
17th ACM Symposium on Operating System Principles (SOSP’99)
Published as Operating Systems Review 34(5):202–216, Dec. 1999

202

Design and implementation of a distributed virtual
machine for networked computers

Emin Gün Sirer, Robert Grimm, Arthur J. Gregory, Brian N. Bershad

University of Washington
Department of Computer Science and Engineering

{egs, rgrimm, artjg, bershad}@cs.washington.edu

Abstract
This paper describes the motivation, architecture and
performance of a distributed virtual machine (DVM) for
networked computers. DVMs rely on a distributed service
architecture to meet the manageability, security and
uniformity requirements of large, heterogeneous clusters of
networked computers. In a DVM, system services, such as
verification, security enforcement, compilation and
optimization, are factored out of clients and located on
powerful network servers. This partitioning of system
functionality reduces resource requirements on network
clients, improves site security through physical isolation
and increases the manageability of a large and
heterogeneous network without sacrificing performance.
Our DVM implements the Java virtual machine, runs on
x86 and DEC Alpha processors and supports existing Java-
enabled clients.

1. Introduction
Virtual machines (VMs) have the potential to play an
important role in tomorrow’s networked computing
environments. Current trends indicate that future networks
will likely be characterized by mobile code [Thorn 97],
large numbers of networked hosts per domain [ISC 99] and
large numbers of devices per user that span different
hardware architectures and operating systems [Hennessy
99, Weiser 93]. A new class of virtual machines,
exemplified by systems such as Java and Inferno [Lindholm
& Yellin 96, Dorward et al. 97], has recently emerged to
meet the needs of such an environment. These modern
virtual machines are compelling because they provide a

platform-independent binary format, a strong type-safety
guarantee that facilitates the safe execution of untrusted
code and an extensive set of programming interfaces that
subsume those of a general-purpose operating system. The
ability to dynamically load and safely execute untrusted
code has already made the Java virtual machine a
ubiquitous component in extensible systems ranging from
web browsers and servers to database engines and office
applications. The platform independence of modern virtual
machines makes it feasible to run the same applications on
a wide range of computing devices, including embedded
systems, handheld organizers, conventional desktop
platforms and high-end enterprise servers. In addition, a
single execution platform offers the potential for unified
management services, thereby enabling a small staff of
system administrators to effectively administer thousands or
even hundreds of thousands of devices.

While modern virtual machines offer a promising
future, the present is somewhat grim. For example, the Java
virtual machine, despite its commercial success and
ubiquity, exhibits major shortcomings. First, even though
the Java virtual machine was explicitly designed for
handheld devices and embedded systems, it has not been
widely adopted in this domain due to its excessive
processing and memory requirements [Webb 99]. Second, it
is the exception, rather than the rule, to find a secure and
reliable Java virtual machine [Dean et al. 97]. And third,
rather than simplifying system administration, modern
virtual machines, like Java, have created a substantial
management problem [McGraw & Felten 96], leading many
organizations to simply ban virtual machines altogether
[CERT 96].

We assert that these symptoms are the result of a much
larger problem that is inherent in the design of modern
virtual machines. Specifically, state of the art modern
virtual machines rely on the monolithic architecture of their
ancestors [Goldberg 73, Popek & Goldberg 74, IBMVM
86, UCI 96]. All service components in a monolithic VM,
such as verification, security management, compilation and
optimization, reside locally on the host intended to run the

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage, and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP-17 12/1999 Kiawah Island, SC
© 1999 ACM 1-58113-140-2/99/0012…$5.00

203

VM applications. Such a monolithic service architecture
exhibits four shortcomings:

1. Manageability: Since each modern virtual machine
is a completely independent entity, there is no
central point of control in an organization.
Transparent and comprehensive methods for
distributing security upgrades, capturing audit trails
and pruning a network of rogue applications are
difficult to implement.

2. Performance: Modern virtual machine services,
such as authentication, just-in-time compilation and
verification, have substantial processing and
memory requirements. Consequently, monolithic
systems are not suitable for hosts, such as
embedded devices, which lack the resources to
support a complete virtual machine.

3. Security: The trusted computing base (TCB) of
modern VMs is not small, well-defined, or
physically isolated from application code. A large
TCB with ill-defined boundaries makes it difficult
to construct and certify secure systems [Saltzer &
Shroeder 75]. The lack of separation between
virtual machine components means that a flaw in
any component of the virtual machine can place the
entire machine at risk [McGraw & Felten 99].
Further, co-location of VM services has resulted in
non-modular systems that can exhibit complex
inter-component interactions, as observed for
monolithic operating systems [Accetta et al. 86,
Bershad et al. 95, Engler et al. 95].

4. Scalability: Monolithic virtual machines are
difficult to port across the diverse architectures and
platforms found in a typical network [Seltzer 98].
In addition, they have had problems scaling over
the different usage requirements encountered in
organizations [Rayside et al. 98].

The goal of our research is to develop a virtual machine
system that addresses the manageability, performance,
security and scalability requirements of networked
computing. In addition, such a system should preserve
compatibility with the wide base of existing monolithic
virtual machines in order to facilitate deployment. To this
end, we focus on implementation techniques that preserve
the external interfaces [Lindholm & Yellin 96] and platform
APIs [Gosling & Yellin 96] of existing virtual machines.

We address the problems of monolithic virtual
machines with a novel distributed virtual machine
architecture based on service factoring and distribution. A
distributed service architecture factors virtual machine
services into logical components, moves these services out
of clients and distributes them throughout the network. We
have designed and implemented a distributed virtual
machine for Java based on this architecture. Our DVM

includes a Java runtime, a verifier, an optimizer, a
performance monitoring service and a security manager. It
differs from existing systems in that these services are
factored into well-defined components and centralized
where necessary.

The rest of the paper is structured as follows. The next
section describes our architecture and provides an overview
of our system. Section 3 describes the implementation of
conventional virtual machine services under our
architecture. Section 4 presents an evaluation of the
architecture and Section 5 shows how a new optimization
service can be accommodated under this architecture.
Section 6 discusses related work; Section 7 concludes.

2. Architecture overview
The principal insight behind our work is that centralized
services simplify service management by reducing the
number and geographic distribution of the interfaces that
must be accessed in order to manage the services. As
illustrated by the widespread deployment of firewalls in the
last decade [Mogul 89, Cheswick & Bellowin 94], it is far
easier to manage a single, well-placed host in the network
than to manage every client. Analogously, we break
monolithic virtual machines up into their logical service
components and factor these components out of clients into
network servers.

The service architecture for a virtual machine
determines where, when and how services are performed.
The location (i.e. where), the invocation time (i.e. when),
and the implementation (i.e. how) of services are
constrained by the manageability, integrity and performance
requirements of the overall system, and intrinsically involve
engineering tradeoffs. Monolithic virtual machines
represent a particular design point where all services are
located on the clients and most service functionality,
including on the fly compilation and security checking, is
performed during the run-time of applications. While this
paper shows the advantages of locating services within the
network, changing the location of services without regard
for their implementation can significantly decrease
performance as well. For instance, a simple approach to
service distribution, where services are decomposed along
existing interfaces and moved, intact, to remote hosts, is
likely to be prohibitively expensive due to the cost of
remote communication over potentially slow links and the
frequency of inter-component interactions in monolithic
virtual machines. We describe an alternative design where
service functionality is factored out of clients by
partitioning services into static and dynamic components
and present an implementation strategy that achieves
performance comparable to monolithic virtual machines.

