
Transactional Events

Kevin Donnelly
Boston University
kevind@cs.bu.edu

Matthew Fluet
Cornell University

fluet@cs.cornell.edu

Abstract
Concurrent programs require high-level abstractions in order to
manage complexity and enable compositional reasoning. In this
paper, we introduce a novel concurrency abstraction, dubbed trans-
actional events, which combines first-class synchronous message-
passing events with all-or-nothing transactions. This combination
enables simple solutions to interesting problems in concurrent pro-
gramming. For example, guarded synchronous receive can be im-
plemented as an abstract transactional event, whereas in other lan-
guages it requires a non-abstract, non-modular protocol. Likewise,
three-way rendezvous can also be implemented as an abstract trans-
actional event, which is impossible using first-class events alone.
Both solutions are easy to code and easy to reason about.

The expressive power of transactional events arises from a se-
quencing combinator whose semantics enforces an all-or-nothing
transactional property – either both of the constituent events syn-
chronize in sequence or neither of them synchronizes. This se-
quencing combinator, along with a non-deterministic choice com-
binator, gives transactional events the compositional structure of a
monad-with-plus. We provide a formal semantics for and a prelim-
inary implementation of transactional events.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language constructs and features—Concurrent program-
ming structures; D.1.3 [Programming Techniques]: Concurrent
programming

General Terms Languages, Design

Keywords concurrency, synchronous message passing, first-class
events, transactions, monads

1. Introduction
Programming with concurrency can be an extremely difficult task.
A concurrent program’s inherent non-determinism makes it diffi-
cult to reason about and even harder to debug. However, concur-
rency has proven to be a useful tool for structuring programs, as
well as an important means of improving performance. Concur-
rency is indispensable when implementing interactive systems that
must quickly react to unpredictable and asynchronous occurrences,
like user input or network activity. Concurrent execution of multi-
ple threads also allows programs to take advantage of the presence
of multiple cores or processors on a single machine.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’06 September 16–21, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-309-3/06/0009. . . $5.00.

Given the usefulness of concurrent programs, it is important
to provide programmers with abstraction mechanisms that help
manage the complexity of reasoning about them. One means
of managing this complexity, exemplified by both Concurrent
ML (CML) [21] and Software Transactional Memory (STM)
Haskell [7], is to introduce first-class, composable operations that
encapsulate a particular concurrent programming style: synchro-
nous message passing in CML and shared-memory transactions in
STM Haskell. Such first-class, composable operations allow com-
plex thread interactions to be abstractly packaged and exported,
which increases modularity and eases reasoning.

STM Haskell utilizes monadic computations as a means of
structuring shared-memory transactions, which ensures that iso-
lated sequences of accesses of shared memory are performed atom-
ically. STM computations can be naturally composed in sequence
or as alternatives, giving rise to flexible concurrency abstractions.
The atomicity and isolation guarantees of STM transactions ease
reasoning about interaction of concurrent threads, but preclude the
use of STM transactions for thread interactions, like synchronous
message passing.

Concurrent ML utilizes first-class events as a means of structur-
ing synchronous message passing. Like STM computations, events
are abstractly packaged groups of actions. However, events allow
for synchronous message passing and are not isolated. Events can
be naturally composed as alternatives, but sequential composition
of events can be difficult to reason about. Synchronous message
passing is inherently more powerful than asynchronous message
passing; because of this, there are abstractions, like swap channels,
that may be implemented as CML events but have no implementa-
tion as STM computations. However, the “all-or-nothing” (atomic)
semantics of STM computations makes composition and reasoning
easier, and can lead to greater modularity.

In this work, we explore an abstraction mechanism for con-
current programming that combines first-class synchronous events
with all-or-nothing transactions. This combination allows program-
mers to simultaneously take advantage of the power of synchronous
message passing and the modularity and composability of transac-
tions. It also leads to abstractions that are more expressive than
either CML events or STM computations. This paper makes the
following contributions:

• We introduce the notion of Transactional Events (TE). These
synchronous message passing abstractions overcome some lim-
itations of CML events and allow for greater modularity in
concurrent programming. The increased modularity and all-
or-nothing nature of transactional events eases reasoning and
makes these events better suited to composition.

• We give a formal semantics for a language, TE Haskell, which
draws inspiration from both Concurrent ML and Concurrent
Haskell. The language includes transactional events, concurrent
threads, monadic I/O, and exceptions.

• We show the expressive power of TE Haskell with respect
to other concurrency primitives by giving implementations of
modular guarded receive, CML events, transactional shared
memory, and 3-way synchronous rendezvous.

• We describe a prototype implementation of transactional events
as a library for Haskell, using the STM Haskell extensions
available in GHC.

The remainder of the paper is structured as follows. Section 2
briefly reviews Concurrent ML and Concurrent Haskell. Section 3
discusses the informal semantics of transactional events and gives
some simple examples, before turning to the formal semantics of
TE Haskell in Section 4. Next, we explore the expressive power
of transactional events with more complex examples, including en-
codings of CML events and transactional shared memory. Section
6 sketches our implementation of transactional events, while Sec-
tion 7 discusses related work. We conclude with some directions
for future work.

2. Background
2.1 Concurrent ML
Concurrent ML is a library for Standard ML that provides threads
and synchronous message passing. The CML Library [21, Appen-
dix A] provides types for synchronous events (’a event) and syn-
chronous channels (’a chan), as well as the following operations:

channel : unit -> ’a chan
sendEvt : ’a chan * ’a -> unit event
recvEvt : ’a chan -> ’a event

sync : ’a event -> ’a
choose : ’a event list -> ’a event
wrap : ’a event * (’a -> ’b) -> ’b event
guard : (unit -> ’a event) -> ’a event
withNack : (unit event -> ’a event) -> ’a event
alwaysEvt : ’a -> ’a event
never : ’a event

A value of type ’a event is an abstract synchronous operation
that returns a value of type ’a when it is synchronized upon. An
event value represents potential communication and synchronous
actions, and is itself quiescent; its latent action is only performed
when a thread synchronizes on it. The strength of first-class events
is that they overcome the tension between abstraction and selective
communication. Events are abstract like functions, but can partici-
pate in selection. This combination achieves a level of abstraction
and modularity not found in previous concurrent languages.

We briefly describe the CML operations below:

channel () creates a new synchronous channel.

sendEvt (ch, m) creates an event which sends message m on
channel ch. This event becomes enabled (i.e., can be selected
for synchronization) when communication can proceed without
blocking (i.e., when there is a matching receiver), and yields ().

recvEvt ch creates an event which receives a message on chan-
nel ch. This event becomes enabled when communication can
proceed without blocking, and yields the received message.

sync ev synchronizes on the event ev.

choose [ev1, ..., evn] creates the event which, when syn-
chronized on, non-deterministically chooses some enabled evi.

wrap (ev, f) creates an event which, if ev is selected for syn-
chronization yielding the value v, evaluates and yields f v.

guard f creates an event which, at synchronization time, evalu-
ates f () to an event ev, and then acts as ev.

withNack f creates an event which, at synchronization time,
evaluates f nack to an event ev, and then acts as ev. The
argument nack is an event that becomes enabled only if an
event other than ev is selected for synchronization.

alwaysEvt a creates an event which is always enabled, and
yields a.

never creates an event which is never enabled.

In general, one often wants to implement a protocol consisting
of a sequence of communications c1; c2; . . . ; cn. To use such a pro-
tocol in CML, one of the ci must be designated as the commit point,
the communication by which this protocol is chosen over others in a
choose. The entire protocol may be packaged as an event value by
using guard to prefix the communications c1; . . . ; ci−1 and using
wrap to postfix the communications ci+1; . . . ; cn. Note all of the
pre-synchronous communications must succeed in order for guard
to yield the commit point communication; likewise, all of the post-
synchronous communications must succeed in order for wrap to
yield the synchronization result.

Limitations of CML events The fact that all CML events must
have a single commit point places a limitation on the mod-
ularity achievable with these events. Consider the example of
trying to program guarded receive in CML. Given a channel
ch : ’a chan and a guard g : ’a -> bool, we would like an
event, grecvEvt g ch : ’a event, that will receive a message
x from ch, but only if g x evaluates to true. Because message
passing is synchronous, we cannot just receive from the channel
and test the result, because the sender will complete its synchro-
nization after the send. Guarded communication can be imple-
mented as an event in CML, but it requires a fairly complicated
protocol in which the sender and the receiver cooperate to achieve
the desired behavior. In TE Haskell, guarded receive can be given a
transparently correct implementation with just a few lines of code.

Requiring a protocol to implement guarded receive leads to
a lack of modularity. If we decide that we want to perform a
guarded receive on some existing channel, then we need to alter
all of the code that sends and receives on this channel to use the
channel-with-guarded-receive abstraction, although we may have
required a guarded receive for only one receiver. In TE Haskell, the
implementation of guarded receive is local to the receiver.

