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ABSTRACT
This paper presents the design and implementation of NetQuery, a
knowledge plane for federated networks such as the Internet. In
such networks, not all administrative domains will generate informa-
tion that an application can trust and many administrative domains
may have restrictive policies on disclosing network information.
Thus, both the trustworthiness and accessibility of network infor-
mation pose obstacles to effective reasoning. NetQuery employs
trustworthy computing techniques to facilitate reasoning about the
trustworthiness of information contained in the knowledge plane
while preserving confidentiality guarantees for operator data. By
characterizing information disclosure between operators, NetQuery
enables remote verification of advertised claims and contractual
stipulations; this enables new applications because network guar-
antees can span administrative boundaries. We have implemented
NetQuery, built several NetQuery-enabled devices, and deployed
applications for cloud datacenters, enterprise networks, and the In-
ternet. Simulations, testbed experiments, and a deployment on a
departmental network indicate NetQuery can support hundreds of
thousands of operations per second and can thus scale to large ISPs.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Opera-
tions—network management, network monitoring

General Terms
Design, Management

1. INTRODUCTION
Depending on their configuration, administration, and provision-

ing, networks provide drastically different features. For instance,
some networks provide little failure resilience, while others provi-
sion failover capacity and deploy middleboxes to protect against
denial of service attacks [13, 6]. Agreements between network
operators often include requirements that are governed by such net-
work features. Peering and service agreements, for example, can
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mandate topology, reliability, and forwarding policies, while terms-
of-use agreements can mandate end host deployment of up-to-date
security mechanisms. Yet the standard IP interface masks the dif-
ferences between networks; each network appears to provide the
same, undifferentiated “dial-tone” service. Consequently, clients
and networks must resort to ad hoc techniques for advertising the
quality of a network and for reasoning about meta-level properties
of the network.

Knowledge planes [17] have been proposed to disseminate these
underlying network features, thereby giving providers a channel for
advertising network capabilities and enabling applications to use rea-
soning to find suitable networks for their requirements. This paper
describes NetQuery, a knowledge plane for multi-operator networks,
like the Internet. To our knowledge, NetQuery is the first instan-
tiation of a knowledge plane for federated networks comprised of
mutually untrusting administrative domains. NetQuery disseminates
information (e.g., routing tables, neighbor lists, and configurations)
about network entities (e.g., routers, switches, and end hosts) to
support application-level reasoning. NetQuery enables reasoning
while simultaneously respecting the information disclosure poli-
cies of participants, which may be hesitant to share information
in a federated environment. Under NetQuery, reasoning can occur
between mutually untrusting entities without leaking confidential
information.

NetQuery applications act only on information from sources that
they trust; NetQuery binds each property to a responsible principal.
In environments where networked components are equipped with
secure coprocessors, such as the Trusted Platform Module (TPM)
[21], NetQuery can use this hardware as a root of trust for reasoning
about information sources.

This paper outlines the design and implementation of NetQuery.
First, it proposes mechanisms for disseminating and discovering
facts about the state of network elements. These mechanisms also
enable applications to track changes to such state. Second, it out-
lines a logic-based framework for using such facts, supported by
attribution information, to assure that the network possesses an
application-specific characteristic. NetQuery leverages trustworthy
computing to achieve expressive reasoning while respecting the
confidentiality requirements of each network operator. Finally, it
describes our implementation of NetQuery devices and applications,
as well as our experiences running NetQuery in simulated ISP net-
works and on an operational departmental network of 73 L2 and L3
Ethernet switches and over 700 end hosts. We show that NetQuery
applications can derive guarantees about network performance that
cannot be achieved with existing monitoring-based approaches. We
also show that NetQuery imposes little overhead and supports topol-
ogy sizes and event rates encountered in typical service provider
networks. To wit, a single NetQuery server can handle 500,000
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requests per second and store the full forwarding table state of an
entire Internet POP.

The remainder of this paper describes the design and implementa-
tion of NetQuery. Section 2 describes the motivation for NetQuery
and outlines the design. Section 3 discusses the NetQuery data
model. Section 4 describes how the data model is coupled with a
logical framework and with TPMs to support inference. Section 5
describes the security model, its architectural implications, and
how analyses can determine that information sources are trustwor-
thy. Section 6 describes the incremental deployment benefits of
NetQuery. Section 7 describes and evaluates our implementation
and applications. Section 8 presents related work and Section 9
concludes.

2. MOTIVATION AND OVERVIEW
Knowledge planes enable new applications that depend on reason-

ing about properties of the network. By providing mechanisms for
determining the characteristics of a network, such as the expected
level of performance, redundancy, or confidentiality, NetQuery en-
ables network participants (e.g., peers, providers, or customers) to
make better informed decisions when establishing sessions, entering
into contracts with one another, or verifying compliance.

Sound network reasoning improves network transparency and
accountability, facilitating many types of commercial transactions.
On the Internet, the price that an operator can charge depends on the
paths and performance that they advertise; since routing traffic on a
different path may result in lower cost, operators are incentivized
to deviate from their advertised behavior to maximize profit [26].
Existing reputation-based mechanisms have not proven sufficient
to constrain selfish operators. Indeed, consumer advocates often
accuse last mile ISPs of misrepresenting the quality and capacity
of their networks [10]. Community forums often advise users to
verify independently whether their datacenter provider is truly multi-
homed [18]. Differences between networks are advertised through
manual, ad hoc channels such as interstitial web pages. Absent
automatic mechanisms for discovering and disseminating claims
about network capacity and redundancy, agreements are difficult
and costly to enact and competitors can engage in unscrupulous
practices. With NetQuery, ISPs with good networks can advertise
the quality of their networks in an automatic, remotely-verifiable
fashion.

Transparency and accountability for claims improve market effi-
ciency by reducing the economic transaction costs associated with
establishing agreements. In particular, NetQuery allows applica-
tions to discover network properties that are otherwise difficult or
impossible to determine by external data plane probing.

NetQuery reasoning is highly flexible and able to perform reason-
ing spanning multiple ASes. Since NetQuery’s logic-based creden-
tial system supports many mechanisms for establishing trust besides
a priori relationships, such reasoning can readily incorporate infor-
mation from any principal. For instance, TPM-based credentials
leverage trusted hardware to incorporate device-generated informa-
tion and audit-based credentials incorporate network information
added by trusted third parties.

2.1 Scenarios and applications
NetQuery enables a wide range of applications based on reasoning

about the properties of a remote network.
Enforcing interconnection policies. Although the level of direct

interconnection between ASes on the Internet has grown substan-
tially [57], lack of trust limits the potential benefit of this dense
graph. For instance, engaging in mutual backup, wherein each AS
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Figure 1: NetQuery architecture. A physical network and its
knowledge plane representation, stored on knowledge plane servers
operated by each AS.

allows the other to use its transit paths in emergencies, increases
overall fault tolerance. Yet unscrupulous ASes might misuse these
paths for non-emergency traffic. By checking a neighbor’s BGP poli-
cies and forwarding table entries, a network can verify that backup
paths are only used at appropriate times. This information is not
currently available to external parties.