In our distributed virtual machine, services reside on
centralized servers and perform most of their functionality
statically, before the application is executed. Static service

204

components, such as a verifier, compiler, auditor, profiler,
and optimizer, examine the instruction segment of
applications prior to execution to ensure that the application
exhibits the desired service properties. For example, a
verifier may check the code for type-safety, a security
service may examine the statically determinable arguments
to system calls, and an optimizer may check code structure
for good performance along a particular path.

The dynamic service components provide service
functionality during the execution of applications. They
complement static service components by providing the
services that inherently need to be executed at application
run-time in the context of a specific client. For example, a
security service may check user-supplied arguments to
system calls, a profiler may collect run time statistics, and
an auditing service may generate audit events based on the
execution of the application.

The glue that ties the static and dynamic service
components together is binary rewriting. When static
service components encounter data-dependent operations
that cannot be performed statically, they insert calls to the
corresponding dynamic service components. For example,
our static verification service checks applications for
conformance against the Java VM specification. Where
static checking cannot completely ascertain the safety of the
program, the static verifier modifies the application so that
it performs the requisite checks during its execution. The

resulting application is consequently self-verifying because
the checks embedded by the static service component are an
integral part of the application code.

Figure 1 illustrates our distributed virtual machine
architecture. Static service components produce self-
servicing applications, which require minimal functionality
on the clients. Dynamic service components provide service
functionality to clients during run-time as necessary. The
static services in our architecture are arranged in a virtual
pipeline that operates on application code, as shown in
Figure 2.

A distributed service architecture allows the bulk of VM
service functionality to be placed where it is most
convenient. A natural service placement strategy is to
structure the static service components as a transparent
network proxy, running on a physically secure host. Placed
at a network trust boundary, like a firewall, such a proxy
can transparently perform code transformations on all code
that is introduced into an organization. In some
environments, the integrity of the transformed applications
cannot be guaranteed between the server and the clients, or
users may introduce code into the network that has not been
processed by the static services. In such environments,
digital signatures attached by the static service components
can ensure that the checks are inseparable from applications
[Rivest et al. 78, Rivest 92], and clients can be instructed to
redirect incorrectly signed or unsigned code to the

Internet

Static Service Components

Perimeter Services

Management Svcs

Execution Svcs

Runtime

Clients

Runtime

Runtime

Client
Manager Cache

Verifier

Security
Enforcement

Auditer Profiler

Compiler

Optimizer

Dynamic Service
Components

Security
Server

Network
Management

Server

Library
Manager

Administration
Console

Figure 1. The organization of static and dynamic service components in a distributed virtual machine.

Code Verifier Security Compiler Optimizer Profiler Cache
Cache
Check

check
type
safety

check
static
rules

annotate
for
dynamic
checks

translate
to native
format

transform
code for
performance

collect data
on program
behavior

Runtime

check
signatures

execute
program

Figure 2. The flow of code through a pipeline of static service components in a distributed virtual machine. The ordering of
services in this pipeline may be modified to suit organizational or functional requirements. Further, the client runtime may
communicate with the static service components for client-specific services.

205

centralized services [Spyglass 98].

A DVM introduces a modest amount of new
functionality into the existing trusted computing base of an
organization. A DVM client needs to trust that the static
and dynamic service components it relies on for safety,
including the proxy and binary rewriter, are implemented
correctly. In addition, any service authentication scheme
used in the clients, which may include a digital signature
checker and a key manager, form part of the trusted
computing base under our design. However, we believe the
actual impact of these additions to the TCB to be small.
Monolithic clients already trust all of the service
components that form a traditional VM and often already
have provisions for cryptographic protocols and digital
signature checking to support their target applications
[Gong 99]. Overall, a modest increase in the TCB enables
DVM clients to migrate the trusted components to
physically secure, professionally managed and administered
hosts, which is critical to addressing the operational
problems that have plagued monolithic VMs.

Our service architecture is unique in several
fundamental ways. First, the centralized services are
mandatory for all clients in an organization. For example,
security checks injected into incoming code are inseparable
from applications at the time of their execution and are thus
binding throughout the network. Second, there is a single
logical point of control for all virtual machines within an
organization. In the case of the security service, policies are
specified and controlled from a single location;
consequently, policy changes do not require the cooperation
of unprivileged users. And third, using binary rewriting as a
service implementation mechanism preserves compatibility
with existing monolithic virtual machines. A monolithic
virtual machine may subject the rewritten code to redundant
checks or services, but it can take advantage of the added
functionality without any modifications.

While a distributed service architecture addresses the
problems faced by monolithic virtual machines, it may also
pose new challenges. Centralization can lead to a bottleneck
in performance or result in a single point of failure within
the network. These problems can be addressed by
replicated or recoverable server implementations. The next
section shows how the separation between static and
dynamic service components can be used to delegate state-
requiring functionality to clients. Section 4 shows that this
implementation strategy does not pose a bottleneck for
medium sized networks even in the worst possible case and
can easily be replicated to accommodate large numbers of
hosts.

3. Services
We have implemented the architecture described in the
previous section to support a network of Java virtual
machines (JVMs). In this section, we describe the

implementation of conventional virtual machine services
under our architecture and show that the distributed
implementation of these services addresses the
shortcomings of monolithic VMs outlined in the first
section. Our services are derived from the Java VM
specification, which broadly defines a type-safe, object-
based execution environment. Typical implementations
consist of a verifier, which checks object code for type-
safety, an interpreter and a set of runtime libraries. In some
implementations, the interpreter is augmented with a just-
in-time compiler to improve performance. The following
sections describe the design and implementation of the
services we have built to supplant those found in traditional
Java virtual machines.

All of our services rely on a common proxy
infrastructure that houses the static service components.
The proxy transparently intercepts code requests from
clients, parses JVM bytecodes and generates the
instrumented program in the appropriate binary format. An
internal filtering API allows the logically separate services
described in this section to be composed on the proxy host.
Parsing and code generation are performed only once for all
static services, while structuring the services as independent
code-transformation filters enables them to be stacked
according to site-specific requirements [Heidemann &
Popek 94, O’Malley & Peterson 92]. The proxy uses a
cache to avoid rewriting code shared between clients and
generates an audit trail for the remote administration
console. The code for the dynamic service components
resides on the central proxy and is distributed to clients on
demand.

While the implementation details of our virtual machine
services differ significantly, there are three common themes
among all of them:

• Location: Factoring VM services out of clients and
locating them on servers improves manageability by
reducing replicated state, aids integrity by isolating
services from potentially malicious code and simplifies
service development and deployment.

• Service Structure: Partitioning services into static and
dynamic components can enhance performance by
amortizing the costly parts of a service across all hosts
in the local network.

• Implementation Technique: Binary rewriting is used to
implement services transparently. Binary rewriting
services can be designed to incur a relatively small
performance overhead while retaining backward-
compatibility with existing clients.

3.1 Verification
A comprehensive set of safety constraints allows a virtual
machine to integrate potentially malicious code into a
privileged base system [Stata & Abadi 98, Freund &

206

Mitchell 98]. Indeed, Java’s appeal for network computing
stems principally from its strong safety guarantees, which
are enforced by the Java verifier.

