
S e l f - M a n a g i n g S y s t e m s

Self-Organizing Shape and Pattern:
From Cells to Robots
Radhika Nagpal, Harvard University

A starfish is an amazing creature. Like many multicellular
organisms, it begins life as a single-cell egg that divides and
develops through a complex program executed by identi-
cally programmed cells. Throughout its life, the starfish
functions as a whole, even though it’s essentially a colony of
cells that are constantly dying and being replaced. But even
more remarkable is its ability to self-repair. Most starfish can
grow back a severed limb, and some species can even grow
back a body from a limb.

If we wanted to create such a system, what would we tell
the cells to do? Many people are interested in this question
in different forms for different reasons. For example, it’s
important to embedded systems composed of many identi-
cal parts, such as reconfigurable robots built from identical
modules and network systems built from smart sensors
scattered in the environment.

Here I would like to address this question in the context
of self-organizing shapes and patterns. This work began as
part of the Massachusetts Institute of Technology’s Amor-
phous Computing project.1 This project has investigated
many systems—from cells to robots. We’ve come to under-
stand a great deal about how to engineer shape and even
self-repair, but many things still remain unknown.

Shape and pattern on an amorphous computer
We can think of an amorphous computer as a cellular

automata with two main differences:

• The cells or “agents” are not perfectly placed on a reg-
ular lattice; instead they’re randomly distributed and
communicate with other agents within a small local
radius.

• Although the agents have similar clock speeds, they
don’t operate synchronously.

The agents are identically programmed, can store state,
have no preexisting notion of position or orientation, and

Interdisciplinary Research:
Roles for Self-Organization

No generally accepted principles and guidelines currently exist to
help engineers design local interaction mechanisms that result in a
desired global behavior. However, several communities have devel-
oped ways of approaching this problem in the context of niched
application areas. Because the ideas underlying these approaches
are often obscured or underemphasized in technical papers, we
invited representatives of several communities to review the role of
self-organization in their work. These short articles round out this
special issue by drawing a better picture of the status of the emerg-
ing field of self-organizing systems.

Radhika Nagpal reviews the motivations, results, and possible
future of amorphous computing. This research intends to lay the
foundations of self-organization by developing principles and pro-
gramming languages. It has a wide range of potential applications
including microfabrication and cellular engineering. Nagpal uses
the adaptive, flexible coordination of mobile robots to illustrate this
approach. The feature article by Jacob Beal and Jonathan Bachrach
(pp. 10–19) describes a practical way to implement the abstract
ideas she presents in real systems.

Franco Zambonelli offers thought-provoking ideas on what he calls
the ecological approach to self-management. In this approach, a system
is controlled by a small proportion of integral components rather than
logically separate managers. Zambonelli also proposes considering
humans as information system components—a view that the feature
article by Sergi Valverde and his colleagues (pp. 36–40) supports as well.

Emin Gün Sirer describes important insights into a key problem:
how to design local interactions to achieve good or optimal global
performance in a predictable, informed way under different con-
straints. He argues that designers can and should apply mathemati-
cal optimization in distributed systems as opposed to “rule of
thumb” heuristics. The feature article by David Hales and Stefano
Arteconi (pp. 29–35) also targets optimality as a central issue with
the system adapting its performance on the fly, and Tracy Mullen,
Viswanath Avasarala, and David L. Hall (pp. 41–49) explicitly per-
form optimization in real time.

Finally, Hakima Chaouchi and Mikhail Smirnov walk us through
the bold vision of the autonomic communication community. They
project a future networking infrastructure that is fully adaptive
and capable of learning and evolving, as opposed to the currently
deployed design based on strictly isolated protocol layers. This vision
isn’t about methods so much as a specific application area—network-
ing. All approaches and ideas in this issue are relevant to fulfilling it.

—Márk Jelasity, Ozalp Babaoglu, and Robert Laddaga

50 1094-7167/03/$17.00 © 2003 IEEE IEEE INTELLIGENT SYSTEMS50 1541-1672/06/$20.00 © 2006 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

have random-number generators. They can
also receive some simple initial state.

