
Context-Sensitive Keyword Search and Ranking for XML
Chavdar Botev

Cornell University
cbotev@cs.cornell.edu

 Jayavel Shanmugasundaram
Cornell University
jai@cs.cornell.edu

1. INTRODUCTION
Traditionally, keyword-search-based information retrieval (IR)
has focused on “flat” documents, which either do not have any
inherent structure or have structure that is not exploited by the IR
system. Thus, even if users wanted to search over only specific
sub-sets and/or sub-parts of the documents, they still had to search
over the entire document collection. In contrast, many emerging
XML document collections have a hierarchical structure with
semantic tags, which allows users to specify the context of their
search more precisely.
As an illustration, consider a large and heterogeneous XML
digital library that contains content ranging from Shakespeare's
plays to scientific papers. A user who is interested in learning
more about Shakespeare’s plays can limit the scope of her search
to just the relevant plays by specifying the following XPath
query: //Play[author = ‘William Shakespeare’]. Thus, if she were
to issue a keyword search query for the words “speech” and
“process”, she would only get XML element results in
Shakespeare’s plays that contain the keywords (such as a relevant
<speech> element), and would not get XML elements about (say)
voice recognition systems.
In this paper, we refer to this notion of restricting the search
context as context-sensitive search. Supporting context-sensitive
search introduces the following two challenges. The first
challenge is to efficiently find search results in the search context
without having to touch irrelevant content. In the example above,
if Shakespeare’s plays constitute only 0.1% of the entire content
of the digital library, an efficient context-sensitive search
implementation should not process the remaining 99.9%. The
second challenge is to effectively rank keyword search queries
evaluated in a search context. For example, in the popular TF-
IDF scoring method, the IDF component represents the inverse
document frequency of the query keywords in the entire
document collection. However, using this IDF value directly for
context-sensitive search can produce very unintuitive results.
As an illustration, consider the keyword search query for the
words “speech” and “process” over Shakespeare’s plays in XML
[20]. We obtained the top 10 results from the query using one of
the TF-IDF based XML ranking algorithms [1] published in the
literature. We then took a heterogeneous XML collection
consisting of IEEE INEX 2003 documents [11] (containing
scientific papers) and Shakespeare’s plays in XML, limited the
search context to Shakespeare’s plays, evaluated the same

keyword search query and obtained the top 10 results using the
same ranking algorithm. From the user’s point of view, these are
semantically identical queries. However, 9 of the top 10 results in
the first set of results were not present in the second set!
This wide variation in results can be explained as follows. It turns
out that “speech” is very frequent in Shakespeare’s plays (low
IDF) but not in the entire collection (high IDF), while “process” is
relatively frequent in the entire collection (low IDF) but not in
Shakespeare’s plays (high IDF). Consequently, the first
experiment emphasized results that contained “process”, while the
second emphasized results that contained “speech”. From the
user’s point of view, the first experiment is likely to return more
meaningful results because “process” – and not “speech” – is the
more uncommon word in the search context (Shakespeare’s
plays). Thus, the results of the second experiment are heavily
skewed by elements that are not even in the search context.
In general, it is desirable for context-sensitive search results to be
ranked as though the user query was evaluated over the search
context in isolation (in our example, we desire that the second
experiment should return the same results as the first experiment).
We call this context-sensitive ranking (a similar concept is also
referred as query-sensitive scoring in [7]).
In this paper, we present the design, implementation and
evaluation of a system that addresses the above issues central to
context-sensitive search. We make the following contributions:
1) We present enhanced inverted list structures and query

evaluation algorithms that enable the efficient evaluation of
context-sensitive keyword-search queries, without having to
touch content irrelevant to the search context.

2) We develop a framework that allows for efficient context-
sensitive ranking. We note that, unlike [7], our goal is not to
develop new ranking algorithms for context-sensitive search.
Rather, our goal is to provide a framework that will enable
existing ranking methods to be used for context-sensitive
ranking.

We also quantitatively evaluate the performance of our inverted
list data structure and context-sensitive ranking based on existing
XML ranking algorithms.

