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Abstract

Knock ’m Down is a game of dice that is so easy to learn that it is being played in classrooms around the

world as a way to develop students’ intuition about probability. However, as analysis has shown, lurking

underneath this deceptively simple game are many surprising and highly unintuitive results. In the original

description of the game, two players are each given one six sided die, 12 tokens and a board labeled with the

values 2, 3, . . . , 12. Each player distributes his/her tokens among the values on his/her board. Now, the

players roll their dice together and each removes a token from his/her board on the value equal to the sum

of the dice (if he/she has one there). Turns continue in this fashion. The winner is the first player to remove

all twelve tokens. The problem posed by this game is to determine which allocation of tokens will maximize

a player’s chances of winning. Results will demonstrate that the answer to this question depends on many

factors, and small variations in the rules of the game can lead to markedly different answers. In addition to

the major theoretical results, the principal computational challenges of this problem will be discussed.



Contents

1 Introduction 2

2 A Variety of Examples 3

2.1 Players A and B Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Surprises in a 4-Valued Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 A Scam with a 3-Valued Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 A Simple 2-Valued Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.5 Minimal Allocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.6 Tournaments, Emperors and Emperor Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.7 Solution to the Original Knock ’m Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Notation and Generalization 16

4 Theoretical Results 19

4.1 The Minimal Allocation Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 The Token Adding Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 The Token Adding Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.2 Proof of the Token Adding Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.3 The Second Token Adding Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.4 The Minimal Allocation Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Knock ’m Down in the Case of Two Values (N = 2) 27

5.1 Formulae for E(TX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Minimal Allocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Emperors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4 Asymptotic Shape of X∗ and X̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Computational Details 36

6.1 Primary Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.1.1 Calculating E(TX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.1.2 Finding Minimal Allocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1.3 Calculating V AR(TX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1.4 Calculating WDLO(X, Y ) and WDLI(X, Y ) . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Optimized Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2.1 Finding Minimal Allocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1



6.2.2 Calculating WDLO(X, Y ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.3 Finding Emperors and Emperor Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7 Conjectures, Open Questions, and Future Directions 47

7.1 The Minimal Sub-allocation Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.2 The Splitting Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.3 Majorization and Independent Knock ’m Down . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.4 Other Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8 Acknowledgments 53

2



Player A

2 3 4 5 6 7 8 9 10 11 12
� �� �� �� �� �� �� �� �� �� ��� ��� �� �� �� �� �� �� �� �� �� ��� ��� �� �� �� �� �� �� �� �� �� ��� ��� �� �� �� �� �� �� �� �� �� ��� ��� �� �� �� �� �� �� �� �� �� ��� ��� �� �� �� �� �� �� �� �� �� ��� ��� �� �� �� �� �� �� �� �� �� ��� ��� �� �� �� �� �� �� �� �� �� ��� ��� �� �� �� �� �� �� �� �� �� ��� ��� �� �� �� �� �� �� �� �� �� ��� ��� �� �� �� �� �� �� �� �� �� ��� ��� �� �� �� �� �� �� �� �� �� ��� ��

Player B

2 3 4 5 6 7 8 9 10 11 12
� �� �� �� �� �� �� �� �� �� ��� ��� �� �� �� �� �� �� �� �� �� ��� ��� �� �� �� �� �� �� �� �� �� ��� ��� �� �� �� �� �� �� �� �� �� ��� ��� �� �� �� �� �� �� �� �� �� ��� ��� �� �� �� �� �� �� �� �� �� ��� ��� �� �� �� �� �� �� �� �� �� ��� ��� �� �� �� �� �� �� �� �� �� ��� ��

� �� �� �� �� �� �� �� �� �� ��� ��� �� �� �� �� �� �� �� �� �� ��� ��� �� �� �� �� �� �� �� �� �� ��� ��� �� �� �� �� �� �� �� �� �� ��� ��
Figure 1: Allocations for Player A and Player B

1 Introduction

Knock ’m Down is a game of dice that is so easy to learn that it is being played in classrooms around the

world. Although this game has been effective at developing students’ intuition about probability (see [3] and

[4]), our analysis will shown that lurking underneath this deceptively simple game are many surprising and

highly unintuitive results.

The game is played by two players, each of whom is given a 6-sided die, 12 tokens, and a board with the

numbers 2 through 12. The players allocate their tokens among the eleven numbers on the board however

they want. Let’s suppose players A and B allocate their tokens as shown in Figure 1. Next the players roll

their dice together and each removes a token from his or her board on the value equal to the sum of the

dice. For instance, if a 6 and a 2 are rolled, then both players remove a token from the 8 spot. Whereas if

a 6 and a 5 are rolled, then player A removes a token from the 11 spot but – since player B has no tokens

on the 11 spot – B’s allocation is unchanged. The first player to remove all tokens is the winner. (If both

players remove their last token on the same roll, then the game is a draw.)

In this paper, we investigate the question: what is the optimal strategy for playing a game of Knock ’m

Down? That is, what allocation of tokens should one choose to maximize the probability that one wins the

game?
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Figure 2: Histogram of Probabilities and an Allocation of 36 Tokens

2 A Variety of Examples

Before presenting a number of theoretical results, we will examine some interesting instances of Knock ’m

Down games in order to develop a better intuitive understanding of the game. Additionally, these examples

will allow us to become better acquainted with the types of theoretical results we wish to prove about the

game.

2.1 Players A and B Revisited

Recall the example allocations shown in Figure 1 for the 12-token game with P corresponding to the roll of

two six-sided dice. Instinctively, the allocation of player B seems superior since it more closely resembles the

shape of the histogram of probabilities in Figure 2. In fact, player B wins against player A in 75% of the

games, draws in 9% of the games, and loses in only 16% of the games. We say that the allocation of player

B is favored over the allocation of player A, since it wins at least as often as it loses.

Our instincts told us that the optimal allocation should resemble the histogram as much as possible. If

we were given 36 tokens to allocate, then we could allocate them exactly proportional to the probabilities in

Figure 2. By all that is sensible, we felt this should be the optimal allocation. But as we soon learned, in

this innocent little dice game, all is not sensible!

Before revealing our solution to the original 12-token game, let’s find the best allocations for some simpler

games. (Here’s a hint: The best 12-token allocation can be obtained by moving just one token in player B’s

allocation in Figure 1.)

2.2 Surprises in a 4-Valued Game

Consider the 4-valued game consisting of outcomes α, β, γ, and δ with respective probabilities .4, .3, .2, and

.1. How should you allocate 10 tokens? Can you predict which of the two allocations in Figure 3 is better?

Notice that the first allocation has exactly the same triangular shape as the histogram of probabilities.

Surprisingly, the answer depends on what you mean by “better.” It seems reasonable that we should want

the allocation that requires, on average, the fewest number of turns to remove all tokens. Let A = [4, 3, 2, 1],
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Figure 3: Which allocation is better?
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(0.433, 0.388)

(0.307, 0.256)

(0.475, 0.239)

-
@

@
@I�

�
�	

Figure 4: Subset of the Emperor Cycle in the 20-token Game with P = (.4, .3, .2, .1)

B = [5, 3, 2, 0], and let E(X) denote the average number (i.e., the expected value) of the number of turns

needed to clear all the tokens from the allocation X.1 In fact, using the calculations described in Section

6, we can show that B has the smallest expectation among all allocations of 10 tokens. We call such an

allocation a minimal allocation. Armed with this information, it appears that B is the superior position. Or

is it?

When we play the two positions against each other, we find that B loses to A, more than one and a half

times as often as it beats it! Why does this happen? Essentially, it is due to the following fact: if a 1 is

rolled anytime before B is finished, then allocation A becomes a sub-allocation of B, so B can not possibly

win (it must lose or draw). However, five 4s must be rolled before B can achieve that status against A. In

fact, allocation A is favored over all other allocations of 10 tokens. Using terminology from [5], we call such

an allocation an emperor.

Does this same phenomenon occur when we increase the number of tokens? Alas no. When we play the

same 4-valued game with 20 tokens, allocation [10, 6, 3, 1] has the lowest expected value and it beats the

triangular allocation [8, 6, 4, 2] in head-to-head competition. (We note that 10, 6, 3, and 1 are triangular

numbers, but that’s just a coincidence!) But here’s the strange part: allocation [8, 6, 4, 2] beats [9, 6, 4, 1]

which in turn beats [10, 6, 3, 1]! In other words, we have a situation with non-transitive probabilities, as

illustrated in Figure 4. The arc from [10, 6, 3, 1] to [8, 6, 4, 2] indicates that [10, 6, 3, 1] beats [8, 6, 4, 2] with

probability 0.433 and loses to [8, 6, 4, 2] with probability 0.388, (and therefore draws with probability 0.179).

Although this game has no emperor, the three allocations above plus a few others form an emperor cycle:
1This informal notation is actually an abuse of the expected value notation, since X is not a random variable. See Section

3 for the formal notation that will be used in later sections.
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Figure 5: Emperor Cycle in the 5-Token Game with P = (3
6 , 2

6 , 1
6 )
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[1, 2, 0] [3, 0, 0]
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Figure 6: Cycles in the 3-Token Game with P = (3
6 , 2

6 , 1
6 )

the smallest set of allocations such that each allocation in the cycle is favored over all allocations not in the

cycle.

2.3 A Scam with a 3-Valued Game

An emperor cycle also exists in the 5-token game with probability vector P = (3/6, 2/6, 1/6). Here, allocation

(3,2,0) defeats (4,1,0), which defeats (2,2,1), which defeats (3,1,1), which defeats (3,2,0) as illustrated in

Figure 5.

When the same game is played with 3 tokens, then allocation (2, 1, 0) is both the minimal allocation and

the emperor. However, several non-emperor cycles exist in this game, as illustrated in Figure 6. One can

easily imagine lucrative scams based on these non-transitive properties, easily played with a single six-sided

die.

2.4 A Simple 2-Valued Game

To get a feel for how some of these results could be calculated, we will look at a very small example. (See

Section 6 for a formal treatment of these calculations in the general case.) Consider the 2-valued game

consisting of the outcomes H (heads) and T (tails) with respective probabilities of 2
3 and 1

3 . Then there are

only three allocations of two tokens, as depicted in Figure 7. How might we calculate the expected clearing

time of allocation A? Well, clearly the first turn of the game reduces A to having only one token on one
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Allocation A

2
3

1
3P =

H T
� �� �� �� �� �� �� �� �� �� ��� ��� �� �� �� �� �� �� �� �� �� ��� ��

Allocation B

2
3

1
3P =

H T
� �� �� �� �� �� �� �� �� �� ��� ��� �� �� �� �� �� �� �� �� �� ��� �� Allocation C

2
3

1
3P =

H T
� �� �� �� �� �� �� �� �� �� ��� ��� �� �� �� �� �� �� �� �� �� ��� ��

Figure 7: The Allocations for the 2-Token Game with P = (2
3 , 1

3 ).

of the two values. With probability 2
3 heads comes up first and A must wait for a tails to appear. Since

tails appear with probability 1
3 , then the expected time to clear one T token is 1

3

−1 = 3. Likewise, with

probability 1
3 , A must wait an expected 2

3

−1 = 3
2 turns until a heads appears. The analysis is even easier

for allocations B and C. B must clear two tokens on H, waiting an expected 3
2 turns for each, and C must

clear two tokens on T , waiting an expected 3 turns for each. Thus, we have

E([1, 1]) = 1 +
1
3

(
3
2

)
+

2
3

(3) = 3.5

E([2, 0]) =
3
2

+
3
2

= 3

E([0, 2]) = 3 + 3 = 6.

Therefore, allocation B is the minimal allocation.

However, allocation A wins against allocation B in 5
9 of the games and loses the other 4

9 of the games.

Hence, allocation A beats allocation B in the majority of games. Why? Well, note that allocation A wins

all sequences of turns that begin like (H,T, . . .), (T,H, . . .) or (T, T, . . .), which are 5
9 of the sequences. On

the other hand, allocation A only loses sequences of turns that begin like (H,H, . . .), which are 4
9 of the

sequences. Similarly, we can show that allocation A is favored over allocation C in 8
9 of the games and loses

the other 1
9 of the games. Therefore, allocation A is the emperor.

2.5 Minimal Allocations

The examples above give a flavor of some of the unexpected results that appear in an analysis of Knock ’m

Down. Here, we wish to examine minimal allocations in more detail. Recall that a minimal allocation for

a fixed probability distribution is an allocation X whose expected clearing time is less than the expected

clearing time of all other allocations with the same number of tokens. If X is a minimal allocation, we will

denote it as X∗.

There are some properties which we would expect a minimal allocation of a fixed number of tokens to

possess. Clearly, the most tokens should appear on the most probable value, while the least number of tokens

should appear on the least probable value. Further, values with equal probability should have approximately

equal numbers of tokens. One token allocation which satisfies these properties is the distribution of tokens

7



X∗

t 2 3 4 5 6 7 8 9 10 11 12 E(X∗)

1 0 0 0 0 0 1 0 0 0 0 0 6.000

2 0 0 0 0 1 1 0 0 0 0 0 9.927

3 0 0 0 0 1 1 1 0 0 0 0 12.505

4 0 0 0 1 1 1 1 0 0 0 0 15.476

5 0 0 0 1 1 1 1 1 0 0 0 17.768

6 0 0 0 1 1 2 1 1 0 0 0 19.762

7 0 0 0 1 2 2 1 1 0 0 0 22.279

8 0 0 0 1 2 2 2 1 0 0 0 24.306

9 0 0 1 1 2 2 2 1 0 0 0 26.430

10 0 0 1 1 2 3 2 1 0 0 0 28.267

11 0 0 1 1 2 3 2 1 1 0 0 29.865

12 0 0 1 2 2 3 2 1 1 0 0 31.922

13 0 0 1 2 2 3 2 2 1 0 0 33.700

18 0 0 1 2 4 5 3 2 1 0 0 42.665

24 0 1 2 3 4 5 4 3 2 0 0 52.139

30 0 1 2 4 5 7 5 3 2 1 0 60.772

36 0 1 3 4 6 8 6 4 3 1 0 69.569

Figure 8: Minimal Allocations for t-token Games with the Original Knock ’m Down

Probabilities of P = ( 1
36 , 2

36 , 3
36 , 4

36 , 5
36 , 6

36 , 5
36 , 4

36 , 3
36 , 2

36 , 1
36 )

in the same proportions as the probability vector. However, even when possible, we have already seen that

this may not be the minimal allocation. For example, if P = (1
2 , 1

3 , 1
6 ) and t = 6, we might well expect the

minimal allocation optimal of tokens to be [3, 2, 1], but [4, 2, 0] is the minimal allocation.