Having a single commit point also limits the expressive power
of CML events. In CML, given the operations for 2-way synchro-
nization, there is no way to implement 3-way synchronization as an
event abstraction [16, 21]. As we show in Section 5.4, TE Haskell
allows for abstract implementation of such 3-way synchronous op-
erations.

2.2 Monadic I/O and Concurrent Haskell
TE Haskell is an extension of Concurrent Haskell [18], which ex-
tends Haskell with concurrency primitives. Following the Haskell
tradition, Concurrent Haskell isolates the side-effect producing
concurrency primitives in the I/O monad [19, 17]. Intuitively, val-
ues of type IO a are actions which, when performed, may do some
I/O and then yield an a. Actions that read and write a character,
getChar and putChar, are given the following types:

getChar :: IO Char
putChar :: Char -> IO ()

Concurrent Haskell supports multiple threads running I/O ac-
tions concurrently. I/O actions are turned into threads using the
function forkIO:

forkIO :: IO a -> IO ThreadId

forkIO a spawns a new thread to perform the I/O action specified
by a and returns the identifier of the newly spawned thread to the

caller. For example, here is a program that spawns one thread to
write the character ’A’ and another to write the character ’B’:

main :: IO ()
main = do { forkIO (putChar ’A’)

; forkIO (putChar ’B’)
; return () }

Note that ’A’ and ’B’ are written in a non-deterministic order.

3. Transactional Events
In TE Haskell we overcome the limitations of CML’s single commit
point requirement by allowing event synchronization to take place
in transactions that can be aborted if they do not successfully com-
plete. Transactions are an old idea from the world of databases and
have recently found use as powerful technique to ensure atomicity
in concurrent programming [8, 5, 26, 7]. We adapt transactions to
the setting of synchronous message passing, yielding large gains in
modularity and expressiveness.

Transactions group tentative actions made during computations,
which can then be committed if the transaction successfully com-
pletes or aborted otherwise. In databases, the actions are a single
client’s database queries; in transactional memory, the actions are a
single thread’s reads of and writes to shared memory; in both cases,
success is a serializable schedule. Tentative actions are not observ-
able by the rest of the system or program until the entire transaction
commits, so transactions provide an all-or-nothing semantics.

Due to this all-or-nothing semantics, transactions provide a
straightforward way of overcoming the single-commit point lim-
itation of CML. By viewing an event synchronization as a transac-
tion, where tentative synchronous message passing between threads
merges their event synchronization transactions (so that they either
commit or abort together), it becomes possible to construct sophis-
ticated abstract synchronous operations that cannot be constructed
in previous concurrent languages.

In the rest of this section we informally describe transactional
events in the context of an extension of Concurrent Haskell [18].
Haskell provides an ideal setting for programming with transac-
tional events because the monadic type system makes it easy to
keep irrevocable side-effects out of transactional events, which may
otherwise need to be aborted.

The basic interface for transactional events is given in Figure 1.
An Evt a is a transactional event: an abstract synchronous oper-
ation that yields an a when synchronized upon. An SChan a is
a synchronous channel used for message passing. The sync op-
eration takes a transactional event to an I/O action that performs
the synchronization. Note that synchronization is not a pure func-
tion, but rather depends on the state of concurrently synchronizing
threads. Hence, sync yields an I/O action, although it does not it-
self perform any observable I/O.

New channels are created with newSChan, which is given an
event type so that we may create local channels inside of trans-
actional event synchronizations. The basic events sendEvt ch m
and recvEvt ch correspond to the event that sends m over ch and
the event that receives on ch. Message passing is synchronous, so
every send must be matched by a receive; a transactional event
synchronization may not successfully complete unless all of the
communications are matched by complementary communications
in other transactional event synchronizations that may also success-
fully complete. For example, the following program creates a chan-
nel, spawns a thread, receives a character on the channel from the
spawned thread, and finally prints the character:

main = do { ch <- sync newSChan
; forkIO (sync (sendEvt ch ‘A‘))
; c <- sync (recvEvt ch)
; putChar c }

data Evt a -- The Evt monad

sync :: Evt a -> IO a

thenEvt :: Evt a -> (a -> Evt b) -> Evt b
alwaysEvt :: a -> Evt a
chooseEvt :: Evt a -> Evt a -> Evt a
neverEvt :: Evt a

instance Monad Evt where
(>>=) = thenEvt
return = alwaysEvt

instance MonadPlus Evt where
mplus = chooseEvt
mzero = neverEvt

throwEvt :: Exception -> Evt a
catchEvt :: Evt a -> (Exception -> Evt a) -> Evt a

data SChan a -- Synchronous channels
newSChan :: Evt (SChan a)
sendEvt :: SChan a -> a -> Evt ()
recvEvt :: SChan a -> Evt a

Figure 1. The Evt Interface

Events can be composed in sequence using the thenEvt
combinator, which is also available as the monadic bind (>>=)
and may be used implicitly via Haskell’s do-notation. The event
ev ‘thenEvt‘ f is the event which tentatively synchronizes on
the event ev, yielding r, and then synchronizes on the event f r.
If these events cannot successfully complete in sequence, then the
composed event cannot successfully complete. For example, the
event which sends 0 and 1, in sequence, over the channel ch is:

ev1 = do { sendEvt ch 0 ; sendEvt ch 1 }

This event may only successfully complete synchronization if both
sends are successful; for example, it may synchronize if another
thread is synchronizing on the following event:

ev2 = do { recvEvt ch ; recvEvt ch }

The event alwaysEvt e is an event which immediately yields
e when synchronized upon. Note that alwaysEvt is a left and right
unit of thenEvt; hence, Evt forms a monad [25], with alwaysEvt
as the monadic unit.

Events may also be composed as non-deterministic al-
ternatives using the chooseEvt combinator. The event
ev1 ‘chooseEvt‘ ev2 synchronizes as either ev1 or ev2,
but only commits to a choice that can successfully complete. Until
such a choice can be determined, the composed event cannot
successfully complete. For example, the event which chooses
between sending 0 and 1 over the channel ch or receiving an
integer once on the same channel is:

ev3 = (do { sendEvt ch 0 ; sendEvt ch 1 })
‘chooseEvt‘
(do { recvEvt ch ; alwaysEvt () })

Note that this event cannot be implemented in CML, because the
first alternative completes only if two communications successfully
complete; there is no single communication to serve as the commit
point in CML. However, in TE Haskell, this event may synchronize
either with a thread synchronizing on ev2 or with a thread synchro-
nizing on the following event:

ev4 = sendEvt ch 2

Note, however, that if there are threads synchronizing on both
ev2 and ev4, then the event with which ev3 synchronizes is non-
deterministic; hence, chooseEvt is a commutative combinator.

The event neverEvt is an event which never successfully com-
pletes when synchronized upon. Since neverEvt never success-
fully completes, it may never be chosen by chooseEvt; hence,
neverEvt is a left and right unit for chooseEvt. Likewise,
neverEvt is a left and right zero for thenEvt. Hence, Evt a forms
a monad-with-plus [25, 9, 13], with chooseEvt as monadic plus
and neverEvt as monadic zero.

The semantics of transactional events requires that a synchro-
nization not commit to a particular alternative in a chooseEvt un-
less all of the constituent events in that alternative can successfully
complete. A synchronization also does not commit to a communi-
cation partner in a sendEvt or recvEvt unless the communication
leads to both partners successfully completing their transactional
event synchronizations. Hence, we may view a synchronization as
a transaction that commits when a collection of choice alternatives
and communication partners may successfully complete, and aborts
when such a collection may not successfully complete.

Because synchronous message passing involves other transac-
tional event synchronizations, which may abort, a synchronization
can only successfully complete if all of the synchronizations with
which it has communicated can also successfully complete. This al-
lows transactional events to achieve n-way synchronization, which
is impossible as an event abstraction in CML or as an STM com-
putation in STM Haskell.

3.1 Exceptions in Evt a

Thus far, the features of transactional events have straightforwardly
followed the intuition of extending CML event synchronization to
be an all-or-nothing transaction. Because Haskell allows exceptions
to be thrown from pure code, it is necessary to specify the semantics
of exceptions in transactional events and in synchronizations. The
treatment of exceptions in TE Haskell is somewhat subtle.

Asynchronous exceptions [14] have a straightforward treatment.
If a thread that is synchronizing on a transactional event receives
an asynchronous exception, it makes sense for the synchronization
to be entirely aborted and the exception raised as if it had been
thrown just before the start of the synchronization. Because event
synchronization is intended to be an all-or-nothing transaction, an
asynchronous exception should always be seen as arriving before
or after the synchronization step, never during. Asynchronous ex-
ceptions cannot be caught within a transactional event.