2. SYSTEM MODEL AND ARCHITECTURE
2.1 Model
We represent a collection of XML documents as a forest of trees
G = (N, E), where N is the set of XML element nodes and E is the
set of containment edges relating vertices. Node u is a parent of a
node v if there is an edge (u, v) ∈ E. Node u is an ancestor of a
node v if there is a sequence of one or more containment edges

Copyright is held by the author/owner.
Eighth International Workshop on the Web and Databases
(WebDB 2005),
June 16-17, 2005, Baltimore, Maryland.

that lead from u to v. The predicate contains(v, k) is true iff the
vertex v directly or indirectly (through sub-elements) contains the
keyword k, where k can be an element name, attribute name,
attribute value, or other textual content. The granularity of query
results is at the level of XML elements since returning specific
elements (such as <speech>) usually gives more context
information than returning the entire document ([1][5][8][21]).

2.2 System Architecture
Figure 1 shows our system architecture. The user query consists of
two parts: (1) the keyword search query, and (2) the search context.
Given a specification of the search context, the Context Evaluator
returns a set of XML element IDs I such that the descendants of I
define the search context. The search context consists of all the
elements in the sub-trees rooted at the elements from the specification
value. The Query Engine takes in the set of IDs I and the user
keyword-search query, and ranks the elements in the search context
with respect to the query. In producing the ranked query results, the
Query Engine uses Index Structures and a Ranking Module. The
latter is extensible with respect to various ranking functions.
For ease of exposition, we assume simple disjunctive queries (i.e.,
queries using only the ‘or’ operator) in this paper. The search
context for these queries is specified using XPath. We use a
standard XPath evaluator leveraging the work in [22].
The focus of this paper is on the Index Structures and Query
Engine components. In the following section, we address three
main challenges in designing these components. First, we show
how to efficiently limit the search results to only those elements
that occur in the search context. Second, we design a framework
that supports context-sensitive ranking, i.e., ranking as though the
query was evaluated over the search context in isolation. Third,
we present an efficient evaluation algorithm that integrates these
two solutions.

3. INDEXING AND QUERY EVALUATION
We first define the problem of context-sensitive ranking. We then
describe our index structures, our ranking framework, and its
integration with the query engine.

3.1 Context-Sensitive Ranking
Consider a set of XML elements E, a ranking algorithm R, and a
keyword-search query Q. We define RankResE,R,Q to be the set of
pairs (e, s), where e ∈ E and s is the score (rank) of e with respect
to the query Q obtained using the ranking algorithm R. Intuitively,
RankResE,R,Q is the ranked results that we would have obtained if
E was a stand-alone collection and the query results were ranked
using R. Now, consider a context-sensitive search system S that
uses the ranking algorithm R and is operational over an element
collection E. Consider a user query (Q, SC), where Q is the
keyword-search query, and SC ⊆ E is the set of elements that constitute
the user-specified search context. We define CRankResS,E,SC,R,Q to be the
set of pairs (e, s) returned by S for the user query (Q, SC), where e ∈ SC
and s is the score of e obtained using R in the SC.
We say that a system S supports context-sensitive ranking with
respect to a ranking algorithm R iff for every set of XML
elements E and for every user query (Q, SC) (where SC ⊆ E),

RankResSC,R,Q = CRankResS,E,SC,R,Q. In other words, the ranked
results produced by S for a user query (Q, SC) are exactly the
same as the ranked results produced in a stand-alone collection SC
(using the ranking algorithm R). Thus, the system S provides users
with the abstraction of working with a personalized document
collection defined by the search context (SC), even though the
search context may be part of a large heterogeneous collection (E)
in the system. This will avoid ranking anomalies such as the one
reported in the introduction.
We note that our focus is not on the design of new ranking
algorithms R. Rather, our goal is to develop a general framework
so that many existing ranking algorithms can be embedded in our
system while still supporting context-sensitive ranking.

