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1. INTRODUCTION 
Most current web search engines can only crawl, index, and 
query over static web pages, also referred to as the “surface 
web”. A large fraction of the Internet data, however, is 
stored in Internet-attached databases or the “deep web”. 
For example, the data about auctions in ebay.com is stored 
in an Internet-attached database, but is not visible to 
current web search engines. Some studies estimate that the 
size of the deep web is 400-500 times the size of the 
surface web [1]. Consequently, current web search engine 
technology can be used to query only a small fraction of all 
the data available off the Internet. 
 
As part of the Deep Glue project at Cornell University, we 
are building a query engine for deep web data sources. A 
key component of the Deep Glue system, and the focus of 
this paper, is the indexer module. Given a user query, the 
indexer module uses index structures to identify a superset 
of the deep web data sources that are relevant to the user 
query. The query module (not described here) then 
evaluates the user query by contacting the potentially 
relevant data sources identified by the indexer module. 
 
Index structures for the deep web differ in two fundamental 
respects from traditional inverted list index structures used 
by current web search engines. First, index structures for 
the deep web have to deal with structured data because the 
underlying database is typically richly structured and typed; 
this is in contrast to the mostly unstructured HTML data 
available off the surface web. Second, index structures for 
the deep web must deal with data volumes that are orders 
of magnitude larger than that for the surface web [1]. To 
address the above issues, we devise new index structures 
for the deep web. The index structures understand the 
structure/typing of the underlying data, and can thus be 
used to support both equality and range queries. The index 
structures can also be heavily compressed so that their 
space requirements are far less (up to an order of magnitude 
less) than the size of the original index. 
 
Aggressive compression of our index structures is possible 
because we allow the indexing module to return a superset 
of the data sources that are relevant to a user query. By 

returning a superset of the relevant data sources, no 
relevant data sources are missed. However, the query 
module has the extra overhead of contacting some data 
sources that are not relevant to the query. To evaluate this 
tradeoff, we present preliminary experimental results over 
1000 synthetically generated deep web data sources. Our 
results are promising and indicate that if we compress the 
index size by a factor of 10, the number of extra data 
sources contacted is less than 10 (more details are 
presented in Section 4). Further, the compression factors in 
our index structures are tunable, and can be used to tradeoff 
index size for precision. 
 
The rest of this paper is organized as follows. In Section 2, 
we describe our system and query model, and in Section 3, 
we describe various deep web index structures. In Section 
4, we experimentally evaluate the performance of the index 
structures. In Section 5 we discuss related work, and in 
Section 6, we present our conclusions and outline 
directions for future research. 
 

2. SYSTEM AND QUERY MODEL 
Figure 1 shows the architecture of the Deep Glue system. 
Given a user query, the query engine contacts the indexer 
to determine a superset of the data sources that are relevant 
to the user query. The query engine then evaluates the user 
query by contacting the relevant data sources. The indexer 
constructs the deep web index structures offline; this can be 
done either by crawling deep web data sources [13] or by 
using some previously agreed upon protocol for 
transferring index data [4]. This paper focuses on the 
organization of the deep web index structures once all the 
indexing data is obtained from the deep web data sources. 

For the purposes of this paper, we make the following 
assumptions. We assume that the deep web data sources are 
pre-classified into a set of domains such as online car 
dealers, online auctions, and online travel agents. We 
further assume that all the deep web data sources within the 
same domain export their data using the same logical 
database schema (the mapping from different physical 
database schemas to the same logical database schema 
could be done using mediators [16]). For simplicity, we 
also assume that the database schema conforms to the 
relational data model. In the relational schema, a subset of 
the attributes are referred to as the indexing attributes; 
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these could be attributes such as price, date, make, model, 
isbn number, etc. The values of the indexing attributes are 
indexed by the Deep Glue system, and are used to direct 
queries to the relevant data sources. 

In this paper, we focus on equality and range selection 
queries on a single indexing attribute. For example, in the 
domain of online car dealers with relational schema Car(Id, 
Make, Model, Year, Price), we can answer queries such as 
“find all year 2003 cars (Year = 2003)” or “find all cars 
that cost less than $1000 (Price < 1000)”, where date and 
price are each indexing attributes. We do not consider 
multiple attribute selection queries or join queries in this 
paper, and this is a subject for future research. 

