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1. INTRODUCTION 
Traditionally, keyword-search-based information retrieval (IR) 
has focused on “flat” documents, which either do not have any 
inherent structure or have structure that is not exploited by the IR 
system. Thus, even if users wanted to search over only specific 
sub-sets and/or sub-parts of the documents, they still had to search 
over the entire document collection. In contrast, many emerging 
XML document collections have a hierarchical structure with 
semantic tags, which allows users to specify the context of their 
search more precisely.  
As an illustration, consider a large and heterogeneous XML 
digital library that contains content ranging from Shakespeare's 
plays to scientific papers. A user who is interested in learning 
more about Shakespeare’s plays can limit the scope of her search 
to just the relevant plays by specifying the following XPath 
query: //Play[author = ‘William Shakespeare’]. Thus, if she were 
to issue a keyword search query for the words “speech” and 
“process”, she would only get XML element results in 
Shakespeare’s plays that contain the keywords (such as a relevant 
<speech> element), and would not get XML elements about (say) 
voice recognition systems. 
In this paper, we refer to this notion of restricting the search 
context as context-sensitive search. Supporting context-sensitive 
search introduces the following two challenges. The first 
challenge is to efficiently find search results in the search context 
without having to touch irrelevant content. In the example above, 
if Shakespeare’s plays constitute only 0.1% of the entire content 
of the digital library, an efficient context-sensitive search 
implementation should not process the remaining 99.9%. The 
second challenge is to effectively rank keyword search queries 
evaluated in a search context. For example, in the popular TF-
IDF scoring method, the IDF component represents the inverse 
document frequency of the query keywords in the entire 
document collection. However, using this IDF value directly for 
context-sensitive search can produce very unintuitive results. 
As an illustration, consider the keyword search query for the 
words “speech” and “process” over Shakespeare’s plays in XML 
[20]. We obtained the top 10 results from the query using one of 
the TF-IDF based XML ranking algorithms [1] published in the 
literature. We then took a heterogeneous XML collection 
consisting of IEEE INEX 2003 documents [11] (containing 
scientific papers) and Shakespeare’s plays in XML, limited the 
search context to Shakespeare’s plays, evaluated the same 

keyword search query and obtained the top 10 results using the 
same ranking algorithm. From the user’s point of view, these are 
semantically identical queries. However, 9 of the top 10 results in 
the first set of results were not present in the second set! 
This wide variation in results can be explained as follows. It turns 
out that “speech” is very frequent in Shakespeare’s plays (low 
IDF) but not in the entire collection (high IDF), while “process” is 
relatively frequent in the entire collection (low IDF) but not in 
Shakespeare’s plays (high IDF). Consequently, the first 
experiment emphasized results that contained “process”, while the 
second emphasized results that contained “speech”. From the 
user’s point of view, the first experiment is likely to return more 
meaningful results because “process” – and not “speech” – is the 
more uncommon word in the search context (Shakespeare’s 
plays). Thus, the results of the second experiment are heavily 
skewed by elements that are not even in the search context. 
In general, it is desirable for context-sensitive search results to be 
ranked as though the user query was evaluated over the search 
context in isolation (in our example, we desire that the second 
experiment should return the same results as the first experiment). 
We call this context-sensitive ranking (a similar concept is also 
referred as query-sensitive scoring in [7]).  
In this paper, we present the design, implementation and 
evaluation of a system that addresses the above issues central to 
context-sensitive search. We make the following contributions: 
1) We present enhanced inverted list structures and query 

evaluation algorithms that enable the efficient evaluation of 
context-sensitive keyword-search queries, without having to 
touch content irrelevant to the search context. 

2) We develop a framework that allows for efficient context-
sensitive ranking. We note that, unlike [7], our goal is not to 
develop new ranking algorithms for context-sensitive search. 
Rather, our goal is to provide a framework that will enable 
existing ranking methods to be used for context-sensitive 
ranking. 

We also quantitatively evaluate the performance of our inverted 
list data structure and context-sensitive ranking based on existing 
XML ranking algorithms. 

