
Index Structures for Querying the Deep Web

Jian Qiu Feng Shao Misha Zatsman1 Jayavel Shanmugasundaram

Department of Computer Science
Cornell University

{jianq,fshao,jai}@cs.cornell.edu mz36@cornell.edu

 1Currently at Google

1. INTRODUCTION
Most current web search engines can only crawl, index, and
query over static web pages, also referred to as the “surface
web”. A large fraction of the Internet data, however, is
stored in Internet-attached databases or the “deep web”.
For example, the data about auctions in ebay.com is stored
in an Internet-attached database, but is not visible to
current web search engines. Some studies estimate that the
size of the deep web is 400-500 times the size of the
surface web [1]. Consequently, current web search engine
technology can be used to query only a small fraction of all
the data available off the Internet.

As part of the Deep Glue project at Cornell University, we
are building a query engine for deep web data sources. A
key component of the Deep Glue system, and the focus of
this paper, is the indexer module. Given a user query, the
indexer module uses index structures to identify a superset
of the deep web data sources that are relevant to the user
query. The query module (not described here) then
evaluates the user query by contacting the potentially
relevant data sources identified by the indexer module.

Index structures for the deep web differ in two fundamental
respects from traditional inverted list index structures used
by current web search engines. First, index structures for
the deep web have to deal with structured data because the
underlying database is typically richly structured and typed;
this is in contrast to the mostly unstructured HTML data
available off the surface web. Second, index structures for
the deep web must deal with data volumes that are orders
of magnitude larger than that for the surface web [1]. To
address the above issues, we devise new index structures
for the deep web. The index structures understand the
structure/typing of the underlying data, and can thus be
used to support both equality and range queries. The index
structures can also be heavily compressed so that their
space requirements are far less (up to an order of magnitude
less) than the size of the original index.

Aggressive compression of our index structures is possible
because we allow the indexing module to return a superset
of the data sources that are relevant to a user query. By

returning a superset of the relevant data sources, no
relevant data sources are missed. However, the query
module has the extra overhead of contacting some data
sources that are not relevant to the query. To evaluate this
tradeoff, we present preliminary experimental results over
1000 synthetically generated deep web data sources. Our
results are promising and indicate that if we compress the
index size by a factor of 10, the number of extra data
sources contacted is less than 10 (more details are
presented in Section 4). Further, the compression factors in
our index structures are tunable, and can be used to tradeoff
index size for precision.

The rest of this paper is organized as follows. In Section 2,
we describe our system and query model, and in Section 3,
we describe various deep web index structures. In Section
4, we experimentally evaluate the performance of the index
structures. In Section 5 we discuss related work, and in
Section 6, we present our conclusions and outline
directions for future research.

2. SYSTEM AND QUERY MODEL
Figure 1 shows the architecture of the Deep Glue system.
Given a user query, the query engine contacts the indexer
to determine a superset of the data sources that are relevant
to the user query. The query engine then evaluates the user
query by contacting the relevant data sources. The indexer
constructs the deep web index structures offline; this can be
done either by crawling deep web data sources [13] or by
using some previously agreed upon protocol for
transferring index data [4]. This paper focuses on the
organization of the deep web index structures once all the
indexing data is obtained from the deep web data sources.

For the purposes of this paper, we make the following
assumptions. We assume that the deep web data sources are
pre-classified into a set of domains such as online car
dealers, online auctions, and online travel agents. We
further assume that all the deep web data sources within the
same domain export their data using the same logical
database schema (the mapping from different physical
database schemas to the same logical database schema
could be done using mediators [16]). For simplicity, we
also assume that the database schema conforms to the
relational data model. In the relational schema, a subset of
the attributes are referred to as the indexing attributes;

Copyright is held by the author/owner.
International Workshop on the Web and Databases (WebDB).
June 12-13, 2003, San Diego, California.

these could be attributes such as price, date, make, model,
isbn number, etc. The values of the indexing attributes are
indexed by the Deep Glue system, and are used to direct
queries to the relevant data sources.