Verifying AS path length. Since performance typically degrades
as packets traverse multiple ASes, ISPs are motivated to establish
peering or transit relationships to shorten AS path lengths. A small
content provider or access ISP that seeks to reduce AS path length
but lacks the resources to establish many direct interconnections
might instead purchase service from a provider that has low AS path
length connections to the desired destinations [22]. The purchaser
benefits from outsourcing the overhead of managing many peering
relationships and can use NetQuery to verify that traffic will be
forwarded with minimal stretch. By comparison, establishing this
arrangement today by using BGP-reported path information and
traceroute would necessitate a large trusted computing base as well
as incur the cost of active probing.

Advertising network redundancy. Some networks are con-
structed with redundant devices and network links to increase avail-
ability. A provider with a highly redundant network can use Net-
Query to advertise this fact by using a reasoning process that inspects
the network topology. By comparison, it is difficult or impossible to
detect redundancy with probing, since the extra resources are only
visible during failure.

Avoiding rogue Wi-Fi hotspots. In urban areas, mobile users are
typically within range of many wireless networks [44]. Users can
employ NetQuery to differentiate between these, using analysis to
select networks with better security and performance. By checking
for a network built from trustworthy devices and link-level encryp-
tion, a user can avoid connecting to rogue Wi-Fi hotspots [37]; by
checking the capacity of the backhaul path to the upstream provider,
a user can choose the best performing network in an area.

Future opportunities. Many proposals for improving service
discovery, such as those for bandwidth markets [56] and virtualized
routing infrastructure [36], have the potential to greatly expand the
set of service providers and peers available to a given ISP. NetQuery
can maximize the benefits of such proposals by providing new ways
to check whether a newly discovered service provider or peer is
suitable.

2.2 System overview
Network information is disseminated in NetQuery using a knowl-

edge plane that maintains a representation of the network topology
and configuration (Figure 1). The knowledge plane makes this
information available to applications for determining whether the
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network exhibits desired properties. The process of inferring some
high-level characteristic of the network (such as the loss rate on
a route between hosts) from low-level properties (such as routing
tables) is called analysis. Status information about network enti-
ties is typically self-reported by these entities (e.g., routers export
their forwarding tables), though a transition mode is supported for
proxies to transfer management information from legacy entities to
NetQuery.

Logically, a single, global knowledge plane incorporates all prop-
erties across multiple administrative domains on the Internet. Phys-
ically, this knowledge plane is federated — each administrative
domain runs a cluster of servers that locally stores all information
describing its network. Federation facilitates incremental deploy-
ment and protects confidentiality, since an operator can indepen-
dently run NetQuery servers without making information accessible
to operators of other administrative domains.

Applications can query the knowledge plane for information about
any participating network. Networks will typically restrict direct
access from external parties, but instead allow sanitizers to execute
operator-authorized sets of analyses on behalf of external applica-
tions. These analyses export only the network characteristics that
meet an operator’s information disclosure policies. The exported
sanitizer results are accompanied by credentials certifying that the
correct analysis code was executed.

Each NetQuery application independently defines the set of princi-
pals it trusts. The knowledge plane can include conflicting informa-
tion from different sources; applications can filter such information
based on the principals that they trust. This trust can be predi-
cated on any credential associated with a principal. Often, such
credentials are issued by a TPM, which binds statements issued
by a principal to a hardware/software platform. TPMs enable Net-
Query to collect a broad pool of attributed properties at low cost
since they are inexpensive and enable trust establishment costs to
be amortized. In particular, rather than establish trust with every
potential counterparty, analyses need only establish trust with plat-
forms, with this cost amortized across all participants deploying
those platforms. This enables TPM-bearing devices to automatically
issue unforgeable, fine-grained certificates for information inserted
into the knowledge plane.

Often, there are multiple ways to satisfied a desired network
characteristic. For instance, the fault resilience of a network may be
derived through an analysis of its topology or through independent
vetting by an auditor. NetQuery employs a logic for sound, flexible
derivation of characteristics. Logical reasoning yields a proof that
is self-documenting in that it describes all the assumptions and
inference steps used to conclude that a characteristic holds. Such
proofs are useful in logging and auditing.

3. DATA MODEL
A key challenge in building a knowledge plane for the Internet

is to contend with its many trust domains. A knowledge plane that
spans multiple organizations must support access control policies
to protect confidential properties. Because the knowledge plane
might contain inaccurate information, applications should be able
to express policies that specify what information is safe to use for
analysis. Since the system includes a diverse range of devices and
implementations, standardization of nomenclature is necessary for
interoperability.

The knowledge plane in our NetQuery prototype is based on
a tuplespace representation. Every tuple is named by a globally
unique tuple ID (TID) and stores properties as typed attribute/value
pairs; an attribute/value pair and its associated metadata is called

a factoid. NetQuery supports string, integer, references to tuples,
dictionary, and vector values for factoids.1

NetQuery principals are the basis for policy decisions. Every
producer and consumer of information from NetQuery is represented
by a principal, which has a unique public/private key pair. The key
pair is generated independently. NetQuery records two pieces of
policy-associated metadata for every factoid it stores: attribution,
the principal responsible for generating the factoid; and export
policy, which defines what principals can read the factoid.

In a federated environment it is impractical to expect global con-
sistency or uniform interpretation of properties contributed by di-
verse sources. But by retrieving attributions, applications have some
basis to reason about whether a property is suitable for use based on
whether the provider of that property is trustworthy.

To facilitate interoperability between devices and analyses, Net-
Query information conforms to voluntary schemas. Each schema
defines the set of properties that a given kind of network element
must provide. NetQuery schemas prescribe a data format but do not
prescribe associated code or operations. NetQuery provides standard
schemas for representing devices (e.g., hosts, routers, and switches)
and network abstractions (e.g., TCP connections, TCP/UDP end-
points, and IPsec security associations). NetQuery schemas are
similar to those of network management systems (e.g., SNMP) that
are supported by many devices. By adding to such devices a shim
for outputting properties or by interfacing through an SNMP proxy,
we enable them to participate in NetQuery.

Initializing factoids. Tuples and factoids for a network device
can be initialized and maintained by different network participants,
including the device itself, its administrator, or a third party. Since
routers and switches have limited processing capacity, they of-
fload their tuples to tuplespace servers, thereby insulating against
application-induced query load.

On start up, a device discovers its local tuplespace server from
a DHCP option and then transfers local configuration and initial
state to that server by issuing create() operations to the tuplespace
server to instantiate tuples and update() operations to write factoids.
A newly activated router, for example, creates tuples for all of
its interfaces and exports its initial forwarding table state. Hosts,
routers, and switches also export local topology information to
the tuplespace, using a neighbor-discovery protocol such as LLDP
to generate ground facts. The device pushes any changes to its
configuration and state to the tuplespace server.

Tuplespace servers and lookup protocol. Each AS or third-
party information service operates tuplespace servers. The TID for a
tuple embeds the IP of the tuplespace server storing that tuple, along
with an opaque identifier. Device references are stored as TIDs,
and therefore analysis can efficiently access the relevant tuplespace
servers. To prevent changes to facts and metadata while in flight
through man-in-the-middle attacks, tuplespace servers communicate
over secure channels.

