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Abstract

We present a simple, but expressive type system that sup-
ports strong updates—updating a memory cell to hold values
of unrelated types at different points in time. Our formula-
tion is based upon standard linear logic and, as a result, en-
joys a simple semantic interpretation for types that is closely
related to models for spatial logics. The typing interpretation
is strong enough that, in spite of the fact that our core cal-
culus supports shared, mutable references and cyclic graphs,
every well-typed program terminates.

We then consider extensions needed to model ML-style
references, where the capability to access a reference cell is
unrestricted, but strong updates are disallowed. Our exten-
sions include a thaw primitive for re-gaining the capability
to perform strong updates on unrestricted references. The
thaw primitive is closely related to other mechanisms that
support strong updates, such as CQUAL’s restrict.

1 Introduction

The goal of this work is to explore foundational typing sup-
port for strong updates. In type systems for imperative lan-
guages, a strong update corresponds to changing the type
of a mutable object whenever the contents of the object is
changed. That is, the type of a mutable location can change
from program point to program point. As an example, con-
sider the following code fragment written with SML syntax:

1. let val r = ref () in

2. r := true;

3. if (!r) then

4. r := 42

5. else

6. r := 15;

7. !r + 12

8. end

At line 1, we create a ref cell r whose contents are initial-
ized with unit. At line 2, we change the contents so that
r holds a bool. Then at lines 4 and 6, we change the con-
tents of r again, this time to int. In spite of the fact that at
different program points r holds values of different, incom-

patible types, there is nothing in the program that will cause
a run-time type error.1 This is because subsequent reads of
the reference are type-compatible with the immediately pre-
ceding writes.

Unfortunately, most imperative languages, including
SML and Java, do not support strong updates. For instance,
SML rejects the above program since it requires that refer-
ence cells hold values of exactly one type. The reason for
this is that tracking the current type of a reference cell at
each program point is hindered by the potential for aliasing.
Consider, for instance the following function:

1. fun f(r1:int ref, r2:int ref):int =

2. (r1 := true;

3. !r2 + 42)

In order to avoid a typing error, this function can only be
called in contexts where r1 and r2 are different ref cells.
The reason is that if we passed in the same cell for each
formal argument, then the update on line 2 should change
not only the type of r1 but also the type of r2, causing a
type error to occur at line 3.

Thus, any type system that supports strong updates needs
some control over aliasing. In addition, it is clear that the
hidden side-effects of a function, such as the change in type
to f’s first argument in the example above, must be reflected
in the interface of the function to achieve modular type-
checking. In short, strong updates seem to need a lot of
technical machinery to ensure soundness and reasonable ac-
curacy.

Lately, there have been a number of languages, type sys-
tems, and analyses that have supported some form of strong
updates as discussed more thoroughly in Section 5. For ex-
ample, the Vault language [19, 20] was designed for coding
low-level systems code, such as device drivers. The ability to
track strong updates was crucial for ensuring that driver code
respected certain protocols. As another example, Typed As-
sembly Language [30, 29] used strong updates to track the
types of registers and stack slots. More recently, Foster and
Aiken have presented a flow-sensitive qualifier system for

1We assume that values are represented uniformly so that, for instance,
unit, booleans, and integers all take up one word of storage.



C, called CQUAL [5], which uses strong updates to track
security-relevant properties in legacy C code.

Vault, later versions of TAL [28], and CQUAL all based
their support for strong updates and alias control on the Alias
Types formalism of Smith, Walker, and Morrisett [34, 38].
Though Alias Types were proven sound in a syntactic sense,
we lacked an understanding of their semantics. For instance,
it was noted that Alias Types seemed strongly related to the
logic of Bunched Implications (BI) [26] and Reynolds’ sep-
aration logic [32], but the lack of a semantic interpretation
for Alias Types precluded a formal connection.

Furthermore, Vault, TAL, and CQUAL added a number
of new extensions that were not handled by Alias Types. For
instance, the restrict operator of CQUAL is unusual in
that it allows a computation to temporarily gain exclusive
ownership of a reference cell and perform strong updates, in
spite of the fact that there may be unknown aliases to the
object.

In this paper, we re-examine strong updates from a more
foundational standpoint. In particular, we give an alternative
formulation of Alias Types in the form of a core calculus
based on standard linear logic, which yields an extremely
clean semantic interpretation of the types that is directly re-
lated to the semantic model of BI. We show that our core
calculus is sound and that every well-typed program termi-
nates, in spite of the fact that the type system supports first-
class, shared, mutable references with strong updates. We
then show how the calculus can be extended to support a
combination of ML-style references with uncontrolled alias-
ing and a restrict-like primitive for temporarily gaining
exclusive ownership over such references to support strong
updates. Proofs of theorems can be found in a companion
technical report [3].

2 Linearity and Strong Updates

Linear types, which are derived from Girard’s linear
logic [21], have proven useful for modeling imperative pro-
gramming languages in a functional setting [36, 31]. For
instance, the Clean programming language [1] relies upon a
form of linearity (or uniqueness) to ensure equational rea-
soning in the presence of mutable data structures (and other
effects such as IO). The intuitive understanding is that a lin-
ear object cannot be duplicated, and thus there are no aliases
to the object, so it is safe to perform updates in-place while
continuing to reason equationally. For example, consider the
following function:

fun setx (r : {x:T1,y:T2,z:T3}) (x1 : T1) =

let val {x=x0,y=y0,z=z0} = r

in drop x0;

{x=x1, y=y0, z=z0}

end

The function takes a record r and a T1 value, pulls out the
components of the record, explicitly discards the old x com-

ponent by passing it to drop, and then builds a new record
out of the new T1 value and the old y and z components.
In a linear setting, this code should type-check since each
non-trivial resource is used exactly once. Furthermore, from
an operational standpoint, this code is almost equivalent to
doing an in-place update of the x component of the point:

fun setx (r: {x:T1,y:T2,z:T3}) (x1 : T1) =

r.x := x1

The reason in-place update is safe is that no one from the out-
side can have a copy of (a reference to) the argument record
r. So, when r is deconstructed, we can safely re-use its stor-
age to build the resulting record.

Note, however, that the imperative version is not exactly
equivalent to the functional one. In particular, we must ex-
plicitly drop the old value of x to be faithful. As suggested
by Baker [10], we can replace the update with a swap:

fun setx (r: {x:T1,y:T2,z:T3}) (x1 : T1) =

let val x0 = swap r.x x1

in drop x0;

r

end

The expression swap r.x x1 is meant to write x1 into r.x

and return the original value in r.x. Using swap instead
of update ensures that we do not forget to use an old value.
Furthermore, using swap instead of dereference for mutable
cells ensures that resources are not duplicated. Thus, swap is
the appropriate primitive to ensure the linearity of resources.

We remark that for resources that can be freely duplicated
(e.g., integers), we can always simulate reads and writes by
using swap in conjunction with a dummy value. Thus, in
this paper, we will focus on swap as the only primitive for
manipulating the contents of mutable objects.

From our standpoint, the biggest advantage of a linear
interpretation is that there is no need for the type of a muta-
ble object to remain invariant. In particular, there is nothing
wrong with changing the functional version of setx so that
we build a record where the x component has a completely
different type from the original:

fun setx (r : {x:T1,y:T2,z:T3}) (x1 : T4) =

let val {x=x0,y=y0,z=z0} = r

in drop x0;

{x=x1, y=y0, z=z0}

end

In this instance, setx has the type

{x : T1,y : T2,z : T3} ( {x : T4,y : T2,z : T3}

reflecting that the type of the x component changes. This
suggests that the imperative version with swap, which is
operationally equivalent, can also be allowed to change the
type:

fun setx (r: {x:T1,y:T2,z:T3}) (x1 : T4) =

let val x0 = swap r.x x1

in drop x0;

r

end
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Changing the type of the contents of a mutable object is
called a strong update. Strong updates are useful for reflect-
ing protocols on resources whose state changes over time.
Linear typing makes it particularly easy to support strong
updates, as we showed above.

3 Core L3

Though a linear interpretation of reference cells supports
strong updates, it is too restrictive for many, if not most, real-
istic programs. In particular, there is no facility for creating
cyclic or even shared data structures, since each mutable ob-
ject can have at most one reference to it. On the other hand,
the presence of unrestricted aliasing breaks the soundness
of strong updates, reflecting that the functional and impera-
tive interpretations no longer coincide. Rather, in languages
such as ML where references can be freely duplicated, we
are forced to preserve the type of the contents at updates.