In this paper, we focus on equality and range selection
queries on a single indexing attribute. For example, in the
domain of online car dealers with relational schema Car(Id,
Make, Model, Year, Price), we can answer queries such as
“find all year 2003 cars (Year = 2003)” or “find all cars
that cost less than $1000 (Price < 1000)”, where date and
price are each indexing attributes. We do not consider
multiple attribute selection queries or join queries in this
paper, and this is a subject for future research.

3. INDEX STRUCTURES
We now turn to the main focus of this paper, which is
devising space-efficient index structures for evaluating
equality and range queries over deep web data sources. We
first present a simple uncompressed index structure, and
then present various techniques for compressing this index
structure. Please note that all the compression techniques
explored in this paper are complementary to existing
database and inverted list compression techniques such as
[2][5][10][11][14][15]. Such compression techniques can
be applied on top of our indices to achieve further
compression.

3.1 Uncompressed Index (UI)
An Uncompressed Index (UI) can be created as follows.
For each distinct value v of the indexing attribute, we can
store the list of data sources that contain at least one tuple
that has the value v for the indexing attribute. A small
example of such an index is shown in Figure 2. Data
sources d6, d7, and d8 have at least one tuple that has value
1 for the indexing attribute, data sources d2, d3, d4, and d6
have at least one tuple that has value 2 for the indexing
attribute, and so on. Building a B+-tree index on the value
column will enable equality and range queries to be
efficiently handled. For handling equality queries, we can
simply lookup the list of databases that contain the desired
value. For handling range queries, we can union the set of
data sources for all the values in the desired range.

In realistic deep web scenarios, the number of distinct
values of the indexing attribute and the number of data
sources are both likely to be large. Since the index structure

has to be built for each indexing attribute, the overall size
of the index is also likely to be very large, and in the worst
case, could approach the entire size of the indexed deep
web. Consequently, we need to explore techniques for
effectively compressing the index structure.

Note that we cannot simply use a compression utility such
as gzip to compress each index structure. If we used gzip to
compress the index, then the entire index would have to be
uncompressed for every query over the indexing attribute,
which would make the index lookup time very expensive.

We can, however, use database compression techniques
that compress individual fields of data [2][5][11][15]. We
use such techniques, specifically [11], for compressing the
lists of data sources. We could also use inverted list
compression techniques such as [10][14]. However, we go
significantly beyond this and provide an additional
compression factor of 10 in space while still efficiently
supporting equality and range queries.

3.2 Value Clustered Index (VCI)
The key idea behind the Value Clustered Index (VCI) is the
following. In UI, the lists of data sources associated with
different values are often similar (although not necessarily
the same). This captures the intuition that “closely related”
values are often stored in “closely related” data sources.
For example, if the indexing attribute is the ISBN number
of a book, then the ISBN numbers of out-of-print books are
likely to have a very similar list of data sources, consisting
mostly of online retailers specializing in out-of-print books.
In the small example in Figure 2, values 1 and 6 have a
similar list of data sources, as do values 2 and 5, and values
3 and 4.

Given that different values can have a similar list of data
sources, we can save space by “grouping” or “clustering”
such values together, and storing the associated list of data
sources just once for each cluster (instead of repeating the
list for each value in the cluster as in UI). As an illustration,
consider the UI in Figure 2. Assume that the values are
divided into three clusters, with cluster c1 containing
values 1 and 6, cluster c2 containing values 2 and 5, and
cluster c3 containing values 3 and 4. The resulting VCI is
shown in Figure 3. Note that each value has a cluster id
associated with it. Each cluster id in turn is associated with

Figure 1: System Architecture Figure 2: Uncompressed Index Figure 3: Value Clustered Index

DataSource 1

Indexer Query Engine

Queries Results

DataSource 2 DataSource 3
DataSource N

. . .