To prevent DoS attacks by applications that issue costly tuplespace
server operations, all remote operations always terminate in bounded
time. The tuplespace server only supports simple wildcard queries
for attributes, which in the worst case loops over all attributes for a
given tuple. NetQuery provides no mechanisms for invoking either

1A production version of NetQuery might well leverage the ongo-
ing development of semantic web technologies such as RDF and
OWL [43] for building the knowledge plane. Research into a seman-
tic web has produced considerable infrastructure and theory for the
federated knowledge stores, reasoning, and query processing that
underpin any knowledge plane. NetQuery can also help ongoing
efforts to extend the semantic web to cover network management
information.
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recursive queries or stored procedures. Clients, however, are free to
aggregate data and locally perform expensive analyses.

Tuplespace servers make extensive use of soft-state to improve
performance. Since the tuplespace contents derive from device state,
a tuplespace server can always ask devices to re-export their state.
This obviates the need for tuplespace servers to support a costly
transactional recovery mechanism. The tuplespace uses lease-based
storage management for factoids. Thus, once a device fails, the stale
factoids will be garbage collected automatically.

3.1 Dynamics: changes and triggers
Changes in the network can invalidate properties in the knowledge

plane. Time of check/time of use bugs can occur because network
changes take place concurrently with analysis. Similar behavior can
arise from probe-based measurements such as traceroute.

NetQuery provides a trigger interface to facilitate detection of
changes to underlying properties during analysis. In addition to
this, the interface allows applications that depend on long-running
characteristics to be notified when some conclusion no longer holds.
Once a trigger is installed, a callback packet is sent to an application-
specified IP-port pair (trigger port) whenever a specified factoid has
been modified. Triggers are stored by tuplespace servers as soft-
state, so applications must periodically send keep-alives to refresh
their triggers.

Our NetQuery applications check for relatively stable character-
istics; here, triggers suffice to filter spurious analysis results that
arise from observing transient states. Network tools built using
probing interfaces typically would be fooled by such transients. To
implement this filtering, applications install triggers for factoids
being used. For instance, consider an application that enumerates
all hosts in some given L2 Ethernet domain by issuing queries that
traverse the network graph. Were the topology to change during
these queries, the application might miss newly connected hosts. To
guard against this, the application issues a retrieve_and_ install_
trigger() operation to atomically retrieve link information from a
switch and thereafter to monitor it for changes. This atomic oper-
ation eliminates the window of vulnerability between the time a
factoid is read to when monitoring for changes to that factoid starts.

Network delays in message delivery can cause updates from dif-
ferent devices to be received at a tuplespace server interleaved in
unpredictable ways. A consistent cut guarantee would eliminate
such inconsistent views, but the underlying network protocols and
devices typically support neither consistency nor causality. We
could augment devices with logical clocks, but that would be chal-
lenging to deploy incrementally, since means would be needed to
approximate causal dependencies when exchanging messages with
legacy devices. Fortunately, operator reasoning is typically focused
on steady-state network characteristics, and causal consistency is
less critical there. Future work will return to this problem.

4. ANALYSIS
NetQuery provides mechanisms that parse factoids acquired from

tuplespace servers, determine whether a factoid is trustworthy, and
check if a desired network characteristic is supported by trusted
factoids.

Nexus Authorization Logic (NAL) provides the logical foundation
for making inferences from factoids. A full discussion of NAL is
beyond the scope of this paper (see [49]). Below, we simply outline
the main features of NAL, describe how it is used in NetQuery,
and discuss the implications of our choice. NAL admits reasoning
about factoids and attribution information, enabling applications

to reconcile conflicting statements uttered by different principals.
The says and speaksfor operators, along with a set of two dozen
inference rules, permit inferences based on an application’s trust
assumptions.

NAL associates a worldview with each principal. This worldview
contains beliefs the principal holds about the network. Reasoning in
NAL is local to every worldview: by default, inference takes into
account only local beliefs, rather than statements believed by other
principals. This local reasoning restriction prevents reasoning by
one principal from being corrupted by contradictory facts attributed
to another principal. Using speaksfor, a principal can incorporate
into its worldview beliefs from other principals that it trusts. An
optional scoping parameter restricts speaksfor to import only a
subset of statements that concern a specific matter of interest.2

Applications use NAL to derive theorems about the network from
information provided by the NetQuery knowledge plane. Specifi-
cally, factoids are converted to logical statements, which are then
used to prove some given goal statement. A goal statement is a
NAL formula that characterizes what a client application wants
to establish. An application initially populates its worldview with
an import policy, specifying what factoids the client deems to be
trustworthy. Import policies often include speaksfor statements that
specify which hardware and software platforms are trusted sources
for factoids.

Ground statements. Factoids from tuplespace servers translate
into NAL ground statements. Tuplespace API operations, such as
fetching factoids, translate their return values to NAL formulas. For
instance, a retrieve() operation issued on router R0’s tuple returns
factoids as NAL axioms of the form:

TuplespaceServer says

R0 says (R0.Type= “Router” ∧
R0.fwd_table= {ipA => nexthop, . . .})

where “ipA => nexthop” denotes a forwarding table entry specifying
the next hop for a given destination. The nesting of says formulas
captures the full chain of custody during the factoid’s traversal
through the knowledge plane. Here, the factoid was exported from
R0 to a particular tuplespace server, TuplespaceServer.

The NAL proof for a goal statement is a derivation tree with the
goal statement as the root, NAL inference rule applications as inter-
nal nodes, and ground statements and axioms as leaves. Analyses
typically provide a proof generator that embodies a programmer’s
understanding of how to check whether a given characteristic holds
into a proof generation strategy.

Proofs can be consumed entirely within a single application or
exported to other parties as a self-documenting certificate. The
certificate can be logged to create an audit trail for accounting,
documentation, and debugging. Such audit trails are also useful in
application domains governed by external compliance requirements,
such as Sarbanes-Oxley and HIPAA.

4.1 Example: Checking network paths
This example shows how an application might use NAL to verify

that a network complies with a performance requirement. Suppose
site A wants to establish that the path to site B provides low loss rate
(Figure 2).

2Since NAL does not encode a notion of degrees of trust, speaksfor
is monolithic in that it incorporates all in-scope statements. Net-
Query can switch to a logic that supports such reasoning [15, 41]
should the need arise.
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The goal statement for a path P to satisfy a bound r on the loss
rate is

∃P ∈ Routers2+ :

(P[1] = A) ∧ (P[|P|] = B) ∧
(∀i 1≤ i < |P| : P[i]→ fwd_table〈B〉= P[i+1]) ∧

(∃r′ ∈ Reals : (r′ < r) ∧ TrustedLossRate(P,r′))

(Goal)

We write “Routersk+” for the set of all finite router-tuple sequences
of length k or greater, “TID.name1→ name2= v” as shorthand for
dereferencing a reference value factoid to access a second factoid,
“|P|” for the length of a sequence, “P[k]” for the kth element in a
sequence, and “T 〈key〉” for a lookup from a factoid of dictionary
type. The first three lines constrain P to be a valid path given
the source, destination, and forwarding table state. The last line
asserts an upper bound on the expected one-way loss rate on P given
information from trusted principals, and that predicate is defined as

TrustedLossRate(P,r),

(∃P′,P′′ ∈ Routers1+ ∃p ∈ Routers ∃r′,r′′ ∈ Reals :

(P = Concat(P′, p,P′′)) ∧ (r = r′+ r′′) ∧

TrustedLossRate(Concat(P′, p),r′) ∧

TrustedLossRate(Concat(p,P′′),r′′)) ∨

(Cjoin)

(∃R,Rnext ∈ Routers :

(P = Concat(R,Rnext)) ∧
(R says R.curr_loss_rate_to〈Rnext〉= r) ∧
IsTrustedRouter(R)) ∨

(C0)

(∃I ∈ ISPs :

(∀i 1≤ i≤ |P| : P[i].ISP= I) ∧
(I says I.sla_loss_rate〈P[1],P[|P|]〉= r) ∧
IsTrustedISP(I)) ∨

(C1)

(∃A ∈ Auditors :

(A says A.measured_loss_rate〈P[1],P[|P|]〉= r) ∧
IsTrustedAuditor(A))

(C2)

where “Concat()” denotes sequence concatenation. IsTrustedRouter(),
IsTrustedISP(), and IsTrustedAuditor() are predicates derived from
import policies, where the policy for IsTrustedRouter() checks the
attestation and platform while the latter two check whether I and A
are on a whitelist of trusted principals.