For synchronous exceptions that are thrown while synchroniz-
ing on an event, there are several possible design choices. Un-
caught exceptions could cause an event synchronization to abort
without committing, continuing to propagate the exception from
the sync ev expression. However, because transactional events in-
clude synchronous communication between threads, this semantics
would break the intuition that uncommitted events have no observ-
able effects. Consider the following threads and synchronizations:

t1 = sync (do { i <- recvEvt c
; if i == 0 then throw Foo

else return i })

t2 = sync (do { sendEvt c 0 ; neverEvt })

If the synchronization in t1 aborts with the exception Foo, then
this behavior would be caused by an uncommitted (and, in fact,
uncommittable) synchronization in t2. This not only breaks the
basic intuition of transactions, but can lead to some truly strange
behavior. For example, consider the following threads:

t3 = sync ((do { i <- recvEvt c
; if i == 0 then throw Foo

else return i })
‘chooseEvt‘ (sendEvt c 0))

t4 = sync ((do { i <- recvEvt c
; if i == 0 then throw Foo

else return i })
‘chooseEvt‘ (sendEvt c 0))

Under the immediate abort semantics, the tentative communica-
tions in these synchronizations could cause each other to abort. In
this case, each aborted synchronization actually has an effect: the
effect of causing the other to abort.

One possible solution to these problems would be to require
uncaught exceptions to commit a synchronization (including the
synchronizations of all communication partners) and consider the
propagated exception to be the value produced by the event syn-
chronization. In the first example above, t1 would not be able to
successfully commit since its communication partner cannot com-
mit. In the second example, only one of the synchronizations could
commit to an exception, since the other would have to commit to
the send that causes the exception. However, this semantics has
the disadvantage of complicating common-knowledge reasoning
about cooperating transactional event synchronizations. Consider
the case of these three synchronizing threads:

t5 = sync (sendEvt ch1 0)

t6 = sync (do { x <- recvEvt ch1
; if f x then sendEvt ch2 ’T’

else neverEvt })

t7 = sync (recvEvt ch2)

At first glance, it would seem that if t5 completes it synchroniza-
tion, then it should know that t7 has completed its synchronization,
because for t5 to commit to its send on ch1, t6 must commit to its
receive on ch1 and its send on ch2; hence, t7 must commit to its
receive on ch2. However, if f 0 throws an exception, then t6 need
only commit to its receive on ch1, and t5 and t6 may complete
their synchronizations without t7 completing its synchronization.
Allowing exceptions that propagate to the top-level of an event
synchronization to be treated as an event that successfully com-
pletes means that programmers must carefully consider every place
that an uncaught exception might be thrown as a possible commit-
ment point for the event synchronization. We believe that this goes
against the spirit of exceptions in Haskell, since exceptions are by
nature rare and programmers are unlikely to account for all pos-
sible origins of exceptions. With these considerations in mind, we
have chosen to make uncaught exceptions that reach the top-level of
an event synchronization act as an event which never successfully
completes, much like neverEvt. Hence, under our semantics, the
threads t3 and t4 block indefinitely, as do the thread t5, t6, and t7
when f 0 throws an exception. The choice of whether or not an un-
caught exception may commit its synchronization is a free design
decision; our choice was guided by the example above, where we
felt it better for the program to do nothing (block) than to behave
in a non-intuitive fashion (commit t5 and t6 without t7).

Nonetheless, there are times when an event must be robust
against exceptions. Therefore, despite the potential to compli-
cate reasoning, we do provide the means to throw and catch ex-
ceptions in transactional events. The event throwEvt ex throws
the exception ex when it is synchronized upon, while the event
catchEvt ev h is the event that acts as ev, except, if synchro-
nizing on ev throws an exception ex, then it synchronizes on
h ex. Exceptions thrown from pure code may also be caught by
catchEvt. Programmers making use of catchEvt have the re-
sponsibility to consider all possible origins of the exceptions han-
dled, making sure that the non-local control flow they are introduc-
ing does not destroy any important mutual commitment properties.

4. Semantics
In this section, we provide a formal, operational semantics for
transactional events. TE Haskell draws inspiration from both Con-
current ML and Concurrent Haskell. Like Concurrent ML, it in-
cludes first-class synchronous events and event combinators, but
extended with sequential composition. Like Concurrent Haskell, it
includes first-class I/O actions and I/O combinators.

4.1 Syntax
Figure 3 gives the syntax of TE Haskell. Values and expressions
in the language naturally divide into four categories: constants
(characters c, thread identifiers θ, and channel names κ), event
combinators, I/O combinators, and standard functional language
terms (e.g., λ-abstractions, applications), which we omit.

The event combinators should be familar from the description
in the previous section. Likewise, most of the I/O combinators
should be familiar from the description of Concurrent Haskell. In
order to clarify the behavior of monadic sequencing and exception
handling in the Evt and IO monads, we equip the IO monad
with distinguished combinators: unitIO, bindIO, throwIO, and
catchIO.

4.2 Dynamic Semantics
The essence of the dynamics is to interpret sequential terms, Evt
terms, and IO terms as separate sorts of computations. This is ex-
pressed by three levels of evaluation: pure evaluation of sequential
terms, synchronous evaluation of transactional events, and concur-
rent evaluation of concurrent threads. The bridge between the Evt
and IO computations is synchronization, which moves threads from
concurrent evaluation to synchronous evaluation and back to con-
current evaluation.

4.2.1 Sequential Evaluation (e ↪→ e′)
The “lowest” level of evaluation is the sequential evaluation of pure
functional language terms. Unsurprisingly, our sequential evalua-
tion relation is entirely standard and thus omitted.

4.2.2 Synchronous Evaluation (S S ′)
The “middle” level of evaluation is synchronous evaluation of
transactional events. We organize a group of synchronizing events
as a set of pairs of thread identifiers and Evt expressions:

Synchronizing Event S ::= 〈θ, e〉
Synchronization Groups S ::= {S, . . .}

The synchronous evaluation relation is closely related to the event
matching relation in the semantics of Concurrent ML [21]. Intu-
itively, the relation:

{〈θ1, e1〉, . . . , 〈θk, ek〉} {〈θ1, e′1〉, . . . , 〈θk, e′k〉}
means that the events e1,. . .,ek make one step towards synchro-
nization by transforming into the events e′1,. . .,e′k. The complete
set of rules is given in Figure 2a.

The rule EVTEVAL implements the sequential evaluation of
an expression in the active position. The rule EVTSUBSET is a
structural rule that admits transitioning on a subset of the syn-
chronizing events. The rule EVTTHENALWAYS implements se-
quential composition in the Evt monad. The rules EVTCHOOSE1
and EVTCHOOSE2 implement a non-deterministic choice between
events. The rules EVTTHENTHROW, EVTCATCHALWAYS, and
EVTCATCHTHROW propagate exceptions in the standard way.

The rule EVTNEWSCHAN allocates a new channel name; note
that the freshness of κ′ is with respect to the entire program state.
The rule EVTCOMM implements the two-way rendezvous of com-
munication along a channel; note that the transition replaces the
sendEvt and recvEvt events with alwaysEvt events.

Values
v ::= c characters

| θ thread identifiers
| κ channel names

| alwaysEvt e | thenEvt e1 e2

| neverEvt | chooseEvt e1 e2

| throwEvt e | catchEvt e1 e2

| newSChan | recvEvt κ | sendEvt κ1 e2

| unitIO e | bindIO e1 e2

| throwIO e | catchIO e1 e2

| getChar | putChar c
| forkIO e | sync e

| \x->e | . . . functional language values

Expressions
e ::= x variables

| v values
| e1 e2 | . . . functional language expressions

Figure 3. TE Haskell: Syntax

It is worth considering the possible terminal configura-
tions for a set of events. A “good” terminal configuration
is one in which all events are reduced to always events:
{〈θ1, alwaysEvt e1〉, . . . , 〈θk, alwaysEvt ek〉}. The “bad” ter-
minal configurations are ones with never events, or with uncaught
exceptions, or with unmatched send/receive events.

4.2.3 Concurrent Evaluation (T a−→ T ′)
The “highest” level of evaluation is concurrent evaluation of
threads. We organize the executing group of concurrent threads as
a set of pairs of thread identifiers and IO expressions:

Concurrent Threads T ::= 〈θ, e〉
Thread Soups T ::= {T, . . .}

To model the input/output behavior of the program, transitions
are labeled with an optional action:

Actions a ::= ?c | !c | ε

The actions allow reading a character c from standard input (?c)
or writing a character c to standard output (!c). The silent action ε
indicates no observable input/output behavior. In a real language,
there would be many other observable I/O actions.

The complete set of rules is given in Figure 2b. All of the rules
include non-deterministically choosing one or more threads for a
step of evaluation.