3.2 Index Structure
Our main goal is to enable the efficient evaluation of context-
specific queries. A naïve strategy is to evaluate the user query
over all the elements in the index, and check whether each
element is present in the search context. This approach, however,
is likely to be very inefficient when the search context is only a
very small fraction of the entire collection.
We now propose an index structure that addresses the above
issues by extending the inverted list index structure [18]. Two key
modifications need to be made to make the inverted list applicable
for context-sensitive XML keyword search. First, we need to
capture the XML hierarchy in the inverted list entries so that
nested elements that contain the query keywords can be returned
as results; for this part, we build upon prior published work in this
area [8][13]. Second, we need to structure the inverted list so that
entries that do not belong to the search context can be easily
skipped; this will enable the efficient evaluation of context-
specific queries. We consider each in turn.

3.2.1 Capturing XML Hierarchy in Inverted Lists
A simple way to structure the inverted list is to store for each
keyword the IDs of all elements that directly or indirectly contain
the keyword. The downside of this approach is the associated
space overhead. We need to store the IDs of the elements that
directly contain the keyword and the IDs of their ancestors,
because the ancestors too indirectly contain the keyword and
should be returned as query results [8].
To address this space (and performance) overhead, Guo et al. [8]
and Lee et al. [13] propose an encoding for element IDs called
Dewey IDs. Each element is assigned a number that represents its
relative position among its siblings in the XML document tree. The

Context Evaluator

Query Engine

Index Structures

Ranking
Module

Ranked
Results

Ranked Context-
Sensitive Search

Search Context

Search
Keywords

Figure 1: System Architecture

path vector of the numbers from the root to an element uniquely
identifies the latter. For example, the top element will be assigned
Dewey ID 1; its children will be assigned 1.1, 1.2, …, etc.
Thus, ancestor-descendant relationships are implicitly captured
and the inverted lists only need to store the IDs of the elements
that directly contain the keyword. Figure 2 shows a fragment of
the inverted list index using Dewey IDs for the words “Hamlet”
and “palace” (ignore the page boundaries and B+-trees for now –
they are used for context-sensitive search, discussed next). For
each keyword, the entries contain the IDs of the XML elements
that directly contain the keyword and other information such as
the TF for the elements.

3.2.2 Efficiently Limiting the Search Context
To limit efficiently the search context SC for a query Q, we need
to skip over the entries in the inverted list that do not belong to the
search context. Also, recall from the system architecture that the
Context Evaluator returns element IDs and all descendants of
these elements constitute the search context; thus, we also need to
identify the descendants efficiently.
It turns out that both of these problems can be addressed elegantly
by building a B+-tree index on each inverted list based on the
Dewey ID. Since the inverted lists are sorted based on the Dewey
ID, the inverted lists can serve as the leaf level of the B+-tree; this
avoids having to replicate the inverted list in the B+-tree, and
leads to large space savings. Figure 2 shows this a sample index
organization with fan-out 2.
The B+-tree index can be used to efficiently skip over irrelevant
entries as follows. Assume that the Context Evaluator returns a
list of Dewey IDs d1, …, dn that define the search context. We
first start with d1 (say 6.2) and probe the B+-tree of the relevant
keyword inverted list to determine the smallest ID in the inverted
list that is greater than or equal to d1 in lexicographic order (6.2 in
our example). We then start sequentially scanning the inverted list
entries from that point onwards. Since all descendants of d1 are
clustered immediately after d1 in the inverted list (as they share a
common prefix), this scan will return all the descendant entries of
d1 (6.2, 6.2.1, 6.2.3). The scan will be stopped as soon as an entry
is encountered whose prefix is not d1 (and hence not a descendant
of d1). The same process is repeated for d2, …, dn. Note how all
possible descendants of d1 (e.g., 6.2.2,6.2.2.1, etc.) are not
explicitly enumerated but only the descendants that appear in a
relevant inverted list are retrieved.