The task of verifying Java bytecode has been a
challenge for monolithic virtual machines. First, since the
Java specification is not formal in its description of the
safety axioms, there are differences between verifier
implementations. Verifiers from different vendors differ on
underspecified issues such as constraints on the uses of
uninitialized objects, subroutine calls, and cross-validation
of redundant data in class files. Second, monolithic
implementations tie the verifier to the rest of the VM,
thereby prohibiting users from using stronger verifiers
where necessary. Furthermore, monolithic verifiers make it
difficult to propagate security patches to all deployed
clients in a timely manner. As a case in point, 15% of all
accesses to our web site originate from out-of-date browsers
with well-known security holes for which many patches
have been issued. Finally, the memory and processing
requirements of verification render monolithic VMs
unsuitable for resource limited clients, such as smart cards
and embedded hosts [Cohen 97]. Some monolithic virtual
machines for embedded and resource-limited systems have
abandoned verification altogether for a restricted extension
model based on trust [HP 99].

We address these shortcomings by decoupling
verification from the rest of the VM, migrating its
functionality out of clients into a network verification
service and centralizing the administration of this service.
Moving verification out of clients poses some challenges,
however, because parts of the verification process require
access to client namespaces and have traditionally required
close coupling with the client JVM. Specifically, Java
verification consists of four separate phases. The first three
operate on a single class file in isolation, respectively
making sure that the class file is internally consistent, that

the code in the class file respects instruction integrity and
that the code is type-safe. The fourth phase checks the
interfaces that a class imports against the exported type
signatures in its namespace, making sure that the
assumptions that the class makes about other classes hold
during linking.

In our implementation, the first three phases of
verification are performed statically in a network server,
while the link-time checks are performed by a small
dynamic component on the client. This partitioning of
functionality eliminates unnecessary communication and
simplifies service implementation. During the processing of
the first three phases, the verification service collects all of
the assumptions that a class makes about its environment
and computes the scope of these assumptions. For example,
fundamental assumptions, such as inheritance relationships,
affect the validity of the entire class, whereas a field
reference affects only the instructions that rely on the
reference. Having determined these assumptions and their
scope, the verification service modifies the code to perform
the corresponding checks at runtime by invoking a simple
service component (Figure 3). Since most safety axioms
have been checked by this time, the functionality in the
dynamic component is limited to a descriptor lookup and
string comparison. This lazy scheme for deferring link
phase checks ensures that the classes that make up an
application are not fetched from a remote, potentially slow,
server unless they are required for execution.

The distributed verification service propagates any
errors to the client by forwarding a replacement class that
raises a verification exception during its initialization.
Hence, verification errors are reflected to clients through
the regular Java exception mechanisms. Since the Java VM
specification intentionally leaves the time and manner of
verification undefined except to say that the checks should
be performed before any affected code is executed, our

class Hello {
 static boolean __mainChecked = false; // Inserted by the verifier
 public static void main() {
 if(__mainChecked == false) { // Begin automatically generated code
 RTVerifier.CheckField(“java.lang.System”,“out”,

“java.io.OutputStream”);
 RTVerifier.CheckMethod(“java.io.OutputStream”,“println”,

“(Ljava/lang/String)V”);
 __mainChecked = true;
 } // End automatically generated code
 System.out.println(“hello world”);
 }
}

Figure 3. The hello world example after it has been processed by our distributed verification service. The vast majority of safety axioms
are checked statically. Remaining checks are deferred to execution time, as shown in italics. The first check ensures that the System
class exports a field named “out” of type OutputStream, and the second check verifies that the class OutputStream
implements a method, “println,” to print a string. The rewriting occurs at the bytecode level, though the example shows equivalent
Java source code for clarity.

207

approach conforms to the specification.

While this approach to verification does not make the
central task of verification any easier, it addresses the
operational problems that have plagued monolithic clients.
First, it allows a network of VMs to share the same verifier,
thereby ensuring that code accepted for execution within
that administrative domain is at least as strong as the
constraints imposed by the central verifier. Transparent
binary rewriting ensures that even existing monolithic VMs
benefit from the assurance provided by the central verifier,
though they will subject the code to redundant local
verification. Second, an isolated verification service with
clear interfaces is easier to check for correctness using
automatic testing techniques [Sirer & Bershad 99]. Third,
distributed virtual machine clients can be made smaller and
cheaper because they do not have to support a verifier.
Finally, in response to security flaws, only one software
component needs to be updated per administrative domain,
in contrast to having to patch every single network client,
which often requires the assistance of users.

3.2 Security
The overall aim of any security service is to enforce a
specific security policy across hosts within an
administrative domain. Such a service should meet the
following three goals to be comprehensive, easy to manage
and versatile. First, it should uniformly enforce an
organization’s security policy across all nodes. Second, it
should provide a single point of control for specifying
organization-wide policies. And, third, it should allow an
administrator to impose checks in any code deemed
important for security.

Our architecture satisfies these goals by factoring most
functionality that is critical for security out of the individual
nodes into a centralized network security service. The
security service forces applications to comply with an
organization’s security policy by inserting appropriate
access checks through binary rewriting. The secured
applications then execute on the individual hosts where a
small enforcement manager [Grimm & Bershad 99]

performs the inserted access checks in accordance with the
centralized policy (Figure 4).

Our security model derives from DTOS [Minear 95,
Olawsky et al. 96, SCC 97], where security identifiers,
representing protection domains, are associated with
threads and security-critical objects. Permissions represent
the right to perform an operation and are associated with
object methods. An organization-wide policy specification,
written in a high-level, domain-specific language based on
XML [Bray et al. 98], specifies an access matrix [Lampson
71] that relates security identifiers to permissions,
determining who can perform which operation. The policy
also specifies the mapping between named resources and
security identifiers, which determines the restrictions on
named resources such as files, and the mapping between
security operations and application code, which determines
where to insert access checks into applications. The security
service parses this policy and accordingly rewrites
incoming applications, inserting calls to the enforcement
manager at method and constructor boundaries so that
resource accesses are preceded by the appropriate access
checks. During execution of the rewritten application, the
enforcement manager executes the inserted access checks,
querying the security service based on the security
identifiers and permissions it maintains. As a result, the
security service performs the bulk of the functionality for
policy processing and access mediation, reducing client-
side checking to simple and efficient lookups. The client
caches the results of security lookups for performance, and
a cache-invalidation protocol between the security server
and the enforcement manager enables the server to
propagate changes in the access control matrix to clients.
Policy changes that require new code paths to be
instrumented, which we assume to be infrequent, require
that applications be restarted using the remote
administration service.

Our design addresses the two fundamental shortcomings
of the security services in monolithic JVMs [Wallach et al.
97, Gong 97, Gong et al. 97]. First, in these systems the
security policy is specified and enforced separately on each
individual node. Consequently, a site administrator must
maintain the security state for each node individually, which
takes an effort proportional to the number of nodes.
Second, the capability and stack-introspection schemes
used in monolithic JVMs tie the security policy to the
implementation of the system and therefore necessitate
assistance from the original system developers to work.
Essentially, the developers must anticipate the security
requirements of the system and embed the requisite security
checks (or hooks for such checks) at the appropriate places
in the system libraries. In the case of Java, the developers of
popular JVMs have anticipated and provided security
checks on file, network and system property accesses.
However, audio devices and window creation events have

Security
Policy

Runtime

Application Security
Service

Self-
Securing

Application
Enforcement

Manager

Figure 4. The structure of the security service. A master security
policy determines how applications are rewritten. An enforcement
manager, residing on the clients, resolves access control checks
against the central policy.

Client

208

not been adequately protected, giving rise to denial-of-
service attacks [McGraw & Felten 99]. In general, access
control mechanisms that depend on a-priori anticipation and
manual instrumentation are likely to be less flexible and
less secure than systems that provide a clear separation
between security policy and implementation, and allow the
policy to be specified after deployment by users [Levin et
al. 75, Erlingsson & Schneider 99].