The rule IOEVAL implements the sequential evaluation of an
expression in the active position. The rule IOFORK creates a new
thread by selecting a fresh thread identifier, which is returned to
the parent thread, and adding a new term to the thread soup. The
rule IOBINDUNIT implements sequential composition in the IO
monad, while the rules IOBINDTHROW, IOCATCHUNIT, and IO-
CATCHTHROW propagate exceptions in the standard way. The two
rules IOGETCHAR and IOPUTCHAR perform the appropriate la-
beled transition, yielding an observable action.

The most interesting rule is IOSYNC. The rule selects some col-
lection of threads that are prepared to synchronize on transactional
events. This set of event values is passed to the synchronous eval-
uation relation, which takes multiple transitions to yield a terminal
configuration in which all events are reduced to alwaysEvt events.
That is, the set of events successfully synchronizes to final results.
The results of synchronization are moved from the Evt computa-
tion to the IO computation.

There are two interesting facets of the IOSYNC rule. The first
is that the concurrent transition has a silent action. Hence, synchro-

Synchronous Evaluation Contexts MEvt ::= [] | thenEvt MEvt
1 e2 | catchEvt MEvt

1 e2

EVTEVAL
e ↪→ e

′

{〈θ, M
Evt

[e]〉} {〈θ, M
Evt

[e
′
]〉}

EVTSUBSET
0 < |S′′| S S′

S] S′′ S′] S′′

EVTTHENALWAYS
{〈θ, M

Evt
[thenEvt (alwaysEvt e1) e2]〉} {〈θ, M

Evt
[e2 e1]〉}

EVTTHENTHROW
{〈θ, M

Evt
[thenEvt (throwEvt e1) e2]〉} {〈θ, M

Evt
[throwEvt e1]〉}

EVTCHOOSE1
{〈θ, M

Evt
[chooseEvt e1 e2]〉} {〈θ, M

Evt
[e1]〉}

EVTCHOOSE2
{〈θ, M

Evt
[chooseEvt e1 e2]〉} {〈θ, M

Evt
[e2]〉}

EVTCATCHALWAYS
{〈θ, M

Evt
[catchEvt (alwaysEvt e1) e2]〉} {〈θ, M

Evt
[alwaysEvt e1]〉}

EVTCATCHTHROW
{〈θ, M

Evt
[catchEvt (throwEvt e1) e2]〉} {〈θ, M

Evt
[e2 e1]〉}

EVTNEWSCHAN
κ
′ fresh

{〈θ, M
Evt

[newSChan]〉} {MEvt
[alwaysEvt κ

′
]〉}

EVTCOMM
{〈θ1, M

Evt
1 [sendEvt κ e]〉, 〈θ2, M

Evt
2 [recvEvt κ]〉}

 {〈θ1, M
Evt
1 [alwaysEvt ()]〉, 〈θ2, M

Evt
2 [alwaysEvt e]〉}

(a) Synchronous Evaluation

Concurrent Evaluation Contexts MIO ::= [] | bindIO MIO
1 e2 | catchIO MIO

1 e2

IOEVAL
e ↪→ e

′

T] {〈θ, M
IO

[e]〉} ε−→ T] {〈θ, M
IO

[e
′
]〉}

IOFORK
θ
′ fresh

T] {〈θ, M
IO

[forkIO e]〉} ε−→ T] {〈θ, M
IO

[unitIO θ
′
]〉, 〈θ′, e〉}

IOBINDUNIT
T] {〈θ, M

IO
[bindIO (unitIO e1) e2]〉}

ε−→ T] {〈θ, M
IO

[e2 e1]〉}
IOBINDTHROW
T] {〈θ, M

IO
[bindIO (throwIO e1) e2]〉}

ε−→ T] {〈θ, M
IO

[throwIO e1]〉}

IOCATCHUNIT
T] {〈θ, M

IO
[catchIO (unitIO e1) e2]〉}

ε−→ T] {〈θ, M
IO

[unitIO e1]〉}
IOCATCHTHROW
T] {〈θ, M

IO
[catchIO (throwIO e1) e2]〉}

ε−→ T] {〈θ, M
IO

[e2 e1]〉}

IOGETCHAR

T] {〈θ, M
IO

[getChar]〉} ?c−→ T] {〈θ, M
IO

[unitIO c]〉}
IOPUTCHAR

T] {〈θ, M
IO

[putChar c]〉} !c−→ T] {〈θ, M
IO

[unitIO ()]〉}

IOSYNC
{〈θ1, e1〉, . . . , 〈θk, ek〉} ∗ {〈θ1, alwaysEvt e

′
1〉, . . . , 〈θk, alwaysEvt e

′
k〉}

T] {〈θ1, M
IO
1 [sync e1]〉, . . . , 〈θk, M

IO
k [sync ek]〉} ε−→ T] {〈θ1, M

IO
1 [unitIO e

′
1]〉, . . . , 〈θk, M

IO
k [unitIO e

′
k]〉}

(b) Concurrent Evaluation

Figure 2. TE Haskell: Dynamic Semantics

nization itself is not observable, though it may unblock a thread
so that subsequent I/O actions are observed. Likewise, individual
synchronous evaluation transitions do not yield observable actions.

The second is the fact that multiple synchronous evaluation
steps correspond to a single concurrent evaluation step. Transitions
from different threads may be interleaved, but IOSYNC prevents
transitions from different sets of synchronizing events from be-
ing interleaved. Hence, synchronization executes “atomically,” al-
though the synchronization of a single event is not “isolated” from
the synchronizations of other events. (Indeed, it is imperative that
multiple events synchronize simultaneously in order to enable syn-
chronous communication along channels.) Note that the IOSYNC
rule conveys an all-or-nothing property on transactional event syn-
chronization.

4.3 Discussion
As noted before, we may interpret the synchronous evaluation of
events as an abortable transaction. That is, the synchronization of
events must happen atomically with respect to other synchroniza-
tions and I/O actions. Furthermore, the transaction aborts (with no
observable effects) at synchronization failures.

We may also interpret the synchronous evaluation of events as
a non-deterministic search with backtracking. That is, the synchro-
nous evaluation of events is searching for a successful synchroniza-
tion. Furthermore, the search must backtrack at synchronization

failures (e.g, never events, uncaught exceptions, and unmatched
send/receive events).

Both of these interpretations clarify the nature of the all-or-
nothing property of the Evt monad-with-plus. Note that the si-
lence of synchronous evaluation steps means that we may ten-
tatively evaluate synchronizations, while retaining the ability to
freely abandon the evaluation. We have used the IO monad to
ensure that truly irrevocable (i.e., observable) actions cannot take
place during the evaluation of a synchronization.

We may also see that TE Haskell preserves the “spirit” of Con-
current ML. Recall from Section 2.1 that one often wants to im-
plement a protocol consisting of a sequence of communications:
c1;c2;· · · ;cn. The thenEvt combinator of TE Haskell obviates
the need to distinguish one communication ci as the commit point
(and the complication of a protocol that must be robust against
failures in the communications c1;· · · ;ci−1 and ci+1;· · · ;cn).
(Nonetheless, one may still implement a sequence of communica-
tions with a dedicated commit point; see Section 5.2.)

Instead, we may implement the protocol as a sequence of com-
munications using the thenEvt combinator to ensure that all of the
communications synchronize or none of them synchronize. When
this protocol participates in selective communication, it will be cho-
sen only if all of the communications are able to synchronize with
corresponding communications in other synchronizing threads.

5. Expressiveness
In this section, we explore the expressiveness of TE Haskell by
demonstrating how a number of powerful concurrency abstractions
may be encoded. We begin by discussing an implementation of the
guarded receive abstraction (Section 5.1). It should come at no sur-
prise that we may easily encode Concurrent ML (Section 5.2). In-
terestingly, we may also easily encode transactional shared memory
(Section 5.3). Finally, we demonstrate that TE Haskell is strictly
more powerful than Concurrent ML by encoding an abstract three-
way rendezvous operation (Section 5.4).

Throughout this section, we will make extensive use of
Haskell’s do-notation for monadic computations. To improve the
readability of the encodings, we recall the fmap and join opera-
tions, which may be defined for any monad:

fmap :: Monad m => (a -> b) -> m a -> m b
fmap f m = do { x <- m ; return (f x) }

join :: Monad m => m (m a) -> m a
join mm = do { m <- mm; m }

5.1 Guarded Receive
The transactional nature of events in TE Haskell admits the imple-
mentation of useful synchronous operations and abstractions that
cannot be constructed in CML. One example of a synchronization
operation that is enabled by transactional events is guarded receive:
the receipt of a message on a channel only if the message satis-
fies a boolean guard. Several message-passing languages and for-
malisms, including Erlang [1] and CSP [10], support some form of
guarded receive.

In TE Haskell we can add guarded receive to channel commu-
nications by modifying only the receiver’s code. This cannot be
done in CML and cannot be done for synchronous communica-
tion in STM Haskell. This section shows that the use of transac-
tional events can result in simpler and more modular implementa-
tions of synchronous abstractions, like guarded receive, than can be
achieved with CML’s primitives alone.