Query Partial Results
summary
information

Query

Candidate
DataSources

d1,d7,d86
d2,d3,d65
d1,d4,d54

d43
d2,d3,d4,d62

d6,d7,d81
data sourcesvalue

c16
c25
c34
c33
c22
c11

Cluster
id

value

d1,d4,d5c3

d2,d3,d4,d6c2

d1,d6,d7,d8c1

data sourcesCluster
id

a list of data sources. Thus, the list of data sources
associated with a value can be determined by first looking
up the cluster id for the value, and then looking up the list
of databases associated with the cluster id (in reality,
cluster id can be a physical disk pointer making the look up
for the list of databases very efficient). A B+-tree index on
the value will again enable equality and range queries.

It is important to note that in VCI, the list of data sources
associated with each cluster is the union of the list of data
sources associated with each value in the cluster. For
example, for cluster c1, the list of data sources
(d1,d6,d7,d8) is the union of the list of data sources
associated with value 1 (d6,d7,d8) and value 6 (d1,d7,d8).
By using the union, we ensure that no relevant data sources
are missed for a query over a given value. However, some
data sources that are not relevant to a query can also be
returned. For example, a query for value 1 will have to
contact d1 even though d1 does not contain that index
attribute value. VCI attempts to minimize such “false
positives” by clustering together only values that have a
similar list of data sources.

Another interesting feature to note about VCI is that it
allows space to be traded off for precision. At one extreme,
if each distinct value is mapped to a separate cluster, VCI is
the same as UI, and there are no false positives. At the
other extreme, all values are mapped to the same cluster
resulting in a very small index, but every data source will
have to be contacted for every query resulting in a large
number of false positives. In practice, a space-precision
tradeoff between the two extremes will likely be most
desirable, and this can be tuned to the needs of the
application.

Thus far, we have described VCI assuming that we have
some way of clustering values with similar lists of data
sources. Thus, a practical issue is determining an efficient
way to do this clustering that (a) scales to large data sets,
and (b) attempts to minimize the number of false positives
in each cluster. To handle the scalability issue, we rely on
existing scalable clustering techniques such as Birch [17].
Birch is a general algorithm for clustering that can handle
any clustering domain, as long as the notions of a centroid
(the “mid-point” of a cluster), radius (a measure of the
quality of a cluster) and cluster distance are defined for that
domain. We now define centroid, radius and distance for
VCI so that it attempts to minimize the number of false

positives for queries. We use ds(v) to denote the set of data
sources associated with value v. For a cluster having the set
of values V:

centroid(V) = �
Vv

vds
∈

)(

radius(V) =
V

vdsVcentroid
Vv
�
∈

−)()(

The centroid of a cluster is the union of the data sources
associated with the values in the cluster, or simply the data
source list associated with a cluster. The radius of a cluster
is the sum of the number of false positives for each value in
the cluster, normalized by the number of values in the
cluster. Thus, as desired, a cluster with small radius is of
high quality, while a cluster with large radius is of low
quality. The distance between two clusters V1 and V2 is:

distance(V1, V2) =

The distance between two clusters is the additional number
of false positives that would occur if the two clusters were
merged together. This is computed as the sum of the
following two quantities (a) the number of values in the
first cluster multiplied by the number of data sources that
only occur in the second cluster, and (b) the number of
values in the second cluster multiplied by the number of
data sources that only occur in the first cluster.

Using the above definitions of centroid, radius, and
distance, we used Birch to generate VCI clusters that
attempt to minimize the number of false positives. Further,
by setting a threshold on the maximum allowable radius,
we can control the space-precision tradeoff by choosing
high quality clusters with the associated space overhead, or
choosing lower quality clusters and getting more space
compression.

3.3 DataSource Clustered Index (DCI)
VCI achieves space compression by clustering values that
have similar data source lists. An alternative means of
compression is possible by clustering data sources that
have similar values. The intuition here is that closely
related data sources (such as amazon.com and
barnesandnoble.com) often have closely related sets of
values (such as book ISBN numbers). Thus, instead of
storing these data sources separately in the data source list,