2. SYSTEM MODEL AND ARCHITECTURE 
2.1 Model 
We represent a collection of XML documents as a forest of trees 
G = (N, E), where N is the set of XML element nodes and E is the 
set of containment edges relating vertices. Node u is a parent of a 
node v if there is an edge (u, v) ∈ E. Node u is an ancestor of a 
node v if there is a sequence of one or more containment edges 
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that lead from u to v. The predicate contains(v, k) is true iff the 
vertex v directly or indirectly (through sub-elements) contains the 
keyword k, where k can be an element name, attribute name, 
attribute value, or other textual content. The granularity of query 
results is at the level of XML elements since returning specific 
elements (such as <speech>) usually gives more context 
information than returning the entire document ([1][5][8][21]). 

2.2 System Architecture 
Figure 1 shows our system architecture. The user query consists of 
two parts: (1) the keyword search query, and (2) the search context. 
Given a specification of the search context, the Context Evaluator 
returns a set of XML element IDs I such that the descendants of I 
define the search context. The search context consists of all the 
elements in the sub-trees rooted at the elements from the specification 
value. The Query Engine takes in the set of IDs I and the user 
keyword-search query, and ranks the elements in the search context 
with respect to the query. In producing the ranked query results, the 
Query Engine uses Index Structures and a Ranking Module. The 
latter is extensible with respect to various ranking functions. 
For ease of exposition, we assume simple disjunctive queries (i.e., 
queries using only the ‘or’ operator) in this paper. The search 
context for these queries is specified using XPath. We use a 
standard XPath evaluator leveraging the work in [22].  
The focus of this paper is on the Index Structures and Query 
Engine components.  In the following section, we address three 
main challenges in designing these components. First, we show 
how to efficiently limit the search results to only those elements 
that occur in the search context. Second, we design a framework 
that supports context-sensitive ranking, i.e., ranking as though the 
query was evaluated over the search context in isolation. Third, 
we present an efficient evaluation algorithm that integrates these 
two solutions. 

3. INDEXING AND QUERY EVALUATION 
We first define the problem of context-sensitive ranking. We then 
describe our index structures, our ranking framework, and its 
integration with the query engine. 

3.1 Context-Sensitive Ranking 
Consider a set of XML elements E, a ranking algorithm R, and a 
keyword-search query Q. We define RankResE,R,Q to be the set of 
pairs (e, s), where e ∈ E and s is the score (rank) of e with respect 
to the query Q obtained using the ranking algorithm R. Intuitively, 
RankResE,R,Q is the ranked results that we would have obtained if 
E was a stand-alone collection and the query results were ranked 
using R. Now, consider a context-sensitive search system S that 
uses the ranking algorithm R and is operational over an element 
collection E. Consider a user query (Q, SC), where Q is the 
keyword-search query, and SC ⊆ E is the set of elements that constitute 
the user-specified search context. We define CRankResS,E,SC,R,Q to be the 
set of pairs (e, s) returned by S for the user query (Q, SC), where e ∈ SC 
and s is the score of e obtained using R in the SC. 
We say that a system S supports context-sensitive ranking with 
respect to a ranking algorithm R iff for every set of XML 
elements E and for every user query (Q, SC) (where SC ⊆ E), 

RankResSC,R,Q = CRankResS,E,SC,R,Q. In other words, the ranked 
results produced by S for a user query (Q, SC) are exactly the 
same as the ranked results produced in a stand-alone collection SC 
(using the ranking algorithm R). Thus, the system S provides users 
with the abstraction of working with a personalized document 
collection defined by the search context (SC), even though the 
search context may be part of a large heterogeneous collection (E) 
in the system. This will avoid ranking anomalies such as the one 
reported in the introduction. 
We note that our focus is not on the design of new ranking 
algorithms R. Rather, our goal is to develop a general framework 
so that many existing ranking algorithms can be embedded in our 
system while still supporting context-sensitive ranking.  