In TE Haskell it is a simple matter to write a function that
creates an event to perform a guarded receive:

grecvEvt :: (a -> Bool) -> SChan a -> Evt a
grecvEvt g ch = do { x <- recvEvt ch

; if g x then return x
else neverEvt }

This new synchronous operation can now be freely com-
posed, either sequentially (with thenEvt) or alternatively (with
chooseEvt), with other synchronous operations. For example, the
event that chooses between receiving a tuple whose first element is
0 and one whose first element is 1 can be written:

(grecvEvt (\(x,y) -> x = 0) ch)
‘chooseEvt‘
(grecvEvt (\(x,y) -> x = 1) ch)

This synchronous abstraction cannot be implemented in CML
because as soon as a receive is performed, the sending thread
completes its synchronization and becomes unblocked. There is no
way for the receive to be undone and the sending thread reblocked.
It is possible to implement this behavior in CML using a protocol
in which the sender and the receiver cooperatively interact, but this
is much less modular than the use of grecvEvt.

This implementation of guarded receive is also kill-safe [2]:
if the reading thread is killed and the event synchronization is
aborted, then the program state is kept consistent. In addition,
threads performing a guarded receive can condition the receipt on
arbitrary, possibly non-terminating, predicates without interfering
with other threads that may wish to read on the channel. Achieving

alwaysCMLEvt :: a -> CMLEvt a
alwaysCMLEvt x = lift (alwaysEvt x)

wrapCMLEvt :: CMLEvt a -> (a -> IO b) -> CMLEvt b
wrapCMLEvt iei f = fmap (fmap (>>= f)) iei

guardCMLEvt :: IO (CMLEvt a) -> CMLEvt a
guardCMLEvt iiei = join iiei

neverCMLEvt :: CMLEvt a
neverCMLEvt = lift (neverEvt)

chooseCMLEvt :: CMLEvt a -> CMLEvt a -> CMLEvt a
chooseCMLEvt iei1 iei2 =

do { ei1 <- iei1 ; ei2 <- iei2
; return (ei1 ‘chooseEvt‘ ei2) }

recvCMLEvt :: SChan a -> CMLEvt a
recvCMLEvt ch = lift (recvEvt ch)

sendCMLEvt :: SChan a -> a -> CMLEvt ()
sendCMLEvt ch x = lift (sendEvt ch x)

syncCML :: CMLEvt a -> IO a
syncCML iei = do { ei <- iei ; i <- sync ei ; i }

Figure 4. CML Encoding

these properties with CML events, while possible, requires much
more complexity in addition to the lack of modularity.

5.2 Encoding Concurrent ML
We consider a simple CML encoding, making two relatively minor
changes to the semantics. First, we only consider a binary choose
combinator. Second, we omit the withNack combinator. (Since
withNack may be implemented as a stylized use of the other CML
combinators, there is no loss of expressive power.)

Recall that functions in Standard ML and Concurrent ML may
have arbitrary side-effects, including synchronization and I/O. One
way to interpret this fact is to consider that Standard ML functions
evaluate in a “built-in” I/O monad. While a general translation from
a language with imperative I/O to a language with monadic I/O
is beyond the scope of this paper (but is a well-understood prob-
lem [15]), we note that the general idea is to translate a function of
the type τ1 -> τ2 to a function of the type τ1 -> IO τ2.

Recall that the guard and wrap primitives of Concurrent ML
add arbitrary pre- and post-synchronization actions to an event.
We may encode this by interpreting a CML event as a pre-
synchronization IO action that yields an Evt value that in turn
yields a post-synchronous IO action:

type CMLEvt a = IO (Evt (IO a))

There is a trivial lifting from Evt values to CMLEvt values:
lift :: Evt a -> CMLEvt a
lift e = return (fmap return e)

The encodings of the CML combinators are given in Figure 4.
We use lift to coerce the simple event combinators into the
CMLEvt type. Note the manner in which syncCML performs the
“outer” IO action, then performs the synchronization of the Evt
value, then performs the “inner” IO action.

5.3 Encoding Transactional Shared Memory
It is well known that synchronous message passing may be used
to implement shared memory. For instance, there are canonical en-
codings of mutable variables in Concurrent ML [21, Sections 3.2.3
and 3.2.7]. Since transactional events extend CML synchroniza-

tions with an all-or-nothing transactional property, an interesting
question is whether or not we may encode shared memory transac-
tions in TE Haskell. This section demonstrates such an encoding.

We take as our starting point the software transactional memory
(STM) extension of Concurrent Haskell [7]. STM Haskell provides
a monadic type (STM a) that denotes an atomic memory transaction
and a type (TVar a) that denotes a transactional variable, along
with the following interface:

newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

atomic :: STM a -> IO a
unitSTM :: a -> STM a
bindSTM :: STM a -> (a -> STM b) -> STM b
retrySTM :: STM a
orElseSTM :: STM a -> STM a -> STM a

The STM a type represents computations that accesses transac-
tional variables. An STM a computation may be passed to atomic,
which returns an IO a action that, when performed, runs the trans-
action atomically with respect to all other memory transactions.
The retrySTM operation aborts a transaction and orElse oper-
ation selects (with left bias) between transactions. Hence, STM a
forms a (non-commutative) monad-with-plus.

There are obvious connections between STM Haskell and TE
Haskell. Both use an “outer” IO monad to sequence observable,
irrevocable effects and both use an “inner” monad to encapsulate
thread interactions in a manner that ensures that the effect of those
interactions are not visible until the interaction executes with a
consistent view.

Our encoding of the STM monad-with-plus makes three rela-
tively minor changes to the semantics. First, in order that orElse
may be more easily encoded by chooseEvt, we eliminate the left-
bias. Second, our encoding is in the spirit of previous encodings of
mutable variables, whereby a server thread maintains the state of
the variable and services requests to get or set the variable’s con-
tents. Hence, creating a new mutable variable requires spawning a
new thread. Therefore, in our implementation, we give newTVar
the type a -> IO (TVar a), which is a consequence of the fact
that forking a thread must occur in the IO monad. Finally, the se-
mantics of uncaught exceptions are slightly different. Nonetheless,
we feel that this encoding is well within the spirit of transactional
memory and demonstrates the expressibility of TE Haskell.

Figure 5 gives the encoding, which we discuss in some detail.
The high-level view of the encoding is quite simple. Recall that
each transaction variable will be represented by a server thread.
A thread wishing to read or write transaction variables sends its
thread identifier to the server thread. If a server thread receives the
thread identifier of a second thread while the first thread’s trans-
action is incomplete, it aborts the transaction (by synchronizing on
neverEvt). Hence, a thread completes its atomic transaction if and
only if it is the only thread to communicate with those transactional
variables accessed during the transaction.

From the description above, it is clear that we may take the en-
coding of the STM a type to be the Evt a type. From this defin-
ition, the encoding of the simple monadic operations follows di-
rectly. However, we must also provide the thread identifier at each
read or write of a transactional variable. Hence, we extend the Evt
interface with myThreadIdEvt :: Evt ThreadId, which is an
event that immediately yields the thread identifier of the synchro-
nizing thread. The semantics of Section 4 may be easily extended
with myThreadIdEvt, as the thread identifiers of synchronizing
threads are available in the synchronous evaluation relation.

A transactional variable is represented as a tuple of three chan-
nels: a thread identifier channel (tch), a read channel (rch), and a

type STM a = Evt a

atomic = sync
unitSTM = alwaysEvt
bindSTM = thenEvt
retrySTM = neverEvt
orElseSTM = chooseEvt

TVar a = (SChan ThreadId, SChan a, SChan a)

readTVar (tch, rch, wch) =
do { tid <- myThreadIdEvt

; sendEvt tch tid
; readEvt rch }

writeTVar (tch, rch, wch) x =
do { tid <- myThreadIdEvt

; sendEvt tch tid
; sendEvt wch x }

newTVar :: a -> IO (TVar a)
newTVar x =

do { tch <- sync newSChan
; rch <- sync newSChan
; wch <- sync newSChan
; let serve x =

do { tid’ <- recvEvt tch
; x’ <- (do { sendEvt wch x

; alwaysEvt x })
‘chooseEvt‘
(recvEvt rch)

; return (tid’, x’) }
; let loopEvt tid x =

(do { (tid’, x’) <- serve x
; if tid /= tid’

then neverEvt
else loopEvt tid’ x’ })

‘chooseEvt‘
(alwaysEvt x)

; let loopIO x =
do { x’’ <- sync (do

{ (tid’, x’) <- serve x
; loopEvt tid’ x’ })

; loopIO x’’ }
; forkIO (loopIO x)
; return (tch, rch, wch) }

Figure 5. Transactional Shared Memory Encoding

write channel (wch). When a thread in an atomic transaction wishes
to read from a transactional variable, it sends its thread identifier
along tch and then receives from rch. Similarly, when a thread
wishes to write to a transactional variable, it sends its thread iden-
tifier along tch and then sends the new value along wch.