The Amorphous Computing project posed
a simple question: given a field of agents
and a global goal—say, a particular pattern
of lines—how do we derive local agent
rules that will produce it? A complementary
metal-oxide semiconductor (CMOS) is the
canonical case for testing answers to this
question because it has an asymmetrical
pattern and clear constraints, so it’s hard to
produce and failure is obvious.

The first answer came from work by
Daniel Coore on the Growing Point Lan-
guage (GPL).1 He showed that you could
describe inverter-like patterns as a con-
struction of lines that grew toward (or away
from) points and created new points. The
new points, in turn, then grew new lines,
and so on. Later, I showed how you could
use similar ideas to program a simulated
foldable sheet and to fold it into different
forms.2 The simulated sheet is composed
of embedded actuator agents, and the de-
sired shape is specified as a global pro-
gram using a program language based on
origami—specifically, the Origami Shape
Language. OSL is then compiled to gen-
erate the agent-level program. This work
showed that we could achieve a kind of
global-to-local compilation.

Attila Kondacs further showed how you
could start from a single agent and grow an
arbitrary shape—such as a caricature of the
starfish—by generating the agent program
directly from a picture of the shape.2 All
these systems achieved the basic tenets of
amorphous computing, such as robustness
to varying agent numbers and random
placement, agent death and addition, asyn-
chronous updates, and so on.

The systems yielded three major lessons.
First, it’s possible to create global-to-local
compilers for shape and pattern. The trick
is to find generative grammars that can
describe large classes of shapes using a
small rule set and then to develop a com-
piler that translates each grammar rule to
local agent rules.

Second, the type of global representa-
tion can dramatically affect the way the
pattern adapts to different conditions. For
example, consider the CMOS inverter pat-
tern generated by GPL and OSL. Given a
larger agent field, the GPL program fills
the space with repeating patterns, while
the OSL program “stretches” the pattern
(see figure 1). This surprisingly different

adaptation occurs because GPL generates
a pattern by sequentially laying down the
pieces, while OSL operates by segmenting
space. Other shape description languages
could encode other global adaptation con-
cepts, including self-repair.

Third, while all these systems were de-
veloped with different classes of shapes in
mind and different agent assumptions, they
all rely on a surprisingly small set of agent-
level primitives—most prominently, coin-
flipping to break local symmetry, small
amounts of agent state, and morphogen
gradients that propagate information across
an agent field.

Shape and pattern in robotics
Three examples from robotics can illus-

trate practical applications that concern
shape and pattern: mobile-robot formations,
modular robot self-reconfiguration, and
collective construction by robots. As in the
amorphous computing scenario, these ap-
plications prespecify an arbitrary shape to
be formed and require many of the same
robustness criteria. The lessons from amor-
phous computing should apply. However,
researchers solved most of these systems
using a very different principle: they pro-

grammed the agents to robustly self-orga-
nize a coordinate system.

Consider the problem of programming a
mobile-agent swarm to aggregate into a
particular formation (see figure 2). My col-
leagues and I recently showed a simple de-
centralized mechanism for this task.3 The
mechanism uses three group behaviors: gas
expansion (that is, local repulsion), local
trilateration, and filling a shape container.
Together, these behaviors cause agents to
develop a consensus global-coordinate sys-
tem, while spreading out evenly within the
desired formation. The system has some
interesting global properties. It automati-
cally adjusts to the number of agents by ad-
justing density, which also results in auto-
matic self-repair and error-correction if a
region of agents is removed or displaced.
While these formations are static, simple
flocking-like rules could allow the swarm
to move in formation and “flow” through
obstacles in its way.

Now consider a similar problem in re-
configuring a modular robot. We can model
a modular robot as a set of connected cubic
agents that move by sliding around one
another—much like tiles in the 15 Puzzle
but in three dimensions. Each agent can

MARCH/APRIL 2006 www.computer.org/intelligent 51

Figure 1. (a) A desired abstract pattern and its realizations on an amorphous computer
using the Growing Point Language and the Origami Shape Language. The two
languages react differently to changes in the initial conditions: (b) GPL creates space-
filling structure, while (c) OSL scales proportionally.