3.2 Index Structure 
Our main goal is to enable the efficient evaluation of context-
specific queries. A naïve strategy is to evaluate the user query 
over all the elements in the index, and check whether each 
element is present in the search context. This approach, however, 
is likely to be very inefficient when the search context is only a 
very small fraction of the entire collection.  
We now propose an index structure that addresses the above 
issues by extending the inverted list index structure [18]. Two key 
modifications need to be made to make the inverted list applicable 
for context-sensitive XML keyword search. First, we need to 
capture the XML hierarchy in the inverted list entries so that 
nested elements that contain the query keywords can be returned 
as results; for this part, we build upon prior published work in this 
area [8][13]. Second, we need to structure the inverted list so that 
entries that do not belong to the search context can be easily 
skipped; this will enable the efficient evaluation of context-
specific queries. We consider each in turn. 

3.2.1 Capturing XML Hierarchy in Inverted Lists 
A simple way to structure the inverted list is to store for each 
keyword the IDs of all elements that directly or indirectly contain 
the keyword. The downside of this approach is the associated 
space overhead. We need to store the IDs of the elements that 
directly contain the keyword and the IDs of their ancestors, 
because the ancestors too indirectly contain the keyword and 
should be returned as query results [8]. 
To address this space (and performance) overhead, Guo et al. [8] 
and Lee et al. [13] propose an encoding for element IDs called 
Dewey IDs. Each element is assigned a number that represents its 
relative position among its siblings in the XML document tree. The 
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path vector of the numbers from the root to an element uniquely 
identifies the latter. For example, the top element will be assigned 
Dewey ID 1; its children will be assigned 1.1, 1.2, …, etc. 
Thus, ancestor-descendant relationships are implicitly captured 
and the inverted lists only need to store the IDs of the elements 
that directly contain the keyword. Figure 2 shows a fragment of 
the inverted list index using Dewey IDs for the words “Hamlet” 
and “palace” (ignore the page boundaries and B+-trees for now – 
they are used for context-sensitive search, discussed next). For 
each keyword, the entries contain the IDs of the XML elements 
that directly contain the keyword and other information such as 
the TF for the elements.  

3.2.2 Efficiently Limiting the Search Context 
To limit efficiently the search context SC for a query Q, we need 
to skip over the entries in the inverted list that do not belong to the 
search context. Also, recall from the system architecture that the 
Context Evaluator returns element IDs and all descendants of 
these elements constitute the search context; thus, we also need to 
identify the descendants efficiently. 
It turns out that both of these problems can be addressed elegantly 
by building a B+-tree index on each inverted list based on the 
Dewey ID. Since the inverted lists are sorted based on the Dewey 
ID, the inverted lists can serve as the leaf level of the B+-tree; this 
avoids having to replicate the inverted list in the B+-tree, and 
leads to large space savings. Figure 2 shows this a sample index 
organization with fan-out 2. 
The B+-tree index can be used to efficiently skip over irrelevant 
entries as follows. Assume that the Context Evaluator returns a 
list of Dewey IDs d1, …, dn that define the search context. We 
first start with d1 (say 6.2) and probe the B+-tree of the relevant 
keyword inverted list to determine the smallest ID in the inverted 
list that is greater than or equal to d1 in lexicographic order (6.2 in 
our example). We then start sequentially scanning the inverted list 
entries from that point onwards. Since all descendants of d1 are 
clustered immediately after d1 in the inverted list (as they share a 
common prefix), this scan will return all the descendant entries of 
d1 (6.2, 6.2.1, 6.2.3). The scan will be stopped as soon as an entry 
is encountered whose prefix is not d1 (and hence not a descendant 
of d1). The same process is repeated for d2, …, dn. Note how all 
possible descendants of d1 (e.g., 6.2.2,6.2.2.1, etc.) are not 
explicitly enumerated but only the descendants that appear in a 
relevant inverted list are retrieved. 

3.3 Ranking Module 
There are three important aspects that we consider in the design of 
the Ranking Module. First, it should support context-sensitive 
ranking, whereby only the elements that belong to the search 
context contribute to the ranks of the query results. Second, the 
Ranking Module should provide an extensible framework that 
supports a general class of ranking functions so that many existing 
(and possibly new) ranking schemes developed for non-context-
sensitive ranking of XML results can be directly applied to the 
context-sensitive ranking problem. Finally, the Ranking Module 
should enable tight integration with the Query Engine so that 
context-specific ranking can be done efficiently. 
In the following discussion, we will focus on TF-IDF based ranking 
methods since they are one of the most popular scoring methods 
used in IR. Furthermore, these scoring methods are well suited for 
presentation of the concepts of context-sensitive ranking. Indeed, the 
IDF value depends on the search context: it is the number of search 
context elements that contain a query keyword. Thus, such ranking 
methods can dynamically adapt based on whether the query 
keywords are frequent or rare in the search context (irrespective of 
whether they are frequent or rare in the entire collection). We note 
that the TF component depends on the content of an element and is 
usually independent of the context.  

