly,

5 http://www.is.informatik.uni-duisburg.de/projects/inex03/
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(a) Varying Number of Query Tokens (b) Varying Number of Query Predicates

(c) Varying Number Context Nodes (d) Varying Number of Positions Per Inverted
List Entry

Fig. 3. Experiments on the INEX collection

while the performance of REL degrades exponentially. This is explained by the fact that
REL uses traditional relational joins, which compute the entire Cartesian product of po-
sitions within a node, while PPRED and BOOL use single-pass evaluation algorithms.
Interestingly, the performance of PPRED is only slightly worse than BOOL, which sug-
gests that PPRED only introduces a slight additional overhead over the baseline.

Figures 3(c) and 3(d) show the performance of the algorithms when varying
entries per token and pos per entry, respectively. PPRED and BOOL scale
gracefully, while REL does not scale well. Again, PPRED performs only slightly worse
than BOOL, suggesting that there is little overhead to evaluating positive predicates.

7 Conclusion

We introduced the FTC and FTA as a new formalism for modeling structured full-text
search and showed that existing languages are incomplete in this formalism. We also
identified a powerful subset of the FTC and FTA that can be evaluated efficiently in a
single pass over inverted lists. As part of future work, we plan to capture more aspects
such as stemming and thesauri; we believe that these can be modeled as additional
predicates in the FTC. Since the FTA is based on the relational algebra, we also plan to
explore the joint optimization of full-text and relational queries.
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