Figure 5: Value-DataSource Clustered Figure 4: DataSource Clustered Figure 6: Histogram Based

c36
c15

c2,c34
c23

c1,c22
c1,c31

Cluster
id

value

d1,d7,d8c3

d4,d5c2

d2,d3,d6c1

data sourcesCluster
id

c36
c35
c24
c23
c22

c11

Cluster
id

value

d6, d7,d8c1
d1,d2,d3,d4,

d5,d6
c2

d1,d2,d3,d6,
d7,d8

c3

data sourcesCluster
id

c36
c15
c24
c23

c1,c22
c31

Cluster
id

value

d1,d6,d7,d8c3

d1,d4,d5c2

d2,d3,d6c1

data sourcesCluster
id

)2()1(2

)1()2(1

VcentroidVcentroidV

VcentroidVcentroidV

−×

+−×

they can be clustered and a single cluster id can be stored in
the data source list.

In our example in Figure 2, data sources 1, 7, and 8, have a
similar (though not identical) set of values and can be
clustered together. Similarly, data sources 2, 3 and 6 have a
similar set of values, and so do data sources 4 and 5. The
DCI index structure resulting from clustering these related
data sources together is shown in Figure 4. Note that a
value is associated with a cluster id if at least one data
source in the cluster contains the value – this is to ensure
that no relevant data sources are missed during querying.
This also means that DCI could have false positives
because if a value is associated with a cluster id, then not
every data source in that cluster necessarily contains that
value. For example, in Figure 4, the value 3 is associated
with cluster c2, and cluster c2 contains data source d5 even
though d5 does not contain the value 3.

DCI offers a space-precision tradeoff similar to VCI. If the
number of clusters equals the number of data sources, the
index structure is identical to UI (with no false positives
and associated space overhead); if the number of clusters is
1, then there are many false positives but little space
overhead; intermediate tradeoff points can be got by
adjusting the number of clusters. Like in VCI, the Birch
algorithm is used for clustering databases. The formulae for
centroid, radius, and distance are symmetric to VCI (using
values in place of data sources and vice versa), and are
presented in the Appendix.

3.4 Value-DataSource Clustered Index
(VDCI)
Consider a scenario of online book data sources, where
there is a natural clustering of data sources based on the
ISBN numbers of the books the data sources carry (the
ISBN numbers are in the categories popular books, out of
print books, collector’s books, etc.). Now consider a data
source that carries both popular books and out of print
books. Under both VCI and DCI, the data source will have
to be clustered along with either the popular books cluster,
or the out of print books cluster. There is no way to specify
that the data source is part of one cluster for popular books,
and another cluster for out of print books. VDCI attempts
to address this limitation of VCI and DCI. In VDCI, a
cluster is a set of values V and a set of data sources D, and
implies that the data sources D are related with respect to
the values V (or equivalently, the values V are related with
respect to the data sources D). Thus, VDCI generalizes
both VCI and DCI.

As an illustration of VDCI, consider again the example in
Figure 2. Consider the data sources d2, d3, and d6. These
data sources are similar in that they all contain values 2 and
5. Thus, VDCI allows the cluster ({2,5},{d2,d3,d6}) to be
formed. In addition, d6 can also be part of the cluster with
d1, d7 and d8 with respect to the values 1, resulting in the
cluster ({1,6},{d1,d6,d7,d8}). Let us also assume that the
cluster ({2,3,4},{d1,d4,d5}) is created. Then the resulting
VDCI index structure is shown in Figure 5.

Since VDCI clusters with respect to each value-data source
combination, a cluster is defined as a set of (value, data
source) pairs. The definition of the centroid, radius and
distance is a combination of the formulae for VCI and DCI
and is presented in the Appendix.

Although VDCI generalizes both VCI and DCI, it suffers
from the drawback that it needs to cluster each (value, data
source) pair separately in order to find the right clusters.
This is in contrast to VCI/DCI, which only need to cluster
each value/data source separately.

3.5 Histogram Based Index (HBI)
VCI and VDCI do not consider the ordering among values
when constructing clusters. Consequently, two adjacent
values in the value space are no more likely to be clustered
together (based on the data source list) than distant values
in the value space. However, since range queries select
adjacent values, it may be beneficial to cluster adjacent
values together. HBI is based on this intuition, and clusters
adjacent values into the same cluster. This is similar to
grouping attribute values into “buckets” in histograms in
relational systems [12]. Figure 6 shows the HBI structure
for the UI in Figure 2 where value 1 is in one cluster,
values 2, 3 and 4 are in a second cluster, and values 5 and 6
are in a third cluster.