3.3 Ranking Module
There are three important aspects that we consider in the design of
the Ranking Module. First, it should support context-sensitive
ranking, whereby only the elements that belong to the search
context contribute to the ranks of the query results. Second, the
Ranking Module should provide an extensible framework that
supports a general class of ranking functions so that many existing
(and possibly new) ranking schemes developed for non-context-
sensitive ranking of XML results can be directly applied to the
context-sensitive ranking problem. Finally, the Ranking Module
should enable tight integration with the Query Engine so that
context-specific ranking can be done efficiently.
In the following discussion, we will focus on TF-IDF based ranking
methods since they are one of the most popular scoring methods
used in IR. Furthermore, these scoring methods are well suited for
presentation of the concepts of context-sensitive ranking. Indeed, the
IDF value depends on the search context: it is the number of search
context elements that contain a query keyword. Thus, such ranking
methods can dynamically adapt based on whether the query
keywords are frequent or rare in the search context (irrespective of
whether they are frequent or rare in the entire collection). We note
that the TF component depends on the content of an element and is
usually independent of the context.

3.3.1 Modeling XML Ranking Functions
Given a user keyword search query k1, …, kn, issued over a search
context SC, most TF-IDF based XML ranking methods [1][5][21]
can be characterized as a function R(Ck1, …, Ckn, Ek1,e, …, Ekn,e)
that takes in the following parameters for each element e ∈ SC
and returns the score for e.

• Ck1, …, Ckn: Each Cki contains scoring information based on a
query keyword ki and the search context SC (e.g. the IDF for ki)

• Ek1,e, …, Ekn,e: Each Eki,e contains scoring information based on
a keyword ki the element e, and its descendants (e.g. TF of the
keyword ki with respect to e).

As an illustration, consider the XXL search engine [21] that uses
the TF-IDF ranking method. The Ckj parameters are the element
frequency values for the keyword kj: Ckj = <number of elements
containing kj>/<number of elements in the search context> =
1/idf(kj). The Ekj,e parameters contain the normalized TF for the
keyword kj with respect to the element e: Ekj,e = <number of
occurrences of kj in e>/<maximum term occurrences in e>. The
overall-score function R combines the Ckj and the Ekj,e parameters
using the cosine similarity: R(Ck1, …, Ckn, Ek1,e, …, Ekn,e) =

∑
×

×
= nj

jjkjekj

Qe
QktfkidfCE

,..,1
22

,

||||||||
),()()/(

, where ||⋅||2 denotes the L2

measure. The XSearch [1] and XIRQL [5] ranking methods can
be similarly captured using the above framework.

3.3.2 Integration with the Index and Query Engine
For efficient query evaluation, our query processing algorithm
(described in Section 3.4) relies on two fundamental principles:
(1) During the evaluation of a keyword search query k1, …, kn,
only the inverted list entries for the keywords k1, …, kn, that occur
in the search context are accessed. No other inverted list entries

Context B+tree

ID: 3.4
TF: 1

ID: 3.5
TF: 1

6.2

ID: 1.1
TF: 5

… …
…

ID:3.5
|TF: 2

ID: 6.2
TF: 3

ID: 6.2.3
TF: 2

ID: 9.1.1
TF: 10

6.2.3

ID: 21.1
TF: 5

6.2.3

Hamlet

palace
ID: 3.6
TF: 1

ID: 11.1.6
TF: 1

ID:6.2.1
TF: 3

Legend:
 Page
 boundary

Figure 2: Inverted List Structure

are accessed, nor is the actual text content of an element accessed
during query processing; (2) Query evaluation occurs in a single
pass over the query keyword inverted lists (although a pre-
processing pass is also used – details are in Section 3.4). Thus,
once an index entry is accessed, it is not accessed again.
The above observations suggest that the ranking function
parameter values should (1) be computed solely from the query
keyword index entries in the search context, and (2) should be
accumulated in a single pass over these index entries. We now
formalize these notions. Consider the computation of a Ckj
parameter. It can be computed using a function FCkj that works
like an accumulator: FCkj: Dom(Ckj) × InvListEntry → Dom(Ckj),
where Dom(Ckj) is the domain of the values of Ckj. On each
invocation, it takes in the current value of Ckj and the current
index entry, and creates the new value of Ckj. When the last entry
is processed, the result is the final value of the Ckj parameter. For
example, consider the case of computing the IDF of the keyword
kj. The initial value of Ckj is 0, and each invocation of the FCkj
function simply increments the current value of Ckj by one over
the number of elements in the search context. The IDF is the
reciprocal of the final value of Ckj after processing all entries in
the inverted list for kj that occur in the search context.
Now, consider the computation of a Ekj,e parameter. Ekj,e is computed
by the repeated application of the function FEkj: Dom(Ekj,e) × Node ×
Node × InvListEntry → Dom(Ekj,e). The function works like an
accumulator and takes in the current value of Ekj,e (first parameter),
the current search context element e (second parameter), a descendant
of e containing directly kj (third parameter), and the index entry
corresponding to the descendant (fourth parameter), and uses these
arguments to compute the new value of the Ekj,e parameter. This
function captures the intuition that only information in the inverted
list corresponding to an element’s descendants is used to compute
element-specific ranking information. For example, in XXL, the FEkj
function updates the TF of the keyword kj with respect to the current
search context element e.