What is needed is some way to support the controlled
duplication of references to mutable objects, while sup-
porting strong updates. One approach, suggested by Alias
Types [34], is to separate the typing components of a mu-
table object into two pieces: a pointer to the object, which
can be freely duplicated, and a capability for accessing the
contents of the object. The type of the capability records
the current type of the contents of the object and thus must
remain linear to ensure the soundness of strong updates.

As an example, consider a function that is to be passed
a pair where the two components are aliases for the same
location, and we wish to update the contents of the location,
changing its type. In a language based on the calculus we
describe below, the function might look something like this:

fun f (c1 : Capρ τ1)

(p : !Ptrρ ⊗ !Ptrρ)
(v : τ2) =

let val (x,y) = p

val (c2,z) = swap x (c1,v)

in

(c2, y, z)

end

The pair p includes two pointers to the same abstract location
ρ, and these pointers may be freely duplicated or forgotten
since their types are under the “of course” constructor (i.e.,
!Ptr ρ). Note, however, that the types of the pointers say
nothing about the type of the value to which they point, for
this is ephemeral. Only the name of the object (ρ) is in any
sense persistent.

In contrast, the value c1 is a capability for accessing the
location ρ and records the current type of the contents of the
location. Such a capability must be presented whenever we
attempt to perform a swap operation on a pointer to ρ. The
capability is then consumed and a new capability is returned.
The original capability tells us what type of value was in the
location before the swap (τ1), whereas the newly returned
capability tells us what type of value now resides in the lo-

cation (τ2, since that is the type of v). Thus, the function
above has a signature like this:

f : ∀ρ.Capρ τ1 ( (!Ptr ρ⊗ !Ptr ρ) ( τ2 (

(Capρ τ2 ⊗ !Ptr ρ⊗ τ1)

Our intention is that, like types, capabilities can be erased;
at run-time, they play no computationally significant role.

In the original version of Alias Types, capabilities were
collected into a global, implicit parameter that was threaded
through the computation and assigned a global store type.
Consequently, capabilities were not first-class and a com-
plicated, second-order type system was needed to achieve
sufficient abstraction for code re-use. Furthermore, the ca-
pabilities were effectively restricted to describing a finite
frontier of reachable reference cells, so inductive data struc-
tures (e.g., a list of reference cells) were beyond the reach
of the formalism. In later work, Walker and Morrisett [38]
extended the approach to support first-class capabilities and
inductive data structures, but the resulting language was ex-
tremely complicated.

In this section, we present a different formulation of
Alias Types based on a relatively standard linear lambda
calculus; we name our calculus L3(Linear Language with
Locations). In L3, capabilities are explicit and first-class,
which makes it simple to support inductively defined data
structures. Furthermore, as in Alias Types, L3 supports mul-
tiple references to a given mutable object as well as strong
updates. Somewhat surprisingly, the core language retains a
simple semantics, which, for instance, allows us to prove that
well-typed programs terminate. Thus, we believe that L3 is
an appropriate foundation for strong updates in the presence
of sharing.

3.1 Syntax

The syntax for core L3 is as follows:

LocConsts ` ∈ LocConsts
LocVars ρ ∈ LocVars
Locs η ::= ` | ρ

Types
τ ::= 1 | τ1 ⊗ τ2 | τ1 ( τ2 | !τ |

Ptr η | Capη τ | ∀ρ.τ | ∃ρ.τ
Exprs
e ::= 〈〉 | let 〈〉 = e1 in e2 |

〈e1,e2〉 | let 〈x1,x2〉 = e1 in e2 |
x | λx.e | e1 e2 |
!v | let !x = e1 in e2 | dupe | drope |
ptr ` | cap ` |
create e | destroy e | swap e1 e2 |
Λρ.e | e [η] | pη,eq | let pρ,xq = e1 in e2

Values
v ::= 〈〉 | 〈v1,v2〉 | x | λx.e | !v |

ptr ` | cap ` | Λρ.e | pη,vq

Most of the types, expressions, and values are based on a
traditional, call-by-value, linear lambda calculus. In the fol-
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Stores
σ ::= {`1 7→ v1, . . . , `n 7→ vn}
Evaluation Contexts
E ::= [] | let 〈〉 = E in e | 〈E,e〉 | 〈v,E〉 | let 〈x1,x2〉 = E in e |

E e | vE | let !x = E in e | dupE | dropE |
createE | destroyE | swapE e | swap v E | E [`] | p`,Eq | let pρ,xq = E in e

(let-unit) (σ,let 〈〉 = 〈〉 in e) 7−→ (σ,e)

(let-pair) (σ,let 〈x1,x2〉 = 〈v1,v2〉 in e) 7−→ (σ,e[v1/x1][v2/x2])

(app) (σ,(λx.e)v) 7−→ (σ,e[v/x])

(let-bang) (σ,let !x = !v in e) 7−→ (σ,e[v/x])

(dup) (σ,dup !v) 7−→ (σ,〈!v, !v〉)

(drop) (σ,drop !v) 7−→ (σ,〈〉)

(cre) (σ,createv) 7−→ (σ]{` 7→ v},p`,〈cap `, !(ptr `)〉q)

(des) (σ]{` 7→ v},destroyp`,〈cap `, !(ptr `)〉q) 7−→ (σ,p`,vq)

(swap) (σ]{` 7→ v1},swap (ptr `) 〈cap `,v2〉) 7−→ (σ]{` 7→ v2},〈cap `,v1〉)

(lapp) (σ,(Λρ.e) [`]) 7−→ (σ,e[`/ρ])

(let-lpack) (σ,let pρ,xq = p`,vq in e) 7−→ (σ,e[`/ρ][v/x])

(ctxt)
(σ,e) 7−→ (σ′,e′)

(σ,E[e]) 7−→ (σ′,E[e′])

Figure 1: Core L3– Operational Semantics

lowing sections, we will explain the bits that are new or dif-
ferent.

3.1.1 Types

The types 1, τ1 ⊗ τ2, τ1 ( τ2, and !τ are those found in the
linear lambda calculus. The first three types are linear and
must be eliminated exactly once. The pattern matching ex-
pression forms let 〈〉= e1 in e2 and let 〈x1,x2〉= e1 in e2

are used to eliminate unit (1) and tensor products (⊗) respec-
tively. As usual, a linear function τ1 ( τ2 is eliminated via
application. The “of course” type !τ can be used to relax the
linear restriction. A value of type !τ may be explicitly du-
plicated (dupe) or dropped (drope). To put it another way,
weakening and contraction of unrestricted !τ values is ex-
plicit, rather than implicit.

As mentioned earlier, we break a mutable object into two
components: pointers (Ptr η) to the object’s location and a
capability (Cap η τ) for accessing the contents of the loca-
tion, via swap, to obtain a value of type τ. The link between
these two components is the location’s name: either a loca-
tion constant ` or a location variable ρ. Location constants,
comparable to physical memory addresses, are used inter-
nally by our operational semantics, but are not allowed in
source programs. Instead, source programs manipulate lo-
cation variables, which abstract over location constants. We
use the meta-variable η to range over both location constants
and location variables.

As noted above, we wish to allow the pointer to a loca-
tion to be freely duplicated and discarded, but we must treat
the capability as a linear value. The static semantics given
in the next section will allow the introduction of values of
type !(Ptr η) but will prevent the introduction of values of
type !(Capη τ); furthermore, this will be consistent with the
semantic interpretation of types, which will establish that
!(Ptr η) is inhabited, while !(Capη τ) is uninhabited.

Quantification of location variables over types are given
by the universal ∀ρ.τ and existential ∃ρ.τ types. Values of
universal type must be instantiated and values of existential
type must be opened. Types are considered equivalent up to
renaming of bound location variables; in particular, note that
location constants do not alpha-convert. We use the notation
FLV(τ) to denote the free location variables of a type and
the notation τ[η/ρ] to denote the standard capture-avoiding
substitution of locations for location variables in types.

3.1.2 Expressions and Operational Semantics

It is useful to consider expressions along with their opera-
tional semantics. Figure 1 gives the small-step operational
semantics for core L3 as a relation between configurations
of the form (σ,e). In the configuration, σ is a global store
mapping locations to closed values; note that a closed value
has no free variables or location variables, but may have ar-
bitrary location constants—even locations not in the domain
of σ. The notation σ1 ]σ2 denotes the disjoint union of the
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stores σ1 and σ2; the operation is undefined unless the do-
mains of σ1 and σ2 are disjoint. We use evaluation contexts
E to lift the primitive rewriting rules to a left-to-right, inner-
most to outer-most, call-by-value interpretation of the lan-
guage.

Our calculus adopts many familiar terms from the linear
lambda calculus. We already explained the introduction and
elimination forms for unit, tensor products, and functions;
their semantics is straightforward.