3.  INDEX STRUCTURES 
We now turn to the main focus of this paper, which is 
devising space-efficient index structures for evaluating 
equality and range queries over deep web data sources. We 
first present a simple uncompressed index structure, and 
then present various techniques for compressing this index 
structure. Please note that all the compression techniques 
explored in this paper are complementary to existing 
database and inverted list compression techniques such as 
[2][5][10][11][14][15]. Such compression techniques can 
be applied on top of our indices to achieve further 
compression. 
 

3.1 Uncompressed Index (UI) 
An Uncompressed Index (UI) can be created as follows. 
For each distinct value v of the indexing attribute, we can 
store the list of data sources that contain at least one tuple 
that has the value v for the indexing attribute. A small 
example of such an index is shown in Figure 2. Data 
sources d6, d7, and d8 have at least one tuple that has value 
1 for the indexing attribute, data sources d2, d3, d4, and d6 
have at least one tuple that has value 2 for the indexing 
attribute, and so on. Building a B+-tree index on the value 
column will enable equality and range queries to be 
efficiently handled. For handling equality queries, we can 
simply lookup the list of databases that contain the desired 
value. For handling range queries, we can union the set of 
data sources for all the values in the desired range.  
 
In realistic deep web scenarios, the number of distinct 
values of the indexing attribute and the number of data 
sources are both likely to be large. Since the index structure 

has to be built for each indexing attribute, the overall size 
of the index is also likely to be very large, and in the worst 
case, could approach the entire size of the indexed deep 
web. Consequently, we need to explore techniques for 
effectively compressing the index structure.  
 
Note that we cannot simply use a compression utility such 
as gzip to compress each index structure. If we used gzip to 
compress the index, then the entire index would have to be 
uncompressed for every query over the indexing attribute, 
which would make the index lookup time very expensive.  
 
We can, however, use database compression techniques 
that compress individual fields of data [2][5][11][15]. We 
use such techniques, specifically [11], for compressing the 
lists of data sources. We could also use inverted list 
compression techniques such as [10][14]. However, we go 
significantly beyond this and provide an additional 
compression factor of 10 in space while still efficiently 
supporting equality and range queries.  

3.2 Value Clustered Index (VCI) 
The key idea behind the Value Clustered Index (VCI) is the 
following. In UI, the lists of data sources associated with 
different values are often similar (although not necessarily 
the same). This captures the intuition that “closely related” 
values are often stored in “closely related” data sources. 
For example, if the indexing attribute is the ISBN number 
of a book, then the ISBN numbers of out-of-print books are 
likely to have a very similar list of data sources, consisting 
mostly of online retailers specializing in out-of-print books. 
In the small example in Figure 2, values 1 and 6 have a 
similar list of data sources, as do values 2 and 5, and values 
3 and 4.  
 
Given that different values can have a similar list of data 
sources, we can save space by “grouping” or “clustering” 
such values together, and storing the associated list of data 
sources just once for each cluster (instead of repeating the 
list for each value in the cluster as in UI). As an illustration, 
consider the UI in Figure 2. Assume that the values are 
divided into three clusters, with cluster c1 containing 
values 1 and 6, cluster c2 containing values 2 and 5, and 
cluster c3 containing values 3 and 4. The resulting VCI is 
shown in Figure 3. Note that each value has a cluster id 
associated with it. Each cluster id in turn is associated with 

Figure 1: System Architecture Figure 2: Uncompressed Index Figure 3: Value Clustered Index 

DataSource 1

Indexer Query Engine

Queries Results

DataSource 2 DataSource 3
DataSource N

. . .

Query Partial Results
summary 
information

Query

Candidate
DataSources

d1,d7,d86
d2,d3,d65
d1,d4,d54

d43
d2,d3,d4,d62

d6,d7,d81
data sourcesvalue

c16
c25
c34
c33
c22
c11

Cluster 
id

value

d1,d4,d5c3

d2,d3,d4,d6c2

d1,d6,d7,d8c1

data sourcesCluster 
id



a list of data sources. Thus, the list of data sources 
associated with a value can be determined by first looking 
up the cluster id for the value, and then looking up the list 
of databases associated with the cluster id (in reality, 
cluster id can be a physical disk pointer making the look up 
for the list of databases very efficient). A B+-tree index on 
the value will again enable equality and range queries. 
 