Figures 8, 9, 10, and 11 show the minimal allocations for a variety of probability distributions and tokens.

We reach a number of interesting conclusions from studying these results. First, we note that these

calculations support the conjecture that every minimal allocation of t tokens contains a minimal allocation

of t−1 tokens as a sub-allocation. However, these calculations show that it is rarely the case that the minimal

allocation is exactly proportional to the relative probability of the values. In fact, the case of P = ( 2
3 , 1

3 )

seems to suggest that the deviation of the minimal allocation of tokens from the distribution by relative

probabilities increases with the number of tokens.

One other expectation that we might have is the following. Suppose we wish to find the minimal allocation

X∗ for P = (p1, p2, . . . , pN ) with t tokens. Further, suppose we know x∗1, but not x∗2, . . . , x
∗
N . Then it may
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X∗

t 2
3

1
3 E(X∗)

1 1 0 1.500

2 2 0 3.000

3 2 1 4.333

4 3 1 5.389

5 4 1 6.593

6 5 1 7.895

7 5 2 8.949

8 6 2 10.053

9 7 2 11.261

300 204 96 313.325

600 405 195 618.844

900 606 294 923.093

1200 807 393 1226.673

Figure 9: Minimal Allocations for t tokens with P = (2
3 , 1

3 )

be the case that we can let X ′ = [x′2, . . . , x
′
N ] be the minimal allocation for P ′ = ( p2

p2+···+pN
, . . . , pN

p2+···+pN
)

with t − x∗1 tokens, with the hope that X∗ = [x∗1, X
′]. In some cases, this appears to be true. Take

P = (3
6 , 2

6 , 1
6 ) with t = 10. We have X∗ = [6, 3, 1]. Further, P ′ = (2

3 , 1
3 ) and t − x∗1 = 4. Thus X ′ = [3, 1]

and X∗ = [x∗1, X
′]. However, this is not always the case. Take P = ( 4

10 , 3
10 , 2

10 , 1
10 ) with t = 14. We have

X∗ = [7, 5, 2, 0]. Further, P ′ = ( 3
6 , 2

6 , 1
6 ) and t− x∗1 = 7. However, X ′ = [4, 2, 1] and X 6= (x∗1, X

′).

Finally, we might also expect the minimal allocation to be unique for a fixed probability distribution

and a fixed number of tokens. However, this is not the case. Consider Figure 8. The minimal allocation for

7 tokens which appears on the table is [0, 0, 0, 1, 2, 2, 1, 1, 0, 0, 0], but it should be clear that the allocation

[0, 0, 0, 1, 1, 2, 2, 1, 0, 0, 0] has the same expected clearing time, since the values 6 and 8 have the same prob-

ability of being rolled on a turn. So, we can revise our expectation and hope that minimal allocations are

unique up to symmetries. Unfortunately, this is not the case either. Using the methods described in Section

6, we can show that for P = (
√

5−1
2 , 3−

√
5

2 ), the allocations [2, 0] and [1, 1] have the same expected clearing

time, and both are less than the expected clearing time of [0, 2]. Despite these setbacks, we will show in

Section 4 that there are some necessary conditions which all minimal allocations must satisfy.
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X∗

t 3
6

2
6

1
6 E(X∗)

1 1 0 0 2.000

2 1 1 0 3.800

3 2 1 0 5.080

4 3 1 0 6.648

5 3 2 0 8.074

6 4 2 0 9.400

7 4 2 1 10.923

8 5 2 1 12.149

9 5 3 1 13.207

10 6 3 1 14.387

11 6 4 1 15.684

12 7 4 1 16.802

13 8 4 1 18.104

14 8 5 1 19.342

15 9 5 1 20.568

Figure 10: Minimal Allocations for t tokens with P = (3
6 , 2

6 , 1
6 )
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X∗

t .4 .3 .2 .1 E(X∗)

01 1 0 0 0 2.500

02 1 1 0 0 4.405

03 2 1 0 0 6.088

04 2 1 1 0 7.916

05 3 1 1 0 9.428

06 3 2 1 0 10.569

07 4 2 1 0 12.079

08 4 3 1 0 13.519

09 5 3 1 0 14.979

10 5 3 2 0 16.327

11 5 4 2 0 17.724

12 6 4 2 0 18.923

13 7 4 2 0 20.395

14 7 5 2 0 21.739

15 7 5 3 0 23.057

Figure 11: Minimal Allocations for t tokens with P = (.4, .3, .2, .1)
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t Emperor

01 [1,0,0]

02 [1,1,0]

03 [2,1,0]

04 [2,1,1]

05 —

06 [3,2,1]

10 [5,3,2]

12 [6,4,2]

18 —

Figure 12: Emperors for t tokens with P = ( 3
6 , 2

6 , 1
6 )

2.6 Tournaments, Emperors and Emperor Cycles

Having considered the minimal allocations for a variety of games, we now turn our attention to the emperors

and emperor cycles. Recall that an emperor is an allocation that is favored over all other allocations. If X

is an emperor, we will denote it as X̂. Similarly, an emperor cycle is the smallest set of allocations such that

every allocation in the cycle is favored over every allocation not in the cycle. Note that an emperor, if it

exists, is a member of the emperor cycle.

Intuitively, we might expect that the minimal allocation, having the smallest expected clearing time,

would be likely to win when competing against any other allocation – but, we have already seen that this is

not the case. We might also have intuitively thought that favoring would be a transitive property; i.e., if X

is favored over Y and Y is favored over Z, then X is favored over Z. The existence of emperor cycles shows

that this conjecture is false.

Recall the 3-valued game with P = (3
6 , 2

6 , 1
6 ). The emperors for different numbers of tokens are shown in

Figure 12. Even with only these eight examples, we begin to see curious phenomenon. First, we note that for

tournaments with 1, 2 and 3 tokens, the emperor is the minimal allocation for the same number of tokens.

However, beginning with tournaments of 4 tokens, the emperor is no longer the allocation with minimum

expected clearing time. In fact, tournaments with 5 and 18 tokens have emperor cycles instead of emperors,

while tournaments with 6 and 12 tokens have emperors which are distributions by relative probability.

The existence of emperor cycles seriously compromises our ability to conclusively answer the question of

which allocation we should choose to maximize our chances of winning the game. If we know our opponent’s

allocation, then we can always choose to play an allocation which is favored over it (unless we are both playing

emperors). On the other hand, if our opponent’s allocation is unknown and the tournament has an emperor

12



t Emperor

10 [5,3,2,0]

20 [9,6,4,1]

Figure 13: Emperors for t tokens with P = (.4, .3, .2, .1) for Independent Knock ’m Down

cycle, it becomes difficult to answer the question of which allocation is “best” to play, especially taking

into account the fact that our opponent may be pursuing a similar analysis on which allocation we intend

to play. Further, emperor cycles may not accurately capture our idea of the “best” allocations. In Figure

5, we saw that the emperor cycle in the 5-token game was comprised of 4 allocations, all of which seemed

reasonable from an intuitive point of view. However, the emperor cycle in the 18-token game is comprised

of 70 allocations, and includes allocations such as [3, 10, 5] and [17, 0, 1], which do not seem reasonable from

an intuitive point of view.

Surprisingly, cycles occur quite often in Knock ’m Down tournaments, although non-emperor cycles are

less interesting in terms of choosing a best allocation. In Figure 6, three distinct cycles occur among the

allocations [3, 0, 0], [1, 1, 1], [1, 2, 0], and [2, 0, 1] in the tournament of 3 tokens, even though [2, 1, 0] is an

emperor allocation for this game. In the tournament of 10 tokens with the same probability vector, there

are over 42, 000 distinct cycles occurring among the 66 allocations, with the longest cycle passing through

13 different allocations.

In hindsight, we might suspect that the cycles appearing in Knock ’m Down tournaments occur because

the players are using the same value to remove tokens. We briefly consider a variation of Knock ’m Down

called Independent Knock ’m Down. Each player distributes tokens as in the original Knock ’m Down, but

on each turn, a random value is produced for each player and they remove tokens accordingly. Hence, we

could turn the original description of Knock ’m Down into an instance of Independent Knock ’m Down by

equipping each player with a pair of dice that they roll on each turn. Notice that in Independent Knock

’m Down, players could simply compare the number of turns each required to clear his board to determine

the winner of the game. Despite the strange behavior of the original Knock ’m Down, we might reasonably

believe that an allocation’s expected clearing time is an accurate measure of its ranking in the associated

tournament in Independent Knock ’m Down.

Unfortunately, Independent Knock ’m Down neither equates minimal allocations with emperors nor elimi-

nates cycles. We return to the game with P = (.4, .3, .2, .1). Figure 13 shows the emperors in the Independent

version of this game for 10 and 20 tokens. In the case of 10 tokens, we find that the emperor does indeed

correspond to the minimal allocation. However, in the case of 20 tokens, the emperor corresponds to an

allocation that is neither [10, 6, 3, 1], the minimal allocation, nor [8, 6, 4, 2], the distribution by relative prob-

abilities, although this allocation did appear in the emperor cycle for 20 tokens in the original Knock ’m
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[0, 5, 0, 0, 0]

[0, 2, 3, 0, 0] [2, 1, 0, 1, 1]

[1, 3, 0, 0, 1]

(0.480, 0.497)

(0.486, 0.482)

(0.485, 0.482)

(0.483, 0.482) (0.486, 0.479) (0.486, 0.483)
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Figure 14: Cycles in the 5-Token Game with P = ( 7
18 , 5

18 , 3
18 , 2

18 , 1
18 ) for Independent Knock ’m Down

Down game. In fact, [9, 6, 3, 1] wins against [10, 6, 3, 1] in 48.18% of the games and loses against [10, 6, 3, 1]

in 46.20% of the games, while [9, 6, 3, 1] wins against [8, 6, 4, 2] in 51.83% of the games and loses against

[8, 6, 4, 2] in 43.13% of the games.

Independent Knock ’m Down tournaments also suffer from non-transitive favorability, although cycles

in these tournaments are much less common than they are in the original Knock ’m Down tournaments.

One example which has been found occurs in the case of P = ( 7
18 , 5

18 , 3
18 , 2

18 , 1
18 ). In that tournament

we have [1, 3, 0, 0, 1] favored over [0, 2, 3, 0, 0] favored over [0, 5, 0, 0, 0] favored over [2, 1, 0, 1, 1] favored over

[1, 3, 0, 0, 1], as shown in Figure 14. On the other hand, no emperor cycle has been found in an Independent

Knock ’m Down tournament; rather, every tournament we examined has had an emperor.

Finally, we wish to note that the tournaments described are not true tournaments. To expound on this

fact, we need to clarify the definition that an allocation X is favored over an allocation Y . Generally, we

have interpreted this to mean that the probability that X wins against Y is greater than the probability

that X loses against Y . However, when an allocation X plays itself, it’s probability of winning and of losing

are both zero. Similarly, if X and Y are allocations that have equal numbers of tokens on values with equal

probability, then the probability that X wins against Y is equal to the probability that X loses against Y .

For example, if P = (2
4 , 1

4 , 1
4 ) then we have that [1, 1, 0] wins against [1, 0, 1] in 41.67% of the games (42.12%

of the games in Independent Knock ’m Down) and loses with the same probability. These two cases can be

considered trivial, since we can clearly recognize them a priori.

However, there are examples of non-trivial allocations which have equal probability of winning the game.

With P = (
√

2
2 , 1−

√
2

2 ), we have that [2, 0] wins against [1, 1] with probability 1
2 and [2, 0] loses against [1, 1]

with probability 1
2 . A similar pair of probabilities can be found such that [2, 0] and [1, 1] have equal proba-

bility of winning in Independent Knock ’m Down, although the probabilities are solutions to a fifth degree

polynomial and are not expressible in radicals. These examples show that a Knock ’m Down tournament in

which a win is awarded to the allocation which has the greater probability of winning is not always a true

tournament; i.e., we must decide whether there are some pairs of allocations which have two edges in the

tournament graph (introducing trivial two-cycles) or have no edges in the tournament graph (complicating
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Figure 15: Minimal Allocations and Emperors for the 12-Token Game with the Original Knock ’m Down
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Figure 16: A Local Emperor for the 36-Token Game with the Original Knock ’m Down Probabilities

the definition of emperor and emperor cycles). We elect to take the first alternative, since our tournaments

will then be super-graphs of true tournament graphs, potentially allowing us to make use of results that hold

on tournament graphs. Therefore, we will adopt the convention that an allocation is favored over another

allocation if the first allocation is at least as likely to win as to lose; formally, we say that allocation X is

favored over allocation Y if Pr(X wins against Y ) ≥ Pr(Y wins against X). However, this will force us to

define an emperor cycle to be the smallest set of allocations such that every allocation in the set is favored

over every allocation not in the cycle, and no allocation not in the cycle is favored over any allocation in the

cycle. This new definition does not invalidate any of the examples described above, but it will have bearing

on some of the subsequent results.

2.7 Solution to the Original Knock ’m Down

After considering all of these results, we might wonder if there is any hope of choosing a “best” allocation

in the original Knock ’m Down game, with 12 tokens played on a board with the values corresponding to

the roll of a pair of dice. Surprisingly, this instance of the game has a rather tidy solution. We have verified

that the allocations [0, 0, 1, 1, 2, 3, 2, 2, 1, 0, 0] and [0, 0, 1, 2, 2, 3, 2, 1, 1, 0, 0] are both minimal allocations and

emperors (see Figure 15).

This should not imply that the original Knock ’m Down game is free of surprises. Consider the case with

36 tokens. In that game, [0, 1, 3, 4, 6, 8, 6, 4, 3, 1, 0] is the minimal allocation. This is consistent with other

examples above, where the allocation according to the probability distribution failed to be minimal. Further,
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allocation [0, 1, 3, 4, 6, 8, 6, 4, 3, 1, 0] wins against [1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1] in 45.14% of the games and loses

against [1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1] in 30.12% of the games, a decisive “victory” for the minimal allocation.

