
SideCar: Building Programmable Datacenter Networks
without Programmable Switches
Alan Shieh‡† Srikanth Kandula‡ Emin Gun Sirer†

‡ Microsoft Research and † Cornell University

Abstract— �is paper examines an extreme point in the
design space of programmable switches and network pol-
icy enforcement. Rather than relying on extensive changes
to switches to provide more programmability, SideCar dis-
tributes custom processing code between shims running on
every end host and general purpose sidecar processors, such
as server blades, connected to each switch via commonly
available redirectionmechanisms. �is provides applications
with pervasive network instrumentation and programmabil-
ity on the forwarding plane. While not a perfect replacement
for programmable switches, this solves several pressing prob-
lems while requiring little or no change to existing switches.
In particular, in the context of public cloud data centers with
s of tenants, we present novel solutions for multicast,
controllable network bandwidth allocation (e.g., use-what-
you-pay-for), and reachability isolation (e.g., a tenant’s VM
only sees other VMs of the tenant and shared services).
Categories and Subject Descriptors
C.. [Computer-Communication Networks]: Network Architecture
and Design
General Terms
Algorithms, Design, Performance, Security
Keywords
Datacenters, programmable switches, virtualized networks.

1. INTRODUCTION
�ecase for switches that aremore programmable has long

been made. Programmable switches can be used for better
monitoring [], improved security enforcement [], explicit
feedback for more adept congestion control [], and other
novel features. However, such switches remain a work-in-
progress [, , ].
�is paper examines an extreme point in the design space–

a network wherein switches are augmented with an external
†{ashieh,egs}@cs.cornell.edu Dept. of Computer Science, Cornell
University, Ithaca, NY.
‡srikanth@microso
.com Microso
 Research, Redmond, WA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’10, October 20–21, 2010, Monterey, CA, USA.
Copyright 2010 ACM 978-1-4503-0409-2/10/10 ...$10.00.

general purpose sidecar processor, but are otherwise mini-
mally modi�ed, i.e., no internal changes to the so
ware or
hardware of the switch. With these constraints, SideCar en-
ables applications to install custom packet processing rules
that execute within the network; these rules consist of a
packet classi�er, combined with associated code that pro-
cesses every packet matching that classi�er.
Our key insight in realizing this programming model en-

tails pushing packet classi�cation to the edge and o�oad-
ing custom processing to commodity servers. By having
end hosts designate packets as needing special processing
and having switches redirect designated packets, the hard-
ware requirements for switches are substantially reduced:
each switch need only process a small set of packet classi�ers
rather than a large set of complex packet formats. By lim-
iting modi�cations to already-open end host platforms and
treating traditionally-closed switch platforms as black boxes,
SideCar is compatible with entrenched industry practices.

SideCar relies on packet sampling at switches to improve
scalability: it reduces the volume of tra�c that needs to be
inspected. Sampling also enables defense in depth: relying
on edge marking to implement fundamental network safety
properties expands the trusted computing base, rendering
these safety properties vulnerable to compromised end hosts.
SideCar prevents these by random spot checking and, upon
detection, punishment of misbehavior.
�e SideCar execution model is inspired by the slow-path

packet processing used by all modern switches. To achieve
cost and performance requirements, the majority of tra�c
on a switch is processed by a comparatively in�exible data-
path. While many applications and protocols can bene�t
from richer processing of only a small fraction of their tra�c,
the control processors in today’s switches are closed, hard to
program and strapped for resources. With SideCar, switches
process such special packets and events by redirecting them
to a sidecar processor.
Two trends in so
ware and network architecture enable

sidecars. First, connecting a commodity server with a 
Gbps NIC to top-of-rack switches su�ces for surprisingly
many applications. By exploiting GPUs, multi-core CPUs
andmulti-queueNICs for parallel processing and high band-
width point-to-point interconnects in lieu of a shared bus, re-
cent e�orts [, ] show that one server can process packets
at up to Gbps.