It is important to note that in VCI, the list of data sources 
associated with each cluster is the union of the list of data 
sources associated with each value in the cluster. For 
example, for cluster c1, the list of data sources 
(d1,d6,d7,d8) is the union of the list of data sources 
associated with value 1 (d6,d7,d8) and value 6 (d1,d7,d8). 
By using the union, we ensure that no relevant data sources 
are missed for a query over a given value. However, some 
data sources that are not relevant to a query can also be 
returned. For example, a query for value 1 will have to 
contact d1 even though d1 does not contain that index 
attribute value. VCI attempts to minimize such “false 
positives” by clustering together only values that have a 
similar list of data sources. 
 
Another interesting feature to note about VCI is that it 
allows space to be traded off for precision. At one extreme, 
if each distinct value is mapped to a separate cluster, VCI is 
the same as UI, and there are no false positives. At the 
other extreme, all values are mapped to the same cluster 
resulting in a very small index, but every data source will 
have to be contacted for every query resulting in a large 
number of false positives. In practice, a space-precision 
tradeoff between the two extremes will likely be most 
desirable, and this can be tuned to the needs of the 
application. 
 
Thus far, we have described VCI assuming that we have 
some way of clustering values with similar lists of data 
sources. Thus, a practical issue is determining an efficient 
way to do this clustering that (a) scales to large data sets, 
and (b) attempts to minimize the number of false positives 
in each cluster. To handle the scalability issue, we rely on 
existing scalable clustering techniques such as Birch [17]. 
Birch is a general algorithm for clustering that can handle 
any clustering domain, as long as the notions of a centroid 
(the “mid-point” of a cluster), radius (a measure of the 
quality of a cluster) and cluster distance are defined for that 
domain. We now define centroid, radius and distance for 
VCI so that it attempts to minimize the number of false 

positives for queries. We use ds(v) to denote the set of data 
sources associated with value v. For a cluster having the set 
of values V: 
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The centroid of a cluster is the union of the data sources 
associated with the values in the cluster, or simply the data 
source list associated with a cluster. The radius of a cluster 
is the sum of the number of false positives for each value in 
the cluster, normalized by the number of values in the 
cluster. Thus, as desired, a cluster with small radius is of 
high quality, while a cluster with large radius is of low 
quality. The distance between two clusters V1 and V2 is: 

distance(V1, V2) =  
 
 
The distance between two clusters is the additional number 
of false positives that would occur if the two clusters were 
merged together. This is computed as the sum of the 
following two quantities (a) the number of values in the 
first cluster multiplied by the number of data sources that 
only occur in the second cluster, and (b) the number of 
values in the second cluster multiplied by the number of 
data sources that only occur in the first cluster. 
 
Using the above definitions of centroid, radius, and 
distance, we used Birch to generate VCI clusters that 
attempt to minimize the number of false positives. Further, 
by setting a threshold on the maximum allowable radius, 
we can control the space-precision tradeoff by choosing 
high quality clusters with the associated space overhead, or 
choosing lower quality clusters and getting more space 
compression.  

3.3 DataSource Clustered Index (DCI) 
VCI achieves space compression by clustering values that 
have similar data source lists. An alternative means of 
compression is possible by clustering data sources that 
have similar values. The intuition here is that closely 
related data sources (such as amazon.com and 
barnesandnoble.com) often have closely related sets of 
values (such as book ISBN numbers). Thus, instead of 
storing these data sources separately in the data source list, 
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they can be clustered and a single cluster id can be stored in 
the data source list.  