Four expression forms manipulate terms of !-type. If v
is a value of type τ, then, under certain conditions specified
by the static semantics, we can form !v having the type !τ.
The restriction of !· to values corresponds to our desire to
give the language a call-by-value operational semantics; it
is possible to write expressions that can be (syntactically)
duplicated, but which reduce to values that cannot be dupli-
cated.2 Note that !· is principally applied to functions and
location abstractions, which are values. Note further that the
static semantics prevents the application of !· to capabilities.

The elimination form let !x = e1 in e2 evaluates e1 to a
value with type !τ and substitutes the value for x in e2. The
expressions dupe and drope are the means by which val-
ues of !-type are explicitly duplicated and discarded. dupe
evaluates e to a value !v and returns a linear pair, where each
component has the value !v. Similarly, drope evaluates e to
a value, which is discarded, and returns 〈〉.

There are expression forms for both the pointer to a loca-
tion (ptr `) and the capability for a location (cap `). How-
ever, neither expression form is available in source pro-
grams. It may be somewhat surprising that the expression
cap` makes no mention of the type of the value stored at the
location `. However, as we will see shortly, cap` terms have
no operational significance; hence, any token would serve as
the run-time representation of the knowledge of the type of
the value stored at a location. On the other hand, we expect a
well-typed program to give rise to exactly one cap` term for
each allocated location. By choosing a representation that
includes the location name, this property can be checked “at
a glance,” as it were, of the untyped syntax of a program.

The expressions createe and destroye perform the
complementary actions of allocating and deallocating mu-
table references in the global store. createe evaluates e to
a value, allocates a fresh (unallocated) location `, stores the
value at that location, and returns the pair 〈cap `, !(ptr `)〉
in an existential package that hides the particular location
`. The static semantics will ensure that the type of cap `
“knows” the type of the value stored at `. destroye per-
forms the reverse. It evaluates e to the pair 〈cap`, !(ptr`)〉,
extracts the value stored at `, deallocates the location `, and
returns the value. We remark that deallocation can result in
dangling pointers to a location, but that since the (unique)

2An alternative approach would be to take !e as an irreducible value and
to reduce e at the !-type elimination. However, this implicit suspension is
less in the spirit of call-by-value.

capability for that location is destroyed, those pointers can
never be dereferenced.

The expression swap e1 e2 combines the operations of
dereferencing and updating a mutable reference as explained
previously. The first expression evaluates to a pointer ptr `
and the second to a pair 〈cap `,v〉. The operation then
swaps v for v′ where v′ is the value stored at `, and returns
〈cap `,v′〉. Again, the static semantics will ensure that the
type of the input cap ` “knows” the type of v′ and the type
of the output cap` “knows” the type of v.

It is easily seen that the cap ` terms have no operational
significance. That is, we could erase these terms without
affecting our ability to evaluate the programs.

Finally, there are introduction and elimination forms for
universal and existential location quantification. The expres-
sion Λρ.e provides universal abstraction over a location and
is eliminated with an explicit application of the form e [η].
The expression form pη,eq has the type ∃ρ.τ when e has the
type τ with η substituted for ρ. The package can be opened
with the expression form let pρ,xq = e1 in e2. Note that
the existential package pη,eq elides the as∃ρ.τ clause found
in most presentations of existential types. As we will invari-
ably intend to hide all occurrences of η in the type of e, we
adopt the more concise notation.

As usual, expressions are considered equivalent up to re-
naming of bound variables and bound location variables. We
use the notation e[v/x] (resp. e[η/ρ]) to denote the standard
capture avoiding substitution of values (resp. locations) for
variables (resp. location variables) in expressions.

3.2 Static Semantics

The type system for L3 must ensure that critical resources,
such as capabilities, are not duplicated or dropped. Our type
system is based on the linear lambda calculus and is thus
relatively simple.

L3 typing judgments have the form ∆;Γ ` e : τ where the
contexts ∆ and Γ are defined as follows:

Location Contexts ∆ ::= • | ∆,ρ
Value Contexts Γ ::= • | Γ,x:τ

Thus, ∆ is used to track the set of location variables in scope,
whereas Γ, as usual, is used to track the set of variables in
scope, as well as their types. We consider contexts to be
ordered lists of assumptions. There may be at most one oc-
currence of a location variable ρ in ∆ and, similarly, at most
one occurrence of a variable x in Γ.

As is usual in a linear setting, our type system relies upon
an operator Γ1 �Γ2 = Γ that splits the assumptions in Γ be-
tween the contexts Γ1 and Γ2:

•�• = •
(Γ1,x:τ)�Γ2 = (Γ1 �Γ2),x:τ (x /∈ dom(Γ2))
Γ1 � (Γ2,x:τ) = (Γ1 �Γ2),x:τ (x /∈ dom(Γ1))

Splitting the context is necessary to ensure that a given re-
source is used by at most one sub-expression. Note that �
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∆;Γ ` e : τ

(Unit)
∆;• ` 〈〉 : 1

(Let-Unit)
∆;Γ1 ` e1 : 1 ∆;Γ2 ` e2 : τ

∆;Γ1 �Γ2 ` let 〈〉 = e1 in e2 : τ
(Pair)

∆;Γ1 ` e1 : τ1 ∆;Γ2 ` e2 : τ2

∆;Γ1 �Γ2 ` 〈e1,e2〉 : τ1 ⊗ τ2

(Let-Pair)
∆;Γ1 ` e1 : τ1 ⊗ τ2 ∆;Γ2,x1:τ1,x2:τ2 ` e2 : τ

∆;Γ1 �Γ2 ` let 〈x1,x2〉 = e1 in e2 : τ
(Var)

FLV(τ) ⊆ ∆
∆;•,x:τ ` x : τ

(Fun)
∆;Γ,x:τ1 ` e : τ2

∆;Γ ` λx.e : τ1 ( τ2

(App)
∆;Γ1 ` e1 : τ1 ( τ2 ∆;Γ2 ` e2 : τ1

∆;Γ1 �Γ2 ` e1 e2 : τ2
(Bang)

∆;Γ ` v : τ |Γ| = •

∆;Γ ` !v : !τ
(Let-Bang)

∆;Γ1 ` e1 : !τ1 ∆;Γ2,x:τ1 ` e2 : τ2

∆;Γ1 �Γ2 ` let !x = e1 in e2 : τ2

(Dup)
∆;Γ ` e : !τ

∆;Γ ` dupe : !τ⊗ !τ
(Drop)

∆;Γ ` e : !τ
∆;Γ ` drope : 1

(Create)
∆;Γ ` e : τ

∆;Γ ` create e : ∃ρ.(Capρ τ⊗ !(Ptrρ))

(Destroy)
∆;Γ ` e : ∃ρ.(Cap ρ τ⊗ !(Ptrρ))

∆;Γ ` destroy e : ∃ρ.τ
(Swap)

∆;Γ1 ` e1 : Ptr ρ ∆;Γ2 ` e2 : Capρ τ1 ⊗ τ2

∆;Γ1 �Γ2 ` swap e1 e2 : Capρ τ2 ⊗ τ1
(LFun)

∆,ρ;Γ ` e : τ
∆;Γ ` Λρ.e : ∀ρ.τ

(LApp)
∆;Γ ` e : ∀ρ.τ ρ′ ∈ ∆

∆;Γ ` e [ρ′] : τ[ρ′/ρ]
(LPack)

ρ′ ∈ ∆ ∆;Γ ` e : τ[ρ′/ρ]

∆;Γ ` pρ′,eq : ∃ρ.τ

(Let-LPack)
∆;Γ1 ` e1 : ∃ρ.τ1 FLV(τ2) ⊆ ∆ ∆,ρ;Γ2,x:τ1 ` e2 : τ2

∆;Γ1 �Γ2 ` let pρ,xq = e1 in e2 : τ2

Figure 2: Core L3– Static Semantics

splits all assumptions, even those of !-type. However, re-
call that contraction and weakening is supported for !-types
through explicit operations.

Figure 2 presents the typing rules for L3. The first seven
rules are the normal typing rules for a linear lambda calculus.

The (Bang) rule uses an auxiliary function on contexts
to extract the linear components:

| • | = •
|Γ,x:!τ| = |Γ|
|Γ,x:τ| = |Γ|,x:τ (τ 6= !τ′)

The rule requires that |Γ| is empty. This ensures that the
value v can be freely duplicated and discarded, without im-
plicitly duplicating or discarding linear assumptions.