All of the interesting action happens in the thread that services
a transactional variable, which is spawned when a transactional
variable is created. The server thread is comprised of two nested
loops: loopIO and loopEvt. The loopIO is an IO computation
that carries the state of the variable between atomic transactions.
The loopEvt is an Evt action that carries the state of the variable
through a single atomic transaction. The serve function is an Evt
computation that services a single read or write of the variable, re-
turning the new value of the variable and the thread identifier of
the thread that it serviced. The synchronization within loopIO first
services a single read or write, which establishes the identifier of a
thread that wishes to atomically access this variable, and then enters
the loopEvt. The synchronization described by loopEvt chooses
between servicing another request and completing the synchroniza-
tion by returning the final value of the variable. If the loopEvt ser-

vices another request, it further verifies that the serviced thread is
the same as the thread that first accessed the variable. If the serviced
thread differs, then the loopEvt transitions to a neverEvt. Since
neverEvt may never appear in a “good” terminal configuration for
the synchronization of a set of events, such a transition will never
be taken during a successful synchronization. Hence, only a single
thread will access the variable during a transaction.

Note that when a thread performs atomic, all of the server
threads for the variables it accesses are required to synchronize.
Furthermore, the encoding has a progress guarantee: if there are
two STM computations which could each commit in isolation given
the current state of shared TVars, then at least one will successfully
commit if they are run concurrently. This property follows from the
fact that the semantics of TE Haskell requires a successful synchro-
nization to be found if one exists – and such a synchronization does
exist, namely, the one where each server thread communicates with
same STM computation.

5.4 Encoding Three-way Rendezvous
The previous sections have demonstrated that TE Haskell is as
expressive as CML and transactional shared memory. A second
question is whether TE Haskell is more expressive than than CML.

One of the fundamental results about the expressivity of CML
is the following theorem:

THEOREM 1. (CML Expressivity)

Given the standard CML event combinators and an n-way
rendezvous base-event constructor, one cannot implement an
(n + 1)-way rendezvous operation abstractly (i.e., as an event
value). [21, Section 6.4]

For CML, which provides two-way rendezvous primitives
(sendEvt and recvEvt), this means that it is impossible to con-
struct an event-valued implementation of three-way rendezvous.

TE Haskell is strictly more expressive than CML:

THEOREM 2. (TE Haskell Expressivity)

Given the standard transactional event combinators and an n-
way rendezvous base-event constructor, one can implement an
(n + 1)-way rendezvous operation abstractly.

We demonstrate this theorem (for the case n = 2, though the theo-
rem holds in general) by providing an implementation of three-way
rendezvous, using the two-way rendezvous primitives sendEvt and
recvEvt (see Figure 6).

Our three-way rendezvous example is the triple-swap channel.
This type of channel allows three threads to swap values when they
synchronize; each thread offers a value and each thread accepts the
two values offered by the other two threads. Note that we require
each thread to be matched with precisely two other threads; if more
than three threads attempt to swap on the same triple-swap channel
at roughly the same time, it should not be the case that values are
swapped amongst more than three threads.

A value of type TriSChan a is implemented as a channel
carrying pairs of a value (of type a) and a reply channel (of type
SChan (a,a)). Hence, the newTriSChan action simply creates a
new channel.

More interesting is the implementation of the swapEvt action.
A thread that swaps on a channel non-deterministically chooses
between acting as a client or as a leader in the exchange protocol.
A client thread creates a new reply channel, sends its value and
reply channel along the triple-swap channel, and then receives the
two other values along the reply channel. A leader thread receives
the values and reply channels from two client threads, sends the
appropriate pairs of values along the reply channels, and returns
the appropriate pair of values as the result of the synchronization.

type TriSChan a = SChan (a, SChan (a, a))

newTriSChan :: Evt (TriSChan a)
newTriSChan = newSChan

swapEvt :: TriSChan a -> a -> Evt (a, a)
swapEvt ch x1 = client ‘chooseEvt‘ leader

where client = do { replyCh <- newSChan
; sendEvt ch (x1, replyCh)
; recvEvt replyCh }

leader = do { (x2, replyCh2) <- recvEvt ch
; (x3, replyCh3) <- recvEvt ch
; sendEvt replyCh2 (x3, x1)
; sendEvt replyCh3 (x1, x2)
; alwaysEvt (x2, x3) }

Figure 6. The TriSChan Abstraction

It is worth noting the reason that the above implementation does
not suffice for CML. The fundamental difficulty is that (from the
client’s point of view) the protocol requires two communications to
accomplish the exchange. However, in CML, one of these commu-
nications must be chosen as the commit point for the protocol. Tak-
ing the first communication as the commit point does not suffice, as
the client thread may rendezvous with the leader (successfully syn-
chronizing on the commit point), but then block waiting for another
thread to complete the swap. Taking the last communication as the
commit point does not suffice when the event is in a choose com-
binator, as the client may perform the first communication (thereby
enabling a leader thread and another client thread to swap) but then
fail to rendezvous at the second communication, by taking another
alternative in the choose. This breaks the abstraction, because the
other two threads cannot know that the thread received their swap
values.

This implementation may be easily extended to arbitrary n-way
synchronization, for any fixed or dynamic n. For the dynamic case,
we have the following interface:

type NWaySChan a
newNWaySChan :: Int -> Evt (NWaySChan a)
swapEvt :: NWaySChan a -> a -> [a]

where newNWaySChan n yield a synchronous channel for swap-
ping among n threads. With this interface, we may easily encode
first-class synchronization barriers [24].

6. Implementation
In this section, we describe a “proof-of-concept” implementation
of transactional events.1 While we make no claims that this imple-
mentation is optimal, we believe that it has a number of attractive
properties. First, the entire implementation is written in Haskell,
using the software transactional memory (STM) extensions of Con-
current Haskell [7] available in the Glasgow Haskell Compiler
(GHC) [4].2 Hence, the implementation required no changes to the
compiler or run-time system. Furthermore, the implementation may
take advantage of future developments that will extend GHC to ex-
ecute Haskell (with STM) on shared-memory multiprocessors [6].
Second, we may see from the implementation (and from knowl-
edge of the underlying implementation of STM) that transactional
events do not require a global lock to coordinate the synchroniza-
tion among communicating threads. Hence, the synchronization of

1 The implementation may be obtained at
http://www.cs.cornell.edu/People/fluet/research/tx-events.
2 However, the implementation of transactional events using STM is signif-
icantly more involved than the encoding of STM using transactional events
given in Section 5.3.

SYNCINIT
P] {〈θ, M

IO
[sync e]〉} ε−→ P] {〈θ, M

IO
, e, •〉}

SYNCCOMMIT
Committable({〈θ1, M

IO
1 , alwaysEvt e1, ρ1〉, . . . , 〈θn, M

IO
n , alwaysEvt en, ρn〉})

P] {〈θ1, M
IO
1 , alwaysEvt e1, ρ1〉, . . . , 〈θn, M

IO
n , alwaysEvt en, ρn〉}

ε−→ P \{θ1,...,θn}]{〈θ1, M
IO
1 [unitIO e1]〉, . . . , 〈θn, M

IO
n [unitIO en]〉}

EVTCHOOSE
P] {〈θ, M

IO
, M

Evt
[chooseEvt e1 e2], ρ〉}

ε−→ P] {〈θ, M
IO

, M
Evt

[e1], Left:ρ〉,
〈θ, M

IO
, M

Evt
[e2], Right:ρ〉}

EVTCOMM
Coherent(〈θ1, ρ1〉, 〈θ2, ρ2〉)

P] {〈θ1, M
IO
1 , M

Evt
1 [sendEvt κ e], ρ1〉, 〈θ2, M

IO
2 , M

Evt
2 [recvEvt κ], ρ2〉}

ε−→ P] {〈θ1, M
IO
1 , M

Evt
1 [sendEvt κ e], ρ1〉, 〈θ2, M

IO
2 , M

Evt
2 [recvEvt κ], ρ2〉,

〈θ1, M
IO
1 , M

Evt
1 [alwaysEvt ()], Send(〈θ2, ρ2〉):ρ1〉,

〈θ2, M
IO
2 , M

Evt
2 [alwaysEvt e], Recv(〈θ1, ρ1)〉:ρ2〉}

Figure 7. TE Haskell: Dynamic Semantics: Refined

threads will not impact the progress of non-synchronizing threads,
nor will the synchronization of one group of threads impact the
progress towards the synchronization of another independent group
of threads; that is, the implementation has a property similar to dis-
joint access parallelism.

Since there is a large gap between the semantics of Section 4
and a viable implementation of TE Haskell, we proceed in two
stages. First, we close the gap by giving a refined the semantics that
eliminates the most glaring impediment to implementation. Then,
we briefly discuss how the remaining impediments in the refined
semantics are eliminated in our implementation.