This analysis incorporates facts from multiple trustworthy sources,
each having different ways to determine the loss rate of a path: (C0)
expresses trust in certain routers to report their instantaneous link
statistics, (C1) expresses trust in certain ISPs to claim SLAs, and
(C2) expresses trust in certain auditors and measurement tools [40]
to report measured performance. Each rule infers loss rate using
different data schemas.

4.2 Using TPM attestations
Every TPM is uniquely identified by a set of keys that is certified

by a PKI being operated by the device manufacturer. Attestations
are remotely-verifiable, unforgeable, and tamper-proof certificates
that use these device keys to bind a software-generated bit string
(typically, a message) to the particular hardware and software plat-
form that generated it [25]. By linking attestations to attribution
metadata, NetQuery allows applications to unequivocally link each
factoid back to some particular device.

Attestation is not a panacea against all misbehavior. Attestation
merely establishes accountability; a NetQuery client using a factoid
has to decide whether to trust the platform that is attesting to that fac-
toid. For instance, suppose a routing platform is designed to honestly

Figure 2: Topology and tuplespace contents for network ana-
lyzer example. Attribution metadata (“says” information) has been
omitted for brevity.

reports its observations of the control- and data-plane as factoids. It
is tempting to assume that attestation of this platform implies that
the factoids agree with the real-world. But malicious operators can
manipulate these observations and trick poorly-constructed devices
into issuing factoids that disagree. Section 5.2.2 discusses such
attacks.

TPM optimizations
NetQuery applications make their own determination about how
factoids are interpreted based on attribution information. In the
baseline system, every factoid and credential is signed, allowing
clients to independently check that factoids are attributed to the right
principals and that credentials are issued by the right parties. How-
ever, this checking is costly if clients use factoids and credentials
from many different principals. Hence, NetQuery incorporates two
optimizations.

Avoid TPM signatures. Whenever possible, NetQuery avoids
obtaining signatures from the TPM, which is much slower than the
CPU. Instead, NetQuery constructs software principal keys using
a TPM-rooted certificate chain that the CPU uses for signing every
factoid update. Thus, TPM attestations are used only once per boot,
to bind the software principal to the platform.

Attest to tuplespace servers. Signatures provide end-to-end
integrity and authentication for factoids. This helps when tuple-
space servers might manipulate factoids, but it is unnecessary for
tuplespace servers that are trusted to relay factoids correctly. By
distinguishing such servers with attestation, NetQuery can replace
per-factoid signatures with secure channels built from symmetric
keys. Clients using this optimization specify an import policy that ac-
cepts tuples without signature-verification from attested tuplespace
servers. These policies leverage the says information within ground
statements, which encodes the tuplespace server’s position as a
repository of utterances from other principals.

4.3 Confidentiality and sanitizers
Agreements between network participants often stipulate the pres-

ence of certain network features. For instance, peering agreements
mandate up-time and fault tolerance guarantees [3], SLAs mandate
desired latency and loss rate characteristics, and service agreements
for cloud datacenters reference the network bisection bandwidth and
oversubscription levels. Verifying the accuracy of such advertised
claims is at best difficult and often impossible. Trust establishment
is typically performed manually, pairwise for each agreement, using
ad hoc means.

In contrast, knowledge plane analysis can verify such claims in
a principled fashion. However, most ASes have strict disclosure
policies about internal network information. A naïve use of Net-
Query, where external parties run analysis to verify properties of
interest, can reveal detailed internal information. To be practical, a
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Figure 3: Preserving confidentiality. Sanitizers support external
clients without leaking information, since the exported certificates
serve as trusted proxies for the full proof.

knowledge plane needs some way to provide assurances to external
parties without revealing confidential data.

NetQuery provides sanitizers for this purpose. A sanitizer is a ser-
vice that converts secret factoids into unforgeable summary factoids
suitable for release to other parties (Figure 3). Sanitizers execute
analysis code on behalf of the remote party. To provide assurance
that a remote analysis is done correctly, a sanitizer executes in a
trusted execution environment and provides an attestation certificate
that ties the output factoid to the sanitizer binary and the execution
time. This approach does require both parties to agree on the sani-
tizer at the time of contract establishment, but once that agreement
is in place, a sanitizer that checks the contract stipulations reveals
no more information than what is revealed in the contract itself.

NetQuery provides confidentiality guarantees through its careful
use of the trusted execution platform. A sanitizer executes on an
AS’s own computers, so factoids that it processes never leave the
AS’s custody. The trusted execution environment is used solely to
provide an execution-integrity guarantee to a remote party. The data
confidentiality guarantees then come from the sanitization embedded
in the analysis itself—not from the underlying operating system.
Using sanitizers means that NetQuery does not require an execution
environment that can provide confidentiality guarantees against
attackers with physical access to the execution hardware—such
systems are difficult to build, even with TPMs. Further, since ASes
have complete control over when, where and how often sanitizers
execute and how much data they reveal to external parties, an AS
can prevent outside applications from crafting query streams that
consume excessive system resources or that induce a sanitizer to
leak information.

4.4 Confidentiality-preserving applications
The following examples show how NetQuery supports different

applications while preserving the confidentiality of factoids. These
applications, along with the ones from Section 2.1, can all be imple-
mented with sanitizers.

Verifying performance and reliability guarantees. Configu-
ration generators that use global network optimization to achieve
performance and reliability goals are increasingly prevalent [50, 4].
These tools automatically configure a network based on workload,
topology, and performance constraints. Operators that rely on con-
figuration generators can use NetQuery to advertise the achieved
goals.

Configuration generators are typically complex and proprietary
to an operator; so they are not disclosable to network clients as a
means of certifying performance goals. But a sanitizer could run
an industry standard configuration checker (such as [16]) to verify
that the output configuration from a configuration generator meets
the performance claim. Moreover, a network operator can upgrade
to a new configuration generator without updating the contract or
disclosing the new code.

As an example of this construction, suppose an operator offering
MPLS-based VPNs advertises guaranteed bandwidth in the presence
of a single node or link failure [34]. The operator could run a

global optimizer to find an assignment of MPLS primary and backup
paths that satisfies all reservations and link capacity constraints. A
configuration checker can then validate this assignment by walking
through the MPLS-related factoids: for each failure scenario, the
checker would verify that backup paths do not overload any links.