Note that there are no rules for ptr ` or cap `, as these
expression forms are not present in the surface language.
Likewise, all of the rules are given in terms of location vari-
ables ρ, and not in terms of location constants `. Instead,
the (Create), (Destroy), and (Swap) rules act as intro-
duction and elimination rules for Ptr ρ and Cap ρ τ types.
Both (Create) and (Destroy) operate on existentially quan-
tified capability/pointer pairs, which hides the location con-
stant present in the operational semantics. Note that (Swap)
maintains the linear invariant on capabilities by consuming a
value of type Capρτ1 and producing a value of type Capρτ2.

The final four rules deal with universally and existen-
tially quantified location variables. Antecedents of the form
ρ′ ∈ ∆ assert that location variables in terms are bound. The
(Let-LPack) rule contains the standard scoping condition
that prevents ρ from appearing free in the result type τ2.

3.3 Examples and Discussion

The core language thus presented is expressive enough to ap-
proximate the examples given in Sections 1 and 2. A simple
linear reference can be viewed as a value of type

LRef τ ≡ ∃ρ.(Capρ τ⊗ !Ptr ρ),

and we can lift the primitive swap to update a reference with

lrswap ≡ λr:LRef τ.λx:τ′.
let pρ,clq = r in

let 〈c0,l0〉 = cl in

let 〈l1,l2〉 = dupl0 in

let !l′2 = l2 in

let 〈c1,y〉 = swapl′2 〈c0,x〉 in
〈pρ,〈c1,l1〉q,y〉

However, by keeping Cap ρ τ and !Ptr ρ packaged to-
gether, we lose any benefits of making Ptrρ unrestricted. So,
we consider an extended example, demonstrating the power
of treating capabilities and pointers separately. In the inter-
est of brevity and readability, we adopt the following con-
ventions. First, the binding occurrence of a variable x with
!-type is annotated as x!. Second, we elide let !x = · in ·,
dup ·, and drop · expressions, leaving the duplication, dere-
liction, and linearization of !-type variables implicit. Taken
together, these two conventions mean that a variable intro-
duced as x! of type !τ may be used zero, one, or many times
in its scope, including contexts requiring the type τ. Third,
to make it easier for a reader to manually type-check expres-
sions, we annotate successive “versions” of a linear variable
with an integer superscript. Finally, we introduce the expres-
sion form let p = e1 in e2, where p is a pattern, to abbrevi-
ate multiple elimination forms. All of these conventions can
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easily be desugared back into the core language presented in
the previous sections.

We consider the following well-typed core L3 program.

1. let pρn,〈c
0
n,p

!
n〉q = create 〈〉 in

2. let nuke! = !Λρa,ρb ,ρc,ρd ,ρe .λc0
n.

3. let 〈c1
n,〈p

!
a,〈c

0
a,c

0
b〉〉〉 = swap pn 〈c

0
n,〈〉〉 in

4. let 〈c1
a,〈p

!
b,p

!
c〉〉 = swappa 〈c

0
a,〈〉〉 in

5. let 〈p!
d ,p!

e〉 = destroypρb,〈c
0
b,pb〉q in

6. let 〈c2
a,〈〉〉 = swappa 〈c

1
a,〈pd ,pe〉〉 in

7. let 〈c2
n,〈〉〉 = swappn 〈c

1
n,c

2
a〉 in

8. c2
n in

9. let pρ1,〈c
0
1,p

!
1〉q = create 〈〉 in

10. let pρ2,〈c
0
2,p

!
2〉q = create 〈p1,p1〉 in

11. let pρ3,〈c
0
3,p

!
3〉q = create 〈p2,p1〉 in

12. let pρ4,〈c
0
4,p

!
4〉q = create 〈p2,p3〉 in

13. let 〈c1
1,〈〉〉 = swapp1 〈c

0
1,〈p2,p4〉〉 in

14. let 〈c1
n,〈〉〉 = swappn 〈c

0
n,〈p2,〈c

0
2,c

1
1〉〉〉 in

15. let c2
n = nuke [ρ2,ρ1,ρ1 ,ρ2,ρ4]c

1
n in

16. let 〈c3
n,c

1
2〉 = swap pn 〈c

2
n,〈〉〉 in

17. let 〈c4
n,〈〉〉 = swappn 〈c

3
n,〈p3,〈c

1
3,c

1
2〉〉〉 in

18. let c5
n = nuke [ρ3,ρ2,ρ1 ,ρ2,ρ4]c

4
n in

19. let c2
3 = destroypρn,〈c

5
n,pn〉q in

20. let 〈p!
a,p

!
b〉 = destroypρ3,〈c

2
3,p3〉q in

21. let 〈p!
c,p

!
d〉 = destroypρ4,〈c

0
4,p4〉q in

22. 〈〉

Line 1 allocates a mutable reference, with pointer pn.
Lines 2 through 8 define a function, nuke, parameterized
by five locations. Note that the type of cn on line 2 is

Capρn (!(Ptr ρa)⊗ (Capρa (!(Ptr ρb)⊗ !(Ptr ρc)) ⊗
Capρb (!(Ptr ρd)⊗ !(Ptr ρe)))).

This capability type describes the shape of the store reach-
able from pn that will be necessary as a pre-condition for
calling nuke (see Figure 3(a)). Note that there are no re-
quirements on the contents of the locations named by ρc, ρd ,
and ρe, or even that those locations be allocated. In line 3, a
pointer (pa) and two capabilities are read out of pn. In line
4, two additional pointers (pb and pc) are read out of pa. At
line 5, the reference pointed to by pb is destroyed, which
also extracts two pointers (pd and pe) stored there. These
last two pointers are written into pa. The final capability for
the reference pointed to by pa is written into pn, and the fi-
nal capability for the reference pointed to by pn is returned
as the result of the function. The final shape of the store is
given in Figure 3(b). Note that this function essentially uses
the global reference pointed to by pn as a means of passing
arguments and returning results.

Lines 9 through 13 allocate four additional mutable refer-
ences and construct a complex pointer graph. Line 14 copies
a pointer (p2) and moves two capabilities (c2 and c1) into pn
in preparation for calling nuke at line 15. Figures 3(c) and
3(d) show the global store immediately before and after the
function call. Note that the store contains cyclic pointers and
that the function nuke performs a non-trivial alteration to the
pointer graph, leaving a dangling pointer and introducing a
self-loop. The remainder of the program makes one more
call to nuke and then proceeds to destroy the remaining al-
located references.
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(a) Store into nuke
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(b) Store out of nuke
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(c) Store at line 15.

���

���

���

�� 

��!

(d) Store at line 16.

Figure 3: Store during the evaluation of the example pro-
gram.

As this example shows, the core language can give rise
to complex pointer graphs. Also, note that in passing argu-
ments and returning results through the reference pointed to
by pn, the type of the reference necessarily changes; this is

reflected in the successive types of c(i)
n . Recall that there are

no extraneous antecedents in the typing judgments for lo-
cation abstraction and instantiation. This means that there
is no a priori reason to believe that the location variables
ρa, . . . ,ρe will not be instantiated with aliasing locations. In
fact, lines 15 and 18 demonstrate that such is often the case.
Hence, it is by no means clear that after deallocating the ref-
erence at pb (line 5), it will be possible to swap into pa (line
6). However, the linearity of capabilities ensures that it will
not be possible to instantiate nuke with aliasing locations
for ρa and ρb, since doing so would necessarily entail hav-
ing two occurrences of the same capability – once through
ca and once through cb.

At this point (and probably at the end of Section 3.1.2),
the astute reader might well question our claim that cap `
terms have no operational significance. Couldn’t we have
equally well claimed that ptr ` terms have no operational
significance, as we could have chosen to let the cap ` term
denote the particular part of the store to be modified? Alter-
natively, couldn’t we have given a store-passing semantics,
in which a capability is represented as the store over which
it has access? While these criticisms are valid, we believe
that there are compelling reasons to take the view that ptr`
terms are computationally significant and cap` are not.