3.3.1 Modeling XML Ranking Functions 
Given a user keyword search query k1, …, kn, issued over a search 
context SC, most TF-IDF based XML ranking methods [1][5][21] 
can be characterized as a function R(Ck1, …, Ckn, Ek1,e, …, Ekn,e) 
that takes in the following parameters for each element e ∈ SC 
and returns the score for e. 

• Ck1, …, Ckn: Each Cki contains scoring information based on a 
query keyword ki and the search context SC (e.g. the IDF for ki) 

• Ek1,e, …, Ekn,e: Each Eki,e contains scoring information based on 
a keyword ki the element e, and its descendants (e.g. TF of the 
keyword ki with respect to e). 

As an illustration, consider the XXL search engine [21] that uses 
the TF-IDF ranking method. The Ckj parameters are the element 
frequency values for the keyword kj: Ckj = <number of elements 
containing kj>/<number of elements in the search context> = 
1/idf(kj).  The Ekj,e parameters contain the normalized TF for the 
keyword kj with respect to the element e: Ekj,e = <number of 
occurrences of kj in e>/<maximum term occurrences in e>. The 
overall-score function R combines the Ckj and the Ekj,e parameters 
using the cosine similarity: R(Ck1, …, Ckn, Ek1,e, …, Ekn,e) = 

∑
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measure. The XSearch [1] and XIRQL [5] ranking methods can 
be similarly captured using the above framework. 

3.3.2 Integration with the Index and Query Engine 
For efficient query evaluation, our query processing algorithm 
(described in Section 3.4) relies on two fundamental principles: 
(1) During the evaluation of a keyword search query k1, …, kn, 
only the inverted list entries for the keywords k1, …, kn, that occur 
in the search context are accessed. No other inverted list entries 
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are accessed, nor is the actual text content of an element accessed 
during query processing; (2) Query evaluation occurs in a single 
pass over the query keyword inverted lists (although a pre-
processing pass is also used – details are in Section 3.4). Thus, 
once an index entry is accessed, it is not accessed again. 
The above observations suggest that the ranking function 
parameter values should (1) be computed solely from the query 
keyword index entries in the search context, and (2) should be 
accumulated in a single pass over these index entries. We now 
formalize these notions. Consider the computation of a Ckj 
parameter. It can be computed using a function FCkj that works 
like an accumulator: FCkj: Dom(Ckj) × InvListEntry → Dom(Ckj), 
where Dom(Ckj) is the domain of the values of Ckj. On each 
invocation, it takes in the current value of Ckj and the current 
index entry, and creates the new value of Ckj. When the last entry 
is processed, the result is the final value of the Ckj parameter. For 
example, consider the case of computing the IDF of the keyword 
kj. The initial value of Ckj is 0, and each invocation of the FCkj 
function simply increments the current value of Ckj by one over 
the number of elements in the search context. The IDF is the 
reciprocal of the final value of Ckj after processing all entries in 
the inverted list for kj that occur in the search context. 
Now, consider the computation of a Ekj,e parameter. Ekj,e is computed 
by the repeated application of the function FEkj: Dom(Ekj,e) × Node × 
Node × InvListEntry → Dom(Ekj,e). The function works like an 
accumulator and takes in the current value of Ekj,e (first parameter), 
the current search context element e (second parameter), a descendant 
of e containing directly kj (third parameter), and the index entry 
corresponding to the descendant (fourth parameter), and uses these 
arguments to compute the new value of the Ekj,e parameter. This 
function captures the intuition that only information in the inverted 
list corresponding to an element’s descendants is used to compute 
element-specific ranking information. For example, in XXL, the FEkj 
function updates the TF of the keyword kj with respect to the current 
search context element e. 