(a)

(b)

(c)

communicate with its physical neighbors
through their shared face. Given a desired
shape, the goal is to generate the agent pro-
gram such that the agents would move to
end up approximating the shape, starting
from any initial configuration and without
becoming disconnected.

One solution relies on a strategy similar to
self-organizing a coordinate system through
local interactions.4 Given an arbitrary agent
as a seed that knows its location, this agent
can “grow” locally to include neighboring
agents and give each neighbor a coordinate.
Neighboring agents then behave the same
way. If an agent can’t find a neighbor where
it needs to grow, it generates a recruiting
morphogen gradient. Wandering agents
move so as to climb this gradient until they
become part of the structure. Thus the shape
forms through a directed growth process,
where the local coordinate and the shape
map determine the growth direction. The
local rules are robust to asynchronous agent
timing and remain fundamentally the same
irrespective of starting and ending shape.

Collective construction is an analogous
problem. This case involves two agent
types —mobile robots and immobile
blocks—and two different constraint sets,
but the goal of creating a predetermined
shape remains the same. Again, a strategy
of self-organizing a coordinate system
works well.5

These examples show that we can imple-

ment user-specified global goals through
simple local control, and the resulting sys-
tems achieve a significant level of robust-
ness to features such as variation in number
of agents, lack of control over agent timing,
agent loss and addition, or message loss
and movement error. In each case, the con-
straints and agent capabilities differ, but the
overall strategy is the same.

Yet the strategies are strikingly different
from the amorphous computing examples.
Why is this so? One probable answer is
that it’s much easier in these engineered
systems to create and store arbitrary infor-
mation, making a coordinate system a fea-
sible generic solution. The downside is the
potential loss of the shape’s natural ability
to adapt, which is a compelling property in
the amorphously created patterns.

Shape and pattern in cells
While cells formed the inspiration for

the amorphous computing concepts, they
will also eventually constitute the substrate
on which the concepts are applied. Syn-
thetic biology is an effort to develop meth-
odologies for engineering cells by creating
genetic programs.6 Researchers have al-
ready demonstrated several simple circuits,
from toggle switches to a ring oscillator.
Still, individual cells are only so robust or
precise, and the excitement will finally
come from being able to program popula-
tions of cells.

Can we program a field of bacteria to
take on different patterns? The answer is
yes. Most recently, Ron Weiss and his lab
have demonstrated how to put some simple
and powerful primitives, such as gradients,
under engineered control.7 Amorphous
computing tells us that the distance from
simple bull’s eye patterns and polka dots to
the caricature CMOS is not that large. In
the future, we can imagine programming
living cells to create a complex tissue or
human-specified material.

Toward adaptive structures
All termite mounds looks similar, but

they aren’t the same. Branching structures,
such as capillaries in our body, are made of
similar multicellular tubes, but they form
different networks depending on environ-
mental cues. Amorphous computing has
shown how to control some cues, such as
scale, through the environment. In general,
however, how do we create—or even de-
scribe—shapes with some parts that are
predetermined while other parts adapt and
optimize for the environment?

For example, what if we want a modular
robot to form a stair whose height is un-
known or a table that is level with respect to
the ground or a snake that fits through a
hole. Can we program cells to form a sieve
(mesh) that fits inside a damaged artery?
We still haven’t tackled these kinds of shapes
in any systematic way. There’s still a lot to
learn from the starfish.

References

1. H. Abelson et al., “Amorphous Computing,”
Comm. ACM, vol. 43, no. 5, 2000, pp. 74–82.

2. R. Nagpal, A. Kondacs, and C. Chang, “Pro-
gramming Methodology for Biologically
Inspired Self-Assembling Systems,” Compu-
tational Synthesis: From Basic Building
Blocks to High-Level Functionality,” tech.
report SS-03-02, AAAI, Mar. 2003.