Since HBI is limited to clustering only adjacent values in
the same cluster, it loses some of the flexibility of VCI and
VDCI. To minimize the effects of this loss of flexibility, it
is important to determine the cluster boundaries effectively.
For this, we introduce a threshold parameter for
constructing histograms. All the values for the indexing
attribute are sorted first and inserted into the clusters
(histogram buckets) in ascending order. Whenever the
inclusion of a new value causes average number of false
positives of the current cluster to exceed the threshold, we
create a new cluster for the new value. Thus we can control
the index size by specifying the proper threshold for
clusters.

4. EXPERIMENTAL EVALUATION
We now experimentally evaluate our index structures.
There are three metrics that we use in our evaluation. The
first is index creation time. The second is compression
factor, which is the ratio of the size of the uncompressed
index (UI) to the size of the compressed index. The third is
false positives, which is the average number of false
positives for equality/range queries.

4.1 Experimental Setup
We use synthetic data for our evaluation. We chose to use
synthetic data for the following reasons. First, we can vary
parameters to illustrate the tradeoffs between the different
approaches. Second, we were not able to easily obtain real
data from hundreds/thousands of deep web data sources,
although this is something we are currently pursuing.

The synthetic data set was generated using the following
parameters. The number of values is the number of distinct
values for the indexing attributes (default value is
100,000). The number of data sources is the number of
deep web data sources (default is 1000). The number of
pairs is the number of unique (value, data source) pairs
(default is 4,000,000). This is a measure of the data size,
but is usually smaller than the number of tuples because
duplicate values in the same data source are only counted
once.

The number of groups is the number of logical groups
among the data sources (default is 20). A logical group
captures the notion that a set of data sources can have a
similar distribution of values for the indexing attribute.
Thus, the data values for each data source in a group are
picked from the same Gaussian distribution characteristic
of that group. The mean and standard deviation of the
Gaussian distribution for a group is chosen so that there is
at most a 5% overlap between the distributions of any two
distinct groups. The group mode is the number of logical
groups that each data source belongs to (default is 1). The
group mode captures the intuition that a given data source
can be similar to one set of data sources with respect to one
set of values (such as popular books), and similar to
another set of data sources with respect to another set of
values (such as out-of-print books).

Finally, the value correlation is a measure of how the
ordering in the value space maps to the ordering of values
over which Gaussians are defined – this is especially
important for range queries. The value correlation is
defined in terms of the normalized number of permutations
to go from the value space ordering to the Gaussian
ordering. A value correlation of 1 implies full correlation,
while a value correlation of 0 implies no correlation
(default is 0.2). Using the default settings, the size of the
uncompressed index (UI) is 8MB.

False positives for equality queries are measured by
averaging the false positives for all distinct values. False
positives for range queries are measured by averaging the
false positives for all possible range queries of a given size.
The size of range specifies the number of distinct values
selected by the range query (default is 500).

We implemented all the index structures using C++, and
our experiments were performed using a 2.8 GHz Pentium

IV processor running Windows XP, with 1GB of main
memory and 80GB of disk space.

4.2 Experimental Results
We now present some of our experimental results (more
results are presented in the Appendix).

4.2.1 Index creation time
The index creation time for UI using default parameter
values was 15 seconds. The index creation time for
compressed index structures using the default parameter
values and a compression factor of 10 was: VCI – 15
minutes, DCI – 3 minutes, VCDI – 3 hours, HBI – 2.5
minutes. VCDI has a much larger index creation time
because it clusters (value, data source) pairs, as opposed to
just the values (VCDI and HBI) or just the data sources
(DCI). Since the number of (value, data source) pairs is
much larger than the number of values or data sources, the
clustering time for VCDI increases correspondingly.
Although clustering is done offline, this overhead for
VCDI could potentially become a bottleneck.