3.4 Query Engine 
We now describe how the Query Engine can efficiently support 
context-sensitive ranking for any ranking algorithm that can be 
characterized in terms of the R, FCkj, and FEkj functions (by efficient, 
we mean linear in the number of index entries in the search context). 
Our query-processing algorithm builds upon the work in [8] and 
extends it using a two-phase algorithm for context-sensitive search and 
ranking. In the first (pre-processing) phase, it computes context-
sensitive information that is used for ranking (i.e., the Cki or IDF 
values) by making a pass over the relevant parts of the query keyword 
inverted lists. In the second (regular) phase, it makes another pass over 
the same inverted list entries, and finds the top-k ranked query results.  
The pre-processing phase is necessary because the regular phase 
cannot compute the overall rank of an element without the 
appropriate context-sensitive values. Thus, the regular phase 
cannot just keep track of the top-k results using a result heap since 
the score cannot be computed until the very end. Consequently, 
all elements should be retained and scored, which will be 
expensive. We note that the overhead of an extra phase is minimal 
since the first phase will bring all the relevant disk resident entries 

into memory; thus, the second phase, which accesses the very 
same entries, has practically no overhead (see Section 4). 
Figure 3 shows the query evaluation algorithm. The pre-
processing phase (lines 02–09) works as follows. For each the 
search context ID cidj, and for each query keyword ki, it identifies 
the entries in the inverted list for ki that are descendants of cidj. It 
does this by probing the context B+-tree for keyword ki using cidj, 
and scanning the inverted list for ki from that point onwards. The 

01. procedure EvaluateQuery (k1, k2, …, kn, cid1, …, cidm, N)  
       // k1 … kn are query keywords, cid1 … cidm define search context,  
       // N is the # query results  invList[ki] is inverted list for ki,  
      // btree[ki] is context B+-tree for ki 
 

      // Pre-processing phase: compute Ckis 
02. for (each cidj) { 
03.    for (each ki) { 
04.        ilPos = btree[ki].probe(cidj); invList[ki].startScan(ilPos); 
05.        curEntry = invList[ki].nextEntry; 
06.        while (cidj is a prefix of curEntry.deweyID) { 
07.            Cki = FCki(Cki, curEntry); 
08.            invList[ki].nextEntry; 
09.} } } 
 

      // Regular phase; compute top-N query results 
10. resultHeap = empty; deweyStack = empty; 
11. for (each cidj) { 
12.    for (each ki) { 
13.        ilPos = btree[ki].probe(cidj); invList[ki].startScan(ilPos); 
14.        curEntry[ki] = invList[ki].nextEntry; 
15.    } 
16.    while (∃ki such that cidj is a prefix of curEntry[ki]) { 
              // Get the next inverted list entry with the smallest DeweyID 
17.        find ki such that curEntry[ki].deweyID is the smallest deweyID; 
 

            // Find the longest common prefix between deweyStack  
            // and currentEntry.deweyId 
18.        find largest lcp such that  

deweyStack[p] = curEntry[ki].deweyId[p], 1 <= p <= lcp 
 

            // Pop non-matching deweyStack entries  
            // (their descendants have been fully processed) 
19.       while (deweyStack.size > lcp) { 
20.             sEntry = deweyStack.pop(); 
21.             score = R(Ck1, …, Ckm, sEntry.Ek1, …, sEntry.Ekm); 
22.             if score among top N seen so far,  
                      add (deweyStack.deweyID, score) to resultHeap; 
23.       } 
 

             // Push new ancestors (non-matching part of  
            //currentEntry.deweyId) to deweyStack 
24.        for (all i such that lcp < i <= currDeweyIdLen)  
25.              { deweyStack.push(deweyStackEntry); } 
 
            // Accumulate inverted list score information 
26.       for (each deweyStack entry sEntry) { 
27.            sEntry.Cki = FEki(sEntry.Cki, sEntry.deweyID,  
                                              currentEntry.deweyID, currentEntry); 
28. }  } // End of looping over all inverted lists 
 

29.    Pop entries of deweyStack in context cidj, and add to result heap  
         (similar to lines 19-23) 
30. } // End of processing cidj 
31. return resultHeap 