Dynamic verification of contractual obligations. Some con-
tractual obligations are easier to verify dynamically than statically.
For instance, precomputed backup paths in MPLS VPNs provide
bandwidth guarantees only for the first failure. To establish re-
silience against additional failures, the operator needs to compute a
new set of primary and backup paths after each failure. A configura-
tion checker can detect this by using triggers and updating its output
factoids accordingly.

But updating the output factoid every time the provider-topology
changes leaks information about outage and maintenance intervals.
To prevent this disclosure, the operator can interpose another sani-
tizer certifying that the network successfully recovers from failures
within a reasonable time. As long as this assertion is met, the
sanitizer leaks no information beyond that found in the customer
contract.

5. USING TRUSTWORTHY COMPUTING
ABSTRACTIONS

Operators are not only well-positioned to launch attacks on Net-
Query but they have incentives to do so. In this section, we outline
the NetQuery security model and discuss the applicable results from
trustworthy computing research in building routers that can provide
assurances. We also discuss the vulnerabilities that can exist in anal-
yses that improperly interpret knowledge plane information, along
with defenses to protect against such concerns.

5.1 Security model assumptions
NetQuery depends on the following security assumptions:

• Hardware and software security. Attackers cannot tamper
with the execution semantics of a device. The only way to
affect running code is to use the explicit interfaces provided
by the device (e.g., I/O ports, RPCs, configuration console)
rather than side channels (e.g., installing hardware probes on
its memory bus). Moreover, attackers cannot extract secrets
stored in secure coprocessors.

• Cryptographic algorithm security. This assumption, shared
by most work on security, implies that digital signatures used
for attestation cannot be forged. It also implies the confiden-
tiality and integrity of messages conveyed by secure channels.

Together, these assumptions imply that TPM attestations are un-
forgeable, since execution, encryption, and credentials cannot be
compromised or spoofed. Consequently, messages used to imple-
ment the knowledge plane can be bound to the hardware/software
platform responsible for generating them.

TPM-equipped commodity PC hardware approximates our hard-
ware security assumptions. Network devices are substantially simi-
lar to PC hardware — the primary difference is an additional high-
performance switching backplane not found on most PCs, but this
backplane is logically equivalent to sophisticated I/O devices, which
can be attested to [31].

Technology trends suggest that future trustworthy computing
platforms will be even better approximations of our hardware re-
silience assumptions. This suggests that device manufacturers have
incentives to further improve commodity platforms. It is already
possible to build highly tamper-resistant platforms, ranging from
high-performance encryption of buses to protect against probing
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attacks [53, 32] to highly secure processors for protecting major
financial and PKI transactions [55]. Thus, even today, designers of
trustworthy routers can choose a level of hardware security that can
support the needs of NetQuery. Even without such improvements,
TPMs are becoming more deeply integrated into platforms, raising
the bar for physical attacks. Even if a TPM is compromised, the
damage is localized, since the extracted keys can only be used to
generate information attributed to that TPM.

5.2 Incomplete and inaccurate world views
The knowledge plane encodes an incomplete view of the data

plane, control plane, and broader operating environment. Analyses
must cope with the potential incompleteness to avoid deriving un-
sound analysis results. Inaccurate information may also arise due to
poor device implementations.

Below, we present examples of incompleteness and inaccuracy,
along with ways to ensure that analysis and devices are implemented
correctly.

5.2.1 Exogenous information
Knowledge plane incompleteness can arise because relevant net-

work information is outside the purview of NetQuery devices. For
instance, consider a pair of routers connected with multiple links.
Though they appear independent to the devices, these links could be
physically separated or they could reside in the same undersea cable
bundle and subject to correlated failures. Similarly, distinct devices
might exhibit common mode failure due to physical breaches or
financial insolvency of the operator.

A fault-tolerance analysis that equates multiple links, as reported
by the device, with independence would derive unsound conclusions.
Only by including more information in the knowledge plane, such
as the physical location of fibers as compiled in databases [52], can
one hope to avoid such errors. The NetQuery knowledge plane can
incorporate such data.

5.2.2 Inaccurate information
Consider a network that has routers where the forwarding and

control layers behave as today, but run NetQuery and satisfy its
security assumptions. This strawman router design provides weak
assurances; we will show how to improve on this.

Router implementations are complex; a malicious operator could
well gain control of the control plane, data plane, or NetQuery pro-
cesses, then induce them to export inaccurate facts. Trustworthy
computing platforms provide isolated monitoring mechanisms [51]
that operate independently of application code; using these to mon-
itor the control plane and data plane and to export the inferred
properties to the knowledge plane results in improved robustness.

A malicious operator could introduce non-NetQuery nodes into
the real network such that the nodes are not reported to the knowl-
edge plane, yet substantially change the behavior of the network.
Any actions taken based on analysis of this knowledge plane could
be misguided and violate the intended policy. This attack is inex-
pensive to launch, since the introduced nodes can be implemented
with commodity devices.

To illustrate these attacks, suppose a dishonest ISP installs addi-
tional nodes to trick NetQuery analyses into inferring a high quality
network even while the actual physical network supports only a
fraction of the claimed capacity, provides no redundancy, and sends
customer traffic over indirect routes.

In existing networks, operators have access to the keys used to
secure control protocols such as OSPF and BGP. Malicious operators
can use these keys to spoof routing advertisements, in a forged
control message attack. Further, a malicious operator can also use

network virtualization to hide a slower physical network or tunneling
to redirect traffic along alternate paths. Such attacks embody forms
of data plane/control plane dissociation.

In each of these cases, the knowledge plane reports that the routers
are directly connected at the control or data link layer, yet they are
in fact connected to an operator-controlled node. The solution is
to add countermeasures to ensure that the knowledge plane and
real network match. To protect against the forged control message
attack, NetQuery encrypts all control messages between NetQuery-
equipped devices with per-session keys known only to the devices.
To protect against the dissociation attack, NetQuery devices can
adopt standard solutions for monitoring the data plane for anomalies,
such as trajectory sampling [20] to probabilistically detect packet
redirection, link-layer encryption [33] to ensure that no control or
data packets at all are redirected, and performance monitoring [7] to
establish capacity bounds on every link.

5.3 Confidentiality-preserving analysis archi-
tectures

One of the design principles of NetQuery was to leverage existing
trust relationships rather than requiring new ones to be forged. This
principle comes into play if we consider the problem of protect-
ing the confidentiality of operator information, which is a central
concern of operators.

5.3.1 Sanitizers
NetQuery sanitizers execute in a machine controlled by the net-

work operator, with the assurance that the right analysis was exe-
cuted, as discharged by attesting to the code that ran on the machine.
This leverages a pre-existing trust relation: in the absence of Net-
Query, the external party has to trust the network operator to issue
a properly-derived result. Hence, a NetQuery sanitizer does not
change the extant trust relationship. Rather, it simply puts the origi-
nal trust assumption on a mechanically-backed basis.