4.2.2 Compression factor and false positives
Figure 7 shows how the number of false positives varies
with the compression factor for equality queries, assuming
default parameter values. The standard deviation is less
than 10, and is not shown. VCI performs the best, with
only 10 false positives for a compression factor of 10. DCI
performs slightly worse than VCI – this is because there are
fewer data sources than there are values, and thus there is
less flexibility in forming clusters in DCI. The false
positives for HBI increase rapidly with compression
because HBI only clusters adjacent values, even if they
have very different data source lists.

The most surprising result is the bad performance of VDCI,
even though it theoretically generalizes both VCI and DCI.
VDCI performs badly for the following reasons. First,
VDCI has to deal with a much larger number of data
points, which increases the chance of creating bad clusters
using scalable one or two pass clustering algorithms.
Second, VDCI appears to have too many degrees of
freedom with respect to choosing sets of values and data
sources. We experimented with different distance functions
for VDCI clustering, but could not overcome this
fundamental problem. Although we are still exploring other
ways to solve this issue, this coupled with the clustering
time argues against using VDCI.

Figure 7 Equality Queries Figure 8 Range Queries

0

10

20

30

40

50

0 5 10 15 20
compression factor

fa
ls

e
po

si
tiv

es

VCI DCI VDCI HBI

upper
bound

0

10

20

30

40

50

0 5 10 15 20
compression factor

fa
ls

e
po

si
tiv

es

VCI DCI VDCI HBI

upper
bound

Note that false positives increase rapidly for all indices
beyond a compression factor of 10. This increase is because
the indices are approaching their theoretical upper bound
for compression. This upper bound comes about because
each index has to store the mapping from the value to the
cluster id, for each value. The size of this mapping is thus
the upper bound for compression, which is 480KB for the
default settings.

Figure 8 shows the space-precision tradeoff for range
queries. The results are similar to equality queries, except
that HBI now outperforms even VCI. The good
performance of HBI is attributable to the fact that it
chooses clusters based on the value ordering. Since range
queries go over the same value ordering, this reduces the
number of false positives.

5. RELATED WORK
 This work is related to the body of work on distributed
databases [8] and information integration [3][7]. However,
our focus is on identifying relevant data sources efficiently,
while prior work has mostly focused on query processing
once the relevant data sources are identified.

The GlOSS system [6] supports data source discovery for
text documents. The Niagara system [9] uses an index
structure that identifies a superset of data sources relevant
to a user query. However, these systems do not address the
issue of compression, and do not support structured queries
such as range queries.

There has been work on field-level lossless compression in
databases/indices [2][5][11][15] and inverted list [10][17].
Our work builds upon this work in compressing individual
fields (see Section 3.1), but goes significantly beyond and
achieves up to a factor of 10 further compression by trading
off space for a little loss in precision. The relationship of
our work to traditional compression techniques such as
gzip is described in Section 3.1.

6. CONCLUSION AND FUTURE
WORK
We have presented new space-efficient index structures for
querying the deep web. The index structures support
structured queries such as equality and range queries, and
can be compressed by up to a factor of 10. However, this
compression implies that extra data sources may have to be
contacted during query processing. Our preliminary
experimental results indicate that this overhead is minimal
even for large compression ratios.

Our index structures also illustrate another tradeoff in
handling equality vs. range queries. The VCI index based
on clustering significantly outperforms the HBI index
based on histograms for equality queries, and vice versa for
range queries. We are thus exploring ways to combine the
benefits of cluster-based and histogram-based indices so
that they are effective for both types of queries.

Other avenues for future work include extensions to
multiple attribute queries and joins, incremental index
maintenance, using structured vocabularies in the index
structure, incorporating the notion of ranking, and
evaluating the index structures using real data sets.

7. REFERENCE
[1] M. Bergman, “The Deep Web: Surfacing Hidden

Value”, Technical White Paper,
http://www.brightplanet.com/deepcontent/tutorials/De
epWeb.