3.3 Remote monitoring
System administration is particularly challenging for large
networks of heterogeneous systems. Tasks such as resource
accounting and usage pattern analysis, while easy to
perform on time-shared systems of the past, are increasingly
difficult to carry out in today’s distributed systems. Our
remote monitoring service allows administrators to track
network-wide resource usage. Patterned after the security
service, the remote monitoring service transforms
applications to invoke auditing services at the appropriate
places, such as on entry to and exit from method and
constructor calls. As each application comes up, it contacts
the remote monitoring console and a handshake protocol
establishes the credentials of the user and assigns an
identifier to the session. This connection is then used to
send information to a central administration host that
monitors client hardware configurations, users, JVM
instances, code versions and noteworthy client events. Since
the audit logs are stored on an external host that is not
exposed to untrusted applications, a security breach may
stop the creation of new audit events but cannot tamper
with existing audit logs.

In addition to method-level remote monitoring services,
we provide an instruction-level profiling and tracing service
for monitoring application performance. The profiler
instruments code to generate a dynamic call-graph [Graham
et al. 82] from applications running across the network, as
well as statistics on client code usage. We have used these
services extensively both to debug our system and for
optimizations. In particular, we have used the tracing
service to obtain traces of synchronization behavior for
Java applications and utilized this data in designing a
transparent optimization service [Aldrich et al. 99].

3.4 Compilation
Compilation in monolithic virtual machines is typically
accomplished by a just-in-time (JIT) compiler that
translates bytecodes into native format as necessary. Since
compilation is performed at the clients on demand, there are
considerable time and resource pressures. Subsequently,
JIT compilers typically do not perform aggressive
optimizations [Proebsting et al. 97]. While newer
compilation techniques explicitly address the time tradeoff
between compilation, interpretation and execution by
concentrating on the hot spots of a program [Sun 99], the

fundamental difficulties posed by time constraints and lack
of processing power on embedded hosts remain.

We are in the process of implementing a centralized
network compiler that eliminates the burden of compilation
from clients. As described in the previous section, the
clients already perform a handshake with the remote
administration service, in which they describe their native
format. A compiler within the network can thus perform the
translation for that platform ahead of time and thus amortize
its startup costs over larger amounts of code. Resource
investments in the compiler then benefit all clients in an
organization.

3.5 Summary
The preceding discussion described the implementation of
conventional virtual machine services in our architecture
and illustrated the benefits of locating VM services at
carefully chosen locations within the network.
Centralization aids management and administration,
provides a uniform interface to heterogeneous clients, and
increases the integrity of the services by locating them on
physically secure hosts. Partitioning conventional VM
services into static and dynamic components makes it
possible to perform much of the service functionality at a
fixed cost when first loading an application.

4. Evaluation
Comparable performance to existing monolithic virtual
machines is critical for a new system architecture to be
adopted. This section shows that the performance of DVMs
is as good as, and in some cases better than, monolithic
virtual machines. More specifically, we evaluate the
performance and scalability of our system. We show that
end-to-end application performance within a distributed
architecture is comparable to state of the art monolithic
virtual machines. We also measure the throughput of
distributed services under load and show that factored
services do not present bottlenecks for networks of
hundreds of clients.

Our performance comparisons were done using
identical software and hardware platforms, but under
different service architectures, to eliminate any biases
introduced by client interpreters or compilers. In particular,
we compare the running times of applications that have
been transformed by our services to the run times of the
original applications on Sun JDK 1.2, which is an industrial
strength monolithic virtual machine. For our DVM
performance measurements, we use the Sun JDK as a client
but disable monolithic services such as security checking
and rely on the injected code to provide the necessary
service functionality. While we have also developed our
own DVM client, which includes an interpreter, runtime,
and garbage collector, all of our measurements are

209

performed on the Sun JDK platform in order to provide a
fair comparison.

All of the measurements in this section, including both
client and server timings, were collected on 200 MHz
PentiumPro systems running Windows NT4.0 SP3 with 64
MB of main memory, 256KB of cache, a Bus Logic SCSI
driver, Seagate ST32151N disk drives, connected by a
10Mb/sec Ethernet through a 3C905 network interface. All
numbers are the average of five runs, preceded by three
throwaway runs to warm up any caches. The backbone
connection to the Internet for our site is through two 100
Mb/sec links. At the time of the experiments, the peak
consumed bandwidth on the links was less than 50 Mb/sec.
We assume that the client-server network hop is physically
secure and that security attacks are not initiated from within
the organization, as is a common assumption with intranets
or virtual private networks [Scott et al. 98]. Consequently,
clients do not perform a digital signature check for each
transferred class, but instead rely on the source host address
for authentication.

4.1 Application performance
In this section, we compare distributed virtual machines to
their monolithic counterparts and show that the runtime
costs of distributed service components are comparable to
monolithic services that offer the same functionality.
Virtual machine services in our current implementation
perform bytecode-to-bytecode transformations at the Java
machine language level. Since the service-specific code
snippets embedded into the applications must be type-safe
and since the snippets are not integrated closely into the
client JVM runtime, they may incur a higher performance
overhead than their monolithic counterparts. In addition, the
overhead of parsing, transforming and generating a
modified binary at a network server can add extra latency to
DVM operations. We first show that on end-to-end
application benchmarks, the extra latency incurred by a
DVM is small, even when servers have no more resources
than clients. Second, we examine the overhead of the
dynamic components for each service and show that DVMs
can effectively partition work out of clients and reduce their
computational requirements. Finally, we look at the
overhead of the static service components and show that
centralized services have only a modest impact on typical
Internet fetch times.

Figure 5 shows the Java applications that we used for
our end-to-end benchmarks. These applications were
chosen because they are in common use, embody significant
functionality, and range in complexity and size.

We first examine the end-to-end performance of these
benchmarks under monolithic and distributed service
architectures. The clients are arranged in a typical network
setting, where a client pool is connected to a server, running
Netscape Enterprise 2.01, through an HTTP proxy over

Ethernet. For DVMs, the proxy performs verification,
security enforcement, and auditing. For monolithic virtual
machines, the proxy acts as a null-proxy and the equivalent
services are performed in the clients. For this experiment,
we use a security policy and an audit specification that
forces the DVM services to parse every class and examine
every instruction in the applications. Figure 6 shows the
running times of benchmark applications on monolithic
VMs and DVMs. The first bar shows the execution time
when all virtual machine services are performed by
monolithic components embedded in the client. The second
bar shows the execution time for an uncached execution of
a benchmark under our distributed service infrastructure.
Since DVMs require an extra step for parsing,
instrumenting and generating a modified binary,
applications will take longer to run on their first invocation.
As expected, the overall execution time for DVMs is
slightly slower, at 11% of total running time on average,
than monolithic virtual machines. This difference is due
largely to the overhead of parsing the application code in
the proxy. The last bar shows the effects of proxy caching
on the performance of distributed virtual machines.
Following the first execution of an application by a host
within the network, subsequent invocations run faster under

Name Size Classes Description

JLex 91K 20 Lexical analyzer
generator

Javacup 130K 35 LALR parser
compiler

Pizza 825K 241 Bytecode to native
compiler

Instantdb 312K 70 Relational database
with a TPC-A like
workload

Cassowary 85K 34 Constraint satisfier

Figure 5. Description of benchmark applications.

0

20

40

60

80

100

120

jlex pizza cassow ary

E
xe

cu
ti

o
n

 T
im

e
(s

)

Monolithic

DVM

DVM cached

Figure 6. Application performance under monolithic and
distributed virtual machines.

 instantdb javacup cassowary pizza jlex

210

DVMs than monolithic virtual machines, because DVMs
amortize the cost of performing services across all hosts in
the organization and across multiple invocations by the
same host.