The alternative would be to execute the sanitizer in a TPM-
equipped machine controlled by the external party. Here, the net-
work operator would have to ship confidential information to exter-
nal machines and would have to trust those machines to not reveal
this information. The trust relation required here is substantially
different from the original; operators might resist deploying this
type of sanitizer. Their concern is well-founded: this architecture
provides less defense-in-depth against the compromise of confi-
dential information and there are indeed low-cost attacks that can
extract confidential information from the memory of TPM-equipped
machines [30].

5.3.2 Analyses spanning multiple domains
In preceding applications, we showed how to support multi-

domain analyses that are decomposable into independent, per-domain
sanitizers. We offer here a design for another approach that admits
analyses that span multiple domains while preserving confidentiality.
Such analyses are useful for implementing traffic engineering across
multiple ASes while preserving confidentiality [39].

Our solution is to combine NetQuery with secure multiparty
computation (MPC). In fact, NetQuery’s strengths complement the
weaknesses of MPC. Adding NetQuery helps to satisfy the trust
assumptions of MPC. Since MPC protocols do not constrain partici-
pants to be honest about their inputs, each MPC application typically
requires an application-specific security analysis of the implications
of such cheating. Some MPC protocols leak information to partici-
pants that do not follow the protocol, which poses a deployment risk
in realistic scenarios, but NetQuery obviates such concerns by pro-
tecting the MPC inputs and protocol implementation. This approach
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Libraries
Server & client 18,286
NAL 2,254
Data sources
Nexus host 543
Software switch 1,853
Quagga router +777
SNMP proxy 1,578

Applications
Network access control 787
L2/L3 traceroute 483
Oversubscription 356
Maximum capacity 316
Redundancy 333

Figure 4: Source line count for NetQuery libraries, devices, and
analyses. Router figure is the code size increase relative to Quagga.
SNMP proxy supports HP and Cisco devices and exports a superset
of the data for switch and router.

improves assurance by attesting to the execution of a trustworthy
MPC implementation and restricting the MPC inputs to factoids
from trusted devices.

5.4 TPM deployment
NetQuery’s flexible import policies enables applications to benefit

whether or not devices are equipped with TPMs.
Deployments without TPMs. For example, TPMs are not nec-

essary in scenarios where pre-existing relationships are considered
sufficient for trusting the claims of another party. Operators cur-
rently invest significant effort in establishing trust before entering
peering agreements and may trust each other enough to exchange
information through network diagnostic tools. This trust relation-
ship can be represented by import policies that accept the remote
ISP as a root of trust in lieu of a TPM key. In NetQuery, we have
the remote ISP sign X.509 certificates with a self-generated key, and
specify a corresponding import policy. Although this TPM-less con-
figuration does not help with trust establishment, it still streamlines
coordination and can be used to generate an audit log documenting
why a claim was accepted.

Legacy network elements will lack a TPM with which to generate
factoids. Here, an ISP can use its own self-signed key to issue
statements on behalf of such legacy devices. Modern ISPs run
extensive management software that collects information on the
state of the network and devices within, and exporting the data from
such systems into NetQuery enables even ISPs with pure legacy
devices to support NetQuery applications. This approach supports
a transparent transition as new TPM-equipped network devices are
introduced, and ISP-signed statements are subsumed by device-
issued factoids.

Finally, NetQuery sanitizers can enable external applications to
participate in NetQuery even when they are not equipped with TPMs.
Because sensitive factoids never leave an administrative domain,
lack of a remote TPM can never lead to information leakage.

External checkers. Some trustworthy properties can be obtained
by using TPM-equipped devices to infer or monitor legacy devices.
Past work has examined how to obtain guarantees about the behavior
of legacy BGP speakers by monitoring their inputs and outputs [47,
29]. Since monitors only need to inspect control traffic to infer
details of BGP behavior, low cost monitoring hardware suffices to
provide assurance about the behavior of expensive legacy equipment,
such as high-performance routers.

6. INCREMENTAL DEPLOYMENT
NetQuery analyses can verify common advertised claims even

when only some devices are upgraded to support NetQuery.
Bilateral benefits. Many claims in bilateral contracts can be

computed almost entirely from factoids exported by one of the coun-
terparties, and thus require minimal support for NetQuery outside

Completion time Network cost
(seconds) (sent/recv’d)

L2/L3 traceroute 0.16 s 247 KB
Oversubscription (pre-processing) 7.9 s 17 MB

(per switch) 0.1 s 0 KB
Maximum capacity 0.16 s 247 KB

Redundancy 12.65 s 24 MB

Figure 5: Performance of analyses on department network. The
execution time and network cost of each analysis suffices to support
network management and data center SLA queries. Oversubscrip-
tion analysis pre-processes the tuplespace to reduce query costs.

of the participating networks. Since most Internet agreements are
bilateral [22], this is a common case.

Some claims are completely self-contained within an ISP’s net-
work; these include those providing VPN service between multiple
customer sites or guaranteeing an intra-domain latency or redun-
dancy SLA. Other analyses, such as the Wi-Fi hotspot and AS hop
count analyzers, require a modicum of support from ASes adja-
cent to the Wi-Fi or transit provider. These analyses verify that the
provider routes traffic to a specific destination domain as promised:
for the former, to the public Internet (e.g., outside the hotspot’s
domain), for the latter, to the destination AS. The adjacent net-
works need only install NetQuery devices at the edge and assert
their ownership of these device, say by signing a factoid using a
AS-number certificate issued by a regional Internet registry [11].
Adjacent networks need only ensure that they deliver packets into
their network as claimed by the knowledge plane. To do so, they can
simply deploy a low-cost TPM-equipped host, rather than upgrade
edge routers.

NetQuery islands. In other scenarios, there may be islands
of NetQuery-enabled devices separated by multiple legacy devices.
Islands might arise within a single provider that deploys starting
at the edge of each POP or in a few POPs at a time. Islands may
also be isolated by legacy devices controlled by a third party. By
establishing tunnels between one another, backed by encryption and
performance monitoring [7], NetQuery devices can export properties
describing the intervening legacy network. Such tunnels are similar
to the defenses against the dissociation attack and the preceding
deployment optimization for adjacent ASes.

7. PROTOTYPE AND FEASIBILITY STUDY
We have implemented a prototype of the NetQuery system de-

scribed above. The core functionality is supported by an embeddable
tuplespace server for building NetQuery devices and sanitizers; a
C++ client library for writing NetQuery applications; NAL proof
generators and checkers; and a stand-alone tuplespace server. Using
these components, we have built a NetQuery switch for Linux, a
NetQuery router adapted from the open source Quagga router [1], a
NetQuery host that runs the Nexus trusted operating system, and an
SNMP to NetQuery proxy (Figure 4). We also built a network access
control (NAC) system and several network performance analyzers.

We describe, through our experience with building applications,
the benefits of NetQuery-enabled analysis. We also demonstrate,
through microbenchmarks of tuplespace operations and experiments
and devices, that NetQuery achieves high throughput and low latency
and that extending network devices to support NetQuery involves
little code modification, low overhead, and low deployment cost.

All experiments used a testbed built from Linux 2.6.23 hosts
equipped with 8-core 2.5GHz Intel Xeon processors and connected
over a Gigabit Ethernet switch. Unless otherwise stated, all TPM
and NAL optimizations from Section 4.2 were enabled.
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7.1 Applications and production deployment
Here, we outline the implementation of each NetQuery applica-

tion and describe the achieved performance and operational benefits.