[2] Z. Chen, J. Gehrke, F. Korn, "Query Optimization In
Compressed Database Systems", SIGMOD 2001.

[3] D. Florescu, et al., “Database Techniques for the
World Wide Web: A Survey”, SIGMOD Record
27(3), 1998.

[4] Froogle: http://www.froogle.com

[5] J. Goldstein et al, "Compressing Relations and
Indexes", ICDE 1998.

[6] L. Gravano, H. Garcia-Molina, A. Tomasic, "GlOSS:
Text-Source Discovery over Internet", TODS 24(2),
1999.

[7] A. Gupta, V. Harinarayanan, A. Rajaraman, “Virtual
Database Technology”, ICDE 1998.

[8] D. Kossmann, “The State of the Art in Distributed
Query Processing”, ACM Computing Surveys 32(4),
2000.

[9] J. Naughton et al, “The Niagara Internet Query
System”, IEEE Data Eng. Bulletin, 24(2), 2001.

[10] G. Navarro, et al., “Adding Compression to Block
Addressing Inverted Indexes”, Information Retrieval,
3:49-77, 2000

[11] P. O’Neill, D. Quass, “Improved Query Performance
with Variant Indices”, SIGMOD 1997.

[12] V. Poosala, et al., “Improved Histograms for
Selectivity Estimation of Range Predicates”, SIGMOD
1996.

[13] S. Raghavan, H. Garcia-Molina, “Crawling the
Hidden Web”, VLDB 2001.

[14] P. Weiss, Size Reduction of Inverted Files Using Data
Compression and Data Structure Reorganization. PhD
thesis, George Washington University, 1990.

[15] T. Westmann, et al., "Implementation and
Performance of Compressed Databases", SIGMOD
Record, 2000.

[16] G. Wiederhold, “Mediators in the Architecture of
Future Information Systems”, IEEE Computer 25(3),
1992.

[17] T. Zhang, et al., “BIRCH: Efficient Data Clustering
Method for Very Large Databases”, SIGMOD 1999.

APPENDIX A FORMULAE FOR DCI
We present the formulae for centroid, radius, and distance in
DCI. Let dv(d) be the set of data values associated with a data
source d and let a cluster be a set of data sources D, then
centroid(D) = �

Dd

ddv
∈

)(

radius(D) =
D

ddvDcentroid
Dd
�
∈

−)()(

The centroid of a cluster is the union of the values associated
with the data sources in the cluster. The radius of a cluster is the
sum of the difference between the centroid and the values
associated with each data source, normalized by the number of
data sources in the cluster. The distance between two clusters
D1 and D2 is:

distance(D1,D2) =

The distance is computed as the sum of the following two
quantities: (a) the number of data sources in the first cluster
multiplied by the number of values that only occur in the second
cluster, and (b) the number of data sources in the second cluster
multiplied by the number of values that only occur in the first
cluster.

APPENDIX B FORMULAE FOR VDCI
We present the formulae for centroid, radius, and distance in
VDCI. A cluster C in VDCI is a set of (value, data source) pairs,
i.e., C={(v, d)} where v is a value and d is a data source. Let

D = �
Cdv

d
∈),(

}{ , V = �
Cdv

v
∈),(

}{ , ds(v) = �
Cdv

d
∈),(

}{

In other words, D is the set of data sources in C, V is the set of
values in C and ds(v) is the set of data sources associated with
value v in C. The centroid of C is,

centroid(C) = (V,D)

radius(C) =

The centriod of a cluster is a pair in which the first component is
the set of values in the cluster and the second component is the
set of data sources in the cluster. The radius of a cluster is the
sum of the number of false positives for each value in the
cluster, normalized by the number of values in the cluster. The
distance between two clusters C1 and C2 is:

distance(C1, C2)=
where centroid(C1)=(V1,D1) and centroid(C2)=(V2,D2)

The distance between two clusters is the additional number of
false positives that would occur if the two clusters were merged
together. This is computed as the sum of the following two
quantities (a) the number of values that only occur in the first
cluster multiplied by the number of data sources that only occur
in the second cluster, and (b) the number of values that only
occur in the second cluster multiplied by the number of data
sources that only occur in the first cluster. We do not take the

common values of the two clusters into account since the
number of false positives associated with them is not an
additional quantity.