In our example in Figure 2, data sources 1, 7, and 8, have a 
similar (though not identical) set of values and can be 
clustered together. Similarly, data sources 2, 3 and 6 have a 
similar set of values, and so do data sources 4 and 5. The 
DCI index structure resulting from clustering these related 
data sources together is shown in Figure 4. Note that a 
value is associated with a cluster id if at least one data 
source in the cluster contains the value – this is to ensure 
that no relevant data sources are missed during querying. 
This also means that DCI could have false positives 
because if a value is associated with a cluster id, then not 
every data source in that cluster necessarily contains that 
value. For example, in Figure 4, the value 3 is associated 
with cluster c2, and cluster c2 contains data source d5 even 
though d5 does not contain the value 3. 

DCI offers a space-precision tradeoff similar to VCI. If the 
number of clusters equals the number of data sources, the 
index structure is identical to UI (with no false positives 
and associated space overhead); if the number of clusters is 
1, then there are many false positives but little space 
overhead; intermediate tradeoff points can be got by 
adjusting the number of clusters. Like in VCI, the Birch 
algorithm is used for clustering databases. The formulae for 
centroid, radius, and distance are symmetric to VCI (using 
values in place of data sources and vice versa), and are 
presented in the Appendix. 

3.4 Value-DataSource Clustered Index 
(VDCI) 
Consider a scenario of online book data sources, where 
there is a natural clustering of data sources based on the 
ISBN numbers of the books the data sources carry (the 
ISBN numbers are in the categories popular books, out of 
print books, collector’s books, etc.). Now consider a data 
source that carries both popular books and out of print 
books. Under both VCI and DCI, the data source will have 
to be clustered along with either the popular books cluster, 
or the out of print books cluster. There is no way to specify 
that the data source is part of one cluster for popular books, 
and another cluster for out of print books. VDCI attempts 
to address this limitation of VCI and DCI. In VDCI, a 
cluster is a set of values V and a set of data sources D, and 
implies that the data sources D are related with respect to 
the values V (or equivalently, the values V are related with 
respect to the data sources D). Thus, VDCI generalizes 
both VCI and DCI. 
 
As an illustration of VDCI, consider again the example in 
Figure 2. Consider the data sources d2, d3, and d6. These 
data sources are similar in that they all contain values 2 and 
5. Thus, VDCI allows the cluster ({2,5},{d2,d3,d6}) to be 
formed. In addition, d6 can also be part of the cluster with 
d1, d7 and d8 with respect to the values 1, resulting in the 
cluster ({1,6},{d1,d6,d7,d8}). Let us also assume that the 
cluster ({2,3,4},{d1,d4,d5}) is created. Then the resulting 
VDCI index structure is shown in Figure 5. 

Since VDCI clusters with respect to each value-data source 
combination, a cluster is defined as a set of (value, data 
source) pairs. The definition of the centroid, radius and 
distance is a combination of the formulae for VCI and DCI 
and is presented in the Appendix.  
 
Although VDCI generalizes both VCI and DCI, it suffers 
from the drawback that it needs to cluster each (value, data 
source) pair separately in order to find the right clusters. 
This is in contrast to VCI/DCI, which only need to cluster 
each value/data source separately. 

3.5 Histogram Based Index (HBI) 
VCI and VDCI do not consider the ordering among values 
when constructing clusters. Consequently, two adjacent 
values in the value space are no more likely to be clustered 
together (based on the data source list) than distant values 
in the value space. However, since range queries select 
adjacent values, it may be beneficial to cluster adjacent 
values together. HBI is based on this intuition, and clusters 
adjacent values into the same cluster. This is similar to 
grouping attribute values into “buckets” in histograms in 
relational systems [12]. Figure 6 shows the HBI structure 
for the UI in Figure 2 where value 1 is in one cluster, 
values 2, 3 and 4 are in a second cluster, and values 5 and 6 
are in a third cluster.  

Since HBI is limited to clustering only adjacent values in 
the same cluster, it loses some of the flexibility of VCI and 
VDCI. To minimize the effects of this loss of flexibility, it 
is important to determine the cluster boundaries effectively. 
For this, we introduce a threshold parameter for 
constructing histograms. All the values for the indexing 
attribute are sorted first and inserted into the clusters 
(histogram buckets) in ascending order. Whenever the 
inclusion of a new value causes average number of false 
positives of the current cluster to exceed the threshold, we 
create a new cluster for the new value. Thus we can control 
the index size by specifying the proper threshold for 
clusters. 