3. J. Cheng, W. Cheng, and R. Nagpal, “Robust
and Self-Repairing Formation Control for
Swarms of Mobile Agents,” Proc. 20th Nat’l
Conf. Artificial Intelligence (AAAI 05),
AAAI Press, 2005, pp. 59–64.

4. K. Støy and R. Nagpal, “Self-Reconfigura-
tion Using Directed Growth,” Proc. 7th Int’l
Symp. Distributed Autonomous Robotic Sys-
tems (DARS 05), Springer, 2005.

5. J. Werfel,Y. Bar-Yam, and R. Nagpal, “Build-
ing Patterned Structures with Robot Swarms,”
Proc. 19th Int’l Joint Conf. Artificial Intelli-
gence (IJCAI 05), 2005, pp. 1495–1502.

52 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Figure 2. (a) A mobile-agent swarm aggregates into a prespecified shape. (b) A shape
can recover from death and displacement.

➛

(a)

(b)

6. P. Silver and J. Way, “Cells by Design,” The
Scientist, vol. 18, no. 18, 2004, p. 30.

7. S. Basu et al, “A Synthetic Multicellular Sys-
tem for Programmed Pattern Formation,”
Nature, vol. 434, 28 Apr. 2005, pp. 1130–1134.

Radhika Nagpal is an assistant professor of com-
puter science at Harvard University. Her research
interest is in biologically inspired approaches to
multiagent and distributed systems. She received
her PhD in computer science from MIT. Contact
her at Harvard Univ., 33 Oxford St., Cambridge,
MA 02138; rad@eecs.harvard.edu.

Self-Management and the
Many Facets of “Nonself”
Franco Zambonelli,
Università di Modena e Reggio Emilia

The difficulties in dealing with increas-
ingly complex information systems that
operate in dynamic operational environ-
ments calls for self-management properties.
More generally, we could say that they call
for the integration of “self-*” features—
self-configuration, self-adaptation, self-
healing, and so on—in software and infor-
mation systems.

Nearly all self-* approaches consider
human beings as “nonself” in relation to
the system (see figure 1a). Indeed, all
approaches share the key goal of moving
humans out of the loop and having infor-
mation systems autonomously perform all
the costly and often very complex configu-
ration and maintenance activities that will
keep them working properly under all con-
ditions. Still, we can identify several per-
spectives on what to consider “self” and
what, besides humans, to consider “non-
self” in these systems.

Autonomic computing perspective
IBM’s autonomic computing initiative

exemplifies the applied industrial perspec-
tive on self-management, which tends to
view humans as the only nonself system
components.1 The basic idea is to replace
humans with digital surrogates that will
perform those monitoring, configuration,
and maintenance activities formerly per-
formed by humans.

At the level of either whole information
systems or individual components, the
autonomic computing perspective couples
software managers with the system. These
managers are in charge of monitoring
what’s happening and autonomously plan-
ning actions to reconfigure the system as

needed, in a continuous control loop (fig-
ure 1b). At the distributed systems level,
the perspective can also consider a set of
distributed managers, each associated to
different distributed elements. The man-
agers exchange information with each
other and orchestrate their actions to ensure
specific functional and nonfunctional prop-
erties in the overall distributed system
behavior (figure 1c).

Such an approach leads to a conceptu-
ally clean architecture for self-managing
systems, well grounded in lessons learned
from research in operating and distributed
systems. Coupling traditional monitoring
and resource management approaches with
AI planning and knowledge management
techniques as well as multiagent automated
negotiation techniques might lead to the near-
term release of seemingly self-managing
systems. However, an architecture based on
autonomous managers that are logically
separated from the components they con-
trol introduces several potential drawbacks.
In fact, accounting for all possible contin-
gencies and appropriate reactions to ensure
continuous functioning could result in a
heavyweight architecture or in slow, inap-
propriate reactions that undermine self-
management efficiency.

Self-organization perspective
To some extent, the limitations of the

autonomic computing perspective derive

mainly from inheriting the architecture of
traditional human-based management
approaches. Even if humans are no longer
in the loop, the autonomous managers of
figures 1b and 1c are essentially digital
nonselfs, alien to the information system.