Note, for instance, that line 16 simply shuffles capabili-
ties for the purpose of type checking; an optimizing compiler
might well elide this operation. Likewise, the argument and
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V J1K = {({},〈〉)}
V Jτ1 ⊗ τ2K = {(σ1 ]σ2,〈v1,v2〉) | (σ1,v1) ∈ V Jτ1K ∧ (σ2,v2) ∈ V Jτ2K}

V Jτ1 ( τ2K = {(σ2,λx.e) | ∀σ1,v1. (σ1,v1) ∈ V Jτ1K ∧ σ1 ]σ2 defined ⇒ (σ1 ]σ2,e[v1/x]) ∈ CJτ2K}
V J!τK = {({}, !v) | ({},v) ∈ V JτK}

V JPtr `K = {({},ptr `)}
V JCap ` τK = {(σ]{` 7→ v},cap `) | (σ,v) ∈ V JτK}

V J∀ρ.τK = {(σ,Λρ.e) | ∀`. (σ,e[`/ρ]) ∈ CJτ[`/ρ]K}
V J∃ρ.τK = {(σ,p`,vq) | (σ,v) ∈ V Jτ[`/ρ]K}

CJτK = {(σs,es) | ∀σr. σs ]σr defined ⇒ ∃n,σf ,v f . (σs ]σr,es) 7−→
n (σ f ]σr,v f ) ∧ (σ f ,v f ) ∈ V JτK}

SJ•Kδ = {({}, /0)}
SJΓ,x:τKδ = {(σ]σx,γ[x 7→ vx]) | (σ,γ) ∈ SJΓKδ ∧ (σx,vx) ∈ V Jδ(τ)K}

J∆;Γ ` e : τK = ∀δ,σ,γ. dom(δ) = dom(∆) ∧ (σ,γ) ∈ SJΓKδ ⇒ (σ,γ(δ(e))) ∈ CJδ(τ)K

Figure 4: Core L3– Semantic Interpretations

result of nuke need not be passed at run time. Copying val-
ues into the reference pointed to by pn need only copy the
pointer, and not the two capabilities (lines 14 and 17).

Essentially, we note that linear values, by their very na-
ture, must closely follow the control-flow path of a program.
If cap ` terms were operationally significant, represented,
say, as a machine pointer, then copying them along the
control-flow path of a program could be computationally ex-
pensive. On the other hand, !(ptr `) terms can be dispersed
through a program by means of shared data-structures. As
in the example above, it may be cheaper to “seed” shared
data-structures with pointers early in a program, which can
then be efficiently traversed, without incurring the (computa-
tional) overhead of threading linear capabilities to and from
the points of use.

3.4 Semantic Interpretations

In this section, we give semantic interpretations to types and
prove that the typing rules of Section 3.2 are sound with re-
spect to these interpretations. We have also sketched a con-
ventional syntactic proof of soundness, but found a seman-
tic interpretation more satisfying for a few reasons. First,
while shared ptr` values can be used to create cyclic pointer
graphs, the linearity of cap` values prevents the construction
of recursive functions through the standard “back-patching”
technique. (The extension in Section 4 will relax this restric-
tion, giving rise to a more powerful language.) Hence, our
core language has the property that every well-typed term
terminates, just as in linear lambda calculus without refer-
ences [11]. Our semantic proof captures this property in the
definition of the types, whereas the syntactic approach is too
weak to show that this property holds. Second, the semantic
approach avoids the need to define typing rules for various
intermediate structures including stores. Rather, stores con-
sistent with a particular type will be incorporated into the

semantic interpretation of the type. Finally, the semantic
interpretation will allow us some extra flexibility when we
consider extensions to the language in the next section.

Figure 4 gives our semantic interpretations of types as
values (V JτK), types as computations (C JτK), contexts as
substitutions (SJΓK), and finally a semantic interpretation of
typing judgments. We remark that these definitions are well-
founded since the interpretation of a type is defined in terms
of the interpretations of strictly smaller types.

For any closed type τ, we choose its semantic value in-
terpretation V JτK to be a set (i.e., unary logical relation) of
tuples of the form (σ,v), where v is a closed value and σ
a store. We can think of σ as the “exclusive store” of the
value, corresponding to the portion of the store over which
the value has exclusive rights. This exclusivity is conveyed
by the linear Cap`τ type, whose interpretation demands that
σ includes ` and maps it to a value of the appropriate type.
This corresponds to the primitive “points-to” relation in BI.

On the other hand, the Ptr ` type makes no demands on
the structure of σ. It simply asserts that we have a copy of
a reference to a particular location. As in BI, this is what
allows us to have “dangling pointers”.

Note that the interpretation of τ1 ⊗ τ2 demands that the
exclusive stores of the sub-values are disjoint. Thus, this
type corresponds to the spatial conjunction of BI.

An unrestricted !τ corresponds to those values that have
no exclusive store; hence, duplicating or discarding of !τ val-
ues does not implicitly duplicate or discard portions of the
store. This is similar to the non-spatial relations and connec-
tives embedded into BI.

Finally, the interpretations of function and abstraction
types are given in terms of the interpretation of types as com-
putations C JτK. The definition of C JτK combines both termi-
nation and type preservation. A starting store and expression
(σs,es) is a member of C JτK if for every disjoint (rest of the)
store σr, a finite number of reductions leads to a final store
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and value (σ f ,v f ) that is a member of V JτK and leaves σr

unmodified. Notice that the computation interpretation cor-
responds to the frame axiom of BI, whereas the interpreta-
tion of linear implication is, as expected, in correspondence
with BI’s magic wand.

These interpretations on closed terms are lifted to open
terms by means of an appropriate substitution, and addi-
tional piece of store. If δ is a mapping from location vari-
ables to location constants, then SJΓKδ returns a store σ and
a substitution γ. The substitution γ is a mapping from the
variables in Γ to closed values, whereas σ is the disjoint
union of the exclusive stores corresponding to each value
in the range of γ. Intuitively, if we consider Γ as a set of
assumptions, then occurrences of Cap ρ τ types correspond
to assumptions about the structure of the store. Thus, SJΓKδ
gives all consistent stores and substitutions that are compat-
ible with the assumptions in Γ.

Finally, the semantic interpretation of a typing judgment
∆;Γ ` e : τ is given by J∆;Γ ` e : τK, which is a logical for-
mula asserting that for all substitutions δ and γ and all stores
σ compatible with ∆ and Γ, (σ,γ(δ(e))) is a member of the
interpretation of δ(τ) as a computation.

Type soundness of the static semantics given in Sec-
tion 3.2 amounts to showing that whenever we can derive
∆;Γ ` e : τ, we can prove J∆;Γ ` e : τK. As an immediate
corollary, for any well-typed closed expression e of type τ,
we know that evaluating ({},e) terminates with a configura-
tion (σ,v) in the value interpretation of τ.

Theorem 1 (Core L3 Soundness)

If ∆;Γ ` e : τ, then J∆;Γ ` e : τK.

Proof

By induction on the derivation ∆;Γ ` e : τ. 2

Corollary 2

If •;• ` e : τ, then ({},e) 7−→∗ (σ f ,v f ) and (σ f ,v f ) ∈
V JτK.

Another interesting corollary is that if we run any closed,
well-typed term of base type (e.g., 1), then the resulting store
will be empty. Thus, the expression will be forced to destroy
any locations that it creates before terminating.

4 Extended L3

Thus far, our language only supports linear capabilities.
While this gives us the ability to do strong updates, and the
separation of pointers and capabilities allows us to build in-
teresting store graphs, we still cannot simulate ML-style ref-
erences which are completely unrestricted. Such references
are strictly more powerful than the linear references consid-
ered in the previous sections. Although an ML-style refer-
ence requires the cell to hold values of exactly one type, this

is sufficient for building recursive computations. For exam-
ple, we can write a divergent expression as follows:3

1. let val r = ref (fn () => ())

2. val g = fn () => (!r) ()

3. in r := g;

4. g ()

5. end

The unrestricted nature of ML-style references is crucial in
this example: the reference r (holding a function of type
unit -> unit), is used both in g’s closure (line 2) and in
the assignment at line 3.

In this section, we consider some minimal extensions
needed for unrestricted references. At the same time, we
are interested in modeling more recent languages, such
as CQUAL, that support regaining (if only temporarily) a
unique capability on an unrestricted reference so as to sup-
port strong updates.

One approach to modeling ML-style references is to add
a new kind of unrestricted capability, with its own version
of swap. To ensure soundness, the new swap would require
that the value being swapped in to the location have the same
type as the value currently in the location. This would ensure
that the other capabilities for the location remained consis-
tent with the current world. That is, unrestricted capabilities
must have types that are frozen throughout their lifetime. An
unrestricted, frozen capability could be created from a nor-
mal, linear capability. However, there could be no support
for destroying a frozen location since this would invalidate
the other capabilities for that location.

These additions to the language would be relatively
straightforward, but we are also interested in supporting
strong updates for unrestricted references. The extensions
described below are inspired by CQUAL’s restrict opera-
tor in that they allow an unrestricted, frozen capability to be
temporarily “thawed” to a linear capability. This allows us
to perform strong updates on the location.

In fact, these extensions obviate the need for a new swap

on frozen capabilities – only thawed (linear) capabilities per-
mit a swap, regardless of whether the content’s type changes.
Hence, the process of thawing a location demands exclusive
access and thus the programmer must present evidence that
no other frozen capability for the same location is currently
thawed. In our extended language, this evidence is a value
representing a proof that no other thawed location aliases the
location on which we would like to do strong updates. There
are many possible ways to prove such a fact, based on types
or regions or some other partitioning of objects. Here, we
do not commit to a particular logic so that the framework
can be used in various settings. Rather, we use our semantic
interpretation of types to specify a general condition so that
admissible rules can be added to the type system without re-
proving soundness.