6.1 Refined Semantics
It should come as no surprise that the major stumbling block in
implementing TE Haskell is how to effectively implement the IO-
SYNC rule of Figure 2b. A naı̈ve interpretation of this rule re-
quires an implementation to omnisciently choose, up front, a set
of synchronizing threads and a sequence of synchronous evalua-
tion transitions, which may be arbitrarily long. A semantics that is
more readily seen to have a viable implementation is one where the
choice of threads and evaluation transitions in a synchronization
may be delayed.

In our refined semantics, we distinguish between the concurrent
threads of Section 4.2.3 and search threads:

Concurrent Threads T ::= 〈θ, e〉
Search Threads S ::= 〈θ, MIO, e, ρ〉
Thread Soups P ::= {T, . . . , S, . . .}

Concurrent threads continue to execute according to the rules in
Figure 2b, except that we will shortly revise the IOSYNC rule. A
search thread includes the thread identifier and IO continuation of
the concurrent thread on whose behalf it is searching for a syn-
chronization, a transactional event to be evaluated, and a transac-
tional event path recording the history of the search thread. A com-
pleted search thread is one where the transactional event has the
form alwaysEvt e’.

A transactional event path records the non-deterministic choices
(including communication) made during the evaluation of a trans-
actional event, while a trail pairs a thread identifier with a path:

Path ρ ::= Left:ρ | Right:ρ | Send(τ):ρ | Recv(τ):ρ | •
Trail τ ::= 〈θ, ρ〉

We say that a path ρa extends the path ρb, written ρa � ρb if ρb is
a suffix of ρa.

The dependencies of a trail 〈θ, ρ〉, written Dep(〈θ, ρ〉), is the
set of trails that it interacts with, either directly or indirectly:

Dep(〈θ, •〉) = ∅
Dep(〈θ, Left:ρ〉) = Dep(〈θ, ρ〉)

Dep(〈θ, Right:ρ〉) = Dep(〈θ, ρ〉)

Dep(〈θ, Send(〈θ′, ρ′〉):ρ〉) = {〈θ′, Recv(〈θ, ρ〉):ρ′〉}
∪ Dep(〈θ, ρ〉) ∪ Dep(〈θ′, ρ′〉)

Dep(〈θ, Recv(〈θ′, ρ′〉):ρ〉) = {〈θ′, Send(〈θ, ρ〉):ρ′〉}
∪ Dep(〈θ, ρ〉) ∪ Dep(〈θ′, ρ′〉)

Note that the dependencies at a communication adds a trail in which
the partner’s path includes the matching communication.

In order for a completed search thread to commit, all of its de-
pendencies must be willing to commit. We formalize this intuition
in the definition of a committable set of completed search threads:

DEFINITION 1. (Committable)
A set of completed search threads
{〈θi, M

IO
i , alwaysEvt ei, ρi〉, . . .} is committable if

• each θi is unique,
• for each 〈θi, ρi〉, if 〈θ, ρ〉 ∈ Dep(〈θi, ρi〉), then there exists j such

that θ = θj and ρj � ρ.

The definition of a committable set of search threads ensures that
each search thread corresponds to a unique synchronization and
that all dependencies of each search thread are included in the set.

Figure 7 revises the dynamic semantics of Section 4 to eval-
uate search threads. The single IOSYNC rule is replaced by the
SYNCINIT and SYNCCOMMIT rules, while the synchronous eval-
uation rules dealing with event expressions are replaced by rules
dealing with search threads. The SYNCINIT rule transitions a con-
current thread at a sync to a search thread with an empty path.
The SYNCCOMMIT rule transitions a set of committable search
threads to concurrent threads, while also removing all other search
threads that were searching on behalf of the now synchronized con-
current threads. (The notation P\Θ removes all search threads with
a thread identifier in Θ from the thread soup P .)

We elide the straightforward adaptations of the rules for se-
quential evaluation of pure terms in a search thread, propaga-
tion of alwaysEvt and throwEvt, and channel allocation. The
EVTCHOOSE rule transitions a single search thread evaluating a
chooseEvt to two search threads evaluating the choice alterna-
tives; note that the paths of the search threads are extended to record
the non-deterministic choice.

The EVTCOMM rule implements synchronous message passing
along a channel. Note that the search threads corresponding to the
sender and receiver remain in the thread soup to participate in
other communications, as there is no guarantee that this tentative
communication will lead to synchronization. While it would be
acceptable to spawn new search threads for any sender/receiver pair
on the same channel, there are some communications for which
the resulting search threads may never commit together. Hence, we
only allow communication between coherent search threads:

DEFINITION 2. (Coherent)
The trails 〈θ1, ρ1〉 and 〈θ2, ρ2〉 are coherent if
• θ1 6= θ2,
• if 〈θ1, ρ〉 ∈ Dep(〈θ2, ρ2〉), then ρ1 � ρ,

• if 〈θ2, ρ〉 ∈ Dep(〈θ1, ρ1〉), then ρ2 � ρ, and
• if 〈θ, ρa〉 ∈ Dep(〈θ1, ρ1〉) and 〈θ, ρb〉 ∈ Dep(〈θ2, ρ2〉), then

ρa � ρb or ρb � ρa.

Threads may not communicate with themselves; hence, we require
that θ1 6= θ2. If θ2 interacted (directly or indirectly) with some θ1

search thread in the past, then it must have been in the history of
this θ1 search thread; and vice versa. Finally, if there is a common
depended upon thread, then the path in one dependency must be an
extension of the path in the other dependency; that is, the search
threads θ1 and θ2 have a consistent view of the common depended
upon thread’s history.

6.2 Implementation Details
While the semantics in Section 6.1 interleave the evaluation of
many search threads with the evaluation of concurrent threads,
there remain a number of impediments to implementation, notably
in the EVTCOMM and SYNCCOMMIT rules.

The EVTCOMM rule is problematic for two reasons. First,
it requires matching two threads in the thread soup that are at-
tempting to communicate on the same channel. Second, since the
search threads corresponding to the sender and the receiver re-
main in the thread soup, evaluation may repeatedly spawn re-
dundant search threads. Both of these issues are handled in
our implementation by representing channels as a lists of sus-
pended search threads for senders and receivers, implemented as
TVar ([Sender a],[Recver a]). A search thread wishing to
send on a channel atomically adds itself to the list of senders and
takes a copy of the list of receivers, then forks pairs of new search
threads for each coherent thread in the list of receivers; a search
thread wishing to receive from a channel behaves similarly. Note
that by atomically manipulating the pair of lists, a sending search
thread is guaranteed to send to all receivers already on the list of
receivers and to be on list of senders for all future receivers.

The SYNCCOMMIT rule is problematic for a number of reasons.
First, it requires finding a committable set of completed search
threads in the thread soup. Second, it requires removing from the
thread soup all other search threads that were searching on behalf
of the now synchronized concurrent threads. The second issue
is dealt with in our implementation by ensuring that all search
threads arising from the same concurrent thread synchronization
share a boolean flag, implemented as TVar Bool. This boolean
flag is allocated, with an initial value of False, at the equivalent
of the SYNCINIT rule and is copied to each forked search thread.
When a set of search threads commit, at the equivalent of the
SYNCCOMMIT rule, all of their boolean flags are set to True.
Search threads periodically check the flag, terminating if the flag
is set to True. Similarly, the definitions of a committable and
coherence are modified to require that the boolean flags of search
threads are set to False. Finally, we periodically filter the list
of senders and list of receivers of a channel of suspended search
threads with boolean flags set to True; doing so prevents space
leaks and limits the number of potential partners that need to be
considered at each communication.

Finding a committable set of search threads in the thread soup
is the most subtle part of the implementation. Note that a search
thread that transitions to a completed search thread may determine
a minimal set of thread identifiers required for commitment by con-
sulting its dependencies. If a completed search thread could de-
termine not just a minimal set of thread identifiers required for
commitment, but the entire set of completed search threads re-
quired for commitment, then it could locally determine a com-
mittable set of completed search threads. We make this possi-
ble by augmenting each communication element in a transactional
event path with two completed search thread lists, implemented
as TVar [Completed]. These lists maintain the completed search

threads that extend the current path and the path of the communica-
tion partner. Pairs of these lists are allocated at each communication
and are shared by the pairs of search threads forked at a commu-
nication. When a search thread transitions to a completed search
thread, it atomically adds itself to the completed search thread lists
on its path, thereby making itself available for commitment to all
of the search threads with which it communicated. Finally, a com-
pleted search thread performs one atomic scan of the completed
search thread lists of its communication partners, attempting to find
a committable set of completed search threads. If such a set exists,
then the boolean flags of the completed search threads are set to
True and the completed search threads are transitioned to concur-
rent threads. If no such set exists, then the completed search thread
remains suspended on the completed search thread lists, awaiting
commitment to be initiated by another completed search thread.