In self-organization approaches to self-
management—exemplified by the research
articles in this issue of IEEE Intelligent
Systems—a self-managing system should
be intrinsically self-managing, not exter-
nally managed by “nonself” entities—
digital or otherwise. To this purpose, self-
organization approaches take inspiration
from natural adaptive systems and their
intrinsic capabilities to organize global
activities into highly adaptive functional
patterns. Systems such as bacterial colo-
nies, insect colonies, embryos, and organs
exhibit globally functional activity pat-
terns. These patterns emerge autonomously
from simple local activity rules and local
intercomponent interactions. The systems
are robust with regard to both internal con-
tingencies, such as components’ deaths,
and external contingencies, such as envi-
ronmental perturbations. This flexibly en-
sures the preservation of the global func-
tional pattern.

Because several of these natural phenom-
ena find a natural mapping to functional
problems in modern and distributed infor-
mation systems,2 they can enable the engi-
neering of robust self-managing information

MARCH/APRIL 2006 www.computer.org/intelligent 53

(a)

Information
system

Self Self

Nonself

(b) (c)

Information
system

(or element within)

Autonomous
manager

Figure 1. Moving humans out of the loop. (a) Humans as information system managers
are considered “nonself” from the self-management perspective. (b) The autonomic
computing perspective considers substituting those “nonself” human managers with
“self” surrogates in the form of digital autonomous managers. (c) Multiple distributed
autonomous managers can interact with each other to enforce distributed self-
management activities.

systems that integrate the functional and
management parts seamlessly into the same
components (see figure 2a).

Self-organization’s key advantage for
building self-managing systems is an over-
all simpler and lighter-weight system archi-
tecture than autonomic computing offers.
Also, because self-management properties
are intrinsic to the system, they don’t require
complex planning or knowledge manage-
ment activities to react properly to specific
or unforeseen contingencies.

However, despite the increasing number
of success stories, self-organization isn’t a
self-management panacea, and it has several
limitations. First, the rich catalog of natural
phenomena that could apply to modern infor-
mation systems doesn’t eradicate the “solu-
tions in search of a problem” approach to
engineering. This approach focuses on
reverse-engineering natural phenomena for
mapping into useful distributed applications,
but it’s still missing the general methodolo-
gies for direct-engineering a self-organizing
system that solves specific problems.

Second, most current self-organization
approaches can enforce a single or limited
set of self-managing functionalities—
specifically, those directly related to the
self-organizing functional pattern. How-
ever, these approaches fail in properly
accounting for the diverse functionalities
and possibly competing needs that occur in
complex real-world information systems.

Ecological perspective
Limitations of current self-organization

approaches suggest that most real-world
self-managing information systems would
still require external managers to achieve a
global view of the system and all its needs.

However, an alternative approach might com-
bine the autonomic and self-organization
perspectives to enforce effective manage-
ment and, at the same time, avoid introduc-
ing complex nonself external managers.
We could mitigate the “nonselfness” of
autonomous managers by making them first-
class citizens in self-organizing systems.

The basic idea is to inject additional
“manager” components in a self-organizing
system. These components would live inside
the system and interact with other compo-
nents as if they were native to the system
(figure 2b). They wouldn’t undermine the
basic self-organizing (and so self-managing)
nature of the system, but they would have
knowledge and abilities beyond those avail-
able to normal components. In this way,
these components could direct the system’s
evolution toward a specific configuration out
of the many toward which the self-organiz-
ing system alone might have evolved. Such
control capabilities can be useful in accom-
modating the system’s diverse competing
needs as a whole and in improving its effec-
tiveness in reacting to contingencies.

