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Abstract

Since it was first described in 1993, IP anycast has been
a promising technology for simple, efficient, and robust
service discovery, and for connectionless services. Due
to scaling issues, the difficulty of deployment, and lack
of application-specific features such as load balancing and
connection affinity, the use of IP anycast is limited to a
small number of critical low-level services such as DNS root
server replication. More commonly, application-layer any-
cast, such as DNS-based redirection, is used. As the number
of P2P and overlay services grows, however, the advantages
of IP anycast become more appealing. This paper proposes
a new proxy overlay deployment model for IP anycast that
overcomes most of the limitations of native IP anycast. We
believe that this makes IP anycast a viable option for easing
deployment and improving the robustness and efficiency of
many P2P and overlay technologies. We describe the new
deployment model, some of its uses for P2P and overlay
networks, its pros and cons relative to application-layer any-
cast, and discuss research issues.

1 Motivation
IP anycast is an IP addressing mode (v4 or v6) whereby mul-
tiple geographically disperse hosts are assigned the same IP
address, with the result that IP routing delivers packets des-
tined to the address to the nearest1 such host [1]. This works
without any changes to unicast routing as routers do not dis-
tinguish between multiple routes to multiple different hosts
and multiple routes to the same host.

There are three broad uses for IP anycast:service discov-
ery, query/reply services, and routing services. With service
discovery, IP anycast routes the client’s packets to a nearby
server, which then redirects the client to a server (possibly it-
self) which is subsequently accessed using IP unicast. With
query/reply services, IP anycast routes the client’s packets to
a nearby server, which completes the service exchange us-
ing IP anycast. With routing services, IP anycast routes the
client’s packets to a routing infrastructure (eg. IP multicast),
which then continues to forward the packet using whatever
technology is appropriate.

1nearest according to the routing metrics used by the routing
protocols—this meaning holds throughout the paper

Together these constitute a powerful set of tools that can
ease configuration, and improve robustness and efficiency
for many applications or lower-layer protocols. There are
three primary reasons for the simplicity and the power of the
tools offered by IP anycast: First, it operates at a low level,
depending only on the IP routing substrate. This makes it ro-
bust, scalable for large anycast groups (though not for large
numbers of groups), and simple for clients to use (once it
is in place). Second, it automatically discovers nearby re-
sources, eliminating the need for complex proximity discov-
ery mechanisms [21]. Finally, packets are delivered directly
to the target destination without the need for a redirect (fre-
quently required by application-layer anycast approaches).
This saves at least one packet round trip, which is important
for short lived exchanges.

Examples of IP anycast routing services include rout-
ing IP multicast packets to shared multicast tree rendezvous
points [3, 6] and routing IPv6 packets (tunnelled over IPv4)
to IPv4/IPv6 transition devices [2]. The only wide-scale de-
ployments of IP anycast in a production environment are
query/reply services for DNS: transparently replicating the
root DNS servers [7, 5], primarily to spread load as a de-
fense against DDoS attacks, and establishing “sink-holes”
for PTR queries to private addresses [14]. On a local scale,
IP anycast is used by operators to simplify and improve lo-
cal DNS server availability [15] as well as to establish sink-
holes [15].

In spite of the power of IP anycast, there are several major
problems that currently limit its use to a small number of
critical applications like DNS root server replication. They
include:

• IP anycast is incredibly wasteful of addresses. Be-
cause the routing infrastructure won’t accept IP pre-
fixes larger than a /22 (or a pre-CIDR /24), a single IP
anycast group consumes 1024 (or 256) scarce IP ad-
dresses. The alternative would be to modify routing
policy to accept larger prefixes, but that would open
the door to huge routing tables, which leads us to the
second problem.

• IP anycast scales poorly by the number of anycast
groups. Each such group requires a BGP routing en-
try in the global routing system. GIA [8] proposed
router modifications to improve scalability, but expect-
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ing core router upgrades for this purpose is almost cer-
tainly a non-starter.

• IP anycast is difficult and in some cases, impossible
for users to deploy. It requires that the user obtain a
block of IP addresses and an AS number, something
that is currently outside the allocation policies of reg-
istration authorities (i.e. ARIN, RIPE, etc.). Even if
such a block is obtained, each IP anycast destination
(target) must run a routing protocol with the upstream
ISP, which requires negotiations with the ISP, a sig-
nificant amount of manual configuration, and a certain
level of expertise.