On the other hand, the allocation [0, 2, 3, 4, 6, 7, 6, 4, 3, 1, 0] is favored over [0, 1, 3, 4, 6, 8, 6, 4, 3, 1, 0], winning

19.40% of the games and losing 12.93% of the games. Hence, [0, 1, 3, 4, 6, 8, 6, 4, 3, 1, 0] is not an emperor. We

conjecture that the allocations [0, 2, 3, 4, 6, 7, 5, 4, 3, 2, 0] [0, 2, 3, 4, 5, 7, 6, 4, 3, 2, 0] are emperors in this game

(see Figure 16), although this has not been verified. We have been able to verify that these allocations are at

least local emperors in that each is favored over all neighboring allocations, i.e., all allocations reachable by

moving a single token. In addition, these allocations are favored over the allocation [1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1].
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3 Notation and Generalization

Having considered a variety of results that occur when playing particular instances of Knock ’m Down, we

now wish to turn our attention to some general results that hold for all instances of the game. In order to

consider the largest set of games similar to the original description of Knock ’m Down, we will adopt the

following conventions and notations to describe a generalized version of Knock ’m Down. Let N be an integer

representing the number of values labeled on a player’s board. For the original version of the game described

in Section 1, N is 11. Let P = (p1, p2, . . . , pN ) be a probability vector; i.e., 0 < pi < 1 and
∑N

i=1 pi = 1. In

most cases, we will write this probability vector as a non-increasing sequence (p1 ≥ p2 ≥ · · · ≥ pN ) and in

Section 6 we will occasionally require the probability vector to be a non-increasing sequence. However, the

results in other sections are not affected by using an arbitrary probability vector. On each turn of the game,

a value on the board is produced by some random process. The ith value is produced with probability pi.

Finally, let t be the number of tokens to be allocated on the board by a player. For notational convenience,

we will call this the t-token game with P = (p1, p2, . . . , pN ). Hence, the original Knock ’m Down game in

Section 1 describes a 12-token game with P = ( 1
36 , 1

18 , 1
12 , 1

9 , 5
36 , 1

6 , 5
36 , 1

9 , 1
12 , 1

28 , 1
36 ).

Let X = [x1, x2, . . . , xN ] be a vector of non-negative integers, representing the token allocation with xi

tokens on the ith value. Let ei be the ith unit vector of N elements, so X +ei represents the token allocation

identical to X except incremented by one token on the ith value. Since a player has t tokens to allocate, an

initial token allocation X satisfies
∑N

i=1 xi = t. The allocations of players A and B in Figure 1 would be

represented as A = [1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1] and B = [0, 0, 1, 1, 2, 4, 2, 1, 1, 0, 0] respectively. We define the

neighbors of an allocation X to be all valid allocations of the form X + ei − ej ; i.e., those allocations which

can be reached from X by the transfer of a single token.

Next we consider three versions of this generalized Knock ’m Down. Solitaire Knock ’m Down is for a

single player. The player arranges his t tokens among the N values. Each turn a random value is produced

and the player may remove a token from that value if he has one or more tokens there. The player attempts

to arrange his tokens so as to minimize the number of turns required to clear his initial allocation. Original

Knock ’m Down and Independent Knock ’m Down are for two players racing to be the first to remove all of

his tokens. Each player distributes his tokens among the N values. For Original Knock ’m Down, a single

random value is produced each turn and each player may remove a token from that value if he has one or

more tokens there. For Independent Knock ’m Down, two random values are produced each turn, one for

each player, who may only remove a token from his generated value if he has one or more tokens there.

Naturally, the first player to remove all tokens is the winner and if both players remove their last token on

the same turn, then the game is a draw. Hence, the description of Knock ’m Down in Section 1 is played

under Original rules, but may easily be adapted to Independent rules by equipping each player with two dice.

Notice that while draws are possible under both sets of two player rules, not all pairs of initial allocations in
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Original games can result in draws, while all pairs of initial allocations in Independent games can result in

draws. We will concentrate our study on Original Knock ’m Down and will frequently refer to it as simply

Knock ’m Down when it is clear from context that a two-player game is being discussed.

Finally, in order to answer the question of which allocation will maximize a player’s chances of winning in

a particular version of Knock ’m Down, we consider the methods by which allocations can be compared. In

Solitaire Knock ’m Down, the player wishes to minimize the number of turns required to clear his board. If

TX is the random value representing the number of turns required to remove all tokens from the allocation X,

then an optimal allocation in Solitaire Knock ’m Down is an allocation which minimizes E(TX); that is, an

allocation which minimizes the expected number of turns required to clear the allocation. In general, E(TX)

will rank all of the allocations in a t-token game with fixed P in an order such that the allocations which

minimize E(TX) are the most desirable and the allocations which maximize E(TX) are the least desirable.

If X is an allocation in a t-token game with fixed P such that E(TX) ≤ E(TY ) for all other allocations in

the game, then we call X a minimal allocation for the game. A minimal allocation will typically be denoted

as X∗. Recall from Section 2 that minimal allocations are not necessarily unique.

In Original Knock ’m Down and Independent Knock ’m Down, allocations can be compared either by

direct competition or by tournament play. To compare two allocations by direct competition, we introduce

the notion of a WDL (pronounced “widdle”) function. If X and Y are two allocations which share the same

probability vector (although not necessarily with the same number of tokens), we say WDL(X, Y ) = (w, d, l),

where w = Pr(X wins against Y ), d = Pr(X draws against Y ), and l = Pr(X loses against Y ). Naturally,

it must always be true that w + d + l = 1. We let WDLO be the WDL function which corresponds to a

game played under Original rules and let WDLI be the WDL function which corresponds to a game played

under Independent rules. However, since we will concentrate our study on Original Knock ’m Down, we will

frequently write WDL instead of WDLO.

Let X and Y be allocations in the same game and WDL(X, Y ) = (w, d, l). If w ≥ l, then we say that

allocation X is favored over allocation Y . Hence, a player given a choice to play one allocation against

another would choose the favored allocation to maximize his chances of winning. However, in general, a

player can choose any allocation from the t-token game with fixed P . Thus, we can construct a tournament

in which every allocation is compared by direct competition with every other allocation by means of the

appropriate WDL function. This tournament can be considered as a graph, with vertices drawn from the set

of allocations and and edge from X to Y if X is favored over Y . In the two-player versions of Knock ’m Down,

an optimal allocation is one that is favored over the most other allocations. In general, this tournament will

rank all of the allocations in a t-token game with fixed P in an order such that the allocations which are

favored over the most other allocations are the most desirable and the allocations which are favored over the

least other allocations are the least desirable.
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Suppose there is an allocation X in a t-token game with fixed P which is favored over all other allocations.

Then, using terminology from [5], we call such an allocation an emperor of the game. If X is an emperor,

we will denote it as X̂ (since the emperor traditionally wears a hat!). Recall from Section 2 that an emperor

need not exist nor be unique for a particular instance. Hence, we define an emperor cycle to be the smallest

set of allocations such that every allocation in the cycle is favored over all allocations not in the cycle, and

no allocation not in the cycle is favored over any allocation in the cycle. The existence of emperor cycles

demonstrates that the allocations which are favored over the most other allocations may not always be

“best” in competition. In fact, emperor cycles demonstrate that in some instances, no strategy (in the sense

of choosing a single allocation for all competitions) is “best.” An intriguing possibility, but one will will not

be investigated here, is to consider a “mixed strategy,” where allocations in some subset of the emperor cycle

are assigned probabilities of being played in an arbitrary competition to maximize our chances of winning

the game. A study of these mixed strategies from a game theoretic point of view could be very fruitful.
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4 Theoretical Results

In Section 2, we saw that many of our conjectured relationships between the distribution of tokens by

relative probabilities, the minimal allocations, and the emperors or emperor cycles failed to hold in general.

Ideally, we would like to have available theorems which could directly construct the minimal allocation (for

an optimal solution to Solitaire Knock ’m Down) and the emperor or emperor-cycle (for an optimal solution

to Knock ’m Down and Independent Knock ’m Down) from the probability distribution and the number

of tokens. Unfortunately, the unintuitive nature of the game suggests that such a theorem would be very

complicated for the N -valued game. In Section 5, we will prove two such theorems in the special case of a

2-valued game. In this section, we will demonstrate that significant progress towards a characterization of

the allocations which are minimal has been made.

4.1 The Minimal Allocation Theorems

Recall that in Section 2.5, we discussed some of the properties we would expect a minimal allocation to posses.

Here, we wish to formalize those intuitive ideas and to prove that they are indeed true. In this discussion,

we are interested in the t-token game with P = (p1, p2, . . . , pN ) and an allocation X∗ = [x∗1, x
∗
2, . . . , x

∗
N ] will

always denote a minimal allocation for the game.

Our first intuitive notion is that values with greater probability should have a greater number of tokens.

Formally, we write

if pa < pb, then x∗a ≤ x∗b . (1)

We note that when pa < pb it is certainly possible that x∗a = x∗b . For example, in the 2-token game with

P = (3
6 , 2

6 , 1
6 ), the optimal allocation is X∗ = [1, 1, 0]. Another result that we might expect is the following:

if pa = pb, then |x∗a − x∗b | ≤ 1. (2)

This result coincides with our intuition that values having equal probability should have equal numbers of

tokens. Alternatively, we can assert that any allocation that does not satisfy this result can be improved by

“evening out” the distribution of tokens.

We will shortly show that (2) is true for all minimal allocations X∗. We have often made reference to

the fact that our intuition for this game suggests that the minimal allocation of tokens should resemble

the histogram of probabilities – but we have seen numerous examples that this is not the case. What is

not apparent from the examples is the following result that we will prove, which implies that the optimal

allocation must at least “respect” proportions, in that x∗
a

x∗
b

cannot exceed pa

pb
by much. Specifically,

if pa < pb, then pb(x∗a − 1) < pax∗b . (3)
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We note that the 2 token example above illustrates that the stronger conclusion pbx
∗
a < pax∗b is not attainable.

Notice that (3) implies and is strictly stronger than (1).

We proceed in showing these results in three steps. First, we will prove the Token Adding Theorem which

will allow us to consider what happens to an allocation’s expected clearing time when a new token is added.

The insight gained in proving this theorem will allow us to prove the Second Token Adding Theorem which

makes use of a different set of hypotheses to reach the same conclusion. Finally, these two theorems will

allow us to prove two Minimal Allocation Theorems which correspond to (3) and (2).

4.2 The Token Adding Theorem

The starting point for proving the Minimal Allocation Theorems is the Token Adding Theorem. Surprisingly,

the Token Adding Theorem does not deal with minimal allocations at all. Instead, we consider situations in

which we are able to determine when it is wrong (in the sense of minimizing the expected clearing time) to

add a token to the less probable of two values. Recall that TX is the random variable denoting the number

of turns required to remove all tokens from the allocation X and X + ei is the token allocation identical to

X except incremented by one token on the ith value. Then the theorem is stated as follows:

Token Adding Theorem. Let X be a token allocation with t tokens such that pbxa ≥ paxb, where pa < pb.

Then E[TX+ea
] > E[TX+eb

].

Hence, if xa

xb
≥ pa

pb
, we are guaranteed that adding the token to the more probable value is the better

choice. However, if the conditions of the theorem are not satisfied, then it is unclear whether adding the

token to the more probable or less probable value is the better choice.

We will prove the Token Adding Theorem by showing that “the probability that the last token to remove

in X + ea is the added a token” is greater than the probability that “the last token to remove in X + eb is

the added b token.” This, coupled with the fact that the expected time to clear one a token is longer than

the expected time to clear one b token, will allow us to prove the theorem with ease.

4.2.1 The Token Adding Theorem

Token Adding Theorem. Let X be a token allocation with t tokens such that pbxa ≥ paxb, where pa < pb.

Then E[TX+ea ] > E[TX+eb
].

Proof. Let X be a token allocation with t tokens such that pbxa ≥ paxb, where pa < pb.

Let Xa = X + ea and Xb = X + eb.

We wish to show E[TXa
] > E[TXb

]. Equivalently, we show that E[TXa
]− E[TXb

] > 0.

Note TXa = TX + Ra, where Ra is the number of turns needed to clear Xa after clearing X; i.e., it is

the “rest” of the turns needed to remove the added a if it remains after clearing X. By the linearity of
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expectation, E[TXa
] = E[TX ] + E[Ra]. After X is cleared, we either have 0 tokens or 1 token remaining on

a. Thus, E[Ra] = 1
pa

Pr(Ra > 0). Note that Pr(Ra > 0) is the probability X is cleared with exactly xa

a’s. Similarly, we note that E[TXb
] = E[TX ] + E[Rb], where E[Rb] = 1

pb
Pr(Rb > 0) and Pr(Rb > 0) is the

probability X is cleared with exactly xb b’s. Hence,

E[TXa
]− E[TXb

] =
(

E[TX ] +
1
pa

Pr(Ra > 0)
)
−
(

E[TX ] +
1
pb

Pr(Rb > 0)
)

=
1
pa

Pr(Ra > 0)− 1
pb

Pr(Rb > 0)

and it suffices to show that 1
pa

Pr(Ra > 0) > 1
pa

Pr(Rb > 0).

For reasons which will become apparent shortly, let An,m be the set of sequences of values of length n

such that X is cleared on the nth turn with exactly xa a’s and xb + m b’s. Note that An,m = ∅ for some

values of N , t, X, n, and m. Define Pr(An,m) =
∑

α∈An,m
Pr(α), where Pr(α) is simply the product of the

probabilities of the values in the sequence. Similarly, let Bn,m be the set of sequences of values of length n

such that X is cleared on the nth turn with exactly xb b’s and xa + m a’s and use an analogous definition

for Pr(Bn,m).

Thus, we have the following:

Pr(Ra > 0) =
∞∑

n=0

∞∑
m=0

Pr(An,m)

and

Pr(Rb > 0) =
∞∑

n=0

∞∑
m=0

Pr(Bn,m).

As we noted earlier, An,m and Bn,m equal ∅ for some values of N , t, X, n, and m. In particular,

An,m = Bn,m = ∅ for n < t and for m > n − t, regardless of the values of N and X. Therefore, we can

“simplify” the equations to:

Pr(Ra > 0) =
∞∑

n=t

n−t∑
m=0

Pr(An,m)

and

Pr(Rb > 0) =
∞∑

n=t

n−t∑
m=0

Pr(Bn,m).

Recall that we wish to show 1
pa

Pr(Ra > 0) > 1
pa

Pr(Rb > 0). Based on the definitions above, it suffices

to show that
1
pa

Pr(An,m) ≥ 1
pb

Pr(Bn,m)

for all n and m and that the inequality is strict in at least one case. Taking this fact (which will be

demonstrated in a lemma shortly) on faith for the time being, we note that we can now claim 1
pa

Pr(Ra >

0) > 1
pb

Pr(Rb > 0), and conclude that E[TX+ea ] > E[TX+eb
].
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4.2.2 Proof of the Token Adding Lemma

Here we prove the lemma which we required in the proof of the Token Adding Theorem.