Figure 3: Query Algorithm 



context-sensitive information Cki is accumulated for each entry. 
The second phase (lines 10-31) computes the top-k query results 
using the context-sensitive information Cki. For efficiency, it 
maintains a stack of Dewey IDs, the DeweyStack. Using the 
DeweyStack, we can keep track of the score information of both the 
elements in the inverted lists and their ancestors (since the ancestors 
also indirectly contain the query keywords; note that this dependence 
is explicitly captured by the FEki function). The scoring information 
for the ancestors is updated while a descendant is being processed.  
This can be achieved using the DeweyStack because all ancestors and 
descendants are clustered in the B+-tree.  
The algorithm for the second phase works as follows. For each 
cidj, the relevant index entries for all the query keywords are 
scanned in parallel until the end of the current context (lines 16 - 
28). The smallest ID from these lists is chosen (line 17). Based on 
it, the algorithm identifies the entries in the DeweyStack whose 
descendants have been fully processed; these entries are popped 
out of the stack, their ranks are computed using the function R, 
and they are added to the result heap if they are among the top-k 
results so far (lines 19-23). The ancestors of the current smallest 
ID are then pushed onto the stack (lines 24-25), and the score 
information of all these ancestors is updated based on the current 
index entry (using function FEki). This process is repeated until 
all of the relevant entries from the inverted list are processed. 
As an illustration, consider the keyword query ‘Hamlet palace’ over 
the search context defined by the ID 3 using the index in Figure 2. 
The first phase computes Cki’s (IDFs) by accessing the relevant 
entries: 3.4 and 3.5 for “Hamlet”, and 3.5 and 3.6 for “palace”. Then, 
in the second phase, the relevant entries are merged. First, the entry 
3.4 is processed because it has the smallest DeweyID (Figure 4a). 
The stack state keeps track of the current score (TF value) for both 
3.4 and all of its ancestors (3, in our case). The next entry processed 
is 3.5 from the first inverted list. Since the largest common prefix 
with the DeweyStack entry is 3, we can conclude that all descendants 
of 3 in the stack (3.4) do not have any further descendants in the 
search context. Thus, 3.4 is popped from the stack and is added to the 
result heap if it is one of the current top-k results (Figure 4b). Next, 
3.5 from the first inverted list is pushed onto the stack (Figure 4c), 
and then 3.5 from the second list is used to update the TF values in 
the stack (Figure 4d). The algorithm then reads in 3.6, pops out 3.5, 
and continues in a similar manner. 

4. EXPERIMENTAL RESULTS 
We have implemented the system framework and algorithms 
described in the previous sections using C++. Using this framework, 
we have implemented context-sensitive versions of the following: 
XXL [21], XSEarch [1], and XIRQL [5]. We indexed a 
heterogeneous XML collection consisting of Shakespeare’s plays 