7.1.1 Network access control
The NAC system restricts network access only to machines that

are unlikely to harm the network, such as those running a firewall and
virus checkers. Such policies are widely embraced today, yet often
rely solely on user cooperation. This system installs triggers on local
NetQuery switches to detect new hosts, which are initially allowed
only limited network access. In response to a trigger notification, the
application analyzes the new host. For each policy-compliant new
hosts, the application sends a configuration command to the switch
to grant network access. Such policy decisions are implemented in
the switch enforcer process, consisting of 787 lines of code (LOC).
The NetQuery switch consists of 1,853 LOC, including a full control
plane and software data plane with link-level encryption to prevent
dissociation attacks. The host runs the Nexus operating system,
which exports its full process list to a locally running tuplespace
server.

To prevent leakage of sensitive user information beyond the user’s
computer, NAC uses a sanitizer that releases the sanitized fact
CompliantHost(H) if H’s process list indicates that it is running
the required software. NAC uses Nexus’s process level attestation
to verify execution of the sanitizer and tuplespace server, which run
in separate processes. The proof tree consisted of eight ground state-
ments: five tuplespace values, authenticated by tuplespace server
MACs, and three attestations, authenticated by digital signatures.

Together, the proof generation and proof checking processes took
less than 67 seconds of wall clock time, which is low compared
to the long duration of typical Ethernet sessions. Digital signature
verification at the enforcer dominated the cost.

7.1.2 Analysis of a production network
We deployed NetQuery on our department’s production network

consisting of 73 HP and Cisco L2 and L3 switches and over 700
end hosts. Using standard network management data exported by
these switches, we built several analyses for detecting properties
of interest to customers of cloud providers and ISPs; Figures 4
and 5 summarize the source code size and performance of each
analysis. NetQuery enables these analyses to discover information
that is otherwise difficult or impossible to obtain through the data
plane. Our deployment relies on an SNMP-to-NetQuery proxy that
periodically exports the neighbor, forwarding, routing, and ARP
tables of every switch.

We implemented the following analyses, which can be used to
generate remotely verifiable advertisements of datacenter network
quality. These advertisements enable customer applications to pick
the most appropriate network for a given workload.

L2/L3 traceroute analysis. Traceroute is widely used for diag-
nostics. Since standard IP traceroute returns only L3 information,
it provides little information in a network composed primarily of
L2 switches. We have built a NetQuery traceroute that iteratively
traverses the topology graph contained in the knowledge plane, in-
stead of using probe packets. At each switch, the analyzer performs
forwarding table and ARP table lookups as appropriate to determine
the next hop. To support traceroute on our network, the analysis
understands many commonly used features of L2/L3 switched Eth-
ernet networks, including link aggregation groups and VLANs. This
analysis is often used as the basis for other analyses.

Over-subscription analysis computes internal network capacity
and determines the ratio between the capacity of a given network
link and the maximum amount of traffic that hosts downstream
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Figure 6: Throughput of operations issued in bulk. The through-
put of all operations is independent of the tuplespace size.

from the link can generate or consume. To compute the aggregate
capacity across all hosts, the analysis traces through the L3 core and
L2 tree, down to the leaf switches, recording every host access link.
Customers with network-intensive workloads such as MapReduce
can benefit from choosing datacenters that are less oversubscribed.

Maximum capacity analysis determines the available bandwidth
through the Internet gateway. This analysis determines the best-
case throughput between a given host and network egress point by
running NetQuery traceroute to find the host to egress path, then
computing the minimum capacity across the links on that path. Cus-
tomers deploying public services benefit from choosing datacenters
with high available capacity through the gateway.

Redundancy analysis verifies that the network is robust against
network failures. We implemented an analysis that decomposes the
network graph into biconnected components, which are by definition
robust against the failure of a single switch. Customers that require
high availability should place their nodes in the same component as
critical services and the Internet gateway.

In addition to using these analyses to support external customers,
the datacenter operator can use them to debug network problems.
For instance, we have used these tools to help us inventory and locate
network equipment and to determine the network failure modes for
our research group’s externally-accessible servers.

7.2 Scalability
We evaluate the performance of a tuplespace server with through-

put and latency microbenchmarks that correspond to different us-
ages and scenarios. High throughput enables devices to initialize
the knowledge plane quickly when they boot or are reconfigured.
Reduced latency enables analysis to complete more quickly and
limits exposure to concurrent changes to the network.

Throughput. In this experiment, a traffic generator issues a se-
quence of requests, without waiting for responses from a tuplespace
server running on a separate machine. To fully utilize processor
cores available on the server, the tuplespace is distributed across
eight processes.

The results show that NetQuery can support large tuplestores and
high tuplespace access and modification rates (Figure 6); a single
tuplespace server can support more than 500,000 read and update
operations per second. The throughput of all tuplespace operations
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NetQuery NetQuery
SNMPv3 (Unoptimized) (Optimized)
Bulkwalk Update Read Update Read

46,572 29 2,723 97,422 94,844
±300 ±0.06 ±30 ±2,000 ±8,000

Throughput in SNMP variables/s or
NetQuery factoids/s (± 95% conf. interval)

Figure 8: Comparison of SNMP and NetQuery. TPM- and NAL-
based optimizations enable NetQuery to achieve better throughput
than SNMP while providing stronger guarantees.

is decoupled from the size of the tuplespace, with the exception of
Delete_Factoid(). For smaller tuplespace sizes, Delete_Factoid()
experiments complete so quickly that initialization overheads domi-
nate overall execution time. The tuplespace server achieves this high
performance because it only holds soft-state, for which a simple
in-memory implementation suffices.

Latency. The latency of accessing the tuplespace (Figure 7)
affects the completion time of NetQuery applications. In this exper-
iment, a single client issues sequential requests for the TID from
Create_Tuple(); and for the factoid value from Read_Factoid().
Latency remains constant as tuplespace size increases.

Cryptographic optimizations and SNMP. To evaluate the over-
head of accountability, we compared the performance of NetQuery
to that of SNMPv3. To evaluate the benefits of the optimizations
from Section 4.2, we measured the throughput of NetQuery with and
without trusting the tuplespace server. Since the Linux SNMP server
is not multithreaded, we ran both NetQuery and SNMP on a single
core. We used multiple concurrent instances of snmpbulkwalk to
retrieve SNMP server MIBs. The NetQuery experiments retrieved
comparable amounts of data. SNMP and NetQuery were both con-
figured to provide confidentiality and integrity.

When the tuplespace server is not trusted, devices sign all factoids
on export and applications check signatures on all factoids on im-
port, significantly increasing CPU overhead. When the tuplespace
server is trusted, NetQuery provides better performance than SNMP
(Figure 8). Thus, we expect that SNMP analyses that are ported to
NetQuery will perform comparably well, yet provide accountability.

Since TPMs and trustworthy computing can be used to establish
the trustworthiness of tuplespace servers, these results show that
high performance knowledge planes that support accountability can
be deployed at little additional cost.

7.3 Building NetQuery devices
We built several NetQuery devices to determine the implemen-

tation and runtime costs that NetQuery adds to devices. We also
show that the knowledge plane and devices can efficiently support
realistic workloads.