Our research group at the Universitá di
Modena e Reggio Emilia has conducted
preliminary experiments in this direction.
On the one hand, we’ve shown how to glob-
ally direct the dynamical evolution of cellu-
lar automata by simply modifying a very
small percentage of the cells.3 On the other
hand, in field-based coordinated systems,
we’ve shown how to escape from subopti-
mal configurations by having some com-
ponents that can reason about local field
shapes, rather than simply react to them.4

The Service D’Ecologie Sociale of the Uni-
versité Libre de Brussels is also performing
interesting experiments that show how a few

robotic ants in a real ant colony can affect
the whole colony’s behavior.5

Beyond the horizon, we imagine a sce-
nario in which our networks will be like
large ecosystems, hosting multiple “speci-
mens” of complex self-organizing systems,
coexisting over the same resources, and
interacting with each other in entirely new
ways. These systems will be decentralized,
without clearly identifiable stakeholders,
and will run continuously. The only way to
enforce control over them so that each indi-
vidual system’s self-management features
coexist properly with more global forms of
self-management will be to populate the
ecosystem with additional manager com-
ponents. This approach is already at work
in agriculture, where parasites are con-
tained by introducing natural predators. It
also occurs in marketing, where “opinion
leaders” are commonly recruited to pro-
mote specific products from within com-
munities. In any case, an ecological ap-
proach to managing complex information
systems still requires a lot of research and
suitable engineering tools.

An interesting consequence of the eco-
logical perspective is its potential to under-
mine the basic initial assumption of human
“nonselfness.” As information systems
become more pervasive and integrated with
both the physical and social worlds, the
information system ecology will necessar-
ily include humans as an integral compo-
nent. Human activities and behaviors will
directly affect the overall system behavior
and self-management properties. In other
words, humans will get back into the man-
agement loop as first-class “self” entities,
even though they might lack explicit man-
agement responsibilities.

54 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

(a) (b)

Figure 2. Self-organization versus ecological self-management approaches. (a) In self-organization, a uniform set of self-organizing
components interact locally with each other and act as both functional and management components. (b) In an ecological
approach, self-organizing components live and interact with each other and with additional “manager” components that might
somehow control and direct the overall system behavior.

As a simple example, consider students
accessing a campus Wi-Fi mesh with their
laptops. While the mesh self-organizes its
activities and redistributes connections to
provide everybody a suitable quality of ser-
vice, some students will likely try to opti-
mize their own positions on campus to get
better connectivity. To some extent, we
could say that these students and the system
implicitly cooperate for the network’s opti-
mal self-management. An analysis of the
implications of these aspects, though, would
require much more room than the few pages
of this article and much more interdiscipli-
nary competencies than I actually have.

Unconcluding remarks
The spectrum of possible self-management

perspectives makes it very hard to predict
what the future will be. If I had to, I would
bet on autonomic computing approaches to
prevail in the short term, gradual integra-
tion with self-organizing approaches in the
medium term, and subsumption by ecologi-
cal approaches in the long term. Whatever
the case, there’s plenty of room for exciting
research along the way.

References

1. J. Kephart and D.M. Chess, “The Vision of
Autonomic Computing,” Computer, vol. 36,
no. 1, 2003, pp. 41–50.

2. O. Babaoglu et al., “Design Patterns from Biol-
ogy for Distributed Computing,” Proc. Euro-
pean Conf. Complex Systems, 2005; www.
cs.unibo.it/babaoglu/papers/eccs05.pdf.

3. M. Mamei,A. Roli, and F. Zambonelli, “Emer-
gence and Control of Macro Spatial Structures
in Perturbed Cellular Automata, and Implica-
tions for Pervasive Computing Systems,” IEEE
Trans. Systems, Man, and Cybernetics—Part
A, vol. 36, no. 5, 2005, pp. 337–348.

4. M. Mamei and F. Zambonelli, Field-Based
Coordination for Pervasive Multiagent Sys-
tems, Springer, 2006.

5. G. Caprari et al., “Animal and Robot Mixed
Societies—Building Cooperation between
Microrobots and Cockroaches,” IEEE Robotics
& Automation, vol.12, no. 2, 2005, pp. 58–65.