There remains one minor discrepancy between the semantics of
Section 6.1 and our implementation. In the semantics, we use dis-
tinguished search threads and explicit evaluation contexts. In the
Haskell implementation, we use a CPS-like encoding of the Evt
monad in order to fork search threads. When a concurrent thread
performs a sync, it allocates a new TVar to return the synchro-
nization result to the concurrent thread, spawns the initial search
thread with an initial continuation, and blocks reading the TVar for
the synchronization result. The interested reader is encouraged to
consult the implementation.

7. Related Work
The UniForM Workbench [12, 22] is a Concurrent Haskell exten-
sion that provides a library of abstract data types for shared memory
and message passing communication. The message passing model
is very similar to that of Concurrent ML. Russell [22] describes an
implementation of events in Concurrent Haskell. The implementa-
tion provides events with the following interface:

data Event a

sync :: Event a -> IO a
(>>>=) :: Event a -> (a -> IO b) -> Event b
computeEvent :: IO (Event a) -> Event a
(+>) :: Event a -> Event a -> Event a
never :: Event a
always :: IO a -> Event a

instance Monad Event where
(>>=) event1 getEvent2 =

event1 >>>= (\ val -> sync (getEvent2 val))
return val = always (return val)

A significant difference with respect to Concurrent ML is the fact
that the choice operator +> is asymmetric; it is biased towards the
first event. Although the interface makes Event an instance of the
Monad typeclass, the author points out that events do not strictly
form a monad, since return is not a left identity.

We may see that the interface above is closely related to our
encoding of Concurrent ML in Section 5.2. The computeEvent
operator is equivalent to our guardCMLEvt operator, providing
pre-synchronous actions. The >>>= operator is equivalent to our
wrapCMLEvt operator, providing post-synchronous actions. The
always operator turns a post-synchronous action into an event;
hence, the implementation of return in the instantiation of Event
as a Monad requires a return in the IO monad.

Panangaden and Reppy [16] discuss the algebraic structure of
first-class events and the extent to which they form a monad. Their
conclusion is that events very nearly form a monad, but the monad
laws do not hold under the observability of deadlock. A closer
examination of their analysis reveals that the difficulty lies with
the neverEvt of CML failing to be a right zero of their derived

monadic bind operation. As noted in Section 3, neverEvt is a right
zero of thenEvt in TE Haskell, and Evt forms both a monad and
a monad-with-plus.

Alan Jeffrey [11] has given a denotational semantics of CML
using (variants) of the ideas from Moggi’s computational monad
program [15]. Further comparison with the work of Jeffrey is re-
quired, but a distinguishing characteristic appears to be the use of a
single computation type. In contrast, TE Haskell has two types that
denote latent computations.

8. Conclusion
We have introduced transactional events, a novel concurrency ab-
straction that combines first-class synchronous operations (events)
with all-or-nothing transactional semantics. The benefit of this
combination is that it admits greater compositionality and modu-
larity in concurrent programming than is available in Concurrent
ML. Similarly, by adapting transactional semantics to the context
of synchronous message passing, we admit simple implementations
of abstractions (such as the TriSChan abstraction) that are not (eas-
ily) expressible using transactional shared memory.

We believe that there are many directions for future work. On
the practical side, we hope to investigate the degree to which trans-
actional events may improve the modularity of and ease the rea-
soning about applications that naturally fit with synchronous mes-
sage passing (e.g., graphical user interfaces [20, 3, 22]). Clearly,
more powerful abstractions may be designed and implemented with
transactional events. Also, we believe that the transactional prop-
erty of event synchronization obviates the need for the withNack
combinator in many communication protocols.

On the implementation side, we are interested ways that com-
piler and run-time support may improve the efficiency of an im-
plementation of TE Haskell. For example, although STM Haskell
proved to be immensely useful when developing our “proof-of-
concept” implementation, we do not use all of the features pro-
vided by STM Haskell. Hence, we may ask: given our stylized use
of STM, does a simpler implementation (of either STM or TE) suf-
fice for the same guarantees?

Finally, on the theoretical side, there are interesting questions
about the relationship between transactional events and other con-
currency calculi (e.g., CSP [10], π-calculus [23]), about the right
notions of behavioral equivalence (including a formal demonstra-
tion of Evt satisfying the requisite monad and monad-with-plus
laws), and about progress and fairness in an implementation.

References
[1] Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams.

Concurrent Programming in Erlang. Prentice-Hall, second edition,
1996.

[2] Matthew Flatt and Robert Bruce Findler. Kill-safe synchronization
abstractions. In The Conference on Programming Language Design
and Implementation (PLDI), pages 47–58, 2004.

[3] Emden R. Gasner and John H. Reppy. A multi-threaded high-order
user interface toolkit. In Len Bass and Prasun Dewan, editors, User
Interface Software, volume 1 of Software Trends, chapter 4, pages
61–80. John Wiley & Sons, 1993.

[4] Glasgow Haskell Compiler. http://www.haskell.org/ghc.

[5] Tim Harris and Keir Fraser. Language support for lightweight
transactions. In The Conference on Object-oriented Programing,
Systems, Languages, and Applications (OOPSLA), pages 388–402,
2003.

[6] Tim Harris, Simon Marlow, and Simon Peyton Jones. Haskell on a
shared-memory multiprocessor. In The Workshop on Haskell, pages
49–61, 2005.

[7] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice
Herlihy. Composable memory transactions. In The Symposium
on Principles and Practice of Parallel Programming (PPoPP), pages
48–60, 2005.

[8] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: archi-
tectural support for lock-free data structures. In The International
Symposium on Computer Architecture (ISCA), pages 289–300, 1993.

[9] Ralf Hinze. Deriving backtracking monad transformers (functional
pearl). In The International Conference on Functional Programming
(ICFP), pages 186–197, 2000.

[10] C. A. R. Hoare. Communicating sequential processes. Commun.
ACM, 21(8):666–677, 1978.

[11] Alan Jeffrey. A fully abstract semantics for a concurrent functional
language with monadic types. In The Symposium on Logic in
Computer Science (LICS), pages 255–264, 1995.

[12] Einar Karlsen. The UniForM concurrency toolkit and its extensions
to Concurrent Haskell. In The Glasgow Functional Programming
Workshop (GFPW), 1997.

[13] Oleg Kiselyov, Chung-chieh Shan, Daniel Friedman, and Amr Sabry.
Backtracking, interleaving, and terminating monad transformers
(functional pearl). In The International Conference on Functional
Programming (ICFP), pages 192–203, 2005.

[14] Simon Marlow, Simon Peyton Jones, Andrew Moran, and John
Reppy. Asynchronous exceptions in Haskell. In The Conference
on Programming Language Design and Implementation (PLDI),
pages 274–285, 2001.

[15] Eugino Moggi. Notions of computation and monads. Information
and Computation, 93(1):55–92, 1991.

[16] Prakash Panangaden and John Reppy. The essence of concurrent
ML. In Flemming Nielson, editor, ML with Concurrency: Design,
Analysis, Implementation, and Application, Springer Monographs in
Computer Science. Springer-Verlag, 1997.

[17] Simon Peyton Jones. Tackling the awkward squad: monadic
input/output, concurrency, exceptions, and foreign-language calls
in Haskell. In T. Hoare, B. Broy, and R. Steinbrüggen, editors,
Engineering Theories of Software Construction, volume 180 of NATO
Science Series: Computer & Systems Sciences. IOS Press, 2001.

[18] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Con-
current Haskell. In The Symposium on Principles of Programming
Languages (POPL), pages 295–308, 1996.

[19] Simon Peyton Jones and Philip Wadler. Imperative functional
programming. In The Symposium on Principles of Programming
Languages (POPL), pages 71–84, 1993.

[20] Rob Pike. A concurrent window system. Computing Systems,
2(2):133–153, 1989.

[21] John Reppy. Concurrent Programming in ML. Cambridge University
Press, 1999.

[22] George Russell. Events in Haskell, and how to implement them. In
The International Conference on Functional Programming (ICFP),
pages 157–168, 2001.

[23] Davide Sanggiorgi and David Walker. The π-calculus: A Theory of
Mobile Processes. Cambridge University Press, 2001.

[24] Franklyn Turbak. First-class synchronization barriers. In The
International Conference on Functional Programming (ICFP), pages
157–168, 1996.

[25] Philip Wadler. Monads for functional programming. In Johan Jeuring
and Erik Meijer, editors, Advanced Functional Programming, volume
925 of Lecture Notes in Computer Science. Springer-Verlag, 1995.

[26] Adam Welc, Suresh Jagannathan, and Antony L. Hosking. Transac-
tional monitors for concurrent objects. In The European Conference
on Object-Oriented Programming (ECOOP), pages 519–542, 2004.