APPENDIX C ADDITIONAL
EXPERIMENTAL RESULTS
We now present additional experimental results obtained by
varying the number of data sources, number of pairs, size of
range and value correlation parameters. For each experiment,
we varied one parameter and used default values for the rest. We
set the compression factor to be 10 for these experiments. We do
not show the performance numbers for VDCI in these
experiments because its performance is consistently bad.

Figure 9 shows how the number of false positives varies with
the number of data sources for equality queries. The number of
false positives increases gradually with the number of data
sources for VCI and DCI. The number of false positives for
HBI, however, increases more rapidly because the data source
lists of adjacent values become increasingly different as the
number of data sources increases. Figure 10 shows how the
number of false positives varies with the number of data sources
for range queries. The trend is similar to Figure 9 for VCI and
DCI. HBI, on the other hand, performs much better for range
queries because adjacent values are clustered together.

Figure 11 shows the results when the number of pairs is varied
for equality queries. For this graph, the index size was fixed to
be 800KB. The graph shows that the false positives for all three
approaches increase with the number of pairs. This is
attributable to the fact that each value now occurs in a larger
number of data sources. Figure 12 shows a similar graph for
range queries. In this graph, however, the number of false
positives decreases when the number of pairs increases. This can
be explained by the fact that the data source lists for adjacent
values become more similar because they each contain more
data sources.

Figure 13 shows the results when the size of range is varied. For
small range sizes, the number of false positives for HBI
increases rapidly because its performance approaches that for
equality queries (equality queries are simply range queries with
a range size of 1). However, for relatively large range sizes, HBI
performs well as expected. The false positives for VCI and DCI
increases when the range size increases from 1 to 100; this is
due to the fact that more than one cluster in VCI/DCI has to be
contacted for a range query, and the error in each cluster adds to
the overall error. The number of false positives decreases
beyond a range size of 100 because the number of data sources
containing values in the selected range increases faster than the
number of newly selected clusters, thereby reducing the total
number of false positives.

Figure 14 shows the results when the value correlation is varied
for equality queries. VCI and DCI perform consistently well
since they do not consider value ordering when constructing the
clusters. In contrast, the number of false positives of HBI
increases rapidly when the value correlation decreases – this is
because HBI has to group adjacent values in the same cluster,
and when the correlation decreases, adjacent values are likely to
have increasingly dissimilar lists of data sources. We do not
show the effects of varying value correlation for range queries.

|21||12||12||21| DDVVDDVV −×−+−×−

V

vdsD
Vv
�
∈

−)(

)2()1(2

)1()2(1

DcentroidDcentroidD

DcentroidDcentroidD

−×

+−×

0

50

100

150

200

0 500 1000 1500 2000 2500
the number of data sources

fa
ls

e
po

si
tiv

es

VCI DCI HBI

0

50

100

150

200

0 500 1000 1500 2000 2500
the number of data sources

fa
ls

e
po

si
tiv

es

VCI DCI HBI

0

50

100

150

200

1000000 2000000 3000000 4000000 5000000 6000000
the number of pairs

fa
ls

e
po

si
tiv

es

VCI DCI HBI

0

50

100

150

200

0 200 400 600 800 1000
size of range

fa
ls

e
po

si
tiv

es

VCI DCI HBI

0

20

40

60

80

100

1000000 2000000 3000000 4000000 5000000 6000000
the number of pairs

fa
ls

e
po

si
tiv

es

VCI DCI HBI

Figure 9 Effects of the number of data sources on equality queries Figure 10 Effects of the number of data sources on range queries

Figure 11 Effects of the number of pairs on equality queries Figure 12 Effects of the number of pairs on range queries

Figure 13 Effects of size of range on range queries

value correlation

fa
ls

e
po

si
tiv

es

VCI DCI HBI

Figure 14 Effects of value correlation on equality queries