Franco Zambonelli is a professor of computer
science at the Università di Modena e Reggio
Emilia. His research interests include pervasive
computing, self-organization, and multiagent
systems. He received his PhD in computer sci-
ence from the University of Bologna. He is a
member of the IEEE and the ACM. Contact him
at Via Allegri 13, 42100 Reggio Emilia, Italy;
franco.zambonelli@unimore.it.

Heuristics Considered Harmful:
Mathematical Optimization
for Resource Management
in Distributed Systems
Emin Gün Sirer, Cornell University

At the core of many distributed systems
lies a difficult resource management prob-
lem: partitioning a critical resource—such
as bandwidth, storage, or computational
elements—among competing tasks. Such
trade-offs are encountered in content distrib-
ution networks (CDNs), Grid resource man-
agement,1 distributed cache management,
data distributions in large-scale storage sys-
tems, high-performance publish-subscribe
systems, as well as many other infrastruc-
ture services where performance is a func-
tion of resources and resources are limited.

Distributed systems designers often resort
to ad hoc heuristics to address allocation
problems. A particularly common technique
is to use locally managed, independent
resource managers that follow simple strate-
gies at each node with no coordination. For
instance, a CDN might use an independent
least-recently-used cache manager in each
node. These heuristics are typically validated
using limited traces collected from the field.
While some heuristics might fit some traces
well, heuristic techniques are neither robust
to fluctuations in load characteristics nor do
they enable the system designer to reason
definitively about a system’s emergent prop-
erties after deployment.

Heuristics perform surprisingly well on a
given trace. After all, they’re effectively a
way of fitting a function to a workload, and
there’s no reason—besides the designer’s
internal motivation to keep the system sim-
ple—why the fit can’t incorporate the entire
workload and thus be perfect. The question
to ask of heuristics-based approaches, then,
is not how well they perform but for how
broad a set of workloads they perform well.
This characterization is often difficult to for-
malize: heuristics might work, but there’s
often no telling when they will stop working.

Mathematical optimization offers a more
principled approach to resource manage-
ment in distributed systems. The term opti-
mization is commonly used in computer
science to refer to incremental program
transformations designed to improve per-
formance, but mathematical optimization is
a process for finding the true optimal point
in a given function, subject to optional con-

straints. It offers a general approach to
resolving resource allocation problems in
distributed systems. The pillars of this
approach are analytical modeling to cap-
ture the core trade-off, analytical and
numerical techniques for determining the
optimal solution, and limited runtime
aggregation for estimating parameters in
the solution. This technique is quite gen-
eral, and my group at Cornell University
has applied it to diverse problems including
the design of high-performance, scalable
infrastructure services such as CDNs, pub-
lish-subscribe systems, and large-scale
name systems.

A principled approach
Our approach to finding the optimal

resource allocation for competing tasks
consists of four steps.

Capture the trade-off. The first step analyt-
ically captures the relationship between the
amount of resources awarded and the result-
ing performance achieved. This process re-
quires an articulation of the performance
metrics of interest and a formulation of the
metrics as a function of the resources. We
call this the performance equation.

Express the constraints. The second step
captures the constraints on critical resources.
Typically, two kinds of constraints exist:
resource constraints and performance tar-
gets. Resource constraints arise naturally
whenever a finite resource is being parti-
tioned. For example, the sum of all band-
widths allocated to competing clients in a
CDN can’t exceed line speed. Resource con-
straints force the system to achieve the best
possible performance while remaining with-
in an upper bound on resource consumption.

In contrast, performance targets pose a
lower bound on the performance equation
that the system must achieve. For instance, a
publish-subscribe system might want to
ensure that the average time to propagate
new information to subscribers is below a
particular threshold. Such performance tar-
gets force the system to achieve the desired
performance level while minimizing
resource consumption.

Solve the system. Having expressed the
performance equation and the constraints,
we can now solve the system. We can solve
a system with performance equation f and
constraint equation g by introducing the

MARCH/APRIL 2006 www.computer.org/intelligent 55

Lagrange multiplier �, and solving for �f
= ��g. Often, this solution will require dif-
ferentiation with respect to independent
resource allocations xi. The system will typi-
cally be analytically tractable if the system
of equations is independent in xi. Analytical
solutions are desirable because they lead to
formulas that an implementation can evalu-
ate efficiently.