• IP anycast is subject to the limitations of IP routing,
in several ways. First, IP may suddenly route pack-
ets to a different anycast target, thus breaking the no-
tion of connection affinity2, which in turn breaks state-
ful protocols like TCP. Second, IP routing has no no-
tion of load—not even link/router load, let alone server
load. This problem is addressed in [19], but again by
requiring changes in routers. Finally, BGP sometimes
converges slowly, making a destination unreachable for
many seconds or even minutes [16].

Because of these limitations, anycast today is typically im-
plemented at the application layer. This offers what is essen-
tially anycast service discovery—DNS-based approaches
use DNS redirection while URL-rewriting approaches dy-
namically rewrite the URL links as part of redirecting a
client to the appropriate server. These application layer ap-
proaches are easier to deploy (as they do not require any
router modifications), provide a fine grained control over
target server load, and naturally maintain connection affin-
ity. Because of these advantages, application-layer anycast
is the method of choice for Content Distribution Networks
(CDN) today.

Imagine for the moment that the shortcomings of IP any-
cast could be eliminated without sacrificing (at least not by
much) its advantages. Were this possible, the uses for IP
anycast would expand dramatically, especially for overlay
and P2P technologies. For instance, IP anycast could be
used to bootstrap members of a DHT (eg. Chord [11]),
P2P multicast overlay [24], or P2P file sharing [25] net-
work without requiring a central server to redirect joining
members to existing members. Indeed, eliminating the bot-
tleneck and single points of failure imposed by the central
server(s) remains an open problem for P2P networks of all
kinds [26]. This would work by having each member join
the IP anycast group once it becomes a member. Subse-
quently newly joining members would transmit “member
discovery” messages to the anycast group, thus discovering
a nearby member.

Likewise, IP anycast could be used by clients of a DHT to
simply and efficiently query the DHT, or to query services
that themselves are built on DHTs, like DNS-style name res-
olution [27]. IP anycast could be used to send HTTP queries
to nearby web proxies, without the need for explicit config-
uration of the web proxies or the overhead of a DNS query
or an HTTP redirect.

2tendency of subsequent packets of a “connection” to be delivered to
the same target - referred hereon as affinity

IP anycast could be used to efficiently transmit packets
into overlay networks like RON [12] or i3 [9]. RON is a
particularly interesting case, as it would allow nodes that
are not aware of the RON overlay to never-the-less use the
RON overlay. The basic idea here is that allN members
of a RON overlay would join an identical set ofN anycast
groups. The anycast address of each group would represent
one of the RON nodes. Packets from a non-RON node J to
a given RON node X would be routed via IP anycast to the
RON node Y that is nearest to J. RON node Y could then
forward the packet to X via the RON overlay. Likewise,
return packets from X to J could be sent through the RON
network to Y and then forwarded using unicast to J. This
would greatly expand the scope of a RON network: from
only being able to transmit packets between RON members
to being able to transmit packets between RON members
and any node in the Internet.

If the IP anycast service could be extended so that a node
could be both a client and a target3 (i.e., IP anycast packets
sent by a member of the anycast group would be forwarded
to the nearest group memberother than the sender), then
still more uses can be envisioned. For instance, networked
game players could find nearby partners, and members of a
P2P multicast overlay could find nearby peers.

2 Proxy IP Anycast Service (PIAS)

Fig A. Proxy Architecture

PIAS is an IP anycast deployment approach that overcomes
most of the limitations of native IP anycast while maintain-
ing most of its strengths. The basic idea is to implement IP
anycast in an overlay, in much the same spirit as implement-
ing IP multicast in the mbone overlay. Specifically, a large
number of anycast proxies are deployed around the Inter-
net. These are router-like boxes that advertise a block of IP
anycast addresses into the routing fabric (BGP, IGPs), but
are not themselves the anycast target destinations. Instead,
packets that reach the anycast proxies through native IP any-
cast are subsequently tunnelled (or NATed) to the true target
destinations4 using unicast IP (see figure A). Hosts become
anycast targets by registering with a nearby anycast proxy,
which is itself discovered using native IP anycast!.

The PIAS architecture solves the first three limitations
of IP anycast cited above. It solves the problem of ineffi-
cient address usage because all the IP addresses in the pre-
fix advertised by the proxies can be used by different any-
cast groups. In fact, PIAS does one better. It identifies

3In much the same way that a member of an IP multicast group can be
both a sender and a receiver.