4.1.1 Overhead of runtime checks
This section examines the amount of time clients spend
executing system services and shows that the dynamic
service components in DVMs are at least as fast as their
monolithic counterparts. We first evaluate the dynamic
component of the verification service. Figure 7 shows the
time spent on verifying applications in monolithic and
DVM clients by plotting the difference in total running time
between unverified and verified applications. The DVM
clients spend significantly less time on verification
compared to monolithic VM clients. The self-verifying
applications incur less client verification overhead because,
as shown in Figure 8, the vast majority of verification
checks have been performed statically. Hence, even though
Sun’s monolithic verifier is written in C and is tightly
coupled with the rest of the virtual machine, self-verifying
DVM applications run faster. In addition, since our verifier
implementation resides on the network server, applying
patches in response to security flaws takes a constant (and
small) amount of effort under our architecture, whereas
monolithic virtual machines often require time that is linear

in the number of clients.

Next, we examine the security service and show that
DVMs enable network-wide enforcement of security
constraints without slowing down the common case of
security checking. We use a set of security
microbenchmarks to compare the stack introspection-based
access control scheme [Gong & Schemers 98] implemented
in Sun JDK1.2 to our own security service described
earlier. Figure 9 summarizes the performance of our
security microbenchmarks under the two different service
architectures. The benchmarks perform the system resource
accesses described in the first column under a policy that
permits the access. The baseline shows the latency of the
unchecked (insecure) Java operation, which ranges from a
few microseconds to a few milliseconds. The columns
labeled “check” show the expired wall clock time for
checked operations, where the credentials of the thread
performing the operation are checked against the security
policy. The columns labeled “overhead” present the
difference between the baseline and the checked operation,
and show the amount of time spent in the security service.
The first security check in our service, shown separately in
the “download” column, incurs the cost of downloading a
portion of the global security policy from a server.
Although this has high overhead, it occurs infrequently and
accounts for a small fraction of the total running time of
most applications. The performance of subsequent checks,
however, is generally comparable to the Sun JDK. While
our security service is slow when checking thread
operations due to an object identifier lookup, for
GetProperty and OpenFile benchmarks, our security service

Description Baseline
(no check)

JDK
(check)

JDK
(overhead)

DVM
(download)

DVM
(check)

DVM
(overhead)

Get Property 0.0020 0.0488 0.0468 5.830 0.0092 0.0072

Open File 1.406 8.631 7.224 6.406 1.430 0.0238

Change Thread Priority 0.0638 0.0645 0.0007 5.026 0.0815 0.0177

Read File 0.0141 N/A N/A 4.146 0.0368 0.0227

Figure 9. Performance of security services on monolithic and distributed virtual machines. Times are in milliseconds. Distributed virtual
machines enable security enforcement at locations, such as file read, not foreseen by system designers. The common case of security
checking has comparable overhead to monolithic virtual machines.

Benchmark Static Checks Dynamic Checks

Jlex 291679 371

Javacup 415825 806

Pizza 289495 541

Instantdb 1066944 3426

Cassowary 1965538 2346

Figure 8. Breakdown of static and dynamic checks performed by
the verifier. The vast majority of checks occur at the network
server, prior to execution, thereby improving client performance.

Figure 7. Client-side overhead for verification. Distributed virtual
machines effectively decrease the load on the clients by factoring
service functionality onto network servers.

0

1

2

3

jlex pizza cassow ary

C
lie

n
t

V
er

if
ic

at
io

n
 T

im
e

(s
ec

) Monolithic

DVM

 instantdb javacup cassowary pizza jlex

211

outperforms the Sun JDK implementation by a factor of 7
and 300, respectively.

Qualitatively, our security service is more versatile than
the monolithic service in the Sun JDK because it can
impose security checks at any point in the system libraries,
whereas the Sun JDK implementation can only impose
checks at predetermined locations in the code.
Consequently, it cannot adequately protect file read
operations, as these operations do not contain security
checks. A malicious application that acquires a file handle
to an open file through a leaky interface can thus avoid
security checks, which are imposed only on object creation.

4.1.2 Overhead of the proxy
Finally, we examine the overhead of binary rewriting on
class transfer latency and show that the overhead of the
static service components is small compared to typical
wide-area transfer latencies. To measure the overhead
associated with downloading Java applets through our
service infrastructure, we collected a list of all indexed Java
applets from the AltaVista search engine and randomly
selected a subset of 100 applets. The average latency of
downloading an applet from the Internet is 2198 ms, with a
large standard deviation of 3752 ms. When the applet is not
cached, our proxy adds about 265 ms of processing time to
parse and instrument it, which amounts to a 12% overhead
over the average load latency. This overhead can be
masked, if necessary, by using a non-strict execution model
in the clients [Krintz et al. 98]. Accesses to classes that
have been fetched by another DVM client are served from
an on-disk cache on the proxy and take only 338 ms to
download on average.

4.2 Scaling
While DVMs offer increased manageability and integrity by
factoring services out of clients, the centralized network
servers could potentially form bottlenecks. We examine the
scaling characteristics of the static service components for
large numbers of clients (Figure 10) under the worst
possible scenario and show that a central proxy server does
not form a bottleneck for networks of hundreds of active
virtual machines. In this experiment, up to 250 clients
simultaneously fetch different applets from the Internet
through our proxy, with proxy caching disabled. The graph
shows the total sustained proxy throughput as a function of
the number of clients. Since the static service components
can defer parts of service functionality to run time, they do
not inherently need to synchronize with clients or require
exclusive access to shared state. Consequently, the
throughput scales linearly for up to 250 simultaneous
clients and degrades thereafter as all 64MB of server
memory are used up. The average client fetch latency per
kilobyte is roughly constant, between 1.0 and 1.2 sec/kB,
throughout the range of 50-250 clients where there are
statistically significant samples. Based on these numbers,

we conclude that the proxy does not pose a bottleneck for
networks of hundreds of clients. Note that this experiment
represents a worst-case scenario for a DVM, as caching was
disabled in the proxy in order to not predicate the good
performance of the system on the cacheability of classes
and locality of accesses. In larger installations, an
administrator can rely on the fact that average loads will be
a fraction of the worst case load, enable caching, add more
memory to the proxy, or use replicated proxies.

4.3 Summary
Our DVM system achieves end-to-end performance that is
comparable to state of the art monolithic virtual machines.
Service partitioning between static and dynamic
components factors substantial work out of clients and
avoids expensive network communication. Further, service-
specific code injection enables the run-time functionality to
be tailored to application needs. For example, an earlier
implementation of our verifier relied on reflection
primitives built into the JVM and was too slow. We
subsequently developed a reflection service that adds self-
describing attributes to classes and modified our verifier to
use this interface rather than the slow library interface in the
Sun JDK. While anecdotal, this example demonstrates that
binary rewriting services can effectively be used to
compensate for limitations in client performance and
functionality. Overall, binary rewriting is a general and
flexible technique for implementing services in a distributed
virtual machine.

5. Optimizations for mobile code and low
bandwidth links
The preceding section discussed existing virtual machine
services and compared them to their monolithic
counterparts. In this section, we show how our architecture
provides a platform for performing optimizations, such as

Proxy Throughput vs. Number of Clients

0

50000

100000

150000

200000

0 50 100 150 200 250
Number of Clients

T
o

ta
l T

h
ro

u
g

h
p

u
t

(b
yt

e/
s)

Figure 10. Sustained throughput of our VM services versus
number of clients.