Token Adding Lemma. Let X be a token allocation with t tokens and N values such that pbxa ≥ paxb,

where pa < pb. Then for n > t and 0 ≤ m ≤ n − t, 1
pa

Pr(An,m) ≥ 1
pb

Pr(Bn,m). Further, the inequality is

strict in the case n = t and m = 0.

Proof. Let X be a token allocation with t tokens and N values such that pbxa ≥ paxb, where pa < pb.

We begin with the case n = t and m = 0. Recalling the definition of An,m and Bn,m, we note that both

At,0 and Bt,0 are the set of sequences of values of length n such that X is cleared on the tth turn with exactly

xa a’s and xb b’s. Hence At,0 = Bt,0 and Pr(At,0) = Pr(Bt,0). Further, since n = t, neither At,0 nor Bt,0 is

empty (with the possibility that At,0 and Bt,0 contain only the empty sequence, which has probability 1, in

the case t = 0). Since, pa < pb, then 1
pa

Pr(At,0) > 1
pb

Pr(Bt,0).

Next, consider the case n > t and m = 0. Again, we note that An,0 = Bn,0 and Pr(An,0) = Pr(Bn,0).

Thus, 1
pa

Pr(At,0) ≥ 1
pb

Pr(Bt,0). The inequality is strict except when N = 2 and m > t, where Pr(An,0) =

Pr(Bn,0) = 0.

Finally, consider the case n > t and 0 < m ≤ n− t.

Let X ′ be the allocation of t − xa − xb tokens with the xa a’s and xb b’s removed from X. That is, let

X ′ = X − xaea − xbeb.

We express Pr(An,m) as the sum of two probabilities: Pr(An,0) = A1 + A2, where

A1 = Pr(X is cleared on the nth turn with exactly xa a’s and xb + m b’s,

and the last turn is an a)

A2 = Pr(X is cleared on the nth turn with exactly xa a’s and xb + m b’s,

and the last turn is neither an a nor a b).

Note that either or both of the terms may be zero for some values of N , t, X, n, and m.

Likewise, we express P [Bn,m] as the sum of two probabilities: Pr(Bn,0) = B1 + B2, where

B1 = Pr(X is cleared on the nth turn with exactly xb b’s and xa + m a’s,

and the last turn is a b)

B2 = Pr(X is cleared on the nth turn with exactly xb b’s and xa + m a’s,

and the last turn is neither a b nor an a).

Note that one or more of the terms may be zero for some values of N , t, X, n, and m.

In order to show that 1
pa

Pr(An,m) ≥ 1
pb

Pr(Bn,m), we show that 1
pa

A1 ≥ 1
pb

B1 and 1
pa

A2 ≥ 1
pb

B2.
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First, show 1
pa

A1 ≥ 1
pb

B1.

If B1 = 0, then clearly 1
pa

A1 ≥ 1
pb

B1.

On the other hand, if B1 6= 0, then it suffices to show that
1

pa
A1

1
pb

B1
≥ 1.

Note, for B1 6= 0,

A1 =
(

n− 1
xa − 1

)(
n− xa

xb + m

)
pxa

a pxb+m
b Pr(X ′ is cleared within n− xa − xb −m relevant turns)

B1 =
(

n− 1
xb − 1

)(
n− xb

xa + m

)
pxb

b pxa+m
a Pr(X ′ is cleared within n− xa − xb −m relevant turns),

where relevant turns for X ′ are non-a and non-b randomly generated values. Also note that X ′ is cleared

within n− xa − xb −m turns.

Then,

1
pa

A1

1
pb

B1

=
1
pa

(
n−1
xa−1

)(
n−xa

xb+m

)
pxa

a pxb+m
b Pr(X ′ . . . )

1
pb

(
n−1
xb−1

)(
n−xb

xa+m

)
pxb

b pxa+m
a Pr(X ′ . . . )

=
(n−1)!

(xa−1)!(xb+m)!(n−xa−xb−m)!p
m+1
b

(n−1)!
(xb−1)!(xa+m)!(n−xa−xb−m)!p

m+1
a

=
(

pb

pa

)m+1 (xb − 1)!(xa + m)!
(xa − 1)!(xb + m)!

=
(

pb

pa

)m+1
xa(xa + 1) · · · (xa + m)
xb(xb + 1) · · · (xb + m)

=
m∏

k=0

pb(xa + k)
pa(xb + k)

.

(Note, if xb = 0, then B1, the probability of clearing X with b on the last turn, would be zero. Hence,

the product above is well defined.)

Note, pb(xa+k)
pa(xb+k) ≥ 1 iff pb(xa + k)− pa(xb + k) ≥ 0.

By assumption, pbxa ≥ paxb and pa < pb.

Hence,

pb(xa + k)− pa(xb + k) = pbxa − paxb + k(pb − pa) ≥ 0.

Thus, pb(xa+k)
pa(xb+k) ≥ 1 and therefore

1
pa

A1

1
pb

B1

=
m∏

k=0

pb(xa + k)
pa(xb + k)

≥ 1.

So, we have 1
pa

A1 ≥ 1
pb

B1.

Next, we show 1
pa

A2 ≥ 1
pb

B2.

If B2 = 0, then clearly 1
pa

A2 ≥ 1
pb

B2.

On the other hand, if B2 6= 0, then it suffices to show that
1

pa
A2

1
pb

B2
≥ 1.
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Note, for B2 6= 0,

A2 =
(

n− 1
xa

)(
n− xa − 1

xb + m

)
pxa

a pxb+m
b Pr(X ′ is cleared in exactly n− xa − xb −m relevant turns)

B2 =
(

n− 1
xb

)(
n− xb − 1

xa + m

)
pxb

b pxa+m
a Pr(X ′ is cleared in exactly n− xa − xb −m relevant turns),

where relevant turns for X ′ are non-a and non-b randomly generated values. Also note that X ′ is cleared in

n− xa − xb −m, which means that the last token of X ′ must be removed on the (n− xa − xb −m)th turn.

Then,

1
pa

A2

1
pb

B2

=
1
pa

(
n−1
xa

)(
n−xa−1
xb+m

)
pxa

a pxb+m
b Pr(X ′ . . . )

1
pb

(
n−1
xb

)(
n−xb−1
xa+m

)
pxb

b pxa+m
a Pr(X ′ . . . )

=
(n−1)!

xa!(xb+m)!(n−1−xa−xb−m)!p
m+1
b

(n−1)!
xb!(xa+m)!(n−1−xa−xb−m)!p

m+1
a

=
(

pb

pa

)m+1
xb!(xa + m)!
xa!(xb + m)!

=
(

pb

pa

)m+1 (xa + 1)(xa + 2) · · · (xa + m)
(xb + 1)(x + b + 2) · · · (xb + m)

=
pb

pa

m∏
k=1

pb(xa + k)
pa(xb + k)

.

It has already been established that pb(xa+k)
pa(xb+k) ≥ 1 and pa < pb by assumption, so

1
pa

A2

1
pb

B2

=
pb

pa

m∏
k=1

pb(xa + k)
pa(xb + k)

≥ 1.

So, we have 1
pa

A2 ≥ 1
pb

B2.

Hence, we conclude that for n > t and 0 < m ≤ n− t, 1
pa

Pr(An,m) ≥ 1
pb

Pr(Bn,m).

Therefore, for n > t and 0 ≤ m ≤ n− t, 1
pa

Pr(An,m) ≥ 1
pb

Pr(Bn,m). Further, the inequality is strict in

the case n = t and m = 0.

4.2.3 The Second Token Adding Theorem

Before proving the two Minimal Allocation Theorems, we first prove a slightly different version of the Token

Adding Theorem, called the Second Token Adding Theorem.

Second Token Adding Theorem. Let X be a token allocation with t tokens such that xa > xb, where

pa = pb. Then E[TX+ea
] > E[TX+eb

].

Proof. The method of proof used in the Token Adding Theorem will work in this case, provided we can

demonstrate that the conclusion of the Token Adding Lemma holds under the new hypotheses. Hence, we
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wish to show that if xa > xb and pa = pb, then for n > t and 0 ≤ m ≤ n − t, 1
pa

Pr(An,m) ≥ 1
pb

Pr(Bn,m)

and the inequality is strict in at least once case.

Unfortunately, because pa = pb, it is no longer the case that 1
pa

Pr(At,0) > 1
pb

Pr(Bt,0). In fact,
1
pa

Pr(An,0) = 1
pb

Pr(Bn,0) for all n ≥ t.

On the other hand, showing that 1
pa

Pr(An,m) ≥ 1
pb

Pr(Bn,m) required only that

m∏
k=0

pb(xa + k)
pa(xb + k)

≥ 1 and
pb

pa

m∏
k=1

pb(xa + k)
pa(xb + k)

≥ 1

when B1 6= 0 and B2 6= 0. Since pa = pb, these products simplify to

m∏
k=0

xa + k

xb + k
and

m∏
k=1

xa + k

xb + k
.

Further, because xa > xb, then clearly each product is strictly greater than 1. However, with this information,

we cannot conclude that 1
pa

Pr(An,m) > 1
pb

Pr(Bn,m) unless we can demonstrate that there is a case when

B1 6= 0 or B2 6= 0, since we could only conclude that 1
pa

Pr(An,m) ≥ 1
pb

Pr(Bn,m) when B1 = 0 and B2 = 0.

Alternatively, we can show that there is an m such that 1
pa

Pr(An,m) > 1
pb

Pr(Bn,m) in all cases. In

particular, we examine m = n− t. Recall that

A1 = Pr(X is cleared on the nth turn with exactly xa a’s and xb + m b’s,

and the last turn is an a).

Since xa > xb ≥ 0, then xa ≥ 1. Therefore, A1 > 0, because xa ≥ 1 and all of the “extraneous” rolls are

filled with b’s. If B1 = 0, then 1
pa

Pr(An,n−t) > 1
pb

Pr(Bn,n−t). On the other hand, if B1 6= 0, then by the

arguments made above, 1
pa

Pr(An,n−t) > 1
pb

Pr(Bn,n−t).

Hence, we have shown that for n > t and 0 ≤ m ≤ n− t, 1
pa

Pr(An,m) ≥ 1
pb

Pr(Bn,m) and the inequality

is strict for all m = n− t. Thus, by a proof analogous to the one used to prove the Token Adding Theorem,

we conclude that E[TX+ea
] > E[TX+eb

].

4.2.4 The Minimal Allocation Theorems

The Minimal Allocation Theorems demonstrate necessary (although not sufficient) conditions for an alloca-

tion X∗ to be minimal for the t-token game with fixed P . Actually, the theorems seem to be more general

than that – notice that these theorems are independent of t. We will prove these two theorems here, but

will delay exploring their applications until Section 6.

First Minimal Allocation Theorem. Let X∗ be a minimal token allocation with t tokens. If pa < pb,

then pb(x∗a − 1) < pax∗b .
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Proof. Either x∗a = 0 or x∗a > 0. First, suppose x∗a = 0. Then pb(x∗a − 1) < 0 ≤ pax∗b , since x∗b ≥ 0. Hence,

the theorem holds for x∗a = 0.

Now suppose, by way of contradiction, that X is a minimal token allocation with t tokens and xa > 0

such that pb(xa − 1) ≥ paxb, where pa < pb.

Let X ′ = X − ea. Since xa > 0, then X ′ is a valid allocation of t− 1 tokens.

Then x′a = xa − 1 and x′b = xb.

Hence, pbx
′
a = pb(xa − 1) ≥ paxb = pax′b. Then by the Token Adding Theorem,

E[TX ] = E[TX′+ea
] > E[TX′+eb

] = E[TX−ea+eb
].

Thus, X − ea + eb is an allocation with t tokens, whose expected clearing time is less than the expected

clearing time of X, contradicting the minimality of X.

Hence, pb(x∗a − 1) < pax∗b for a minimal allocation X∗.

Second Minimal Allocation Theorem. Let X∗ be a minimal token allocation with t tokens. If pa = pb,

then |x∗a − x∗b | ≤ 1.

Proof. Suppose, by way of contradiction, that X is a minimal token allocation with t tokens such that

|xa − xb| > 1, where pa = pb.

Either xa − xb > 1 or xb − xa > 1. Without loss of generality, suppose xa − xb > 1. Then xa − 1 > xb.

Let X ′ = X − ea. Since xa > 1, then X ′ is a valid allocation with t tokens.

Then x′a = xa − 1 and x′b = xb.

Hence x′a = xa − 1 > xb = x′b.

Then, by the Second Token Adding Theorem,

E[TX ] = E[TX′+ea
] > E[TX′+eb

] = E[TX−ea+eb
].

Thus, X − ea + eb is an allocation with t tokens, whose expected clearing time is less than the expected

clearing time of X, contradicting the minimality of X.

Similarly, if xb − xa > 1, then X − eb + ea is an allocation with t tokens, whose expected clearing time is

less than the expected clearing time of X, contradicting the minimality of X.

Thus, |x∗a − x∗b | ≤ 1 for a minimal allocation X∗.
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5 Knock ’m Down in the Case of Two Values (N = 2)

Section 2 demonstrated that a theorem or algorithm for constructing the minimal allocations and the em-

perors or emperor cycle for the t-token game with fixed P would appear to be fairly complicated. However,

there is one exceptional case, namely the game Knock ’m Down played with exactly two values. Th game

with two values has some particularly nice properties. First, we note that P = (p1, p2) = (p1, 1− p1), so the

probabilities of the values can be easily expressed in terms of a single variable. Similarly, for t tokens, any

allocation X must be of the form [x1, x2] = [x1, t−x1], so the token allocation can also be easily expressed in

terms of a single variable. However, we will often use p2 and x2 to ease notation when it is convenient to do

so. In Section 6, we will demonstrate that E(TX) can be calculated for a general Knock ’m Down game by

means of a recursive calculation. However, in the 2-valued game, we will derive two non-recursive formulae

for E(TX). Using one of these formulae, we will show that it is possible to determine the minimal allocations

for the game using a simple calculation. Next, we will show that an even simpler calculation yields the

emperors for the game. Finally, we will investigate the asymptotic shapes of the minimal allocation and

emperor as we increase the number of tokens.

5.1 Formulae for E(TX)

In order to derive formulae for E(TX), we will appeal to the definition of expected value. That is, if Z is a

random integer variable, then

E(Z) =
∑

k

kPr(Z = k).

In the case of E(TX), the random variable TX is never less than the total number of tokens, so

Pr(TX = k) = 0 if k < x1 + x2.