Second, today’s switches and the data center edge pro-
vide many alternatives to sample or steer packets to sidecars.
Many commodity switches implement sFlow, which can copy
a sampled subset of packets arriving at one ormore ports onto
another port. Switches can also steer packets based onTCAM
�lters or VLAN tags. �e datacenter edge can mark pack-
ets and implement functionality in conjunction with side-
cars. In private datacenters that are managed by automatic
so
ware (e.g., AutoPilot []), shim layers can be added to
the OS network stack. In cloud datacenters that o�er virtual-
ized resources for pay (e.g., Azure, AWS), the hypervisor (or
the root partition or dom-) can mark packets for inspection
by sidecars. For both types of datacenters, instrumentation
at sidecars can be used to provide precise feedback to better
con�gure packet �lters and rate limiters at the edge.
We present an initial design of the SideCar architecture. By

building a small set of applications with SideCar, we explore
the challenges in choosing appropriate steering and sampling
methods, designing probabilistic techniques that only need
to observe small subsets of packets and integrating feedback
from the sidecars with functionality at the datacenter edge.
We believe that sidecars provide both an expedient and a

cost e�ective means to program datacenter networks. Re-
cent trends lead us to believe that even as link and router
speeds evolve, advances in so
ware processing may keep up,
to provide reasonable choices for sidecars. SideCar’s mod-
est requirements open up the network to a wide set of ran-
domized enforcement algorithms and applied control mech-
anisms that have only seen limited deployment to date. �e
applications shown here are a �rst step on this path.

2. CONTEXT
Switches: While switches can process and forward pack-
ets at high throughput, they provide limited programma-
bility. �ey consist of a switching fabric and line cards.
Packet processing is distributed across the line cards, each of
which is provisionedwith su�cient �ltering and table lookup
hardware to process the tra�c entering the line card’s lo-
cal ports. �is processing capacity, while scalable with port
count, is specialized and cannot perform general processing.
�e control plane executes on general purpose processors;
while these processors can perform arbitrary packet process-
ing, their processing capacity is limited. �ese processors are
slow, di�cult to upgrade, and are connected to the dataplane
with low bandwidth links. �e number of control processors
is �xed regardless of the number of line cards. �us, switches
are engineered to minimize the number of packets that are
processed on the slow so
ware path. Even if control proces-
sors could process packets at high throughput, commodity
switch platforms have traditionally been closed systems that
restrict customization.
Servers: Routing and switching functionality when imple-
mented in so
ware on servers is easily programmable[] but
can generally only process low volumes of tra�c. In servers,
the CPU does most of the packet processing work. Unlike

line cards, commodity NICs contribute little capability be-
yond moving packets to and from the main memory. While
servers have higher speed processors than switches, the lack
of parallel, custom processing limits their scalability. Con-
tention on the I/O and front-side buses can also bottleneck
packets as they are processed by theCPU. Recent so
ware ad-
vances such as RouteBricks [] and PacketShader [] have
exploited architectural changes in servers to substantially im-
prove packet processing capability. Servers have an increas-
ing amount of parallel processing, in the form of GPUs and
multi-core CPUs. Most buses have been replaced by point-
to-point interconnects which scale with the number of I/O
devices and CPUs. NICs now optimize for multi-processing,
providing features such as multiple queues and load balanc-
ing to eliminate processor contention during I/O.
Datacenter Edge: End host so
ware and con�guration is in-
creasingly under centralized, automatic control. Large data-
centers are managed by so
ware that images, provisions and
monitors servers []. Network policy enforcement is dis-
tributed to end hosts, via con�guring the virtual switches in
hypervisors and personal �rewalls in operating systems. Vir-
tualization provides a shim layer at which new functionality
can be deployed transparently; it is widely deployed in data-
centers [] and may soon become widely available in enter-
prise networks given the availability of hardware virtualiza-
tion on most new PCs and the proliferation of new applica-
tions that exploit this [, ]. �ese advancements reduce
the cost and complexity of pushing network functionality and
policy enforcement to end host network stacks, suggesting
new trade-o�s to consider when partitioning functionality
between the network, edge, and end hosts.
Related Proposals: Proposals such as OpenFlowmodify the
control plane of switches to expose a standard API for con-
�guring the dataplanes, enabling experimentation [, ].
�ese APIs provide low level control over packet classi�ca-
tion and forwarding; which in turn enables applications to
perform custom control plane and dataplane processing by
redirecting packets to an external server.