212

client-specific code modifications, that are not supported by
monolithic virtual machines. Specifically, we examine a
scenario where some clients, such as handheld computers or
wireless PDAs, are connected to a common network via low
bandwidth wireless links. While these clients may present
the same external VM interfaces as a desktop computer,
they need to utilize the available network bandwidth
effectively in order to decrease time spent loading
applications from the network.

State of the art Java virtual machines, even though
originally targeted at embedded systems, pay little attention
to optimizing network transfers or to developing binary
distribution formats that maximize effective network
bandwidth. Java offers two separate modes of transport, one
in which the whole application is shipped as a single unit,
and another where entire object implementations are
fetched at first reference to any method or field of the
object. Even in the latter case, where lazy object loading
filters out unused object definitions, roughly 10-30% of all
downloaded code is never invoked [Sirer et al. 99].

Fundamentally, the problem is that the units of code
distribution in Java are not suitable for efficient bandwidth
utilization. The granularity at which code is transferred
corresponds either to source-derived logical abstractions,
such as classes, or artifacts of the compilation and linking
process, such as Java archive (JAR) files. These coarse
units of code transfer fail to capture the dynamic execution
path for an application. A client must request the complete
class implementation even when it requires only a single
method from the class during the entire execution. As a
result, the clients incur runtime costs, which include delays
in program startup and execution from transfer of unused
code, increased memory consumption from storing unused
components and interference with other threads of
execution which share or serialize on common resources
during the transfer.

To help solve these problems, we have developed a
practical service based on DVMs for restructuring mobile
Java applications. We leverage the pipeline described in
section 2 to introduce a separate optimization step that
takes place on a network server. Here, application code is
split up into smaller transfer units, based on a profile, to use
the available network bandwidth more effectively for
downloading programs. This repartitioning service uses
binary rewriting to restructure application components at
method granularity such that frequently used and related
methods are grouped together, while less frequently used
methods are factored out into separate units. This
repartitioning is performed on the fly within the network.
The network proxy collects profile information from the
first execution of an application and uses the profile to
generate a first-use graph of the methods in the application.
This graph is then used to partition unused methods into
separate classes that are loaded only on demand. Neither

the JVM clients nor the web servers that provide the
application code need to be modified to support this
service. The DVM architecture provides a convenient
location in the network for performing transparent code
modifications and enables client-specific optimizations
without leaking information about client properties outside
their administrative domain.

Figure 11 plots the startup times of a set of graphical
Java applets and applications as a function of bandwidth
and shows that effective use of bandwidth is crucial for
application performance when the clients are connected
over slow (less than 1Mb/sec) links. We define startup time
as the time from initial invocation to the time when the
application can start processing user requests and examine
it because it contributes to unmaskable user delays. Figure
12 shows the performance impact of our optimization
service. The optimization service achieves speedups of up
to 28% in application performance over 28.8 Kb/sec links
via code repartitioning within the network.

The performance gains possible with code
repartitioning show the utility of service platforms located
within the network. While this particular service reduces
code transfer time and decreases memory requirements on

Figure 11. Application start-up time as a function of network
bandwidth.

1

10

100

1000

0 200 400 600 800 1000

Bandwidth (KBytes/sec)

S
ta

rt
u

p
 t

im
e

(s
ec

)

Java Work Shop
Java Studio
Hot Java
Net Charts
CQ
Animated UI

0%

5%

10%

15%

20%

25%

30%

35%

0 200 400 600 800 1000

Bandwidth (KBytes/sec)

P
er

ce
n

t
Im

p
ro

ve
m

en
t

Java Work Shop

Java Studio

Hot Java

Net Charts

CQ

Animated UI

Figure 12. Percent improvement in application start-up time with
client-specific optimization services.

213

clients, it also exemplifies a class of client-specific
optimizations that can be performed transparently within
the network under a distributed virtual machine
architecture.

6. Related work
While virtual machines have evolved considerably since
their introduction, their monolithic architecture has
remained unchanged. An important early virtual machine
was the IBM VM system [IBMVM 86], which made its
commercial debut in 1972. The IBM VM system enabled
organizations to run both the MVS and CMS operating
systems on the same physical machine by virtualizing
machine resources. The monolithic service architecture of
this system meant that all VM services were executed on
the same host [Deitel 89]. This structure has influenced
many of the virtual machine implementations that followed.

In the early 1970’s, virtual machines were adopted by
the language community as a substrate for code distribution.
These systems used virtual machines both to retain the
portability of applications in an increasingly heterogeneous
environment and to provide high-level abstractions for
which compilers could generate code more easily. P-Code
[UCI 96] is one such intermediate language that was widely
used as part of the UCSD Pascal system. It offered cross-
platform portability by targeting a pseudo-machine for
compilation and relying on a runtime interpreter. The P-
System concentrated all virtual machine functionality on its
clients.

Recent virtual machines such as Java and Inferno build
on this legacy to provide safety, portability and uniformity
in a network computing setting. They rely on a growing set
of complex services [Gosling & Yellin 96, Myers & Liskov
97, Wallach et al. 97], located and executed on the clients.
This trend exacerbates the problems associated with
monolithic virtual machines outlined in this paper.

The playground approach described in [Malkhi et al.
98] as well as the CAGE system from Digitivity take an
alternative approach to factoring services out of clients.
These systems replace all virtual machines in an
organization with a single virtual machine that is physically
isolated behind a firewall. All applications execute on this
centralized virtual machine and communicate with clients
only for user-interface operations. While this approach has
the property that clients are not exposed to untrusted code,
it prevents the secure sharing of client resources, including
files and peripherals. Consequently, while it may be
applicable to stateless applets on the web, it does not
support applications that require selective access to local
resources found on clients.

Service centralization has also been effective in the
World Wide Web. Notably, Fox et al. define an architecture
for transformation, aggregation, caching and customization
(TACC) of non-executable Internet content [Fox et al. 97].

TACC services are centralized in a cluster-based proxy and
web pages are specialized according to the needs of clients.
DVMs also perform transformation, caching and
customization services, but operate on executable code
instead of static content. Furthermore, static service
transformations in a DVM are driven not only by the needs
of clients but also by the needs of the overall organization.

Several projects have explored the use of binary
rewriting for Java. JOIE [Cohen et al. 98] provides a
general framework for modifying Java classes during load-
time. Similarly, BIT [Lee & Zorn 97] is an event-based
binary instrumentation tool that operates on Java class files.
These tools are comparable to the binary rewriting engine
on which our services are based. JRes [Czajkowski & von
Eicken 98] uses binary rewriting to provide resource
accounting for memory, CPU time and network resources in
Java. Naccio [Evans & Twyman 99] uses binary rewriting
to impose security and resource usage policies on
applications. These systems work at the level of individual
JVMs and lack a centralized infrastructure as discussed in
this paper. The rewriting services they offer are
complementary to, and would be accommodated by, the
distributed service architecture described here.

An alternative for enforcing security constraints on
networks of JVMs is to give up on the Java security
interfaces altogether and to instead rely on the security
features, such as file-system permissions, provided by the
underlying operating system. This approach is undesirable
for three separate reasons. First, there may not be an
operating system beneath the virtual machine, as there is no
requirement that a VM be layered on a more powerful
substrate. Second, there may be many different types and
versions of operating systems underneath virtual machines,
making the administration of a uniform security policy
difficult in a heterogeneous network [Hitz et al. 98].
Finally, access controls provided by general-purpose
operating systems can not distinguish between multiple
applications executing within the same VM, because these
abstractions are only visible within the JVM. Overall,
security enforcement needs to be performed at the JVM
level in order to be universally applicable, present a
uniform interface and provide fine-grain security controls.