4members of an anycast group
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an IP anycast group by the fulltransport address(TA), i.e.
IP address and TCP/UDP port, thus allowing thousands of
anycast groups per IP address. Likewise, it solves the rout-
ing scaling problem by allowing so many anycast groups to
share a single address prefix. Finally, it makes it very easy
for a host to become an IP anycast target. All the host has to
do is register with a proxy using the TA assigned to the any-
cast group. There are no special routing requirements. The
task of obtaining the address block/AS numbers falls upon
the infrastructure operator; the effort put into this deploy-
ment is amortized across all the groups the infrastructure
can support.

Of course, the reader may (and should) argue that all
we’ve done is push the scaling and addressing problems
from IP routing into the proxy overlay. This is very true,
and quite intentional: the problems are much easier to solve
when isolated from IP routing in this way. We now address
scaling and other design issues in the proxy overlay. We
start by stating our design goals:

• Scale by the number of groups
• Scale by the size of any group.
• Scale by group dynamics, by both continuous mem-

ber churn and flash crowds, including those caused by
DDoS attacks.

• Scale to∼105 proxies. 50 proxies in each of the largest
200 ISPs, which strikes us as plenty of proxies, gives
us∼104 proxies; to be safe we target for an order of
magnitude more.

• Backwards compatible, implying no changes at the
clients and minimal changes (at least no network stack
changes) at the targets5.

• Offer features associated with application-layer any-
cast: load balancing, connection affinity, and the ability
for a target to also be a client.

The first design goal dictates that we cannot require each
proxy to know of all groups. As a result, for each group
we designate a small number of proxies, called Rendezvous
Anycast Proxies (RAP), to keep track of the membership
of the group. We map groups to RAPs using consistent
hashing[10], thus spreading the load of maintaining mem-
bership information evenly over the set of proxies. Each
group is assigned a small number of replicated RAPs, for
reliability reasons. Note that we don’t use a DHT per se,
because the maximum number of expected proxies(105) can
reasonably be supported without one. Instead, all proxies
are required to know the status of all others—this informa-
tion may be maintained through flooding, gossip [22] or a
hierarchical structure [18]. Note that, like modern routers,
proxies are expected to be stable devices.

The RAP approach described above doesn’t scale if a
given group is very large, or has a lot of churn (second &
third goals), since each of a small number of RAPs have to
maintain membership for the whole group. A large group
would risk overwhelming the RAPs with state information
while a group with a lot of churn would lead to a stream of
update information to the RAPs. Thus, we add another tier

5We would like to be able to support legacy server-side applications and
are able to do so.

of membership management in the form of the Join Anycast
Proxy (JAP). Specifically, the JAP is the proxy that is con-
tacted by a target when it joins the group. The fact that the
join is done through native IP anycast implies that the JAP
is close to the target. The JAP is responsible for maintain-
ing liveness status of the target—the proximity of the target
to the JAP minimizes the health monitoring overhead. The
JAP also tells the RAP approximately how many targets it
has for a given group (i.e. within 20% or 30% of the ex-
act number). This way some number of targets can join or
quit a given JAP without the RAP needing to be told. As a
result, for very large groups, the RAP at worst scales accord-
ing to the number of proxies, and for very dynamic groups
the rate of updates to the RAPs is bounded and tunable.

Fig B. INITIAL PACKET PATH - 4 Segments long

Fig C. SUBSEQUENT PACKET PATH - 3 Segments long

This two tier JAP/RAP architecture results in packet paths as
shown in Figures B and C. When a client of the anycast ser-
vice sends the first packet to the group, it reaches the Ingress
Anycast Proxy (IAP) through native IP anycast routing. If
the IAP does not know of any JAPs for the transport address
(TA) this packet is destined to, the IAP resolves the TA to a
RAP and tunnels the packet there. The RAP selects a JAP
based on certain criteria (proximity to the IAP, load balance,
or affinity, or some combination of these, as specified by the
sixth goal) and tunnels the packet there. It also informs the
IAP of the selected JAP so that subsequent packets are tun-
nelled directly from the IAP to the JAP (Figure C). Finally,
the JAP sends the packet to the target, either by tunnelling
if the target can de-tunnel packets, or using NAT otherwise
(fifth goal)6. Note that since the IAP is close to the client,
and the JAP is close to the target, the extra distance required
to traverse those proxies is not a big concern. We evaluated
the overhead of this 3-segment path through simulations in-
volving synthetic topologies generated using GT-ITM[23]
and the results confirmed our intuition about the minimal
overhead.