[20], INEX IEEE articles [11], and SIGMOD Record in XML [19]. 
The size of the entire collection was 521MB, and the size of the 
inverted lists was 719MB. The space overhead for the context B+-
trees to enable context-sensitive search was just 12MB. Our 
experiments were performed on a Pentium IV 2.2GHz processor with 
1GB of RAM running Windows XP. When measuring performance, 
we used a cold operating system cache.  
We performed two types of experiments. The first type measured 
the performance benefits of using context B+-trees to skip over 
irrelevant entries in the inverted lists. The second type of 
experiment measured how much context-sensitive ranking can 
influence the ranks of query results. 
For the first set of experiments, we compared the performance of 
the following three implementations: (1) a baseline naïve 
approach that scans all the entries in the inverted lists, including 
those that do not belong to the search context (Naïve), (2) the 
algorithm in Section 3.4, but without using the pre-processing 
phase to compute the context-sensitive Cki (IDF) values (CSS), (3) 
the full context-sensitive search and ranking algorithm described 
in Section 3.4 (CSSR). CSS only supports context-sensitive search, 
but does not support context-sensitive ranking. Thus, the 
performance difference between CSSR and CSS quantifies the 
performance overhead of context-sensitive ranking.  
Figure 5 shows the performance results when the size of the search 
context (the percentage of the total number of elements that are in the 
search context) is varied. This suggests that context-sensitive search 
offers significant performance benefits (by up to a factor of 5) over 
Naïve. The latter does not skip over irrelevant entries in the inverted 
list. In contrast, CSS and CSSR show consistently better performance 
with smaller context sizes because they only have to scan the relevant 
portions of the inverted lists. We expect this difference to be even 
bigger for larger databases or more selective keywords.  
Interestingly, there is practically no overhead for CSSR as 
compared to CSS, even though CSSR makes two passes over the 
relevant entries. The reason is that the first pass of CSSR brings 
all the relevant entries into memory; hence, the second scan has 
no measurable overhead. This suggests that context-sensitive 
ranking adds no measurable overhead.  
The second experiment compared two lists of ranked results 
produced by the same ranking algorithm. The first list was the top-10 
results when the IDF value was computed using the entire collection. 
The second set was the top-10 results produced when the IDF value 
was computed using only the search context elements (which is 
ideally what the user would like to see). The difference between these 
two lists is thus a measure of how much context-sensitive ranking is 
likely to change what the user sees in the top ranked results.  
Table 2 shows the scaled Spearman Footrule Distance [2] as a measure 
of the difference for the XXL, XSEarch and XIRQL ranking methods 
for some search contexts and keywords where there are high variations 
in the IDF values. The scaled Footrule distance measure produces 
values in the range [0, 1], where 0 means identical results and 1 means 
that the ranked lists do not have common elements. As shown, some 
query keywords such as “process speech” have almost no common 
results in the two lists, while others have more common results.  
In summary, the experiments show that context-sensitive ranking 
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3 (1, 0)  3 (1, 0)  3 (2, 0)  3 (2, 2) 

ID (E1, E2)  ID (E1, E2)  ID (E1, E2)  ID (E1, E2)
(a)  (b)  (c)  (d) 

Figure 4 The DeweyStack Transition 



can significantly influence ranked results with negligible 
performance overhead. 

5. RELATED WORK 
There has been a lot of recent work on keyword search over XML. 
Some of these, like [3], [10], [24] and the SGML indexing techniques 
in [13], do not consider the issue of ranking. Various scoring methods 
for semi-structured document collections have been proposed 
[1][4][5][8][16][17][21][23]. However, unlike the present paper, none 
of the above addresses the issue of context-sensitive ranking and its 
tight integration with context-sensitive search.  
Grabs and Schek [7] propose a context-sensitive scoring method for 
the INEX collection. Their definition of context uses predefined 
categories (element nodes of the same type). Our work is 
complementary to the above work in that we do not propose a 
specific scoring method but develop a general framework whereby 
multiple scoring methods, including that in [7], can be incorporated. 
Our focus is thus on developing the underlying system architecture, 
efficient inverted lists and query evaluation using these inverted lists, 
which are not considered in [7]. We also support a more flexible 
search context specification based on XPath without restrictions on 
the search context. Halverson et al. [9] and Kaushik et al. [15] discuss 
inverted lists with B+-trees in the context of structural joins, but do 
not consider context-sensitive ranking. Jacobson et al. [12] propose 
techniques for context-sensitive search over LDAP repositories but 
they focus on efficiently evaluating the context expression and not on 
evaluating keyword-search queries or ranking results. 

6. CONCLUSIONS 
We have defined the problem of context-sensitive ranking and 
studied its integration with context-sensitive search. We have 
proposed a general ranking framework whereby a large class of 
existing TF-IDF based ranking algorithms can be directly adapted for 
context-sensitive ranking. We have also proposed efficient index 
structures and query evaluation strategies for evaluating and ranking 
context-sensitive queries. In the future, we plan a user evaluation 
study to quantify the retrieval benefits of context-sensitive ranking.  
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Table 1 Effect of the Context-Sensitive Ranking 
 

Query Context XXL XSEarch XIRQL 
process speech shakesp 0.81 0.81 1 
join complexity inex/tk 1 0.81 0.02 
Sigmod opportunities inex/tk 0.59 0.19 0.8 
itemsets statistics inex/tk 1 0.51 0.13 
relational decomposition inex/tk 1 0.32 0.16 

Figure 5 Context Size vs. Query Time 