7. Conclusions
We have designed and implemented a new system
architecture for network computing based on distributed
virtual machines. Our system factors virtual machine
services out of clients and locates them in organization-
wide network servers. The services operate by intercepting
application code and modifying it on the fly to provide
service functionality. This paper shows that distributed
virtual machines can reduce client resource requirements,
simplify management and isolate security-critical services
from untrusted and potentially malicious code. Our

214

particular service implementation strategy is based on
factoring VM services out of clients, partitioning them into
static and dynamic components, and implementing them
through binary rewriting. This approach supports diverse
VM services with comparable performance to monolithic
virtual machines.

Acknowledgements
We would like to thank Nathan R. Anderson, Sean
McDirmid and Bibek Pandey for their assistance with parts
of our DVM implementation and performance evaluation.
We would also like to thank our shepherd, Fred Schneider,
for his guidance and detailed suggestions, as well as the
anonymous reviewers for their helpful comments.

References
[Accetta et al. 86] M. J. Accetta, R. V. Baron, W. Bolosky,

D. B. Golub, R. F. Rashid, A. Tevanian, and M. W.
Young. Mach: A New Kernel Foundation for Unix
Development. In Proceedings of the USENIX Summer
Conference, pages 93–112, Atlanta, Georgia, June
1986.

[Aldrich et al. 99] J. Aldrich, C. Chambers, E. G. Sirer and
S. Eggers. Optimizing Unnecessary Synchronization
Operations from Java Programs. In Static Analyses
Symposium, pages 19–38, Venice, Italy, September
1999.

[Bershad et al. 95] B. N. Bershad, S. Savage, P. Pardyak, E.
G. Sirer, M. E. Fiuczynski, D. Becker, C. Chambers,
and S. Eggers. Extensibility, Safety and Performance in
the SPIN Operating System. In Proceedings of the
Fifteenth ACM Symposium on Operating System
Principles, pages 267–284, Copper Mountain Resort,
Colorado, December 1995.

[Bray et al. 98] T. Bray, J. Paoli, and C. M. Sperberg-
McQueen, editors. Extensible Markup Language
(XML) 1.0. W3C Recommendation, World Wide Web
Consortium, February 1998.

[CERT 96] CERT Coordination Center. Weaknesses in
Java Bytecode Verifier. September 1999.
http://www.cert.org/advisories/
CA-96.07.java_bytecode_verifier.html.

[Cheswick & Bellowin 94] W. R. Cheswick and S.
Bellovin. Firewalls and Internet Security: Repelling
the Wily Hacker. Addison-Wesley, June 1994.

[Cohen 97] R. M. Cohen. The Defensive Java Virtual
Machine Specification. Computational Logic Inc., May
1997. http://www.cli.com/software/djvm/.

[Cohen et al. 98] G. A. Cohen, J. S. Chase, and D. L.
Kaminsky. Automatic Program Transformation with
JOIE. In Proceedings of the USENIX 1998 Annual
Technical Conference, pages 167–178, New Orleans,
Louisiana, 1998.

[Czajkowski & von Eicken 98] G. Czajkowski and T. von
Eicken. JRes: A Resource Accounting Interface for
Java. In Proceedings of the OOPSLA’98 Conference
on Object-Oriented Programming, Systems,
Languages, and Applications, pages 21–35,
Vancouver, Canada, October 1998.

[Dean et al. 97] D. Dean, E. W. Felten, D. S. Wallach, and
D. Belfanz. Java Security: Web Browers and Beyond.
In D. E. Denning and P. J. Denning, editors, Internet
Beseiged: Countering Cyberspace Scofflaws, pages
241–269. ACM Press, October 1997.

[Deitel 89] H. M. Deitel. An Introduction to Operating
Systems. Addison-Wesley, August 1989.

[Dorward et al. 97] S. Dorward, R. Pike, D. L. Presotto, D.
Ritchie, H. Trickey, and P. Winterbottom. The Inferno
Operating System. Bell Labs Technical Journal,
2(1):5–18, Winter 1997.

[Engler et al. 95] D. R. Engler, M. F. Kaashoek, and J.
O'Toole. Exokernel: An Operating System Architecture
for Application-Level Resource Management. In
Proceedings of the Fifteenth ACM Symposium on
Operating System Principles, pages 251–266, Copper
Mountain Resort, Colorado, December 1995.

[Erlingsson & Schneider 99] U. Erlingsson and F. B.
Schneider. SASI Enforcement of Security Policies: A
Retrospective. Cornell Technical Report TR99-1758.
Ithaca, New York, 1999.

[Evans & Twyman 99] D. Evans and A. Twyman. Flexible
Policy-Directed Code Safety. In Proceedings of the
1999 IEEE Symposium on Security and Privacy, pages
32–45, Oakland, California, May 1999.

[Fox et al. 97] A. Fox, S. D. Gribble, Y. Chawathe, E. A.
Brewer, and P. Gauthier. Cluster-Based Scalable
Network Services. In Proceedings of the Sixteenth
ACM Symposium on Operating Systems Principles,
pages 78–91, Saint-Malo, France, October 1997.

[Freund & Mitchell 98] S. N. Freund and J. C. Mitchell. A
Type System for Object Initialization in the Java
Bytecode Language. In Proceedings of the Conference
on Object-Oriented Programming, Systems,
Languages, and Applications, pages 310–327,
Vancouver, Canada, October 1998.

[Goldberg 73] R. P. Goldberg. Architectural Principles for
Virtual Computer Systems. Ph.D. thesis, Harvard
University, 1973.

[Gong 97] L. Gong. Java Security: Present and Near Future.
IEEE Micro, 17(3):14–19,May/June 1997.

[Gong 99] L. Gong. Inside Java 2 Platform Security—
Architecture, API Design, and Implementation.
Addison-Wesley, 1999.

[Gong et al. 97] L. Gong, M. Mueller, L. Prafullchandra,
and R. Schemers. Going Beyond the Sandbox: An

215

Overview of the New Security Architecture in the Java
Development Kit 1.2. In Proceedings of the USENIX
Symposium on Internet Technologies and Systems,
pages 103–112, Monterey, California, December 1997.

[Gong & Schemers 98] L. Gong and R. Schemers.
Implementing Protection Domains in the Java
Development Kit 1.2. In Proceedings of the Internet
Society Symposium on Network and Distributed System
Security, pages 125–134, San Diego, California, March
1998.

[Gosling & Yellin 96] J. Gosling and F. Yellin. The Java
Application Programming Interface, Volumes 1 & 2.
Addison-Wesley, 1996.

[Graham et al. 82] S. L. Graham, P. B. Kessler, and M. K.
McKusick. gprof: A Call Graph Execution Profiler. In
Proceedings of the SIGPLAN ’82 Symposium on
Compiler Construction, SIGPLAN Notices, 17(6):120–
126, June 1982.

[Grimm & Bershad 99] R. Grimm and B. N. Bershad.
Providing Policy-Neutral and Transparent Access
Control in Extensible Systems. In J. Vitek and C. D.
Jensen, editors, Secure Internet Programming—
Security Issues for Mobile and Distributed Objects,
volume 1603 of Lecture Notes in Computer Science,
pages 317–338, Springer, 1999.

[Heidemann & Popek 94] J. S. Heidemann and G. J. Popek.
File-System Development with Stackable Layers. ACM
Transactions on Computer Systems, 12(1):58–89,
February 1994.