3.4 Query Engine
We now describe how the Query Engine can efficiently support
context-sensitive ranking for any ranking algorithm that can be
characterized in terms of the R, FCkj, and FEkj functions (by efficient,
we mean linear in the number of index entries in the search context).
Our query-processing algorithm builds upon the work in [8] and
extends it using a two-phase algorithm for context-sensitive search and
ranking. In the first (pre-processing) phase, it computes context-
sensitive information that is used for ranking (i.e., the Cki or IDF
values) by making a pass over the relevant parts of the query keyword
inverted lists. In the second (regular) phase, it makes another pass over
the same inverted list entries, and finds the top-k ranked query results.
The pre-processing phase is necessary because the regular phase
cannot compute the overall rank of an element without the
appropriate context-sensitive values. Thus, the regular phase
cannot just keep track of the top-k results using a result heap since
the score cannot be computed until the very end. Consequently,
all elements should be retained and scored, which will be
expensive. We note that the overhead of an extra phase is minimal
since the first phase will bring all the relevant disk resident entries

into memory; thus, the second phase, which accesses the very
same entries, has practically no overhead (see Section 4).
Figure 3 shows the query evaluation algorithm. The pre-
processing phase (lines 02–09) works as follows. For each the
search context ID cidj, and for each query keyword ki, it identifies
the entries in the inverted list for ki that are descendants of cidj. It
does this by probing the context B+-tree for keyword ki using cidj,
and scanning the inverted list for ki from that point onwards. The

01. procedure EvaluateQuery (k1, k2, …, kn, cid1, …, cidm, N)
 // k1 … kn are query keywords, cid1 … cidm define search context,
 // N is the # query results invList[ki] is inverted list for ki,
 // btree[ki] is context B+-tree for ki

 // Pre-processing phase: compute Ckis
02. for (each cidj) {
03. for (each ki) {
04. ilPos = btree[ki].probe(cidj); invList[ki].startScan(ilPos);
05. curEntry = invList[ki].nextEntry;
06. while (cidj is a prefix of curEntry.deweyID) {
07. Cki = FCki(Cki, curEntry);
08. invList[ki].nextEntry;
09.} } }

 // Regular phase; compute top-N query results
10. resultHeap = empty; deweyStack = empty;
11. for (each cidj) {
12. for (each ki) {
13. ilPos = btree[ki].probe(cidj); invList[ki].startScan(ilPos);
14. curEntry[ki] = invList[ki].nextEntry;
15. }
16. while (∃ki such that cidj is a prefix of curEntry[ki]) {
 // Get the next inverted list entry with the smallest DeweyID
17. find ki such that curEntry[ki].deweyID is the smallest deweyID;

 // Find the longest common prefix between deweyStack
 // and currentEntry.deweyId
18. find largest lcp such that

deweyStack[p] = curEntry[ki].deweyId[p], 1 <= p <= lcp

 // Pop non-matching deweyStack entries
 // (their descendants have been fully processed)
19. while (deweyStack.size > lcp) {
20. sEntry = deweyStack.pop();
21. score = R(Ck1, …, Ckm, sEntry.Ek1, …, sEntry.Ekm);
22. if score among top N seen so far,
 add (deweyStack.deweyID, score) to resultHeap;
23. }