4. EXPERIMENTAL EVALUATION 
We now experimentally evaluate our index structures. 
There are three metrics that we use in our evaluation. The 
first is index creation time. The second is compression 
factor, which is the ratio of the size of the uncompressed 
index (UI) to the size of the compressed index. The third is 
false positives, which is the average number of false 
positives for equality/range queries. 

4.1 Experimental Setup 
We use synthetic data for our evaluation. We chose to use 
synthetic data for the following reasons. First, we can vary 
parameters to illustrate the tradeoffs between the different 
approaches. Second, we were not able to easily obtain real 
data from hundreds/thousands of deep web data sources, 
although this is something we are currently pursuing. 



The synthetic data set was generated using the following 
parameters. The number of values is the number of distinct 
values for the indexing attributes (default value is 
100,000). The number of data sources is the number of 
deep web data sources (default is 1000). The number of 
pairs is the number of unique (value, data source) pairs 
(default is 4,000,000). This is a measure of the data size, 
but is usually smaller than the number of tuples because 
duplicate values in the same data source are only counted 
once.  
 
The number of groups is the number of logical groups 
among the data sources (default is 20). A logical group 
captures the notion that a set of data sources can have a 
similar distribution of values for the indexing attribute. 
Thus, the data values for each data source in a group are 
picked from the same Gaussian distribution characteristic 
of that group. The mean and standard deviation of the 
Gaussian distribution for a group is chosen so that there is 
at most a 5% overlap between the distributions of any two 
distinct groups. The group mode is the number of logical 
groups that each data source belongs to (default is 1). The 
group mode captures the intuition that a given data source 
can be similar to one set of data sources with respect to one 
set of values (such as popular books), and similar to 
another set of data sources with respect to another set of 
values (such as out-of-print books).  
 
Finally, the value correlation is a measure of how the 
ordering in the value space maps to the ordering of values 
over which Gaussians are defined – this is especially 
important for range queries. The value correlation is 
defined in terms of the normalized number of permutations 
to go from the value space ordering to the Gaussian 
ordering. A value correlation of 1 implies full correlation, 
while a value correlation of 0 implies no correlation 
(default is 0.2). Using the default settings, the size of the 
uncompressed index (UI) is 8MB. 
 
False positives for equality queries are measured by 
averaging the false positives for all distinct values. False 
positives for range queries are measured by averaging the 
false positives for all possible range queries of a given size. 
The size of range specifies the number of distinct values 
selected by the range query (default is 500).  

We implemented all the index structures using C++, and 
our experiments were performed using a 2.8 GHz Pentium 

IV processor running Windows XP, with 1GB of main 
memory and 80GB of disk space. 

4.2 Experimental Results 
We now present some of our experimental results (more 
results are presented in the Appendix). 

4.2.1 Index creation time 
The index creation time for UI using default parameter 
values was 15 seconds. The index creation time for 
compressed index structures using the default parameter 
values and a compression factor of 10 was: VCI – 15 
minutes, DCI – 3 minutes, VCDI – 3 hours, HBI – 2.5 
minutes. VCDI has a much larger index creation time 
because it clusters (value, data source) pairs, as opposed to 
just the values (VCDI and HBI) or just the data sources 
(DCI). Since the number of (value, data source) pairs is 
much larger than the number of values or data sources, the 
clustering time for VCDI increases correspondingly. 
Although clustering is done offline, this overhead for 
VCDI could potentially become a bottleneck. 

4.2.2 Compression factor and false positives 
Figure 7 shows how the number of false positives varies 
with the compression factor for equality queries, assuming 
default parameter values. The standard deviation is less 
than 10, and is not shown. VCI performs the best, with 
only 10 false positives for a compression factor of 10. DCI 
performs slightly worse than VCI – this is because there are 
fewer data sources than there are values, and thus there is 
less flexibility in forming clusters in DCI. The false 
positives for HBI increase rapidly with compression 
because HBI only clusters adjacent values, even if they 
have very different data source lists.  
 