SideCar does not require switches to support openAPIs but
can leverage such APIs for steering and con�guring switch
forwarding tables. Here, we avoid revisiting the many ap-
plications of OpenFlow [, ]. �ese are characterized by
occasional control overheads (e.g., once per �ow) that in-
voke a centralizedOpenFlow controller tomake correspond-
ing changes to forwarding tables. Instead, we explicitly fo-
cus on an orthogonal class of applications that do not bene-
�t from OpenFlow (see §). Such applications require pro-
grammability on the data path (e.g., all multicast packets, 
of all packets, all block access requests on SANs) and if im-
plemented with OpenFlow would result in sending large vol-
umes of tra�c to the OpenFlow controller for processing.

3. SideCar DESIGN
SideCar provides network designers with programmable

in-network packet monitoring and rewriting (see Figure ).

Aggregation

Switch

Top-of-rack

Switch

Server

…

…

IP Router

…

VLANs

…

…

…
 SideCar

Figure : Extending a datacenter network with sidecars.

�ese programmable resources reside in sidecar processors,
which lie o� the standard packet forwarding path. To direct
packets to sidecars, SideCar steers (or copies) subsets of pack-
ets traversing the switch.

SideCar employs two kinds of steering; the underlying redi-
rection primitives are simple and widely supported at line
rates (e.g., VLAN tagging [], IP-IP encapsulation []).
In marked steering, each switch redirects all packets with a
special mark to the sidecars. Packets can be direct steered
by sending packets to a speci�c sidecar. Marking and di-
rect steering can be used both at the datacenter edge, i.e.,
shim layer in the host network stack or hypervisors, and be-
tween di�erent sidecars to implement new types of forward-
ing schemes.

SideCar augments steering with sampling to enhance scal-
ability and security. Sampling reduces the packet processing
load on sidecars. Rather than fully trusting the end host so
-
ware stack to perform all critical packet processing, which
introduces potential vulnerabilities, or doing all such pro-
cessing in sidecars, which are trustworthy but may not have
enough computational power to do so, applications can use
the available sidecar capacity to spot check the work of the
end host, providing a probabilistic bound on misbehavior.
�e choice of what to use as the sidecar ranges from com-

modity servers to RouteBricks or PacketShader class servers.
�is choice depends on the the volume of tra�c transiting
the switch that the sidecar is connected to and the demands
of the application, i.e., what fraction of packets to observe and
what to compute per packet.

3.1 Sampling and Steering
To improve assurance, packet sampling must be trustwor-

thy, that is independent of any untrusted layers; sampling
that is implemented by relying on untrusted layers to mark
a subset of packets improves only scalability. Sampling prim-
itives that are built into switches meet these requirements:
such primitives, like NetFlow, sFlow, sampled port mirror-
ing or port spanning, are supported in all switches. Net-
Flow [] collects aggregate �ow-level statistics for packets
that it samples. Given a sample rate, sFlow [] picks pack-
ets uniformly at random and forwards their headers to a pre-
con�gured destination. sFlow is available on even entry-level
ToR switches [].
Port mirroring can sample full packets on switch ports,

whether on a port- orVLAN-basedmatch, and forward them

to another port on that switch. Switches that implement
packet mirroring in fabric hardware are limited only by the
bandwidth of the outgoing port and can deliver packets with
low latency. A high performance sidecarmay take in all pack-
ets from the switch and itself implement more precise statis-
tical sampling techniques such as trajectory sampling.
Either a switch or an endhost can determinewhich packets

to steer to a sidecar. �ere are a few ways to achieve steering.
Analogous to mechanisms such as MPLS or DOA [, ],
packets can be directly steered by tacking on an outermost
routable header with the address of a target sidecar. Steer-
ing can use MAC-in-MAC encapsulation or IP-in-IP encap-
sulation to specify the target sidecar’s address. To implement
marked steering, switches are con�gured to redirect to a side-
car tra�c that has a speci�c VLAN tag (works in L) or type-
of-service tag (works in L or L) or a speci�c MAC or IP
destination address. �e edge or downstream sidecars can
mark packets for processing at the next sidecar on the path.