Quagga router. We modified a Quagga router to evaluate the
cost of extending an existing device to support NetQuery. Only
localized changes to the router’s control plane were necessary to
export all interface and routing table changes to the knowledge plane.
NetQuery-Quagga interposes on Quagga’s calls to rtnetlink,
the low-level interface to the in-kernel dataplane, and translates all
relevant requests, such as changes to the forwarding table and NIC
state, into tuple updates. In total, only 777 lines of localized changes
were needed, out of a total code base of 190,538 LOC.

Initialization. Quagga is a demanding macrobenchmark that ex-
ports significant amounts of state during operation. To demonstrate
that routers can efficiently shed this data to a tuplespace server,
we measured the initialization and steady state performance of the
router. We used a workload derived from a RouteViews trace. The
Quagga router, tuplespace server, and workload generator ran on
separate machines. To demonstrate that NetQuery can efficiently im-
port bulk data, we measured the completion time to load a full BGP
routing table (268K prefixes) and the resulting tuplespace memory
footprint.

Upon receiving routing updates, the BGP router downloads a full
forwarding table to the IP forwarding layer. Added latency could
affect network availability. Without NetQuery, an update of the full
table took 5.70 s; with NetQuery, it took 13.5 s. Our prototype
blocks all updates while waiting for NetQuery; a production imple-
mentation can eliminate this dependency by updating the knowledge
plane in a background process.

Exporting the full forwarding table to the tuplespace server re-
quired 62.8 MB of network transfer and 10.7 MB of server memory
to store the table. Though full updates are the most intense knowl-
edge plane update workload, only a modest amount of hardware is
needed to support them.

Steady state. To demonstrate that NetQuery routers perform well
in steady state, we evaluated the router against a workload derived
from RouteViews update traces. The workload generator batched
updates into one second buckets, and submitted them as bursts.
The experiment recorded the time needed to commit the resulting
changes to the IP forwarding tables and to the knowledge plane.
NetQuery increased the median completion time to 63.4 ms, from
62.2 ms in the baseline server. Thus, the NetQuery router reacts
almost as quickly as a standard router, minimizing the disruption to
forwarding table updates. NetQuery required only 3 KB, 92 KB, and
480 KB to transmit the median, mean, and maximum update sizes;
thus, any server configuration provisioned to support initialization
load can also support steady state load.

Convergence time. NetQuery does not impact eBGP conver-
gence time: in eBGP, route propagation is governed by a thirty
second Minimum Route Advertisement Interval, which exceeds the
latency of exporting a full forwarding table update to NetQuery.

To measure the impact on IGP route convergence, we simulated
the update traffic from large correlated link failures on the Sprint
RocketFuel topology. This topology consists of 17,163 Sprint and
customer edge routers. We converted the simulation trace into
a POP-level NetQuery workload, which we fed to a single-core
tuplespace server.

We measured for each run the convergence time after failure.
For the five largest POPs, consisting of 51 to 66 routers, and link
failure rates of up to 0.05, the mean and median increase in update
completion times were less than 0.24 s and 0.14 s, respectively.
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Thus, networks can deploy NetQuery while achieving sub-second
IGP convergence time, which is the desired level of performance for
operators [24].

8. RELATED WORK
Perhaps the work closest to NetQuery are network exception

handlers (NEH) [35], ident++ [42], Maestro [12], NOX [27], and
DECOR [14]. All are logically centralized systems for enterprise
networks that disseminate network information to administrative
applications. NetQuery supports such network management applica-
tions for enterprise networks, while also supporting applications that
issue queries spanning multiple ASes. Moreover, the the NetQuery
knowledge plane goes one step further and supports heterogeneous
information sources by tracking the source of every statement and
by leveraging trusted hardware.

Declarative programming [58] has been proposed as an alterna-
tive for building applications and for managing networks. In such
systems, application logic is written as high-level rules that manip-
ulate a database representation of the network. DECOR [14] uses
declarative programming to autoconfigure network devices to meet
high level operational goals. DECOR uses logical specifications for
device semantics and state that can be helpful in writing NetQuery
analyses and sanitizers. Both NetQuery and DECOR provide frame-
works for extending existing devices to support policy analysis and
management applications. NetQuery applications can span mutu-
ally distrusting administrative domains, for which we provide trust
establishment and sanitization techniques not needed in the problem
domain of DECOR.

Trusted Network Connect [54] and [48] are network access con-
trol systems with similar client authorization to NetQuery. Before an
end host is allowed to join the network, these systems use attestation
to verify that the end host’s software and hardware configuration
satisfies the access policy. Unlike NetQuery, these systems do not
provide a channel that end hosts can use to discover properties of a
network before deciding to connect.

The ubiquity of TPMs has inspired many systems that rely on
trusted end host functionality to improve network security and per-
formance. For instance, [19, 23] move middlebox, filtering, and
monitoring functionality to end hosts, while [8, 46, 28] rely on end
hosts to perform packet classification. NetQuery provides a standard
interface for describing these local guarantees, enabling applications
in other administrative domains to rely upon their presence.

Several extensions to IP have been proposed to provide guaran-
tees about the sender of each packet. Accountable IP (AIP) [2],
[9], and packet passports [38] provide accountability for network
packets. These systems use optimizations whose safety rely on
global network configuration invariants spanning multiple ASes.
They can use NetQuery to verify these trust assumptions. Assayer
attaches trustworthy sender information to packets as unforgeable
annotations, obviating the need to reconstruct this information at
middleboxes [45]. NetQuery and Assayer make similar use of the
TPM.

NetReview [29] enforces fault detection for BGP behavior using
a tamper-evident log. Since NetQuery supports analysis over router
RIBs, it can check similar BGP policies as NetReview. NetReview
relies on an AS’s neighbors to achieve tamper-evidence and trust-
worthy detection on publicly-disclosable information. In contrast,
NetQuery can bootstrap trust from TPMs where available, and it can
also use sanitizers to perform trustworthy analysis on confidential
network information.

Keller et al. [36] applies trustworthy computing techniques to a
new operating model where service providers build wide area ser-
vices using virtual router slices leased from infrastructure providers.

NetQuery uses similar techniques, but targets the existing operating
model and uses a logical framework for analysis.

Network Confessional [5] provides verifiable performance mea-
surements at the granularity of network paths and peering points.
Such approaches are complementary to a knowledge plane; fac-
toids extracted through Network Confessional can be extracted and
disseminated through NetQuery.

9. CONCLUSIONS
This paper makes the case for leveraging trustworthy computing

abstractions in building knowledge planes that are well-suited for
heterogeneous, federated networks. We described NetQuery, a fed-
erated, lightweight, and scalable knowledge plane that uses these
abstractions to assure the soundness of knowledge plane reasoning
in such networks. Through granular access control, accountabil-
ity, and sanitization, NetQuery supports the confidentiality policies
and trust relationships found in real networks. It provides a logical
analysis framework that enables applications to combine local infor-
mation about network entities into global guarantees. Experiments
show that NetQuery performs well on real routers and can support
the volume of network events found in large enterprise and ISP
networks. Overall, NetQuery’s extensible data model and flexible
logic supports a diverse range of applications and can help ISPs
differentiate their services. We believe that NetQuery’s design prin-
ciples and abstractions address significant obstacles to building a
practical federated knowledge plane and enable novel applications
based on global network reasoning.
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