The most surprising result is the bad performance of VDCI, 
even though it theoretically generalizes both VCI and DCI. 
VDCI performs badly for the following reasons. First, 
VDCI has to deal with a much larger number of data 
points, which increases the chance of creating bad clusters 
using scalable one or two pass clustering algorithms. 
Second, VDCI appears to have too many degrees of 
freedom with respect to choosing sets of values and data 
sources. We experimented with different distance functions 
for VDCI clustering, but could not overcome this 
fundamental problem. Although we are still exploring other 
ways to solve this issue, this coupled with the clustering 
time argues against using VDCI.  

Figure 7 Equality Queries Figure 8 Range Queries 
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Note that false positives increase rapidly for all indices 
beyond a compression factor of 10. This increase is because 
the indices are approaching their theoretical upper bound 
for compression. This upper bound comes about because 
each index has to store the mapping from the value to the 
cluster id, for each value. The size of this mapping is thus 
the upper bound for compression, which is 480KB for the 
default settings. 
 
Figure 8 shows the space-precision tradeoff for range 
queries. The results are similar to equality queries, except 
that HBI now outperforms even VCI. The good 
performance of HBI is attributable to the fact that it 
chooses clusters based on the value ordering. Since range 
queries go over the same value ordering, this reduces the 
number of false positives. 

5. RELATED WORK 
 This work is related to the body of work on distributed 
databases [8] and information integration [3][7]. However, 
our focus is on identifying relevant data sources efficiently, 
while prior work has mostly focused on query processing 
once the relevant data sources are identified.  

The GlOSS system [6] supports data source discovery for 
text documents. The Niagara system [9] uses an index 
structure that identifies a superset of data sources relevant 
to a user query. However, these systems do not address the 
issue of compression, and do not support structured queries 
such as range queries.  

There has been work on field-level lossless compression in 
databases/indices [2][5][11][15] and inverted list [10][17]. 
Our work builds upon this work in compressing individual 
fields (see Section 3.1), but goes significantly beyond and 
achieves up to a factor of 10 further compression by trading 
off space for a little loss in precision. The relationship of 
our work to traditional compression techniques such as 
gzip is described in Section 3.1. 

6. CONCLUSION AND FUTURE 
WORK 
We have presented new space-efficient index structures for 
querying the deep web. The index structures support 
structured queries such as equality and range queries, and 
can be compressed by up to a factor of 10. However, this 
compression implies that extra data sources may have to be 
contacted during query processing. Our preliminary 
experimental results indicate that this overhead is minimal 
even for large compression ratios.  

Our index structures also illustrate another tradeoff in 
handling equality vs. range queries. The VCI index based 
on clustering significantly outperforms the HBI index 
based on histograms for equality queries, and vice versa for 
range queries. We are thus exploring ways to combine the 
benefits of cluster-based and histogram-based indices so 
that they are effective for both types of queries.  

Other avenues for future work include extensions to 
multiple attribute queries and joins, incremental index 
maintenance, using structured vocabularies in the index 
structure, incorporating the notion of ranking, and 
evaluating the index structures using real data sets. 
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APPENDIX A    FORMULAE FOR DCI  
We present the formulae for centroid, radius, and distance in 
DCI. Let dv(d) be the set of data values associated with a data 
source d and let a cluster be a set of data sources D, then 
centroid(D) = �

Dd

ddv
∈

)(  

radius(D) = 
D

ddvDcentroid
Dd
�
∈

− )()(
 

The centroid of a cluster is the union of the values associated 
with the data sources in the cluster. The radius of a cluster is the 
sum of the difference between the centroid and the values 
associated with each data source, normalized by the number of 
data sources in the cluster. The distance between two clusters 
D1 and D2 is: 

distance(D1,D2) =  
 
 
The distance is computed as the sum of the following two 
quantities: (a) the number of data sources in the first cluster 
multiplied by the number of values that only occur in the second 
cluster, and (b) the number of data sources in the second cluster 
multiplied by the number of values that only occur in the first 
cluster. 