 // Push new ancestors (non-matching part of
 //currentEntry.deweyId) to deweyStack
24. for (all i such that lcp < i <= currDeweyIdLen)
25. { deweyStack.push(deweyStackEntry); }

 // Accumulate inverted list score information
26. for (each deweyStack entry sEntry) {
27. sEntry.Cki = FEki(sEntry.Cki, sEntry.deweyID,
 currentEntry.deweyID, currentEntry);
28. } } // End of looping over all inverted lists

29. Pop entries of deweyStack in context cidj, and add to result heap
 (similar to lines 19-23)
30. } // End of processing cidj
31. return resultHeap

Figure 3: Query Algorithm

context-sensitive information Cki is accumulated for each entry.
The second phase (lines 10-31) computes the top-k query results
using the context-sensitive information Cki. For efficiency, it
maintains a stack of Dewey IDs, the DeweyStack. Using the
DeweyStack, we can keep track of the score information of both the
elements in the inverted lists and their ancestors (since the ancestors
also indirectly contain the query keywords; note that this dependence
is explicitly captured by the FEki function). The scoring information
for the ancestors is updated while a descendant is being processed.
This can be achieved using the DeweyStack because all ancestors and
descendants are clustered in the B+-tree.
The algorithm for the second phase works as follows. For each
cidj, the relevant index entries for all the query keywords are
scanned in parallel until the end of the current context (lines 16 -
28). The smallest ID from these lists is chosen (line 17). Based on
it, the algorithm identifies the entries in the DeweyStack whose
descendants have been fully processed; these entries are popped
out of the stack, their ranks are computed using the function R,
and they are added to the result heap if they are among the top-k
results so far (lines 19-23). The ancestors of the current smallest
ID are then pushed onto the stack (lines 24-25), and the score
information of all these ancestors is updated based on the current
index entry (using function FEki). This process is repeated until
all of the relevant entries from the inverted list are processed.
As an illustration, consider the keyword query ‘Hamlet palace’ over
the search context defined by the ID 3 using the index in Figure 2.
The first phase computes Cki’s (IDFs) by accessing the relevant
entries: 3.4 and 3.5 for “Hamlet”, and 3.5 and 3.6 for “palace”. Then,
in the second phase, the relevant entries are merged. First, the entry
3.4 is processed because it has the smallest DeweyID (Figure 4a).
The stack state keeps track of the current score (TF value) for both
3.4 and all of its ancestors (3, in our case). The next entry processed
is 3.5 from the first inverted list. Since the largest common prefix
with the DeweyStack entry is 3, we can conclude that all descendants
of 3 in the stack (3.4) do not have any further descendants in the
search context. Thus, 3.4 is popped from the stack and is added to the
result heap if it is one of the current top-k results (Figure 4b). Next,
3.5 from the first inverted list is pushed onto the stack (Figure 4c),
and then 3.5 from the second list is used to update the TF values in
the stack (Figure 4d). The algorithm then reads in 3.6, pops out 3.5,
and continues in a similar manner.

4. EXPERIMENTAL RESULTS
We have implemented the system framework and algorithms
described in the previous sections using C++. Using this framework,
we have implemented context-sensitive versions of the following:
XXL [21], XSEarch [1], and XIRQL [5]. We indexed a
heterogeneous XML collection consisting of Shakespeare’s plays