Now, we wish to express Pr(TX = k) for k ≥ x1 + x2. If TX = k, then we cleared the last token from X on

the kth turn. Hence, the kth turn produced either the xth
1 1 value, with k − x1 2 values produced on earlier

turns, or the xth
2 2 value, with k − x2 1 values produced on earlier turns. Therefore, we have

Pr(TX = k) =
(

k − 1
x1 − 1

)
px1
1 pk−x1

2 +
(

k − 1
x2 − 1

)
pk−x2
1 px1

2 if k ≥ x1 + x2

=
(

p1

p2

)x1
(

k − 1
x1 − 1

)
pk
2 +

(
p2

p1

)x2
(

k − 1
x2 − 1

)
pk
1 .

Hence, we have that:

E(TX) =
∞∑

k=0

kPr(TX = k)

=
∞∑

k=x1+x2

k

[(
p1

p2

)x1
(

k − 1
x1 − 1

)
pk
2 +

(
p2

p1

)x2
(

k − 1
x2 − 1

)
pk
1

]
.
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To simplify this infinite sum, we will make use of the identity

∞∑
k=0

(
k

x

)
pk =

px

(1− p)x+1
for 0 < p < 1 and integral x ≥ 0,

which can be demonstrated using a simple proof by induction on x and the identity
(

k
x+1

)
=
(
k−1
x+1

)
+
(
k−1

x

)
.

Returning to the sum at hand, we have that

E(TX) =
(

p1

p2

)x1 ∞∑
k=x1+x2

k

(
k − 1
x1 − 1

)
pk
2 +

(
p2

p1

)x2 ∞∑
k=x1+x2

k

(
k − 1
x2 − 1

)
pk
1

=
(

p1

p2

)x1 ∞∑
k=x1+x2

x1

(
k

x1

)
pk
2 +

(
p2

p1

)x2 ∞∑
k=x1+x2

x2

(
k

x2

)
pk
1

= x1

(
p1

p2

)x1 ∞∑
k=x1+x2

(
k

x1

)
pk
2 + x2

(
p2

p1

)x2 ∞∑
k=x1+x2

(
k

x2

)
pk
1

= x1

(
p1

p2

)x1
[ ∞∑

k=0

(
k

x1

)
pk
2 −

x1+x2−1∑
k=0

(
k

x1

)
pk
2

]
+ x2

(
p2

p1

)x2
[ ∞∑

k=0

(
k

x2

)
pk
1 −

x1+x2−1∑
k=0

(
k

x2

)
pk
1

]

= x1

(
p1

p2

)x1
[

px1
2

px1+1
1

−
x1+x2−1∑

k=0

(
k

x1

)
pk
2

]
+ x2

(
p2

p1

)x2
[

px2
1

px2−1
2

−
x1+x2−1∑

k=0

(
k

x2

)
pk
1

]

=
x1

p1
− x1

(
p1

p2

)x1 x1+x2−1∑
k=x1

(
k

x1

)
pk
2 +

x2

p2
− x2

(
p2

p1

)x2 x1+x2−1∑
k=x2

(
k

x2

)
pk
1 ,

which is a finite formula for E(TX).

Using a slightly less intuitive expression for Pr(TX = k), we can derive another formula for E(TX). As

we saw above

Pr(TX < x1 + x2) = 0

and

Pr(TX = x1 + x2) =
(

x1 + x2

x1

)
px1
1 px2

2 .

We wish to express Pr(TX = x1 + x2 + k) for k > 0. We will again consider whether the last turn cleared

the last 1 value or the last 2 value, but will consider what values appear in the first t turns separately from

the remainder of the turns. For example, suppose the last turn is a 1. Then the probability that the first t

turns produced exactly i 1 values is given by(
x1 + x2

i

)
pi
1p

x1+x2−i
2 .

Likewise, the probability that a sequence of k turns produced exactly x1 − i 1 values with a 1 value on the

kth turn is given by (
k − 1

x1 − 1− i

)
px1−i
1 pk−x1−i

2 .
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Finally, we note that if the last turn cleared the last 1 value, then i can range from max{0, x1 − k}. The

same analysis works if the last turn cleared the last 2 value. Hence, the probability that the allocation was

cleared in exactly x1 + x2 + k turns for k > 0 is given by

Pr(TX = x1 + x2 + k) =
x1−1∑

i=max{0,x1−k}

(
x1 + x2

i

)
pi
1p

x1+x2−i
2

(
k − 1

x1 − 1− i

)
px1−i
1 pk−x1−i

2

+
x2−1∑

i=max{0,x2−k}

(
x1 + x2

i

)
px1+x2−i
1 pi

2

(
k − 1

x2 − 1− i

)
pk−x2−i
1 px2−i

2

= px1
1 px2

2

x1−1∑
i=max{0,x1−k}

(
x1 + x2

i

)(
k − 1

x1 − 1− i

)
pk
2

+ px1
1 px2

2

x2−1∑
i=max{0,x2−k}

(
x1 + x2

i

)(
k − 1

x2 − 1− i

)
pk
1 .

Hence, we have

E(TX) =
∞∑

k=0

kPr(TX = k)

=
∞∑

k=x1+x2

kPr(TX = k)

=
∞∑

k=0

(x1 + x2 + k)Pr(TX = x1 + x2 + k)

= (x1 + x2)
∞∑

k=0

Pr(TX = x1 + x2 + k) +
∞∑

k=1

kPr(TX = x1 + x2 + k)

= x1 + x2 +
∞∑

k=1

kPr(TX = x1 + x2 + k),

since the probability that the allocation in cleared in x1 + x2 or more turns is 1. We now concentrate on

simplifying the sum.

(x1 + x2)
∞∑

k=1

kPr(TX = x1 + x2 + k) =
∞∑

k=1

k

px1
1 px2

2

x1−1∑
i=max{0,x1−k}

(
x1 + x2

i

)(
k − 1

x1 − 1− i

)
pk
2

+px1
1 px2

2

x2−1∑
i=max{0,x2−k}

(
x1 + x2

i

)(
k − 1

x2 − 1− i

)
pk
1

 .

We will concentrate on the first sum, since the second sum is similar. In this case, we have

∞∑
k=1

k

px1
1 px2

2

x1−1∑
i=max{0,x1−k}

(
x1 + x2

i

)(
k − 1

x1 − 1− i

)
pk
2



30



= px1
1 px2

2

∞∑
k=1

x1−1∑
i=max{0,x1−k}

k

(
x1 + x2

i

)(
k − 1

x1 − 1− i

)
pk
2

= px1
1 px2

2

x1−1∑
i=0

∞∑
k=x1−i

(
x1 + x2

i

)(
k − 1

x1 − 1− i

)
pk
2

= px1
1 px2

2

x1−1∑
i=0

(
x1 + x2

i

)[ ∞∑
k=x1−i

(
k − 1

x1 − 1− i

)
pk
2

]

= px1
1 px2

2

x1−1∑
i=0

(
x1 + x2

i

)
(x1 − i)

px1−i
2

px1−i+1
1

=
px1+x2
2

p1

x1−1∑
i=0

(x1 − i)
(

x1 + x2

i

)(
p1

p2

)i

.

Combining this with the second sum, we have

E(TX) = x1 + x2 +
px1+x2
2

p1

x1−1∑
i=0

(x1 − i)
(

x1 + x2

i

)(
p1

p2

)i

+
px1+x2
1

p2

x2−1∑
i=0

(x2 − i)
(

x1 + x2

i

)(
p2

p1

)i

= t +
x1−1∑
i=0

(x1 − i)
(

t

i

)
pi−1
1 pt−i

2 +
x2−1∑
i=0

(x2 − 1)
(

t

i

)
pt−i
1 pi−1

2

= t +
x1−1∑
i=0

(x1 − i)
(

t

i

)
pi−1
1 pt−i

2 +
t∑

i=x1+1

(i− x1)
(

t

i

)
pt−i
1 pi−1

2

We will apply this formula to the problem of finding the minimal allocations for the 2-valued game.

5.2 Minimal Allocations

Suppose that X = [x1, x2] is an allocation of t tokens such that x2 > 0. Then we note that

E(TX+e1−e2)− E(TX) =

(
t +

x1∑
i=0

(x1 + 1− i)
(

t

i

)
pi−1
1 pt−i

2 +
t∑

i=x1+2

(i− x1 − 1)
(

t

i

)
pt−i
1 pi−1

2

)

−

(
t +

x1−1∑
i=0

(x1 − i)
(

t

i

)
pi−1
1 pt−i

2 +
t∑

i=x1+1

(i− x1)
(

t

i

)
pt−i
1 pi−1

2

)

=
x1−1∑
i=0

(
t

i

)
pi−1
1 pt−i

2 +
(

t

x1

)
px1−1
1 pt−x1

2

−
t∑

i=x1+2

(
t

i

)
pt−i
2 pi−1

2 −
(

t

x1 + 1

)
pt−x1−1
1 px1+1−1

2

=
x1∑
i=0

(
t

i

)
pi−1
1 pt−i

2 −
t∑

i=x1+1

(
t

i

)
pt−i
2 pi−1

2 .

Thus, moving one token from the 2 value to the 1 value changes the expected clearing time by E(TX+e1−e2)−

E(TX). If E(TX+e1−e2)− E(TX) < 0, then it is to our advantage to make the move. On the other hand, if

E(TX+e1−e2) − E(TX) > 0, then it is not to our advantage to make the move. Hence, if we begin with all
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of our tokens on the 2 value, we simply move tokens one-by-one until E(TX+e1−e2) − E(TX) ≥ 0. In fact,

recalling the Binomial Theorem, we note that
t∑

i=0

(
t

i

)
pi
1p

t−i
2 = (p1 + p2)t = 1.

Thus, we have
x1∑
i=0

(
t

i

)
pi
1p

t−i
2 ≥ p1 iff

t∑
i=x1+1

(
t

i

)
pi
1p

t−i
2 ≤ p2,

so
x1∑
i=0

(
t

i

)
pi−1
1 pt−i

2 ≥ 1 iff
t∑

i=x1+1

(
t

i

)
pi
1p

t−i−1
2 ≤ 1.

Finally, we have that

E(TX+e1−e2)− E(TX) ≥ 0 iff
x1∑
i=0

(
t

i

)
pi
1p

t−i
2 ≥ p1.

Thus, to minimize E(TX) for a fixed t, let X = (x1, t−x1) where x1 = min{0 ≤ x1 ≤ t :
∑x1

i=0

(
t
i

)
pi
1p

t−i
2 ≥ p1}.

But this is simply the definition of the pth
1 percentile of the Binomial(t, p1) distribution! Hence, we have

proved the following.

Minimal Allocation Theorem for Two Values. For the 2-valued, t-token game with P = (p, 1 − p),

if X∗ = [x∗, t − x∗] where x∗ is the pth percentile of the Binomial(t, p) distribution, then X∗ is a minimal

allocation.

For a shorter proof of the same result, we simply compare the allocation [x, t − x] with the allocation

[x + 1, t − x − 1] and condition on z, the number of 1 values that occur in the first t turns. If x or less 1

values occur in the first t turns, then both allocations will have cleared all tokens off the second value and

the allocation [x + 1, t − x − 1] will require an expected 1
p more turns than the allocation [x, t − x] to clear

the remaining tokens off of the first value. Likewise, if more than x 1 values occur in the first t turns, then

both allocations will have cleared all tokens off the first value and the allocation [x, t − x] will require an

expected 1
1−p more turns than the allocation [x + 1, t − x − 1] to clear the remaining tokens off the second

value. Thus, we have that

E(T[x+1,t−x−1])− E(T[x,t−x]) =
1
p
Pr(z ≤ x)− 1

1− p
Pr(z > x).

Next, we note that

E(T[x+1,t−x−1])− E(T[x,t−x]) ≥ 0 ⇔ 1
p
Pr(z ≤ x)− 1

1− p
Pr(z > x) ≥ 0

⇔ (1− p)Pr(z ≤ x) ≥ pPr(z > x)

⇔ (1− p)Pr(z ≤ x) ≥ p(1− Pr(z ≤ x))

⇔ Pr(z ≤ x) ≥ p.
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Figure 17: The 2
3 Percentile of the Binomial(9, 2

3 ) Distribution

Since z is a Binomial(t, p) random variable, then we have again proven the Minimal Allocation Theorem for

Two Values.

As an application of this theorem, we consider the 9-token game with P = (2
3 , 1

3 ). The Binomial(9, 2
3 )

distribution is shown in Figure 17 with the 2
3 percentile marked. Hence, the minimal allocation for the game

is [7, 2].

5.3 Emperors

Having found a characterization of the minimal allocations in the 2-valued game, we turn our attention to

the emperors. Surprisingly, the emperor has a very similar characterization.

Emperor Theorem for Two Values. For the 2-valued, t-token game with P = (p, 1−p), if X̂ = [x̂, t− x̂]

where x̂ is the median of the Binomial(t, p) distribution, then X̂ is an emperor.

Proof. Let X̂ = [x̂, t−x̂] be an allocation of t tokens where x̂ is the median of the Binomial(t, p) distribution.

First, we show that X̂ is favored over any allocation Y = [y1, y2] of t tokens such that y1 < x̂1. Consider

the first t turns of the game. If x̂1 1 values occur in the first t turns, then X̂ wins. Suppose more than x̂1 1

values occur in the first t turns, then both X̂ and Y have cleared all their tokens off the 1 value. However,

both X̂ and Y have tokens remaining on the 2 value. Further, x̂2 < y2, so regardless of the remaining rolls,

X̂ will be cleared before Y . Hence X̂ wins any game such that at least x̂1 1 values occur in the first t turns.

But,
t∑

i=x̂1

(
t

i

)
pt(1− p)t−1 ≥ 1

2

by definition of the median of the Binomial(t, p) distribution. Hence, X̂ wins at least half of the games

against Y , and X̂ is favored over Y .

Similarly, X̂ is favored over any allocation Y = [y1, y2] of t tokens such that y1 > x̂1. Again, if x̂1 1

values occur in the first t turns, then X̂ wins. If less than x̂1 1 values occur in the first t turns, then both

X̂ and Y have cleared all of their tokens off the 2 value. However, both X̂ and Y have tokens remaining on
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Figure 18: The Median of the Binomial(9, 2
3 ) Distribution

the 1 value. Again, regardless of the remaining rolls, X̂ will be cleared before Y , since x̂1 < y1. Thus, X̂

wins any game such that at most x̂1 1 values occur in the first t turns. But,

x̂1∑
i=0

(
t

i

)
pt(1− p)t−1 ≥ 1

2

by definition of the median of the Binomial(t, p) distribution. Hence, X̂ wins at least half of the games

against Y , and X̂ is favored over Y .