3Please note that this example is written with SML syntax, where ! is
the function to read the contents of a reference.
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A thawed location can also be “re-frozen” in our ex-
tended language. This is meant to re-enable access to
the location along a different frozen capability. However,
to ensure soundness, the original frozen type must be re-
established when we re-freeze. Together, thawing and
re-freezing a location correspond to the lexically-scoped
restrict of CQUAL. However, we are not limited to
the last-in-first-out thawing and re-freezing imposed by a
lexically-scoped discipline, and, indeed, there is no real re-
quirement that a thawed location ever be re-frozen.

Finally, because frozen capabilities are unrestricted, we
will require a frozen location to hold a value of !-type. This
prevents a program from discarding a linear value by placing
the (one and only) reference to the value in a frozen location
and then discarding all capabilities to access the location.

4.1 Changes to Support the Extensions

The syntactic changes to support the extensions described
above are as follows:

LocSets L ∈ P (LocConsts)
Thawed Contexts

θ ::= • | θ,η:τ
Types τ ::= . . . | Frznη τ | Thwdθ | Notinη θ
Exprs e ::= . . . | freeze e1 e2 | thaw e1 e2 |

refreeze e | frzn ` | thwdL
Values v ::= . . . | frzn ` | thwdL
Evaluation Contexts

E ::= . . . | freezeE e | freeze v E |
thawE e | thaw v E |
refreezeE

The extended language is evaluated in the presence of a
frozen store φ, which contains type-invariant mutable refer-
ences, and a linear store σ. Figure 5 gives the small-step
operational semantics for extended L3 as a relation between
configurations of the form (φ,σ,e), where the two stores are
necessarily disjoint. All of the operational semantics rules
of core L3 carry over to the extended language by passing φ
along unmodified. (However, note that (cre) must choose a
fresh location not in the domain of either φ or σ.) The static
semantics for the extended language consist of all the rules
for the core language and the rules given in Figure 6.

The type Frznητ is the type of a frozen capability for lo-
cation η which in turn holds a value of type τ. The (internal)
term frzn ` represents such a capability. We allow frozen
capabilities to occur under the !-constructor, and thus they
can be duplicated or forgotten.

The type Notinη θ represents a proof that the location η
is not in the thawed context θ. As presented, our language
has no terms of this type. Rather, our intention is that the
type should only be inhabited by some value when indeed,
the given location is not in the locations given by θ. For
instance, in the next section, we will make use of a constant
voidη, which we could add to the language as a proof of the
trivial fact that for all locations η, Notinη•.

(freeze) (φ,σ]{` 7→ !v},
freeze 〈cap `,thwdL〉 v′)

7−→ (φ]{` 7→ !v},σ,〈!(frzn `),thwdL〉)

(thaw) (φ]{` 7→ !v},σ,thaw 〈!(frzn `),thwdL〉 v′)
7−→ (φ,σ]{` 7→ !v},〈cap `,thwd (L]{`})〉)

(refreeze) (φ,σ]{` 7→ !v},
refreeze 〈cap `,thwd (L]{`})〉)

7−→ (φ]{` 7→ !v},σ,〈!(frzn `),thwdL〉)

(ctxt)
(φ,σ,e) 7−→ (φ′,σ′,e′)

(φ,σ,E[e]) 7−→ (φ′,σ′,E[e′])

Figure 5: Extended L3– Operational Semantics

A value of type Thwdθ is called a thaw token and is used
to record the current set of frozen locations that have been
thawed, as well as their original types. The term thwdL is
used to represent a thaw token. In a given program, there
will be at most one thaw token value that must be effectively
threaded through the execution. Thus, Thwdθ values must
be treated linearly. An initial thaw token of type Thwd• is
made available at the start of a program’s execution.

The thaw operation takes as its first argument a pair of
a frozen capability for a location (!Frznη τ) and the current
thaw token (Thwdθ). The second argument is a proof that
the location has not already been thawed (Notinηθ). The op-
eration returns a linear capability (Capη τ) and a new thaw
token of type Thwd (θ,η:τ). In thawing a location, the oper-
ational semantics transfers the location from the frozen store
to the linear store. This is a technical device that keeps the
current state of a location manifest in the semantics; a real
implementation would maintain a single, global store with
all locations.

The refreeze operation takes a linear capability of type
Cap η τ and a thaw token of type Thwd (θ,η:τ) and returns
a frozen capability with type !Frznη τ and the updated thaw
token of type Thwdθ. Note that to re-freeze, the type of the
capability’s contents must match the type associated with the
location in the thaw token.

Finally, a frozen capability of type !Frzn η τ is created
with the freeze operation. The first argument to freeze

is a pair of a linear capability for a location (Cap η τ) and
the current thaw token (Thwd θ). The other argument is
a value of type Notin η θ ensuring that the location being
frozen is not in the current thawed set; currently thawed lo-
cations should be re-frozen to match the type of any frozen
aliases. Note that freeze returns the thaw token unchanged.

Both freeze and refreeze have the operational effect
of moving a location from the linear store to the frozen store.
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∆;Γ ` e : τ

(Freeze)
∆;Γ1 ` e1 : Capρ !τ⊗Thwd θ ∆;Γ2 ` e2 : Notinρ θ

∆;Γ1 �Γ2 ` freeze e1 e2 : !(Frznρ !τ)⊗Thwd θ
(Thaw)

∆;Γ1 ` e1 : !(Frznρ !τ)⊗Thwd θ ∆;Γ2 ` e2 : Notinρ θ
∆;Γ1 �Γ2 ` thaw e1 e2 : Capρ !τ⊗Thwd (θ,ρ:!τ)

(Refreeze)
∆;Γ ` e : Capρ !τ⊗Thwd (θ,ρ:!τ)

∆;Γ ` refreeze e : !(Frznρ !τ)⊗Thwd θ

Figure 6: Extended L3– Additional Static Semantics

4.2 Examples and Discussion

The extended language is now expressive enough to encode
the example given at the beginning of this section. An ML-
style reference can be viewed as a value of type:

Ref !τ ≡ !∃ρ.(!Frznρ !τ⊗ !Ptr ρ).

Next, we need to give read and write operations on refer-
ences. We consider a simple scenario in which a frozen capa-
bility is thawed exactly for the duration of a read or write;
hence, we will assume that the thaw token has type Thwd•
at the start of the operation and we will return the thaw token
with this type at the conclusion of the operation. Recall that
we take voidη as a constant term of type Notin η •, which
suffices given our assumed type of the thawed token.

read≡ λr!:Ref !τ.λt0:Thwd • .

let pρ,〈f!
a,l

!〉q = r in

let 〈c1,t1〉 = thaw 〈fa,t
0〉voidρ in

let 〈c2,x!〉 = swapl 〈c1,〈〉〉 in

let 〈c3,〈〉〉 = swapl 〈c2,x〉 in
let 〈f!

b,t
2〉 = refreeze 〈c3,t1〉 in

〈x,t2〉

write ≡ λr!:Ref !τ.λz!:!τ.λt0:Thwd • .

let pρ,〈f!
a,l

!〉q = r in

let 〈c1,t1〉 = thaw 〈fa,t
0〉voidρ in

let 〈c2,x!〉 = swapl 〈c1,z〉 in
let 〈f!

b,t
2〉 = refreeze 〈c2,t1〉 in

t2

It is easy to see how these operations can be combined to re-
construct the divergent computation by “back-patching” an
unrestricted reference.

As the extended L3 is strictly more powerful than the
core language given previously, the semantic interpretation
given in Section 3.4 will not suffice as a model. We turn our
attention to a more sophisticated semantic interpretation in
the next section.

4.3 Semantic Interpretations

The model we use here is based on the indexed model of ref-
erences developed by Ahmed, Appel, and Virga [2, 4], which
in turn extends Appel and McAllester’s indexed model [7]
of recursive types. We begin by summarizing the intuitions
underlying these models. Appel and McAllester’s semantic

interpretation of a (closed) type V JτK is a set of pairs (k,v),
where k is a natural number and v is a value. The intuitive
idea is that in any computation running for no more than k
steps, the value v cannot be distinguished from values of type
τ. For instance, no computation that runs for only one step
can distinguish between a pair of booleans and a pair of in-
tegers, because in one step the computation can only extract
the values in the pair and not perform any type-specific op-
eration on the values. A pair (k,e) is a member of C JτK if e
cannot get stuck within k steps, and furthermore, if e reduces
in j < k steps to a value v then (k− j,v) ∈ V JτK.They call k
the approximation index.