[20], INEX IEEE articles [11], and SIGMOD Record in XML [19].
The size of the entire collection was 521MB, and the size of the
inverted lists was 719MB. The space overhead for the context B+-
trees to enable context-sensitive search was just 12MB. Our
experiments were performed on a Pentium IV 2.2GHz processor with
1GB of RAM running Windows XP. When measuring performance,
we used a cold operating system cache.
We performed two types of experiments. The first type measured
the performance benefits of using context B+-trees to skip over
irrelevant entries in the inverted lists. The second type of
experiment measured how much context-sensitive ranking can
influence the ranks of query results.
For the first set of experiments, we compared the performance of
the following three implementations: (1) a baseline naïve
approach that scans all the entries in the inverted lists, including
those that do not belong to the search context (Naïve), (2) the
algorithm in Section 3.4, but without using the pre-processing
phase to compute the context-sensitive Cki (IDF) values (CSS), (3)
the full context-sensitive search and ranking algorithm described
in Section 3.4 (CSSR). CSS only supports context-sensitive search,
but does not support context-sensitive ranking. Thus, the
performance difference between CSSR and CSS quantifies the
performance overhead of context-sensitive ranking.
Figure 5 shows the performance results when the size of the search
context (the percentage of the total number of elements that are in the
search context) is varied. This suggests that context-sensitive search
offers significant performance benefits (by up to a factor of 5) over
Naïve. The latter does not skip over irrelevant entries in the inverted
list. In contrast, CSS and CSSR show consistently better performance
with smaller context sizes because they only have to scan the relevant
portions of the inverted lists. We expect this difference to be even
bigger for larger databases or more selective keywords.
Interestingly, there is practically no overhead for CSSR as
compared to CSS, even though CSSR makes two passes over the
relevant entries. The reason is that the first pass of CSSR brings
all the relevant entries into memory; hence, the second scan has
no measurable overhead. This suggests that context-sensitive
ranking adds no measurable overhead.
The second experiment compared two lists of ranked results
produced by the same ranking algorithm. The first list was the top-10
results when the IDF value was computed using the entire collection.
The second set was the top-10 results produced when the IDF value
was computed using only the search context elements (which is
ideally what the user would like to see). The difference between these
two lists is thus a measure of how much context-sensitive ranking is
likely to change what the user sees in the top ranked results.
Table 2 shows the scaled Spearman Footrule Distance [2] as a measure
of the difference for the XXL, XSEarch and XIRQL ranking methods
for some search contexts and keywords where there are high variations
in the IDF values. The scaled Footrule distance measure produces
values in the range [0, 1], where 0 means identical results and 1 means
that the ranked lists do not have common elements. As shown, some
query keywords such as “process speech” have almost no common
results in the two lists, while others have more common results.
In summary, the experiments show that context-sensitive ranking

Push Pop Push Update
4 (1, 0) 5 (1, 0) 5 (1, 2)
3 (1, 0) 3 (1, 0) 3 (2, 0) 3 (2, 2)

ID (E1, E2) ID (E1, E2) ID (E1, E2) ID (E1, E2)
(a) (b) (c) (d)

Figure 4 The DeweyStack Transition

can significantly influence ranked results with negligible
performance overhead.

5. RELATED WORK
There has been a lot of recent work on keyword search over XML.
Some of these, like [3], [10], [24] and the SGML indexing techniques
in [13], do not consider the issue of ranking. Various scoring methods
for semi-structured document collections have been proposed
[1][4][5][8][16][17][21][23]. However, unlike the present paper, none
of the above addresses the issue of context-sensitive ranking and its
tight integration with context-sensitive search.
Grabs and Schek [7] propose a context-sensitive scoring method for
the INEX collection. Their definition of context uses predefined
categories (element nodes of the same type). Our work is
complementary to the above work in that we do not propose a
specific scoring method but develop a general framework whereby
multiple scoring methods, including that in [7], can be incorporated.
Our focus is thus on developing the underlying system architecture,
efficient inverted lists and query evaluation using these inverted lists,
which are not considered in [7]. We also support a more flexible
search context specification based on XPath without restrictions on
the search context. Halverson et al. [9] and Kaushik et al. [15] discuss
inverted lists with B+-trees in the context of structural joins, but do
not consider context-sensitive ranking. Jacobson et al. [12] propose
techniques for context-sensitive search over LDAP repositories but
they focus on efficiently evaluating the context expression and not on
evaluating keyword-search queries or ranking results.

6. CONCLUSIONS
We have defined the problem of context-sensitive ranking and
studied its integration with context-sensitive search. We have
proposed a general ranking framework whereby a large class of
existing TF-IDF based ranking algorithms can be directly adapted for
context-sensitive ranking. We have also proposed efficient index
structures and query evaluation strategies for evaluating and ranking
context-sensitive queries. In the future, we plan a user evaluation
study to quantify the retrieval benefits of context-sensitive ranking.