3.2 Choosing an appropriate sidecar
Table  compares a few options for sidecars on their cost, as

of July , and appropriateness for network locations and
application demands.
An -core compute blade with one GbE link costs .

Swapping in an optical Gbps NIC increases the price by
about . A ToR switch may have   GbE down ( at-
tached to blades in the rack) and   GbE up ports. ToR
switches are typically low-end switches (limited ACL, VLAN,
multicast capability, no L support) and cost , for a per-
machine cost of . Note that, due to di�erences in vol-
ume and market segment, switches and sidecars can have
di�erent levels of markup; thus, comparing list prices only
approximates a comparison of true costs. RouteBricks and
PacketShader-class hardware have higher end processors and
interconnects costing -; the cost of optics for each
of four GbE NICs brings up the cost to about -.
�e performance of commodity servers is set to improve
since low end processors will soon ship with better intercon-
nects and on-die GPUs.
We see that a single commodity server is suitable as a side-

car at the ToR switch. It can process sizable fractions of
the tra�c transiting the ToR switch and perform moderate
computations per packet. �e per-port increase in cost due
to the sidecar is about  () for the ability to process
1.25% (4%∗) of the packets through the ToR switch. �is
cost is comparable to that of a high-end ToR switch; SideCar’s
programmability enables it to match or exceed some of the
features of such switches.
Note that a number of optimizations are possible. Applica-

tions that only require lightweight packet processing or only
monitor a low volume of tra�c allow sidecars to be shared be-
tween di�erent switches, while more intensive workloads can
use higher end sidecars. Performance estimates from Route-
Bricks and PacketShader suggest that one server can support
∗A commodity server can’t process more than -Gbps []

Type of sidecar Cost Appropriateness
Location Cost/port † Application

-core Commodity Server,  @ ToR switch  can process 1.25-4 of ToR’s tra�c
 or Gbps NIC @ Agg switch N/A unsuitable, can only process < .1 of tra�c
 RouteBrick/PacketShader server,  @ ToR switch  can process 50 of ToR tra�c
up to  Gbps NICs @ Agg switch  can process∼ 2.6 of Agg’s tra�c
n-port RouteBrick/PacketShader router *n @ Agg switch N/A can process all Agg tra�c, L replacement

† Cost per  GbE ToR port, to process at least 2.5% tra�c at indicated location, assuming : over-subscription.

Table : Comparing choices for sidecar on their cost and appropriateness given location in the network and application demands.

up to -Gb/s today. A PacketShader blade when con-
nected to  ToRs can process 3.1% of the packets at each
of these ToR’s and costs  per port, while one split across 
di�erent ToRs can process 12.5% of the packets for  per
port. Both con�gurations are more cost-e�ective than using
commodity blades.
An important special case is that of a non over-subscribed

datacenter network. When one of the many recently pro-
posed datacenter topologies (VL, fat-tree, bcube, dcell)
eliminate over-subscription in the core of the network, many
applications such as monitoring, multicast support and con-
trolling network bandwidth allocation only require program-
matic control outside the network core, i.e., at the ToRs.
If necessary, however, RouteBricks or PacketShader class

server can play the role of a sidecar at agg/core switches. As-
suming a : over-subscription ratio, the cost increase is 
per server to be able to process 2.6% of the tra�c entering
the agg/core switch; this includes the , cost of con-
suming four  GbE ports on a -port agg/core switch.
�e cost falls linearly as over-subscription factor increases.
In non-oversubscribed topologies that usemore switches, the
per-port cost increases linearly with the number of additional
agg/core switches needed to support the topology.

4. APPLICATIONS OF SideCar

By providing programmatic processing on a sampled sub-
set of packets that are steered to a sidecar, we show how Side-
Car facilitates novel solutions to four pressing problems in
cloud datacenters with tens of thousands of tenants and in
enterprise networks.