Thus, X̂ is favored over all other allocations and is an emperor.

For ease of calculation, we note that the median of the Binomial(t, p) distribution is an integer whose

distance from tp is less than one (see [2]).

As an application of this theorem, we consider the 9-token game with P = (2
3 , 1

3 ). The Binomial(9, 2
3 )

distribution is shown in Figure 18 with the median marked. Hence, the minimal allocation for the game is

[6, 3].

5.4 Asymptotic Shape of X∗ and X̂

We can use the two theorems above to investigate the asymptotic shape of X∗ and X̂. Recall that a minimal

allocation X∗ = [x∗, t− x∗] is given by

x∗ = min{0 ≤ x∗ ≤ t :
x∗∑
i=0

(
t

i

)
pi(1− p)t−i ≥ p}.

In general, when t is large, x∗ can be estimated quite accurately using a normal approximation. Specifi-

cally,

x∗ ≈ tp + zp

√
tp(1− p)

and

t− x∗ ≈ t(1− p) + z1−p

√
tp(1− p),
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where zp is the pth percentile of the standard normal distribution. For example, with P = ( 2
3 , 1

3 ) and

t = 1200, then normal approximation yields x∗ ≈ 800 + 0.4307
√

800
3 ≈ 807.0337, and similarly, t − x∗ ≈

400− 0.4307
√

800
3 ≈ 392.9662, in accordance with the minimal allocation listed in Figure 9.

Likewise, since an emperor X̂ = [x̂, t− t̂] is given by

x̂ = min{0 ≤ x̂ ≤ t :
x̂∑

i=0

(
t

i

)
pi
1(1− p)t−i ≥ 1

2
},

then we can use the normal approximations

x∗ ≈ tp + z 1
2

√
tp(1− p) = tp

and

t− x∗ ≈ t(1− p) + z 1
2

√
tp(1− p) = t(1− p)

for large values of t. Hence, with P = ( 2
3 , 1

3 ) and t = 1200, we find that [800, 400] is an emperor.

A surprising result of these approximations is that as the total number of tokens is increased, the minimal

allocations and emperors all approach the distribution according to relative probabilities. In fact, we have

the following.

Asymptotic Shape Theorem for Two Values. For the 2-valued with P = (p, 1 − p), let X∗(t) =

[x∗(t), t − x∗(t)] and X̂(t) = [x̂(t), t − x̂(t)] be functions representing a minimal allocation and an emperor

allocation for the games with t tokens. Then

lim
t→∞

X∗(t)
t

= P = lim
t→∞

X̂(t)
t

.

Proof. We simply observe that

lim
t→∞

X∗(t)
t

= lim
t→∞

[
x∗(t)

t
,
t− x∗(t)

t

]
= lim

t→∞

[
tp + zp

√
tp(1− p)
t

,
t(1− p)− z1−p

√
tp(1− p)

t

]

= lim
t→∞

[
p + zp

√
p(1− p)

t
, (1− p)− z1−p

√
p(1− p)

t

]
= [p, 1− p]

= P.

35



Likewise,

lim
t→∞

X̂(t)
t

= lim
t→∞

[
x̂(t)

t
,
t− x̂(t)

t

]
= lim

t→∞

[
tp

t
,
t(1− p)

t

]
= [p, 1− p]

= P.

So, despite our misgivings after the evidence in Section 2, we can finally justify our intuitive notion

that the “best” allocation is the distribution according relative probabilities – at least in the 2-valued case.

Actually, we conjecture that this result hold for the N -valued case (see Section 7 for evidence that this may

indeed be true).
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6 Computational Details

In Section 2, we examined a number of interesting instances of Knock ’m Down in order to develop a better

intuitive understanding of the game. In this section, we wish to investigate some of the details associated with

computing the results cited earlier. As we shall see, calculating the expected clearing time of an allocation,

the winning and losing probabilities of pairs of allocations, and determining the emperor or emperor cycle

from the tournament graph are computational challenges in their own right. In Section 6.1, we will examine

the principal equations and techniques used for calculating E(TX) and WDL(X, Y ). In Section 6.2, we will

examine some of the advanced methods which allowed us to investigate games which were too “large” to be

handled by the primary methods.2

6.1 Primary Methods

In this section, we discuss the primary methods used to develop the results in Section 2. Two basic principles

underly these methods. First, the laws of conditional expectation and conditional probability are exploited

to derive recursive formulae for the desired quantities. Second, a modification of the standard dynamic-

programming technique is used to increase the time and space efficiency of the calculations. We will use

the notation developed in Section 3, letting N be an integer representing the number of values labeled on a

player’s board, P = (p1, p2, . . . , pN ) be a probability vector, X = [x1, x2, . . . , xN ] be a vector of non-negative

integers (representing a token allocation), and ei be the ith unit vector of N elements.

6.1.1 Calculating E(TX)

To calculate E(TX), we exploit the law of conditional expectation. Recall that if Z is a random variable,

whose value is conditional on the random integer variable V, then

E(Z) =
∑

i

Pr(V = i)E(Z|V = i).

We let V be a random integer variable representing the value “rolled” on the first turn of an N -valued game.

Thus, we can express

E(TX) =
∑

i

Pr(V = i)E(TX |V = i)

where P (V = i) = pi for i ∈ {1, 2, . . . , N} and Pr(V = i) = 0 otherwise. To determine E(TX |V = i), we

reason as follows. If the first turn produced a value that we could not use, i.e., we had no tokens on the

ith value, then we “wasted” a roll and have not changed our situation. On the other hand, if the first turn
2For the interested reader, source code implementing these methods is available by request from

Matthew Fluet@hmc.edu. The code is written in Standard ML utilizing the SML ’97 Basis Library. The computa-

tional results cited in this section and Section 2 were computed using the SML/NJ compiler and development environment

version 110 on an UltraSparc Enterprise 3000 running Solaris 2.6.
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produced a value that we could use, then we still “used” a roll, but have improved our situation by reducing

the number of tokens we need to remove subsequently. Formally, we have

E(TX |V = v) =

1 + E(TX) if xv = 0

1 + E(TX−ev
) if xv 6= 0.

For instance, in the game with P = (.4, .3, .2, .1), we have

E(T[4,3,2,1]) = 1 + .4E(T[3,3,2,1]) + .3E(T[4,2,2,1]) + .3E(T[4,3,1,1]) + .1E(T[4,3,2,0])

and

E(T[5,3,2,0]) = 1 + .4E(T[4,3,2,0]) + .3E(T[3,2,2,0]) + .2E(T[5,3,1,0]) + .1E(T[5,3,2,0])

=
10
9

(1 + .4E(T[4,3,2,0]) + .3E(T[3,2,2,0]) + .2E(T[5,3,1,0]))

Solving for E(TX) yields the following recursive formula:

E(TX) =
1 +

∑
i:xi 6=0 piE(TX−ei

)
1−

∑
v:xi=0 pi

. (4)

with the base case E(T[0,...,0]) = 0.

At this point it seems as though a straightforward implementation of (4) into any programming language

would allow us to calculate E(TX) with relative ease. However, (4) is deceptively simple. Notice that it makes

use of recursion in the summation of the numerator. It is fairly straightforward to calculate that the number

of recursions required to calculate E(TX) is
∏

i (1 + xi). In addition to the large number of recursive calls

necessary to calculate E(TX), we note that the recursions do not form a “tree” structure; rather, many of the

recursions make use of identical sub-values. Presented with a recursive formula with these characteristics,

one would naturally attempt to implement (4) using a dynamic-programming technique.

Unfortunately, making use of dynamic-programming in this situation is difficult. Recall that in order

to make use of dynamic-programming, it is necessary to save the results of earlier calculations for use in

future calculations. While this seems natural enough to implement in this situation, consider the following.

Suppose we wish to calculate the expected time required to clear allocations with up to twelve tokens on

any of eleven values, as in the original description of Knock ’m Down. Then we would need to allocate space

for 1311 intermediate values. Stored as two-byte floating point numbers, this is over 3 terabytes of data,

too much memory to allocate on a single machine. The alternative is to forgo dynamic-programming and to

simply use recursion, recalculating values as needed. But this can become time consuming, vastly inflating

the time necessary to calculate E(TX).

As a compromise solution, we have implemented the calculation of E(TX) in the following manner. We

note that in a“top-level” request for E(TX), the recursion will only ever calculate E(TX′), where X ′ is a
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sub-allocation of X. Therefore, at the time a top-level request is made, we allocate space for
∏

i (1 + xi)

intermediate values. Then we can proceed with calculating (4), storing intermediate values as they are

calculated and reusing these values when they are needed. When we have finished evaluating the top-level

request, we dispose of the intermediate values. Using this method, allocations with a total of twelve tokens

on any of eleven values require at most 2 kilobytes of memory. This method has the advantage of dynamic-

programming without the memory overhead. The drawback is that the evaluation of E(TX) for one allocation

cannot make use of the intermediate values used in evaluating E(TY ), where Y is an allocation that shares

sub-allocations with X.

6.1.2 Finding Minimal Allocations

Now that we have an efficient method for evaluating E(TX), it remains to calculate minimal allocations with

t tokens. The allocations of t tokens among N values are equivalent to the the
(
t+N−1

t

)
compositions of t into

N parts. This can be difficult, but many combinatorial algorithms books describe a method for generating

the next composition from the previous composition (see [7]). We can now proceed with a brute force search

of all
(
t+N−1

t

)
allocations and choose the set of allocations which have the minimal expected value. However,

for large numbers of tokens and values, this method quickly becomes computationally infeasible. As will be

described in Section 6.2, we can find the minimal allocations with much less computation.

6.1.3 Calculating V AR(TX)

We briefly examine two formulae for V AR(TX). Although we have not investigated the properties of

V AR(TX), it is possible that by comparing both the expected clearing time and the variance of the clearing

time for a pair of allocations, we could determine if one allocation were favored over the other.

For the first formula, we use the definition of variance:

V AR(TX) = E(T 2
X)− E(TX)2. (5)

We calculate E(T 2
X) using conditional expectation. Therefore, we have

E(T 2
X) =

∑
i

Pr(V = i)E(T 2
X |V = i),

where

E[T 2
X |V = i] =

1 + 2E(TX−ei) + E(T 2
X−ei

) if xi 6= 0

1 + 2E(TX) + E(T 2
X) if xi = 0

=

2(1 + 2E(TX−ei
))− 1 + E(T 2

X−ey
) if xi 6= 0

2(1 + 2E(TX))− 1 + E(TX) if xi = 0
.
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Using the identity

E(TX) =
∑

i:xi 6=0

pi(1 + E(TX−ei
)) +

∑
i:xi=0

pi(1 + E(TX)),

we can solve for E(T 2
X) to yield the following recursive formula:

E(T 2
X) =

2E(TX)− 1 +
∑

i:xi 6=0 piE(T 2
X−ey

)

1−
∑

i:xi=0 pi
,

with the base case E(T 2
[0,...,0]) = 0. We can now calculate V AR(TX) using the definition of variance above.

Alternatively, we can use conditional variance. Most formally, we have that

V AR(TX) = E(V AR(TX |V )) + V AR(E(TX |V )).

Using the definition of variance and conditional expectation, we can derive that

V AR(TX) =
∑

i

piV AR(TX |V = i) +

∑
i

piE(TX |V = i)−

(∑
i

piE(TX |V = i)

)2
 .

We note that

V AR(TX |V = i) = E
(
(TX − E(TX |V = i))2|V = i

)
=

V AR(TX−ei
) if xi 6= 0

V AR(TX) if xi = 0.

Also, we note that

∑
i

piE(TX |V = i)2 −

(∑
i

piE(TX |V = i)

)2

= 2E(TX)− 1 +
∑

i

pi

(
E(TX−ei

)2 − E(TX)2
)
.

Solving for V AR(TX) yields the following recursive formula:

V AR(TX) =
2E(TX)− 1 +

∑
i:xi 6=0 pi(V AR(TX−ei) + E(TX−ei)

2 − E(TX)2)
1−

∑
i:xi=0 pi

. (6)

While both (5) and (6) are valid formulae for calculating V AR(TX), they each have advantages and

disadvantages. A disadvantage shared by both methods is a dependence on E(TX). In practice this is not a

serious disadvantage, since most likely one is looking for both E(TX) and V AR(TX). However, in light of the

recursive nature of these formulae it makes sense to calculate E(TX) and V AR(TX) at the same time, taking

advantage of the dynamic-programming techniques described previously to avoid redundant calculations.

An advantage of (5) is that it appears to be a simpler sequence of calculations to carry out. On the other

hand, the (6) second method has the advantage of being an explicit expression for V AR(TX) and may be

more useful in theoretical considerations of variance.
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6.1.4 Calculating WDLO(X, Y ) and WDLI(X, Y )

Recall that WDLO(X, Y ) is the WDL function which corresponds to a game played under Original Knock

’m Down rules, in which players remove tokens from the same value on a turn. To calculate WDLO(X, Y ),

we exploit the law of conditional probability. Again, we let V be the random variable representing the value

“rolled” on the first turn of an N -valued game. Thus, we can express

WDLO(X, Y ) =
∑

i

Pr(V = i)WDLO(X, Y |V = i),

where

WDLO(X, Y |V = i) =



WDLO(X, Y ) if xi = 0, yi = 0

WDLO(X, Y − ei) if xi = 0, yi 6= 0

WDLO(X − ei, Y ) if xi 6= 0, yi = 0

WDLO(X − ei, Y − ei) if xi 6= 0, yi 6= 0,

since producing a value on the first turn for which there are no tokens in either allocation does not change

the situation, while producing a value on the first turn for which either or both allocations have tokens does

change the situation. Solving for WDLO(X, Y ) yields the following recursive formula:

WDLO(X, Y ) =

 ∑
i:

xi 6=0
yi 6=0

piWDLO(X − ei, Y − ei) +
∑

i:xi 6=0
yi=0

piWDLO(X − ei, Y )

+
∑

i:
xi=0
yi 6=0

piWDLO(X, Y − ei)

 /

1−
∑

i:xi=0
yi=o

pi

 ,

(7)

with the important base cases

WDLO([0, . . . , 0], [0, . . . , 0) = (0, 1, 0)

WDLO([0, . . . , 0], Y ) = (1, 0, 0)

WDLO(X, [0, . . . , 0]) = (0, 0, 1).

In Independent Knock ’m Down, players remove tokens from independently random values on a turn.