The reverse path transits the JAP, but avoids the IAP. The
reverse path must go through at least one proxy, because the
target is unlikely to be able to spoof the source address to

6Figures B,C assume that the JAP uses a NAT
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be that of the anycast group, and the client expects a packet
from the anycast group (fifth goal). By sending the return
packet through the JAP and not the IAP, we allow the JAP
to better (passively) monitor the health of the target, and to
maintain NAT state. Note that it makes no sense for the IAP
to try to monitor the health of the target, because packets
may be flowing to the target through many IAPs, but through
only one JAP.

Finally, the JAP is responsible for flushing the cached
state from IAPs should it lose all of its targets (or enough
of its targets that it should shed some of its load). Hence,
if all the targets for a TA go down and the JAP receives a
packet for the same TA, the JAP can send a control message
to the IAP asking it to invalidate the cache entry. This forces
the IAP to go back to the RAP for the group and ask for the
address of some other JAP for the same group. As a result,
the IAP is able to safely cache information for a long time.
In case the JAP crashes, the IAP will learn of this through
the flooding algorithm, and can go back to the RAP for sub-
sequent packets. In addition, the target must detect that the
JAP has crashed, and re-register for its anycast groups.

2.1 Advanced Features
As stated above, the RAP may select the JAP based on a
number of criteria, including proximity, connection affinity,
and load balancing. The JAP subsequently selects a target,
possibly based on connection affinity and load balancing
criteria. It is this selection process that imbues PIAS with
features normally found only in application-layer anycast.
As such, this aspect of PIAS deserves more discussion.

The first thing to point out is that these three criteria are
in fact at odds with each other. If both load balance and
proximity are important criteria, and the JAP nearest to the
IAP is heavily loaded, then one of the other criteria must
be compromised. This is of course true of application-level
anycast as well.

The second thing to point out is that the overlay structure
of PIAS actually weakens its ability to find a target near a
client, as compared to native “E2E” IP anycast. With PIAS,
we know that the client is near the IAP, and the target is near
the JAP (because both paths are discovered by native IP any-
cast), but anycast cannot be used to insure that the IAP and
JAP are near each other. Therefore, the proxies must ex-
plicitly determine their distance to each other. While we
haven’t settled on the best way to do this, we note that scal-
able proximity addressing schemes like GNP [20] provide
one reasonable approach.

Because of the way we scale the RAPs (give them only
“rough” information about the targets at a given JAP), and
because we use multiple RAPs for each group, we cannot
provide exact load balance for all groups (though we might
be able to do so for a small number of select groups). In-
stead, we aim for “statistical” load balancing. Never-the-
less, this is much better than what is provided by native IP
anycast.

Finally, we note that proxies could potentially base their
target selection on still other criteria. For instance, in the
case where a target in a given anycast group is also a client
of that group, proxies can exclude that target from their se-

lection. A proxy could select a random target, something
that might be useful for instance for spreading gossip. A
proxy could use some kind of administrative scoping to se-
lect a target, for instance selecting a target with the same
(unicast) IP prefix as the client. A proxy could even repli-
cate packets and send them to multiple targets.

2.2 Status
We have implemented and tested the basic PIAS system in
the laboratory as a sanity check for our ideas and to get a
better grip on the implementation issues facing us. With the
system geared towards core routers, the current implemen-
tation comprises of 2 components:
1. A user-space component responsible for the overlay
management such as handling proxy join/leaves, target
join/leaves, health monitoring etc.
2. A kernel-space component responsible for the actual for-
warding of packets through the use of Netfilter hooks[13].
This involves tunnelling of the packets when sending them
between 2 proxy nodes, and using a NAT[17] when handling
packets to/from a target. The current kernel implementation
doubles up the packet forwarding time as compared to the
normal packet forwarding by the unmodified kernel. The
actual figures are not presented as they do not offer any ad-
ditional insight into the overhead involved.
We also have a pure user-space implementation, which will
be necessary if we piggyback our deployment on an existing
research testbed (e.g. RON [12]).