4.1 Reachability Isolation
A major impediment in moving applications to the cloud

is the ability to provide security, robustness and performance
guarantees from the datacenter network that are equivalent
to those in a client’s dedicated infrastructure.
A particular threat vector is that any tenant on the cloud

network may launch DDoS attacks or try to compromise the
VMs of other tenants that are sharing the network. As a re-
sult, reachability isolation, i.e., a tenant’s VMexchanges pack-
ets only with other VMs belonging to this tenant or shared
services provided by the infrastructure, has become a desir-
able property in cloud datacenter.
In a sense, wewould like to to place each tenant on a private

network. Enforcing isolation by placing ACLs (e.g. VLAN or

IP-based) in switch TCAMs runs out of TCAM space, as the
number of ACLs scales at least linearly with the number of
VMs whose tra�c can transit the switch. Scaling up the pol-
icy sizes requires upgrading tomore expensive switches; such
switches are prohibitively expensive at the ToR level, limiting
coverage to inter-ToR tra�c. Likewise, supporting new types
of policies, such as tenant- or user-based ones, can require
replacing all switches []. �e current solution is to place
con�gurable packet �lters in the edge hypervisors. While this
prevents unwanted tra�c from reaching theVMs, an attacker
can force the hypervisor towasteCPUcycles processing these
packets or burden the network with unwanted tra�c.

SideCar leverages sampling to achieve, for signi�cantly
lower cost, the �exibility of hypervisor �ltering while pro-
viding the same level of DoS protection as switch-based �l-
ters. A probabilistic guarantee of detecting policy violations,
combined with an aggressive mechanism to contain attack-
ers, su�ces to limit the damage due to an attacker.
SideCar’s Solution: SideCar uses sample-based auditing to
enforce reachability isolation. Rather than �lter packets, as
�rewalls at hosts and switches do, SideCar allows all tra�c to
enter the network and checks a uniform sampling against ac-
cess policy. By itself, sampling provides only reachability iso-
lation detection. To provide reachability isolation, we com-
bine this with a strong response to policy violations. When
violations are detected, the sidecar con�gures the ToR to re-
voke the sender VM’s access to the network.
Employing such a response mechanism has the potential

that an attacker may cause SideCar to revoke access of inno-
cent nodes. Note however, that the detectors, on account
of being physically separate sidecar processors, are harder
to compromise. Further, we use address spoof prevention
mechanisms at the edge (i.e., in ToR switches and hypervisor
v-switches) to prevent an attacker from spoo�ng unwanted
packets as if they were coming from someone else.
Sampling provides a probabilistic guarantee – with high

probability, SideCar detects violations within a small num-
ber of packets. Suppose p is the probability of sampling a
packet. �en the probability of detection a
er sending k
policy-violating packets is 1− (1−p)k. Whenmultiple side-
cars lie on a path from the source to the destination, there
are further detection opportunities. Assuming independent
sampling at m SideCar switches along the path, the detec-
tion probability increases to 1 − (1 − p)m·k. Given a sam-

pling probability of  and two SideCar switches, the detec-
tion probability is  a
er  packets. †
�is packet limit applies to all destinations from a given

VM; each VM can incur only a limited number of violations.
�is bounds the total packet leakage between colluding hosts
on isolated networks and bounds the amount of host CPU
and network capacity consumed on �ltering unwanted pack-
ets that violate the policy.
When VMs move or new VMs are created or removed,

the set of applicable policies changes. �e datacenter man-
agement so
ware handling such provisioning communicates
the change to sidecars. For a short time a
er a policy change,
stale packets in the network may be mistaken for violations.
To guard against such false positives due to race conditions,
SideCar accepts packets that conform to the old policy up to
a timeout period a
er the change.

SideCar allows for highly expressive policies and scales to
the size and churn in cloud datacenters. Similar to Berkeley
Packet Filters [], SideCar’s policies in so
ware can be spec-
i�ed over hosts, ports and applications. Checking for policy
violations is embarrassingly parallel. PacketShader reports a
rate of > 10mpps with two GPUs on similar rules. Further,
much work to speed up �ltering large rule sets in the context
of Berkeley packet �lters [] and IDS boxes can be leveraged
in so
ware.