We can use the same conditional probability technique to find a formula for WDLI , but we must condition

on the values produced on the first turn for both players. When calculating WDLI(X, Y ), we let V be

the random variable representing the value on the first turn for the player with allocation X and W be the

random variable representing the value on the first turn for the player with allocation Y . We can express

WDLI(X, Y ) =
∑
i,j

Pr(V = i)Pr(W = j)WDLI(X, Y |V = i,W = j).
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As with the case of WDLO, we have four cases to consider:

WDLO(X, Y |V = i, W = j) =



WDLI(X, Y ) if xi = 0, yj = 0

WDLI(X, Y − ej) if xi = 0, yj 6= 0

WDLI(X − ei, Y ) if xi 6= 0, yj = 0

WDLI(X − ei, Y − ej) if xi 6= 0, yj 6= 0.

Solving for WDLI yields the following recursive formula:

WDLI(X, Y ) =

 ∑
i:xi 6=0

∑
j:yj 6=0

pipjWDLI(X − ei, Y − ej) +
∑

i:xi 6=0

∑
j:yj=0

pipjWDLI(X − ei, Y )

+
∑

i:xi=0

∑
j:yj 6=0

pipjWDLI(X, Y − ej)

 /

1−
∑

i:xi=0

∑
j:yj=

pipj

 ,

(8)

with the important base cases

WDLI([0, . . . , 0], [0, . . . , 0) = (0, 1, 0)

WDLI([0, . . . , 0], Y ) = (1, 0, 0)

WDLI(X, [0, . . . , 0]) = (0, 0, 1).

Notice that the formulae for WDLO(X, Y ) and WDLI(X, Y ) have the same recursive properties as the

formula for E(TX), so the same dynamic-programming technique can be used. However, note that they are

recursive formula in 2N variables, with a dynamic-programming storage requirement of 3
∏

i (1 + xi)(1 + yi)

intermediate values (one for each of the three probabilities being calculated). In Section 6.2, we will show

that there is a more efficient and potentially faster method for calculating WDLO(X, Y ).

6.2 Optimized Methods

In this section, we discuss a number of techniques which lead to more efficient implementations of two of the

methods discussed in the last section.

6.2.1 Finding Minimal Allocations

In the last section, we developed an efficient means of calculating E(TX), but finding the minimal allocations

for the t-game with fixed P was limited to a brute force search of all
(
t+N−1

t

)
allocations. Throughout this

discussion, we will return to the problem of finding the minimal allocations for twelve tokens in the original

description of Knock ’m Down where P corresponds to the roll of two of six-sided dice. However, we will

write this probability vector as a non-increasing sequence: P = ( 6
36 , 5

36 , 5
36 , 4

36 , 4
36 , 3

36 , 3
36 , 2

36 , 2
36 , 1

36
1
36 ). We

understand that many of these techniques cannot be analyzed for a quantitative measure of improvement,
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but we hope that the concrete example of the original Knock ’m Down will provide evidence for a substantial

qualitative improvement. To begin, we note that a brute force search of all allocations of twelve tokens on

eleven values would calculate E(TX) for
(
12+11−1

12

)
= 646, 646 allocations.

The first improvement that can be made when searching for the minimal allocations is to note the fol-

lowing: if pi = pi+1 and X = [x1, . . . , xi, xi+1, . . . , xN ] and X ′ = [x1, . . . , xi+1, xi, . . . , xN ], then E(TX) =

E(TX′). Hence, we define an allocation X to be in normal form if for all pi = pi+1 then xi ≥ xi+1. For exam-

ple, the allocation [4, 2, 3, 1, 1, 0, 0, 0, 0, 0, 0] is not in normal form, but the allocation [4, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0]

is in normal form. Further, an allocation X which is not in normal form can be mapped to an allocation

X ′ which is in normal form such that E(TX) = E(TX′) and X ′ can be constructed from X by reordering

the tokens on values with equal probability. Thus, it suffices to calculate E(TX) only for those allocations

which are in normal form. Once a minimal allocation is found, other minimal allocations which are not in

normal form can be easily constructed. Since the original description of Knock ’m Down has five pairs of

values with equal probability, it benefits greatly from this improvement. In fact, of the 646, 646 allocations,

only 68, 354 allocations are in normal form. Unfortunately, there is one drawback to this technique; namely,

it requires some values to have equal probability. Therefore, more powerful techniques are required.

Recall that in Section 4, we proved:

First Minimal Allocation Theorem. Let X∗ be a minimal token allocation with t tokens. Then pb(x∗a −

1) < pax∗b , where pa < pb.

and

Second Minimal Allocation Theorem. Let X∗ be a minimal token allocation with t tokens. Then

|x∗a − x∗b | ≤ 1, where pa = pb.

These two theorems give necessary (although not sufficient) conditions for a token allocation to be mini-

mal. Hence, when searching for the minimal allocations, we need only calculate E(TX) for those allocations

which satisfy the conclusions of the Minimal Allocation Theorems. To apply the First MAT to a particular

allocation, we must examine every pair of values which have unequal probabilities. Likewise, to apply the

Second MAT, we must examine every pair of values which have equal probabilities. Applying these results

to the 12-token game, we find that there are only 175 allocations which satisfy the First MAT and there

are 35, 014 allocations which satisfy the Second MAT. Intersecting these two sets of allocations, we find that

there are only 109 allocations which satisfy both the First and Second MATs.

We now prove a Third Minimal Allocation Theorem. It should be clear from the statement of the theorem

that the Third MAT is an implicit result of the First and Second MATs, but we make it explicit here for its

computational implications.
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Third Minimal Allocation Theorem. Let X∗ be a minimal token allocation in normal form with t tokens

for P = (p1, . . . , pN ), such that p1 ≥ · · · ≥ pn. Then x∗1 ≥ · · · ≥ x∗N .

Proof. Suppose, by way of contradiction, that X is a minimal token allocation in normal form with t tokens

such that xi < xi+1 for pi ≥ pi+1. Since X is in normal form and xi < xi+1, then pi > pi+1. Further, since

xi < xi+1, then xi+1 > 0 and xi ≤ xi+1 − 1. Let X ′ = X − ei+1. Since xi+1 > 0, then X ′ is a valid token

allocation. Then x′i+1 = xi+1 − 1 and x′i = xi. Hence, pi+1x
′
i = pi+1xi ≤ pi(xi+1 − 1) = pi+1x

′
i. Then, by

the Token Adding Theorem,

E(TX) = E(TX′+ei+1) > E(TX′+ei) = E(TX−ei+1+ei).

Thus, X − ei+1 + ei is an allocation with t tokens, whose expected clearing time is less than the expected

clearing time of X, contradicting the minimality of X.

Thus, xi ≥ xi+1 for pi ≥ pi+1. Hence, x∗1 ≥ · · ·x∗N for a minimal allocation in normal form with

P = (p1, . . . , pN ), such that p1 ≥ · · · ≥ pn.

Notice that the Third MAT implies that every minimal allocation of t tokens in normal form can be written

as a non-increasing list of tokens. If we search for the minimal allocations with t tokens using only the First

and Second MATs, then we must generate every allocation X which corresponds to a composition of t into

N parts. If X satisfies the conclusions of the First and Second MATs, then we calculate E(TX), compare it

with the running minimum, and move onto the next allocation. Although we calculate the expected clearing

time of only some of the generated allocations, we briefly consider all
(
t+N−1

t

)
allocations. (We remarked

in Section 6.1 that there are efficient combinatorial algorithms for generating the combinations of t into N

parts, but we would still like to eliminate extraneous calculations.) On the other hand, if we search for the

minimal allocations with t tokens using the First, Second, and Third MATs, then we are guaranteed that

the minimal allocations in normal form can be expressed as a non-increasing list of tokens. Hence, we need

only generate every allocation X which corresponds to a partition of t into at most N parts, expressed as

a non-increasing list of parts. We can then continue as above: if X satisfies the conditions of the First and

Second MATs, then we calculate E(TX), compare it with the running minimum, and move onto the next

allocation. Although we calculate the expected clearing time of the same number of normal form allocations,

we generate fewer allocations. Since there is no closed form for the expression π(t,N) =
∑N

k=1 p(t, k), we

cannot argue quantitatively about the relative sizes of the number of allocations considered using partitions

versus the number of allocations considered using combinations, but we can be sure that the partition method

considers (significantly) fewer allocations (since the partitions of t into at most N parts can be expressed as

a subset of the compositions of t into N parts).

Although there are combinatorial algorithms for generating all partitions of t (see [7]), we would like an

algorithm for generating all partitions of t into N parts, with “unused” parts filled in with 0s. Obviously,
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we could generate such a list from all partitions of t, but when t is large relative to N , we will again be

“wasting” time generating partitions corresponding to allocations that we will never even consider as being

a potentially minimal allocation. We developed an algorithm for generating all partitions of t into N parts

which avoids generating extraneous partitions.3

By taking into account the Third MAT, we find that there are only 76 partitions of twelve into at most

eleven parts. Hence, there are only 76 allocations in normal form which satisfy the Third MAT. Combining all

three MATs, we find that there are only 49 normal form allocations which are potentially minimal allocations

and hence we need to calculate E(TX) for only these 49 allocations.

However, we can do even better. Note that the allocation [12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] is in normal form

and satisfies all three MATs. Likewise, [11, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] is also in normal form and satisfies all

three MATs. However, these allocations seem to be clearly far from minimal. In general, there are often

a number of allocations which satisfy all three MATs, but are clearly not minimal. Therefore, we modify

our searching algorithm in the following manner. First, we note that for any allocation X, E(TX) ≥ x1
p1

since in order to clear any allocation, we must clear all of the tokens on the most probable value. Next,

we note that among those allocations which have many tokens on the most probable values and satisfy all

three MATs, then x1
p1

becomes a better approximation for E(TX). Suppose we have a allocation X∗ which

has the minimum expected clearing time of all allocations considered thus far and X is the next potentially

minimal allocation to check. If E(TX∗) < x1
p1

, then clearly E(TX∗) < E(TX), so we are not required to

perform the more expensive calculation of E(TX). By generating our allocations in an order which places

the least number of tokens on the most probable value first and places the greatest number of tokens on the

most probable value last, then using the running minimum and the approximation by tokens on the most

probable value, we are able to eliminate even more allocations from consideration. A general quantitative

measurement of this type of improvement is unknown, but experience has shown it to be significant in some

cases. Returning to the case of twelve tokens in the original Knock ’m Down, we have found that of the 49

allocations which satisfy all three MATs, 17 allocations are eliminated by the method described. Hence, of

the original 646, 646 allocations, in order to find the allocations with the minimum expected clearing time,

we need only calculate E(TX) of 32 normal form allocations.

6.2.2 Calculating WDLO(X, Y )

In the last section, we developed a recursive formula for the calculation of WDLO(X, Y ). We noted that the

formula was recursive in 2N variables, for which a naive implementation would use a dynamic-programming

storage requirement of 3
∏

i (xi + 1)(yi + 1) intermediate values. However, with a little thought it becomes

clear that not all of those intermediate values are filled, since the two allocations are influenced by the
3See source code available by request from Matthew Fluet@hmc.edu for the implementation details.
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same value. For example, consider calculating WDLO([4, 3, 2, 1], [5, 3, 2, 0]). Among the intermediate values

calculated are WDLO([3, 3, 2, 1], [4, 3, 2, 0]), WDLO([4, 2, 2, 1], [5, 2, 2, 1]) and WDLO([3, 2, 2, 1], [4, 2, 2, 1]).

However, WDLO([3, 3, 2, 1], [5, 2, 2, 1]) is never calculated, since the first allocation cannot remove a token

on the first value without the second allocation also removing a token from the first value, and conversely,

the second allocation cannot remove a token from the second value without the first allocation removing a

token from the second value. Hence, 3
∏

i (xi + 1)(yi + 1) is overcounting the number of intermediate values

we will need.

A more efficient means of calculating WDLO(X, Y ) can be found by noting that it is sometimes possible

to decide the winner of a game without that player removing all of tokens from his allocation. For example,

suppose the first player chooses the allocation [4, 3, 2, 1] and the second player chooses the allocation [5, 3, 2, 0].

If the first 7 values generated for the game are α, α, γ, α, α, δ, γ, then the first player will be left with the

allocation [0, 3, 1, 0] and the second player will be left with the allocation [0, 3, 1, 0]. Clearly, any sequence of

values that clears the first player’s allocation will also clear the second player’s allocation, so this game can

only end in a draw. On the other hand, if the first 7 values generated for the game are β, γ, β, α, β, γ, δ, then

the first player will be left with the allocation [3, 0, 0, 0] and the second player will be left with the allocation

[4, 0, 0, 0]. Clearly, any sequence of values that clears the second player’s allocation will have first cleared the

first player’s allocation, so this game can only end in a win for the first player. This motivates us to define

the following. Let Max(X, Y ) = [max{x1, y1}),max{x2, y2}, . . . ,max{xN , yN}]. Let F = {f : xf < yf}, for

the values on which the first player has fewer tokens, B = {b : xb = yb}, for the values on which both players

have equal tokens, and S = {s : xs > ys}, for the values which the second player has fewer tokens. Finally,

define

WDL′O(Z;F,B, S) =



(1, 0, 0) if ∀f ∈ F, zf = 0 and ∀b ∈ B, zb = 0

(0, 1, 0) if ∀f ∈ F, zf = 0 and ∀s ∈ S, zs = 0

(0, 0, 1) if ∀b ∈ B, zb = 0 and ∀s ∈ S, zs = 0
P

i:zi 6=0 pvWDL′
O(Z−ei;L,B,R)

1−
P

i:xi=0 pi
otherwise.

since having tokens only on values where the second player has more tokens is a guaranteed win for the

first player, having tokens only on values where both players have equal tokens is a guaranteed draw for

the first player, having tokens only on values where the first player has more tokens is a guaranteed loss for

the first player, and anything else requires a conditional expression. Hence, we note that WDLO(X, Y ) =

WDL′O(Max(X, Y );F,B, S). Further, WDL′O(Z;F,B, S) is a recursive formula in only N variables with a

dynamic-programming storage requirement of 3
∏

i (1 + zi) = 3
∏

i (1 + max{xi, yi}) intermediate values.
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6.3 Finding Emperors and Emperor Cycles

Lastly, we consider the methods by which we find emperors and emperor cycles in a tournament. We

construct a tournament using an adjacency matrix representation for the directed graph. The i, j element of

the matrix is WDL(Xi, Xj), where Xi and Xj are, respectively, the ith and jth allocations in the tournament.