To model ML-style references, one could define the se-
mantic interpretation of a type V JτK as a set of pairs (Ψ,v),
where Ψ is a store typing that maps store locations to (the se-
mantic interpretations of) their designated types. This, how-
ever, would mean that the interpretations of types must be
predicates on partial functions from locations to the inter-
pretations of types. A simple diagonalization argument will
show that the set of type interpretations has an inconsistent
cardinality.

Ahmed, Appel, and Virga show how to eliminate this cir-
cularity using the notion of approximations from the indexed
model. They define the semantic interpretation of a type
V JτK as a set of tuples of the form (k,Ψ,v), where Ψ maps
locations to (the interpretations of) their designated types to
approximation k− 1. Intuitively, this says that to determine
whether v has type τ for k steps, we only need to know what
type the contents of each store location will have for k− 1
steps. This ensures that the model is well-founded.

For any closed type τ in extended L3, its semantic inter-
pretation V JτK is a set of tuples of the form (k,Ψ,ζ,σ,v).
Here k is the approximation index; Ψ is a store typing that
maps frozen locations (including locations that are currently
thawed) to the semantic interpretations of their frozen types
(to approximation k−1); ζ denotes either the set of currently
thawed locations or ⊥; σ is a linear store; and v is a value.

As for core L3, we consider σ to be the exclusive store
of the value. The lifted thaw set ζ models the thaw token
which the value may or may not have. Since there is at most
one thaw token that must be threaded through the program,
there is just one global thaw set. Hence, we define a partial
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(k,Ψ) v ( j,Ψ′)
def
= j ≤ k ∧ ∀` ∈ dom(Ψ). bΨc j(`) = bΨ′c j(`)

V J1K = {(k,Ψ,⊥,{},〈〉)}
V Jτ1 ⊗ τ2K = {(k,Ψ,ζ1 ~ζ2,σ1 ]σ2,〈v1,v2〉) | (k,Ψ,ζ1,σ1,v1) ∈ V Jτ1K ∧ (k,Ψ,ζ2,σ2,v2) ∈ V Jτ2K}

V Jτ1 ( τ2K = {(k,Ψ,ζ2,σ2,λx.e) |
∀Ψ′,ζ1,σ1,v1, j < k.
( (k,Ψ) v ( j,Ψ′) ∧ ( j,Ψ′,ζ1,σ1,v1) ∈ V Jτ1K ∧ ζ1 ~ζ2 defined ∧ σ1 ]σ2 defined ) ⇒
( j,Ψ′,ζ1 ~ζ2,σ1 ]σ2,e[v1/x]) ∈ CJτ2K}

V J!τK = {(k,Ψ,⊥,{}, !v) | (k,Ψ,⊥,{},v) ∈ V JτK}
V JPtr `K = {(k,Ψ,⊥,{},ptr `)}

V JCap ` τK = {(k,Ψ,ζ,σ]{` 7→ v},cap `) | ∀ j < k. ( j,bΨc j,ζ,σ,v) ∈ V JτK}
V J∀ρ.τK = {(k,Ψ,ζ,σ,Λρ.e) | ∀ j,Ψ′, `. (k,Ψ) v ( j,Ψ′) ⇒ ( j,Ψ′,ζ,σ,e[`/ρ]) ∈ CJτ[`/ρ]K}
V J∃ρ.τK = {(k,Ψ,ζ,σ,p`,vq) | (k,Ψ,ζ,σ,v) ∈ V Jτ[`/ρ]K}

V JFrzn ` τK = {(k,Ψ,⊥,{},frzn `) | bΨck(`) = bV JτKck}
V JThwdθK = {(k,Ψ,L,{},thwd L) | ∀` ∈ L.bΨck(`) = bV Jθ(`)Kck}

V JNotin `θK = {(k,Ψ,⊥,{},v) | ` /∈ dom(θ)}

Figure 7: Extended L3: Semantic Interpretations (Values)

function for merging thaw sets, written ζ1 ~ζ2, as follows:

ζ ∈ (P (LocConsts))⊥

ζ ~ ⊥=ζ
⊥ ~ ζ=ζ

We use the meta-variable D to denote sets of tuples of
the form (k,Ψ,ζ,σ,v). For any such set D, we define the k-
approximation of the set as the subset of its elements whose
index is less than k. We also extend this notion point-wise to
mappings Ψ from locations to sets D.

bDck
def
= {( j,Ψ,ζ,σ,v) | j < k ∧ ( j,Ψ,ζ,σ,v) ∈ D}

bΨck
def
= {` 7→ bDck | ` ∈ dom(Ψ) ∧ Ψ(`) = D}

For the model to be well-founded, it must be the case that
(k,Ψ,ζ,σ,v) ∈ V JτK if and only if (k,bΨck,ζ,σ,v) ∈ V JτK.
Figure 7 gives our semantic interpretation of (closed) types
as values (V JτK). The reader may check that for each type τ,
if the definition of (k,Ψ,ζ,σ,v) ∈ V JτK needs to look up the
type of a location in Ψ, this is always written bΨci(`) where
i ≤ k.

Note that the interpretation of 1 makes no demands of
the thaw set or the linear store. The same is true of the inter-
pretations of Ptr ` and !τ, and also of the interpretations of
Frzn ` τ and Notin ` τ. Values of each of these types may be
(explicitly converted to values of !-type and then) duplicated
or discarded without duplicating or discarding the thaw to-
ken or portions of the store.

The interpretation of the type τ1 ⊗ τ2 demands that at
least one of the thaw sets of its sub-values be ⊥, just as it
demands that their exclusive stores be disjoint.

The interpretation of Frzn ` τ requires that the type of `
specified by Ψ match τ to approximation k. Intuitively, we
cannot access the value stored at location ` in the frozen store
without at least a swap, which consumes one step so that we

only need to know that the contents at ` approximates type τ
for another k−1 steps.

The interpretation of Thwd θ requires simply that the
type of every thawed location according to θ is consistent
(to approximation k) with the type of the location according
to Ψ. This ensures that when we move a location from the
linear store back to the frozen store— recall that this requires
that the location contain a value of type θ(`) — we end up
with a frozen store where every location contains the type
mandated by Ψ (to an appropriate approximation).

The interpretation of Notin ` θ demands that ` not be
mapped by θ. This means that whenever θ is identical to
the thawed context for the current thaw token, we essentially
have a proof that ` is not a thawed location. Note that the sta-
tic semantics for freeze and thaw ensure that the θ in the
type of the current thaw token matches the θ for which we
demand the proof.

The interpretation of Cap ` τ places similar demands on
the linear store as it did for core L3. Also, its thaw set is pre-
cisely the thaw set of the value stored at ` in σ. Furthermore,
it only requires that this value have the type τ for upto k−1
steps, intuitively, because accessing the value stored at ` in
σ requires a swap, which consumes one step.

Since functions and type abstractions are suspended
computations, their interpretations are a bit more involved.
An abstraction Λρ.e is in the interpretation of a type ∀ρ.τ
for k steps if, at some future point in the program, say when
we have j < k steps left to execute, e[`/ρ] is in the interpre-
tation of computations of type τ[`/ρ]. Before we reach that
future point, however, the program may have frozen new lo-
cations, so that the frozen store typing Ψ′ at that future point
may map more locations than the current Ψ.

We define a relation (k,Ψ)v ( j,Ψ′) (see Figure 7) which
specifies the relationship between frozen store typings as we
go from a state in which we can safely execute k more steps
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φ :k Ψ\ζ def
= ζ 6= ⊥ ∧ dom(Ψ) = dom(φ)]ζ ∧ ∀ j < k. ∀` ∈ dom(φ). ( j,bΨc j,⊥,{},φ(`)) ∈ bΨck(`)

CJτK = {(k,Ψs,ζs,σs,es) |
∀ j,φs,φ f ,ζr,σr,σ′,e f .
(0 ≤ j < k ∧ φs :k Ψs \ (ζs ~ζr) ∧ (φs,σs ]σr,es) 7−→

j (φ f ,σ′,e f ) ∧ irred(φ f ,σ′,e f ) ) ⇒
∃Ψ f ,ζ f ,σ f .
(k,Ψs) v (k− j,Ψ f ) ∧ φ f :k− j Ψ f \ (ζ f ~ζr) ∧ σ′ = σ f ]σr ∧ (k− j,Ψ f ,ζ f ,σ f ,e f ) ∈ V JτK}

SJ•Kδ = {(k,Ψ,⊥,{}, /0)}
SJΓ,x:τKδ = {(k,Ψ,ζ~ζx,σ]σx,γ[x 7→ vx]) | (k,Ψ,ζ,σ,γ) ∈ SJΓKδ ∧ (k,Ψ,ζx,σx,vx) ∈ V Jδ(τ)K}

J∆;Γ ` e : τK = ∀k ≥ 0. ∀δ,γ,Ψ,ζ,σ. dom(δ) = dom(∆) ∧ (k,Ψ,ζ,σ,γ) ∈ SJΓKδ ⇒ (k,Ψ,ζ,σ,γ(δ(e))) ∈ CJδ(τ)K

Figure 8: Extended L3: Semantic Interpretations (Computations & Judgments)

to a state where we can safely execute j ≤ k more steps. We
require that the types of all locations in Ψ be preserved in
Ψ′, though only to approximation j. Note that dom(Ψ′) may
be a superset of dom(Ψ).