4.2 Granular network resource allocation
Hypervisors allow controlled sharing ofCPUandmemory,

but sharing the network relies on TCP’s congestion control
today. Any tenant can gain unbounded bandwidth share in
the network through several means: using more TCP �ows,
using more aggressive variants of TCP, bypassing the conges-
tion control in the guest VM’s network stack or using proto-
cols that do not respond to congestion, such asUDP. A tenant
can use the extra bandwidth sel�shly or use it maliciously to
interfere with others on the shared links, switches or servers.
In a sense, we want to provide a modicum of control on how
the network bandwidth is shared amongmultiple tenants ag-
nostic to what tra�c the tenants may send.
Previous in-network approaches require tra�c engineer-

ing features that are less common in datacenter switches
and do not scale to the number of tenants in the datacen-
ter. End-to-end congestion control is free from scaling limits
due to switch hardware and avoids the fragmentation of net-
work bandwidth that static reservations schemes su�er from.
However, inferring congestion signals end to end (like TCP
does) reacts slowly and causes suboptimal performancewhen
all tra�c is bundled through a small number of congestion
controlled tunnels.
SideCar’s Solution: SideCar improves edge-based conges-
tion control by using sidecars to provide XCP []-like ex-
plicit feedback. Suppose all tra�c from the tenant goes via
congestion controlled hypervisor to hypervisor tunnels. Each
VM is con�gured with a weight, based on size of the VM or
†increasing from  a
er  packets with just one switch.

other policy. Using feedback from sidecars on the path, rate
limiters at the send hypervisors learn their max-min share of
the network bandwidth. ‡
By providing explicit feedback, sidecars enable the send

hypervisors to quickly yet stably converge to their appropri-
ate shares. Speci�cally, the sidecars along the path sample
uniformly from all packets to estimate the amount of spare
bandwidth available on the bottleneck link and the identi-
ties of the hypervisors that are using the link. By passing
these values back to the send hypervisors, each hypervisor
can make a judicious choice of adapting its share. �e in-
crease and decrease rules while analogous to XCP, have to be
modi�ed since only a sample of all packets are observed and
since feedback is not issued per-packet. We defer the details
to future work.

4.3 Scalable, programmable multicast
Multicast can improve the performance of many abstrac-

tions for building large scale systems, such as consensus [],
data replication [, ] and mass VM start up []. However,
the use of native IP multicast has been limited in enterprise
datacenters due to concerns about its congestion stability and
security []. Likewise, cloud providers typically do not ex-
pose multicast to their tenants.
SideCar’s Solution: �e datacenter edge steers packets
needing multicast support to a SideCar switch on the path.
SideCar maintains multicast state in the sidecars. For each
group whose tra�c transits through a SideCar switch, the
sidecar of that switch maintains a list of the switch ports hav-
ing participants in the group. Upon receivingmulticast pack-
ets, a sidecar replicates the packet as necessary and forwards
it out the other ports.
Multicast primitives can be built using SideCar that avoid

the security and congestion implications of native IP multi-
cast []. Such out-of-band support formulticast is similar to
Application Layer Multicast [] but is better performing due
to fewer needless copies of packets and shorter paths. Con-
gestion control or back pressure can be done in so
ware to
improve stability.
Supporting multicast is feasible with SideCar. Even com-

modity servers can handle table lookup and packet replica-
tion for up to modest volumes of multicast tra�c. When the
fan-out of a group is large, SideCar leverages support for local
multicast groups in switch hardware. By constructing a local
multicast group entry consisting of the outgoing ports that
this tra�c should leave on, the sidecar needs to transmit just
one copy of the packet and defer replication to the data plane
in the switch.

4.4 Preserving hypervisor policy control de-
spite direct I/O

To improve network performance in virtualized environ-
ments, direct I/O from guest VMs to the NIC [] has been
‡Each VMgets a share of bandwidth proportional to its weight. Un-
used shares are proportionally allocated to VMs that need it.

recently standardized. Direct I/O avoids the overhead of
passing packets through the hypervisor. However, it comes
at the cost of losing the policy control (e.g., �lters, rate lim-
iters) that is currently done in the hypervisor v-switch.