[Hennessy 99] J. Hennessy. The Future of Systems
Research. In IEEE Computer, pages 27–33, August
1999.

[HP 99] Hewlett-Packard Company. Chai Products.
http://www.hp.com/emso/products/.

[Hitz et al. 98] D. Hitz, B. Allison, A. Borr, R. Hawley, and
M. Muhlestein. Merging NT and Unix Filesystem
Permissions. In Proceedings of the Second Usenix
Windows NT Symposium, pages 87–95, Seattle,
Washington, August 1998.

[IBMVM 86] IBM Corporation. Virtual Machine/System
Product Application Development Guide, Release 5.
Endicott, New York, 1986.

[ISC 99] Internet Software Consortium. Internet Host
Domain Survey. July 1999, http://www.isc.org/.

[Krintz et al. 98] C. Krintz, B. Calder, H. P. Lee and B. G.
Zorn. Overlapping Execution with Transfer Using
Non-Strict Execution for Mobile Programs. In the
Eighth International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 159–169, San Jose, California, October
1998.

[Lampson 71] B. Lampson. Protection. In Proceedings of
the Fifth Princeton Symposium on Information
Sciences and Systems, pages 437-443, Princeton, Ney
Jersey, March 1971. Reprinted in Operating Systems
Review, 8(1):18–24, January 1974.

[Lee & Zorn 97] H. Lee and B. Zorn. BIT: A Tool for
Instrumenting Java Bytecodes. In Proceedings of the
USENIX Symposium on Internet Technologies and
Systems, pages 73–82, Monterey, California, December
1997.

[Levin et al. 75] R. Levin, E. Cohen, W. Corwin, F.
Pollack, and W. Wulf. Policy/Mechanism Separation in
Hydra. In Proceedings of the Fifth ACM Symposium on
Operating Systems Principles, pages 132–140, Austin,
Texas, October 1975.

[Lindholm & Yellin 96] T. Lindholm and F. Yellin. The
Java Virtual Machine Specification. Addison-Wesley,
September 1996.

[Malkhi et al. 98] D. Malkhi, M. K. Reiter, and A. D.
Rubin. Secure Execution of Java Applets using a
Remote Playground. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 40–51,
Oakland, California, May 1998.

[McGraw & Felten 96] G. McGraw and E. W. Felten. Java
Security: Hostile Applets, Holes and Antidotes. Wiley
Computer Publishing, John Wiley & Sons, December
1996.

[McGraw & Felten 99] G. McGraw and E. W. Felten.
Securing Java: Getting Down to Business With Mobile
Code. Wiley Computer Publishing, John Wiley &
Sons, February 1999.

[Minear 95] S. E. Minear. Providing Policy Control Over
Object Operations in a Mach Based System. In
Proceedings of the Fifth USENIX UNIX Security
Symposium, pages 141–156, Salt Lake City, Utah, June
1995.

[Mogul 89] J. C. Mogul. Simple and Flexible Datagram
Access Controls for Unix-based Gateways. In
Proceedings of the Summer 1989 USENIX Conference,
pages 203–221, Baltimore, Maryland, June 1989.

[Myers & Liskov 97] A. C. Myers and B. Liskov. A
Decentralized Model for Information Flow Control. In
Proceedings of the Sixteenth ACM Symposium on
Operating System Principles, pages 129–142, Saint-
Malo, France, October 1997.

[Olawsky et al. 96] D. Olawsky, T. Fine, E. Schneider, and
R. Spencer. Developing and Using a “Policy Neutral”
Access Control Policy. In Proceedings of the New
Security Paradigms Workshop, September 1996.

[O’Malley & Peterson 92] S. W. O'Malley and L. L.
Peterson. A Dynamic Network Architecture. ACM

216

Transactions on Computer Systems, 10(2):110–143,
May 1992.

[Popek & Goldberg 74] G. J. Popek and R. P. Goldberg.
Formal Requirements for Virtualizable Third
Generation Architectures. In Communications of the
ACM, 17(7):412–421, July 1974.

[Proebsting et al. 97] T. A. Proebsting, G. Townsend, P.
Bridges, J. H. Hartman, T. Newsham, and S. A.
Watterson. Toba: Java for Applications, A Way Ahead
of Time (WAT) Compiler. In Proceedings of the Third
Conference on Object-Oriented Technologies and
Systems, pages 41–53, Berkeley, California, June 1997.

[Rayside et al. 98] D. Rayside, S. Kerr and K.
Kontogiannis. Change And Adaptive Maintenance in
Java Software Systems. In Fifth Working Conference
on Reverse Engineering, pages 10–19, Honolulu,
Hawaii, October 1998.

[Rivest et al. 78] R. L. Rivest, A. Shamir, and L. Adleman.
A Method for Obtaining Digital Signatures and Public-
Key Cryptosystems. Communications of the ACM,
21(2):120–126, February 1978.

[Rivest 92] R. Rivest. The MD5 Message-Digest
Algorithm. RFC 1321, Internet Engineering Task
Force, April 1992.

[Saltzer & Shroeder 75] J. H. Saltzer and M. D. Schroeder.
The Protection of Information in Computer Systems.
Proceedings of the IEEE, 63(9):1278–1308, September
1975.

[SCC 97] Secure Computing Corporation. DTOS Lessons
Learned Report. Technical Report DTOS CDRL A008,
Secure Computing Corporation, Roseville, Minnesota,
June 1997.

[Scott et al. 98] C. Scott, P. Wolfe and M. Erwin. Virtual
Private Networks. O'Reilly, December 1998.

[Seltzer 98] L. Seltzer. Java Environments. PC Magazine,
pages 137–141, April 7, 1998.

[Sirer et al. 99] E. G. Sirer, A. J. Gregory and B. N.
Bershad. A Practical Approach for Improving Startup

Latency in Java Applications. In Workshop on
Compiler Support for Systems Software, INRIA
Technical Report #0228, pages 47–55, Grenoble,
France, May 1999.

[Sirer & Bershad 99] E. G. Sirer and B. N. Bershad. Using
Production Grammars in Software Testing. In Second
Conference on Domain Specific Languages, pages 1–
13, Austin, Texas, October 1999.

[Spyglass 98] Spyglass, Inc.Software Development
Interface. Naperville, IL, September 1999.
http://www.spyglass.com/products/smosaic/sdi/sdi_spec.html

[Stata & Abadi 98] R. Stata and M. Abadi. A Type System
for Java Bytecode Subroutines. In Proceedings of the
25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 149–
160, San Diego, California, January 1998.

[Sun 99] Sun Microsystems. The Java HotSpot
Performance Engine Architecture. White paper, Sun
Microsystems, Palo Alto, California, September 1999.
http://java.sun.com/products/hotspot/whitepaper.html.

[Thorn 97] T. Thorn. Programming Languages for Mobile
Code. ACM Computing Surveys, pages 213–239,
29(3), September 1997.

[UCI 96] University of California, Irvine. p-System:
Description, Background, Utilities.
http://www.ics.uci.edu/~archive/documentation/p-system/p-
system.html.

[Wallach et al. 97] D. S. Wallach, D. Balfanz, D. Dean, and
E. W. Felten. Extensible Security Architectures for
Java. In Proceedings of the Sixteenth ACM Symposium
on Operating System Principles, pages 116–128, Saint-
Malo, France, October 1997.

[Webb 99] W. Webb. Embedded Java: An Uncertain
Future. Electrical Design News, 44(10):89–96, May
1999.

[Weiser 93] M. Weiser. Some Computer Science Problems
in Ubiquitous Computing. In Communications of the
ACM, pages 74–84, July 1993.