If (wi,j , di,j , li,j) is the i, j element of the matrix and wi,j ≥ li,j , then we consider a directed edge to exist

from Xi to Xj . We can easily check for the existence of emperors by examining the adjacency matrix for

any rows i where wi,j ≥ li,j for all j.

In order to detect emperor cycles and to examine the non-transitivity of the whole tournament, we

developed an algorithm to find all cycles of a directed graph given its adjacency matrix. Although the problem

is exponential in general (since the completely connected directed graph of n vertices has
∑n

k=2
n!

(n−k)!k

cycles), for reasonable sized tournaments, the algorithm runs reasonably fast. On the other hand, if we

only wish to determine the allocations that are in the emperor cycle, we can first group allocations of the

tournament into strongly connected components.4 Since we are considering a tournament, if allocation

X and Y are members of separate strongly connected components and X is favored over Y , then every

member of X’s component is favored over every member of Y ’s component. Further, each component of

the tournament contains a cycle through all of the allocations of the component. Since we can easily group

allocations of a tournament into strongly connected components, if we knew one member of the emperor

cycle, we could determine the strongly connected component that contains all members of the emperor cycle.

Unfortunately, we do not have a means of determining candidate members of the emperor cycle. In Section

7, we will examine some conjectures for determining candidate members of the the emperor cycle.

4Recall that a set of vertices in a directed graph is a strongly connected component if there exists a directed path from every

vertex in the set to every other vertex in the set.

47



7 Conjectures, Open Questions, and Future Directions

Despite the number of interesting results cited earlier, there are many interesting questions which remain

unanswered. In this section, we wish to describe some of the conjectures that we are most interested in seeing

proved or disproved. Also, we will examine some of the directions in which future research could progress.

In Section 5, we developed as simple description of the minimal allocations and emperors for the 2-valued

game. A closed form solution to the n-valued game remains elusive for n ≥ 3. We saw in Section 2 that non-

trivial emperor cycles occur in games with three values, so a simple description may be difficult to develop.

Failing that, we would like to find more ways to characterize the minimal allocations and emperors. We are

particularly interested in variations of the First Minimal Allocation Theorem which might provide interesting

lower bounds on xa/xb (or perhaps (xa + 1)/xb) for pa < pb. Shortly, we will consider one conjecture that

might provide such a theorem. We are also interested in favorability results which avoid the calculation

of WDL(X, Y ). This could greatly increase the efficiency with which the tournament graph for a game is

constructed. We will explore the possibility of using majorization to achieve such a result in Independent

Knock ’m Down.

7.1 The Minimal Sub-allocation Conjecture

In Section 2, we remarked that we might expect that the minimal allocation of t tokens for a fixed P would

contain the minimal allocation of (t− 1) tokens as a sub-allocation. We formalize this conjecture in a more

useful form as follows:

Minimal Sub-allocation Conjecture. If X∗ is a minimal allocation for the t-token game with fixed P ,

then there exists a minimal allocation for the (t+1)-token game that properly contains X∗ as a sub-allocation.

If this conjecture were true, we could add use it to greatly improve the efficiency with which we could

search for minimal allocations. In particular, it would mean that we would only need to consider N potentially

minimal allocations when moving from the t-token game to the (t + 1)-token game. Taking into account the

Minimal Allocation Theorems, we would probably be required to calculate E(TX) for even fewer allocations.

Better still, if this conjecture were true, we would further like to develop a simple rule to determine which

value deserves the next token. One major difficulty in proving the Minimal Allocation Conjecture is the fact

that we do not have a simple formula for E(TX+ei
). Such a formula would greatly aid in considering what

happens to allocations when small changes are made.

7.2 The Splitting Conjecture

We have recently considered the following conjecture:
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Splitting Conjecture. Let P = (p1, . . . , pN−1, pN ). Let Y ∗ = [y∗1 , . . . , y∗N−1] be a minimal allocation for

t-tokens with P ′ = (p1, . . . , pN−1 + pN ). Then there exists a minimal allocation X∗ = [x∗1, . . . , x
∗
N−1, x

∗
N ] for

the t-token game with P , such that y∗1 ≤ x∗1, y∗2 ≤ x∗2, . . . , yN−2 ≤ xN−2 and y∗N−1 ≥ x∗N−1 + x∗N .

This conjecture makes sense from an intuitive point of view. When we split pN−1 + pN , we decreased

the probabilities of the last two values. Therefore, all things being equal among the other values, we would

want no more than yN−1 tokens split between those values. In fact, if we split a high probability value into

two small probability values, then we would want those less probable values to have even less tokens; since

t is fixed, these “extra” tokens must be distributed among the other values.

A rigorous proof of this conjecture would yield both theoretical and computational advantages. We will

briefly explore two of the consequences of this theorem, because they demonstrate the usefulness Splitting

Conjecture

First, we note what can be accomplished through repeated applications of the Splitting Conjecture.

Conjecture. Let P = (p1, p2, . . . , pN ). Let Y ∗ = [y∗1 , y∗2 ] be a minimal allocation for the t-token game with

P ′ = (p1, p2 + · · ·+ pN ). Then there exists a minimal allocation X∗ = [x∗1, x
∗
2, . . . , x

∗
N ] for the t-token game

with P , such that y∗1 ≤ x∗1.

Proof assuming the Splitting Conjecture. We prove the conjecture by induction on N .

Basis (N = 2): Let P = (p1, p2). Let Y ∗ = [y∗1 , y∗2 ] be a minimal allocation for the t-token game with

P ′ = (p1, p2). Then there clearly exists a minimal allocation X∗ = [x∗1, x
∗
2] for the t-token game with P ,

such that y∗1 ≤ x∗1 – namely, X∗ = Y ∗.

Induction Step: Let P = (p1, p2, . . . , pN , pN+1). Let Y ∗ = [y∗1 , y∗2 ] be a minimal allocation for the t-token

game with P ′ = (p1, p2 + · · · + pN + pN+1). Then, by the Induction Hypothesis, there exists a minimal

allocation Z∗ = [z∗1 , . . . , zN ] for the t-token game with P ′′ = (p1, p2, . . . , pN + pN+1), such that y∗1 ≤ z∗1 .

By the Splitting Conjecture, there exists a minimal allocation X∗ = [x∗1, . . . , xN , xN+1] for the t-token game

with P , such that z∗1 ≤ x∗1, z∗2 ≤ x∗2, . . . , zN−1 ≤ xN−1 and z∗N ≥ x∗N + x∗N+1. Hence, y∗1 ≤ x∗1.

Using the results of Section 5, we can calculate Y ∗ fairly easily. Further, we would hope that we could

calculate a Y ∗
i corresponding to each value in such a way that yi,1 ≤ xi for each value. Then we could prove

that:

Conjecture. Let P = (p1, . . . , pN−1, pN ). Let Y ∗
i = [y∗i,1, y

∗
i,2] be a minimal allocation for the t-token game

with P ′ = (pi, 1− pi). Then there exists a minimal allocation X = [x∗1, . . . , x
∗
N ] for the t-token game with P ,

such that y∗i,1 ≤ x∗i for all i.

Hence, we would have a lower bound on the number of tokens that must appear on each value. This

could be of great computational benefit, since if y∗i,1 > 0 for i > 1, then we need not consider the allocation
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[t, 0, . . . , 0] as a potentially minimal allocation. In fact, we can often eliminate a fair number of the allocations

that are potentially minimal according to the Minimal Allocation Theorems. For example, when finding the

minimal allocation for the 30-token game with P = (.4, .3, .2, .1), the MATs admit 132 potentially minimal

allocations – but using the conjecture above, only 22 are potentially minimal.

The last conjecture also has some nice theoretical implications. Recall that in Section 5, we showed that

lim
t→∞

X∗(t)
t

= P.

If Y ∗
i (t) = [y∗i,1(t), y

∗
i,2(t)] is a minimal allocation for the t-token game with P ′ = (pi, 1 − pi), then we have

that

lim
t→∞

y∗i,1(t)
t

= pi.

Hence, by the last conjecture, have that

lim
t→∞

x∗i (t)
t

≥ lim
t→∞

y∗i,1(t)
t

= pi.

Since this holds for all i and
∑N

i=1 pi = 1, we must therefore have that

lim
t→∞

x∗i (t)
t

= pi,

which shows that

lim
t→∞

X∗(t)
t

= P

is true for all N -valued games.

7.3 Majorization and Independent Knock ’m Down

The game of Independent Knock ’m Down may be easier to analyze than Original Knock ’m Down. Al-

though we saw one example of non-transitivity in Section 2, it was found only after searching through many

Independent tournaments on a wide variety of probability distributions. We suspect that Independent Knock

’m Down may be provably transitive in some cases. In particular, it may be possible to show that certain

sets of allocations must have transitive favorability.

One method for showing such a result might be to use the concept of majorization (see [1]). We say that

a (finite or infinite) sequence A = [a0, a1, . . .] majorizes a sequence B = [b0, b1, . . .] if

k∑
i=0

ai ≥
k∑

i=0

bi for all k.

The property of majorization is transitive.

We can use majorization to analyze Independent games in the following way. For allocations X and Y , let

〈X〉 = [Pr(TX = 0), P r(TX = 1), . . . , P r(TX = i), . . .] and 〈Y 〉 = [Pr(TY = 0), P r(TY = 1), . . . , P r(TY =
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i), . . .]. We note that allocation X majorizes allocation Y if and only if

〈X〉T A〈Y 〉 ≥ 0,

where A is the infinite matrix 
0 1 1

−1 0 1 · · ·

−1 −1 0
...

. . .

 = [sgn(j − i)]ij .

The expression 〈X〉T A〈Y 〉 is the difference between the probability that X wins against Y and the probability

that Y wins against X. From another point of view, it is possible to consider A as the payoff matrix of a game,

where 〈X〉 and 〈Y 〉 are competing strategies. Considered in this light, it is clear that the optimal strategy

for the payoff matrix A is the strategy with the probability vector [1, 0, 0, . . .], which will win against any

strategy other than itself, with which it will draw. However, in Knock ’m Down it is impossible to construct

an allocation of tokens with such a probability vector when there are multiple values on which to put a

token.

We conjecture that if 〈X〉 majorizes 〈Y 〉, then 〈X〉T A〈Y 〉 ≥ 0 and the allocation X is favored over the

allocation Y . Computationally, this is an infeasible method for determining favorability, since it requires the

construction of infinite vectors. On the other hand, if we were able to prove that 〈X〉 majorizes 〈Y 〉 using

only the structure of X and Y , then we could determine the favored allocation without needing to compute

WDLI(X, Y ).

7.4 Other Directions

Finally, we wish to conclude by remarking on some of the directions of research that we have considered,

but have not had time to pursue. In Section 6, we developed formulae for V AR(TX). However, we have

not seriously considered the variance of the clearing time of an allocation as a potential indicator of the

allocation’s performance in a game of Knock ’m Down. One reason that the minimal allocation is not

always the emperor might be the following: a minimal allocation with a large variance may be beaten by

an allocation with a slightly higher expected value, but smaller variance. Intuitively, the minimal allocation

might have the smallest expected clearing time, but if this is “spread out” over too wide a range of values,

another allocation with a smaller variance might have the advantage in competition.

We conjectured earlier that

lim
t→∞

X∗(t)
t

= P.

We might also consider the expressions

lim
t→∞

E(TX∗(t))
t

and lim
t→∞

V AR(TX∗(t))
t2
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to see what asymptotic properties are held by minimal allocations.

Previously, we saw that it might be possible to use the 2-valued game results from Section 5 to increase

the efficiency of our searches for minimal allocations in the N -valued game. We briefly conjectured that the

2-valued result could be used to directly construct the minimal allocation in the N -valued game. Suppose

that we considered the N -valued game, but knew, through some means, that there was a minimal allocation

which used exactly ti,j tokens on the ith and jth values together. Then, it seems reasonable that the ti,j

tokens should be allocated between the ith and jth values in the same manner that t0 tokens are allocated in

the t0-token game with P = ( pi

pi+pj
,

pj

pi+pj
). For example, in the 10-token game with P = (.4, .3, .2, .1), the

minimal allocation is [5, 3, 2, 0]. We note that the minimal allocation to the 7-token game with P = ( 2
3 , 1

3 )

game is [5, 2], corresponding to the tokens on the first and third values in the minimal allocation to the 4-

valued game. However, in the 20-token game, the minimal allocation is [10, 6, 3, 1], but the minimal allocation

to the 13-token game with P = (2
3 , 1

3 ) is not [10, 3] but [9, 4]. One interesting direction of research would be

to discover when the method described above works and why it does not in certain cases.

We remarked in Section 2 that emperor cycles in tournaments may not accurately capture our idea of the

“best” allocations in a particular game. We might investigate more sophisticated rankings in tournaments.

Vol’skii (see [8]) considers a number of different methods for choosing the best alternatives on directed graphs

and tournaments, including “winning cycles” that are equivalent to our emperor cycles. However, all of these

methods fail to take into consideration information other than the direction of the edges in the tournament

graph. In the case of a Knock ’m Down tournament, each edge can have an associated weight – either the

probability that the favored allocation will win the match or the difference between the favored allocation’s

winning and losing probabilities. Moon (see [6]) considers generalized tournaments where there is a directed

edge between every pair of vertices and each edge is weighted such that wij + wji = 1 for all i and j. The

tournaments considered by Moon do not admit draws between elements, but we might seek after such results.

Since we have calculated an allocation’s winning probability, it does not seem appropriate to discard this

information when choosing the “best” allocation.

The question of local versus global results has not been adequately answered either. It is certainly not

the case that a local emperor is necessarily a global emperor; see, for example, Figure 5, where [4, 1, 0] is the

only allocation favored over [2, 2, 1], but [4, 1, 0] is not a neighbor of [2, 2, 1]. However, we conjecture that a

local emperor is always a member of the emperor cycle of the tournament. On the other hand, we have not

found any counter-examples to the conjecture that a local minimal allocation is a global minimal allocation.

If this were true, it might suggest that a “hill-climbing” strategy might be incorporated into a search for the

minimal allocations. We have experimented with a hill-climbing method using WDL functions. Surprisingly,

all tournaments seem to have a local emperor towards which a hill-climbing algorithm converges. This, along

with the method for detecting cycles using strongly connected components might be a useful method for
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determining the emperor cycles of a tournament.

Finally, we could consider truels and other multi-player games. The rules of Knock ’m Down would appear

to easily extend to multiple players. We suspect that different emperors and emperor cycles (appropriately

formulated) would appear in the tournament graphs induced by these games.
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