SideCarprovides away to restore the policy control of the v-
switchwithoutwaiting for switch support for direct I/O to be-
come standardized, implemented and available. Consider the
example of rate limiting a VMs tra�c to the network. SideCar
achieves this by asking the guest VM to limit its tra�c. How-
ever, there is no guarantee that the guest VM, which can be
arbitrarily modi�ed by the tenant, will do so. Hence, a Side-
Car switch at the ToR upstream of the guest samples all tra�c
leaving the ToR. By sampling uniformly at random, SideCar
can project from the proportion of the guest’s tra�c seen in
the sample to check that the VM is within limit.
Consider another example of counting a VM’s seek load

and bandwidth utilization on a SAN, which impact the
throughput of other VMs accessing disks on the same
SAN []. SideCar expects the guest to mark and steer disk
command packets to a sidecar that can track these metrics.
However, a guest can de�ate its request rate by only steering
some of its command packets. To prevent the guest from do-
ing so, SideCar can sample all packets and verify that all the
request packets were indeed marked to be counted.

5. FINAL REMARKS
Inability to modify switches has long been the bane of net-

work innovation. We present SideCar, an architecture that
uses recent improvements in processing packets with com-
modity servers to provide generic packet processing on the
dataplane. SideCar changes the con�guration of switches but
requires no so
ware or hardware modi�cations at switches.
By using host hypervisors, SideCar provides more expressive
packet classi�cation andmarking. Sampling lets SideCar scale
with low cost. We show that SideCar brings ideas from ran-
domized sampling and explicit control to bear on pressing
problems in cloud datacenter networks. As frameworks to
manage cloud datacenters evolve, such joint edge/network
designs become more important design patterns to achieve
better performance and security at low cost.

6. REFERENCES
[] Amazon Web Services. http://aws.amazon.com/.
[] A. Begel, S. McCanne, and S. L. Graham. BPF+: Exploiting Global

Data-�ow Optimization in a Generalized Packet Filter Architecture.
ACM CCR, .

[] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker. Ethane: Taking Control of the Enterprise. CCR, .

[] M. Castro and B. Liskov. Practical Byzantine fault tolerance. ACM
TOCS, .

[] F. Chang, J. Dean, S. Ghemawat, and W. Hsieh. BigTable: A
distributed storage system for structured data. ACM TOCS, .

[] Y. Chu, S. Rao, and H. Zhang. A Case for End System Multicast.
Proceedings of SIGMETRICS, Oct. .

[] Cisco Systems. Tra�c Anomaly Detection and Mitigation Solutions.
http://www.cisco.com/en/US/prod/collateral/
vpndevc/ps5879/ps6264/ps5887/prod_
bulletin0900aecd800fd124_ps5888_Products_
Bulletin.html.

[] Cisco Systems. TrustSec. http://www.cisco.com/en/US/
netsol/ns1051/index.html.

[] B. Claise. RFC: Cisco Systems NetFlow Services Export
Version , .

[] T. Das, P. Padala, V. Padmanabhan, R. Ramjee, and K. G. Shin.
LiteGreen: Saving Energy in Networked Desktops Using
Virtualization. USENIX ATC, .

[] S. Deering and D. Cheriton. Multicast routing in datagram
internetworks and extended LANs. ACM TOCS, .

[] C. Dixon, H. Uppal, D. Brandon, A. Krishnamurthy, and
T. Anderson. An End to the Middle. In (under submission), .

[] M. Dobrescu, N. Egi, K. Argyraki, B. Chun, and K. RouteBricks:
Exploiting parallelism to scale so
ware routers. SOSP, .

[] Y. Dong, Z. Yu, and G. Rose. SR-IOV Networking in Xen:
Architecture, Design and Implementation. InWIOV, .

[] S. Ghemawat, H. Gobio�, and S.-T. Leung. �e Google �le system.
SIGOPS OSR, .

[] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta. VL:Â A scalable and �exible
data center network. SIGCOMM, .

[] N. Gude, T. Koponen, J. Pettit, B. Pfa�, M. Casado, N. McKeown,
and S. Shenker. NOX:Â towards an operating system for networks.
ACM SIGCOMM CCR, .

[] A. Gulati and C. A. Waldspurger. PARDA : Proportional Allocation
of Resources for Distributed Storage Access. In FAST, .

[] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: a
GPU-Accelerated So
ware Router. SIGCOMM, .