APPENDIX B    FORMULAE FOR VDCI 
We present the formulae for centroid, radius, and distance in 
VDCI. A cluster C in VDCI is a set of (value, data source) pairs, 
i.e., C={(v, d )} where v is a value and d is a data source. Let  

D = �
Cdv

d
∈),(

}{ , V = �
Cdv

v
∈),(

}{ , ds(v) = �
Cdv

d
∈),(

}{  

In other words, D is the set of data sources in C, V is the set of 
values in C and ds(v) is the set of data sources associated with 
value v in C. The centroid of C is, 

centroid(C) =  (V,D)                                                      

 

radius(C) =                     
 

The centriod of a cluster is a pair in which the first component is 
the set of values in the cluster and the second component is the 
set of data sources in the cluster. The radius of a cluster is the 
sum of the number of false positives for each value in the 
cluster, normalized by the number of values in the cluster. The 
distance between two clusters C1 and C2 is:  

distance(C1, C2)= 
where centroid(C1)=(V1,D1) and centroid(C2)=(V2,D2)  

The distance between two clusters is the additional number of 
false positives that would occur if the two clusters were merged 
together. This is computed as the sum of the following two 
quantities (a) the number of values that only occur in the first 
cluster multiplied by the number of data sources that only occur 
in the second cluster, and (b) the number of values that only 
occur in the second cluster multiplied by the number of data 
sources that only occur in the first cluster. We do not take the 

common values of the two clusters into account since the 
number of false positives associated with them is not an 
additional quantity. 

APPENDIX C    ADDITIONAL 
EXPERIMENTAL RESULTS 
We now present additional experimental results obtained by 
varying the number of data sources, number of pairs, size of 
range and value correlation parameters. For each experiment, 
we varied one parameter and used default values for the rest. We 
set the compression factor to be 10 for these experiments. We do 
not show the performance numbers for VDCI in these 
experiments because its performance is consistently bad. 

Figure 9 shows how the number of false positives varies with 
the number of data sources for equality queries. The number of 
false positives increases gradually with the number of data 
sources for VCI and DCI. The number of false positives for 
HBI, however, increases more rapidly because the data source 
lists of adjacent values become increasingly different as the 
number of data sources increases. Figure 10 shows how the 
number of false positives varies with the number of data sources 
for range queries. The trend is similar to Figure 9 for VCI and 
DCI. HBI, on the other hand, performs much better for range 
queries because adjacent values are clustered together. 

Figure 11 shows the results when the number of pairs is varied 
for equality queries. For this graph, the index size was fixed to 
be 800KB. The graph shows that the false positives for all three 
approaches increase with the number of pairs. This is 
attributable to the fact that each value now occurs in a larger 
number of data sources. Figure 12 shows a similar graph for 
range queries. In this graph, however, the number of false 
positives decreases when the number of pairs increases. This can 
be explained by the fact that the data source lists for adjacent 
values become more similar because they each contain more 
data sources. 

Figure 13 shows the results when the size of range is varied. For 
small range sizes, the number of false positives for HBI 
increases rapidly because its performance approaches that for 
equality queries (equality queries are simply range queries with 
a range size of 1). However, for relatively large range sizes, HBI 
performs well as expected. The false positives for VCI and DCI 
increases when the range size increases from 1 to 100; this is 
due to the fact that more than one cluster in VCI/DCI has to be 
contacted for a range query, and the error in each cluster adds to 
the overall error. The number of false positives decreases 
beyond a range size of 100 because the number of data sources 
containing values in the selected range increases faster than the 
number of newly selected clusters, thereby reducing the total 
number of false positives. 

Figure 14 shows the results when the value correlation is varied 
for equality queries. VCI and DCI perform consistently well 
since they do not consider value ordering when constructing the 
clusters. In contrast, the number of false positives of HBI 
increases rapidly when the value correlation decreases – this is 
because HBI has to group adjacent values in the same cluster, 
and when the correlation decreases, adjacent values are likely to 
have increasingly dissimilar lists of data sources. We do not 
show the effects of varying value correlation for range queries.  
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Figure 9   Effects of the number of data sources on equality queries Figure 10    Effects of the number of data sources on range queries 

Figure 11 Effects of the number of pairs on equality queries Figure 12   Effects of the number of pairs on range queries 

Figure 13   Effects of size of range on range queries 
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Figure 14   Effects of value correlation on equality queries 