7. REFERENCES
[1] Cohen, S., J. Mamou, Y. Kanza, Y. Sagiv. XSEARCH: A Semantic

Search Engine for XML. VLDB 2003.
[2] Diaconis, P., R. L. Graham. “Spearman’s Footrule as a Measure of

Disarray”. J. of the Royal Society of Statistics, series B39 (1977).

[3] Florescu, D., Kossmann, D., Manolescu, I. Integrating Keyword
Search into XML Query Processing. WWW 2000.

[4] Fuhr, N., T. Rölleke. A Probabilistic Relational Algebra for the
Integration of Information Retrieval and Database Systems. TOIS, 15 (1),
1997.

[5] Fuhr, N., Großjohann, K. XIRQL: A Language for Information
Retrieval in XML Documents. SIGIR 2001.

[6] Goldman R., N. Shivakumar, S. Venkatasubramanian, H. Garcia-
Molina. Proximity Search in Databases. VLDB 1998.

[7] Grabs, T., H.-J. Schek. “PowerDB-XML: A Platform for Data-
Centric and Document-Centric XML Processing”. XSym 2003,
Berlin, Germany.

[8] Guo, L, F. Shao, C. Botev, J. Shanmugasundaram. XRANK: Ranked
Keyword Search over XML Documents. SIGMOD 2003.

[9] Halverson, A. et al. Mixed mode XML query processing. In VLDB,
2003.

[10] Hristidis, V., Y. Papakonstantinou, A. Balmin. Keyword Proximity
Search on XML Graphs. ICDE 2003

[11] INEX 2003. http://inex.is.informatik.uni-duisburg.de:2003/
[12] Jacobson, G., B. Krishnamurthy, D. Srivastava, D. Suciu. Focusing

Search in Hierarchical Structures with Directory Sets. CIKM 1998.
[13] Lee, Y., S.-J. Yoo, K. Yoon, P. B. Berra. Index Structures for

Structured Documents. Digital Libraries Conf., 1996.
[14] Luk, R., et al. A Survey of Search Engines for XML Documents.

SIGIR Workshop on XML and IR, 2000.
[15] Kaushik, R., R. Krishnamurthy, J. Naughton, R. Ramakrishnan. On the

Integration of Structure Indexes and Inverted Lists. SIGMOD 2004.
[16] Myaeng, S., D.H. Jang, M.S. Kim, and Z.C. Zhoo. A Flexible Model

for Retrieval of SGML Documents. SIGIR 1998.
[17] Navarro, G., Baeza-Yates, R. Proximal Nodes: A Model to Query

Document Database by Content and Structure. Information Systems, 1997.
[18] Salton, G. Automatic Text Processing: The Transformation, Analysis

and Retrieval of Information by Computer. Addison Wesley, 1989.
[19] SIGMOD Record in XML. http://www.acm.org/sigmod/record/xml/

XMLSigmodRecordNov2002.zip
[20] Shakespeare’s Plays in XML. http://www.oasis-open.org/cover/

bosakShakespeare200.html
[21] Theobald, A., Weikum, G. The Index-Based XXL Search Engine for

Querying XML Data with Relevance Ranking. EDBT 2002.
[22] Yoshikawa, M., T. Amagasa, T. Shimura, S. Uemura. XRel: A Path-

Based Approach to Storage and Retrieval of XML Documents Using
Relational Databases. ACM TOIT 1(1), 2001.

[23] Yu, C., Qi, H., Jagadish, H. Integration of IR into an XML Database.
INEX Workshop, 2002.

[24] C. Zhang, J. Naugthon, D. DeWitt, Q. Luo, G. Lohman. “On
Supporting Containment Queries in Relational Database
Management Systems”. SIGMOD 2001

Table 1 Effect of the Context-Sensitive Ranking

Query Context XXL XSEarch XIRQL
process speech shakesp 0.81 0.81 1
join complexity inex/tk 1 0.81 0.02
Sigmod opportunities inex/tk 0.59 0.19 0.8
itemsets statistics inex/tk 1 0.51 0.13
relational decomposition inex/tk 1 0.32 0.16

Figure 5 Context Size vs. Query Time