A property crucial for the soundness of our model is
the transitivity of the v relation. This allows us to prove
Kripke monotonicity which we require since our model is
a possible-worlds semantics. Intuitively, to model ML-style
references, we must ensure that types are preserved. Since Ψ
tells us what the frozen type of each frozen location should
be, the types of locations in Ψ must be preserved. This is
the reason that, when we thaw a location `, although the dy-
namic semantics moves ` from the linear to the frozen store,
we do not remove ` from the store typing.

In order to track how far “out of synch” the frozen store
φ is with respect to the store typing Ψ, we define the rela-
tion φ :k Ψ \ ζ (see Figure 8). Informally, this says that the
frozen store φ is well-typed (to approximation k) with re-
spect to the store typing Ψ modulo the current set of thawed
locations ζ. The relation requires that Ψ specify types for
all locations in the frozen store as well as locations that are
currently thawed. Also, it says that the contents of every
location in the frozen store must have the type specified by
Ψ. Note that it does not require that the contents of thawed
locations have the types specified by Ψ. That condition is,
however, checked upon refreeze.

The interpretation of functions makes use of reasoning
similar to that for abstractions and also demands that the
thaw set and exclusive store of the argument to the func-
tion be disjoint from the thaw set and exclusive store of the
function itself. Furthermore, note that it requires that the ar-
gument to the function (v1) must have type τ1 for only j < k
steps (rather than j ≤ k steps). Intuitively, this is sufficient
since beta-reduction consumes a step.

Informally, a tuple (k,Ψs,ζs,σs,es) is a member of C JτK
if for every frozen store φs and every disjoint (rest of the)
thaw set ζr and linear store σr, such that φs is well-typed
with respect to Ψs (ignoring the set of currently thawed lo-
cations ζs ~ζr), and the computation reaches an irreducible

(final) state (φ f ,σ′,e f ) in j steps, then the following condi-
tions hold. First, it must be that σr is unmodified, that is,
σ′ must equal σ f ] σr. Second, the (rest of the) thaw set
ζr should also be unmodified. Note that this ensures that a
computation whose starting exclusive thaw set ζs is ⊥ can-
not modify the global set of thawed locations represented by
ζr. Third, the final frozen store φ f must be well-typed with
respect to a new frozen store typing Ψ f (ignoring the set of
final thawed locations ζ f ~ζr) where Ψ f is a valid extension
of Ψs . Finally, (k− j,Ψ f ,ζ f ,σ f ,e f ) must be a member of
V JτK.

The semantic interpretation of a typing is given by
J∆;Γ ` e : τK, which asserts that for all k ≥ 0, all substi-
tutions δ and γ, and all frozen store typings Ψ, thaw sets
ζ, and linear stores σ that are compatible with ∆ and Γ,
(k,Ψ,ζ,σ,e) is a member of C Jδ(τ)K.

We have established the following theorem which shows
the soundness of the typing rules with respect to the
model [3].

Theorem 3 (Extended L3 Soundness)

If ∆;Γ ` e : τ, then J∆;Γ ` e : τK.

5 Related Work

A number of researchers have noted that linearity and strong
updates can be used to provide more effective memory man-
agement (c.f. [10, 24, 33, 9, 15, 8]). Our work is comple-
mentary, in the sense that it provides a foundational stand-
point for expressing such memory management in the pres-
ence of both linear and unrestricted data.

Our core L3 language is most directly influenced by Alias
Types [34]. Relative to that work, the main contributions of
our core language are (a) a simplification of the typing rules
by treating capabilities as first-class linear objects, and (b) a
model for the types that makes the connections with mod-
els for spatial logics clear. Of course, the extended version
of L3 goes well beyond what Alias Types provided, with
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its support for thawing and re-freezing locations. As noted
earlier, these primitives are inspired by the lexically-scoped
restrict of CQUAL [5], though they are strictly more pow-
erful.

The work of Boyland et al. [14] considers another ap-
plication of capabilities as a means to regulate sharing of
mutable state. They present an operational semantics for an
untyped calculus in which every pointer is annotated with a
set of capabilities, which are checked at each read or write
through the pointer. Capabilities can also be asserted, which
revokes capabilities from aliasing pointers; this revocation
can stall the abstract machine by removing necessary ac-
cess rights for future pointer accesses. They leave as an
open problem the specification of policies and type-systems
to ensure that execution does not get stuck. While L3 does
not solve this problem, the comparison points to an inter-
esting phenomenon. We might naı̈vely assert that a Cap ρ τ
corresponds to a unique pointer with full capabilities; how-
ever, doing so would revoke capabilities from aliasing frozen
pointers. Further investigation into the relation between
these language should be pursued.

The Vault programming language [19] extended the ideas
of the Capability Calculus [37] and Alias Types to enforce
type-state protocols. As far as we are aware, there is no pub-
lished type soundness proof of Vault’s type system. Later
work [20] added the adoption and focus constructs. The
former takes linear references to an adoptee and an adopter,
installs an internal pointer from the adopter to the adoptee,
and returns a non-linear reference to the adoptee. This per-
mits unrestricted aliasing of the adoptee through the non-
linear reference; however, linear components of the adoptee
may not be accessed directly through the non-linear refer-
ence. Instead, the focus construct temporarily provides a
linear view of an object of non-linear type.

While there is no simple translation from Vault
to our extended language, it should be clear that
their adoption/focus play a similar role to our
freeze/thaw/refreeze. We believe that we can ap-
proximate Vault’s behavior by reinterpreting our Frzn ρ τ
and Thwd θ types and modifying the proof obligations at
freeze, thaw, and refreeze. Rather than interpreting
Frzn ρ τ as an indication that the location ρ stores a value of
type τ, we interpret it as an indication that some location,
adopted by the location ρ, stores a value of type τ. Likewise,
Thwd θ records the adopters of locations that have been
thawed, rather than the locations themselves. freeze and
thaw are parameterized by the adopter and require a proof
that the adopter is not in the thawed set; thaw returns an
existential package, which provides access to the “some
location” hidden by Frznρ τ. An important avenue of future
work is to validate this approximation and to consider ways
in which it can coexist with our original interpretation.

There has been a great deal of work on adapting some
notion of linearity to real programming languages such as

Java. Examples include ownership types [18, 12], unique-
ness types [33, 13, 17, 23], confinement types [16, 22, 35],
balloon types [6], islands [25], and roles [27]. Each of these
mechanisms is aimed at supporting local reasoning in the
presence of aliasing and updates. Most of these approaches
relax the strong requirements of linearity to make program-
ming more convenient. We believe that L3 could provide a
convenient foundation for modeling many of these features,
because we have made the distinction between a reference
and a capability to use the reference.

6 Summary and Future Work

We have presented L3 which is a simple, linearly-typed cal-
culus that supports shared references and strong updates.
The core language provides all the power of Alias Types but
has a much simpler semantics that can be directly related to
models of spatial logics such as BI. The extended language
can model unrestricted references, as found in conventional
imperative languages, where the type of the reference must
be frozen. In addition, following CQUAL, our extended lan-
guage allows “thawing” a frozen reference so that the loca-
tion can be strongly updated, and then re-freezing a location
once the type has been restored.

A key open issue is what logic to use for proving that
it is safe to thaw a given location. For instance, one could
imagine a logic that allows us to conclude two locations do
not alias because their types are incompatible. In CQUAL,
locations are placed in different conceptual regions, and the
regions are used to abstract sets of thawed locations.

Another open issue is how to lift the ideas in L3 to a
surface level language. Clearly, explicitly threading linear
capabilities and a thaw token through a computation is too
painful to contemplate. We are currently working on adapt-
ing ideas from indexed monads and type-and-effects systems
to support implicit threading of these mechanisms.
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