[] Hewlett-Packard. HP ProCurve al Switch Series. http:
//h10146.www1.hp.com/products/switches/HP_
ProCurve_2910al_Switch_Series/overview.htm/.

[] M. Isard. Autopilot. SIGOPS OSR, .
[] D. Katabi, M. Handley, and C. Rohrs. Congestion control for high

bandwidth-delay product networks. SIGCOMM, .
[] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. �e

Click modular router. ACM TOCS, .
[] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell, P. Patchin, S. M.

Rumble, E. de Lara, M. Brudno, and M. Satyanarayanan.
SnowFlock. EuroSys, .

[] S. McCanne and V. Jacobson. �e BSD packet �lter: A new
architecture for user-level packet capture. USENIX Winter, .

[] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. OpenFlow:
Enabling innovation in campus networks. ACM CCR, .

[] J. C. Mogul, Praveen Yalagandula, J. Tourrilhes, R. McGeer,
S. Banerjee, T. Connors, and P. Sharma. API Design Challenges for
Open Router Platforms on Proprietary Hardware. HotNets, .

[] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. Mogul. SPAIN:
COTS Data-Center Ethernet for Multipathing over Arbitrary
Topologies. NSDI, .

[] R. Pan, B. Prabhakar, and A. Laxmikantha. QCN : Quantized
Congestion Noti�cation. IEEE .Qau Presentation, .
http://www.ieee802.org/1/files/public/
docs2007/au-prabhakar-qcn-description.pdf.

[] P. Phaal and M. Lavine. sFlow Version . .
[] E. Rosen, A. Viswanathan, and R. Callon. RFC: Multiprotocol

Label Switching Architecture. .
[] SourceFire. D Sensor.

http://www.sourcefire.com/products/3D/sensor.
[] T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb. Building a robust

so
ware-based router using network processors. SIGOPS OSR,
.

[] D. Tennenhouse and D. Wetherall. Towards an active network
architecture. ACM SIGCOMM, .

[] Y. Vigfusson, H. Abu-Libdeh, M. Balakrishnan, K. Birman, and
Y. Tock. Dr. Multicast: Rx for Data Center Communication
Scalability. LADIS, .

[] M. Wal�sh, J. Stribling, M. Krohn, and H. Middleboxes no longer
considered harmful. OSDI, .

http://aws.amazon.com/
http://www.cisco.com/en/US/prod/collateral/vpndevc/ps5879/ps6264/ps5887/prod_bulletin0900aecd800fd124_ps5888_Products_Bulletin.html
http://www.cisco.com/en/US/prod/collateral/vpndevc/ps5879/ps6264/ps5887/prod_bulletin0900aecd800fd124_ps5888_Products_Bulletin.html
http://www.cisco.com/en/US/prod/collateral/vpndevc/ps5879/ps6264/ps5887/prod_bulletin0900aecd800fd124_ps5888_Products_Bulletin.html
http://www.cisco.com/en/US/prod/collateral/vpndevc/ps5879/ps6264/ps5887/prod_bulletin0900aecd800fd124_ps5888_Products_Bulletin.html
http://www.cisco.com/en/US/netsol/ns1051/index.html
http://www.cisco.com/en/US/netsol/ns1051/index.html
http://h10146.www1.hp.com/products/switches/HP_ProCurve_2910al_Switch_Series/overview.htm/
http://h10146.www1.hp.com/products/switches/HP_ProCurve_2910al_Switch_Series/overview.htm/
http://h10146.www1.hp.com/products/switches/HP_ProCurve_2910al_Switch_Series/overview.htm/
http://www.ieee802.org/1/files/public/docs2007/ au-prabhakar-qcn-description.pdf
http://www.ieee802.org/1/files/public/docs2007/ au-prabhakar-qcn-description.pdf
http://www.sourcefire.com/products/3D/sensor

	Introduction
	Context
	SideCar Design
	Sampling and Steering
	Choosing an appropriate sidecar

	Applications of SideCar
	Reachability Isolation
	Granular network resource allocation
	Scalable, programmable multicast
	Preserving hypervisor policy control despite direct I/O

	Final Remarks
	References