Our main challenge, however, is deploying PIAS on the
Internet and convincing applications to use our infrastruc-
ture service. For this purpose, we are looking at several pos-
sible deployment opportunities. The first step, and our main
bottleneck so far has been in getting the required IP address
blocks. We recently have made progress on this front (with
ARIN), and so it appears that we may be able to start a real
deployment quite soon.

3 Discussion and Research Issues
PIAS solves the major issues that limit IP anycast deploy-
ment. In doing so, it slightly weakens some of the major
strengths of native IP anycast. In particular, we’ve lost some
of the natural robustness of IP anycast, since we now rely on
more than just IP routing. In addition, we’ve lost some of
the simple nearness properties of native IP anycast. Never-
theless, we believe that PIAS is adequately robust and will
provide good nearness properties in addition to the problems
it solves.

Because PIAS uses indirection, it deserves comparison
with i3 [9]. One major difference is that i3 requires changes
to the network stack to add the i3 layer between the cur-
rent network and transport layers. PIAS requires no changes
in clients whatsoever, and can operate with no changes in
servers (if some surrogate node registers on its behalf). This
makes deployment of i3 much harder than PIAS. A second
important difference is that PIAS uses IP anycast, thus mak-
ing it straightforward to derive proximity. Indeed, i3 could
benefit from using PIAS, both as a means of i3 node discov-
ery and routing packets to nearby i3 nodes.
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One major problem that we haven’t yet discussed is con-
nection affinity. The issue is how to maintain affinity when
native IP routing causes a different IAP to be selected during
a given client connection (if the same IAP is always used,
then the IAP will continue to use the same JAP that it ini-
tially cached). Application-layer anycast doesn’t have this
problem, because it always makes its target selection deci-
sion at connection start time, and subsequently uses unicast.
A simple solution would be to have RAPs select JAPs based
on the identity of the client. This way, for instance, even
if IP routing caused packets from a given client to select a
different IAP, it could be routed to the same JAP. This ap-
proach won’t fly, however, because it completely sacrifices
proximity and load balance.

A more acceptable approach might be to take advantage
of the fact that IAP changes would most likely occur within
an ISP with multiple proxies, not across ISPs. Therefore,
we can limit the set of IAPs among which affinity must be
coordinated. For instance, if an IAP receives a packet for
which it doesn’t have connection information (and which
is identifiably not the start of a new connection), the IAP
could query the others in its group. Or, clients could be
hashed into an IAP within the set, which could cache the
JAP selected for the connection.

These approaches, while perhaps acceptable, are not very
attractive. They add complexity and overhead. Fortunately,
they may not be necessary—the affinity provided by IP
routing may in fact be good enough. To test this, we ran
some measurements against existing anycasted DNS root
servers and anycast sink holes to determine how often IP
routing selected different destinations. We found that na-
tive IP anycast itself provides good affinity. Over 9 days
of measurements at a rate of a probe every minute from 40
Planetlab sites to six anycast targets, 93.75% of the source-
destination pairs never changed. The remaining 6.25% of
the source-destination pairs (15 pairs) experienced a total
of 120 route changes over the entire duration (i.e over∼
13000*15 probes), with at most 8 changes for any given
source-destination pair. These experiments were also re-
peated with higher probe rates (once every 10 seconds) to
make sure we were not missing out on very frequent flaps—
the results appear similar.

To put this in more concrete terms, the probability that
a two minute connection would experience a change is
roughly 1 in 13,000, and the probability that a one hour con-
nection would experience a change is roughly 1 in 450. If
these numbers hold (or improve!) across a larger anycast
deployment, then it is clear that most, though not all, appli-
cations would not require any affinity mechanisms beyond
those provided by IP routing. This is one area that requires
further experimentation.

A second main area for further research is how to run
BGP and IGP routing so that both routing changes and rout-
ing failures are minimized, and so that routing selects good
paths to proxies. There are concerns that the use of poli-
cies in inter-domain routing adversely impact it’s ability to
find nearby destinations. We tried to measure the stretch
between anycast latencies and the shortest unicast path to

the afore-mentioned DNS root servers and sink-holes, but
found it difficult to get conclusive results, in part because
of hierarchical nature of these anycast deployments[7]. An-
other concern is that a large proxy deployment will produce
frequent BGP events, which will be interpreted by BGP as
instabilities, resulting in BGP hold downs [16].

Ultimately, the only way we can resolve these research
issues is with deployment of a working PIAS and experi-
mentations with real applications.
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