In cases where analytical solutions aren’t
tractable, you can use numerical techniques
to solve for � and x*i, the optimal resource
allotment for each competing task.

Implement the solution. Translating the opti-
mal solution into a concrete implementation
is often nontrivial. The solutions, whether
analytical or numerical, require you to deter-
mine parameter values for the system of
equations. For instance, optimal bandwidth
allocation for object replication in a CDN
will typically require a relative ranking of
objects by popularity. Determining this order
is difficult; done naively, it requires global
information. At this stage, various domain-
specific design considerations might be used
to reduce the amount of communication and
to replace global computations with limited,
local data aggregation over existing chan-
nels. For instance, the structure provided by
a distributed hash table can simplify the task
of propagating such aggregate information
on the relative popularity of objects.

Applications
My group recently applied this approach

to the construction of three infrastructure
services.

CoDoNS is a high-performance, failure-
resilient, and scalable name service for the
Internet. It serves as both a short-term
safety net and a long-term replacement for
the legacy Domain Name System.2,3 Math-
ematical optimization enables CoDoNS to
provide strong optimality guarantees. Speci-
fically, the system can achieve O(1) lookups
on top of an O(log N) peer-to-peer overlay.
The result is surprising because heavy-tailed
distributions, which occur frequently in dis-
tributed systems such as DNS,4 the Web,5

and RSS,6 were long thought to pose diffi-
cult performance problems, since typical
heuristics perform poorly on such inputs.7

Formally expressing the trade-offs as a
mathematical optimization problem enabled
us to build a system that can achieve very
low lookup latencies and respond to sudden
changes in object popularity, as in the so-

called “slashdot effect.”
CobWeb is an open-access CDN that can

deliver Web pages quickly and efficiently.
CobWeb operates as a ring of cooperative
proxy servers, each of which can serve any
HTTP request. When a client requests Web
objects, CobWeb fetches them from their
origin servers and inserts them into the ring
of cooperating proxies. Through an analy-
sis of Web object popularity, size, and
update rate, CobWeb then computes an
optimal replication strategy for each object
to provide low lookup latency while mini-
mizing overhead. This system is similar to
Akamai’s CDN but uses no heuristics and
provides a strong performance guarantee.

Corona is a publish-subscribe system for
quick dissemination of Web micronews.8 It
is a replacement for RSS, the currently dom-
inant technology by which clients monitor

sources, such as Web sites, blogs, and news,
for recent updates. The core optimization
that Corona performs differs from CoDoNS
and CobWeb in that the constraints it ad-
dresses are not flat constants but vary with
the client population. Specifically, the sys-
tem places no more load on the network
than what plain RSS would place if it were
used instead, but it improves update latency
by three orders of magnitude. Clients that
used to receive aggregated updates every
hour can receive them within seconds, with
no additional load on the network.

Overall, the use of a principled resource
allocation framework in these systems pro-
vides strong confidence in system robust-
ness. In other research,2 we’ve also shown
that formally capturing and optimizing the
central resource trade-off enables qualita-
tive improvements in system performance.

Benefits
Mathematical optimization is a promis-

ing, principled way to approach problems
that are too often resolved via ad hoc
heuristics, and the approach outlined here
is widely applicable. For instance, my
group recently examined failure detectors,
which are simple building-block compo-
nents found in virtually every distributed
system. A failure detector is simply a band-
width allocator whose goal is to minimize
failure detection time without exceeding a
given bandwidth budget. Early simulations
based on data from PlanetLab indicate that
mathematical optimization can improve
failure detection latencies by a factor of
two without increasing bandwidth consump-
tion. Similar improvements are possible for
energy consumption in sensor networks,
bandwidth consumption in software distri-
bution, and even for processing overhead in
a secure operating system through the judi-
cious selection of optimal chunk size in data
transfers.9

The use of mathematical optimization in
system design enables strong performance
guarantees and provides assurance under a
wide, well-characterized set of workloads.
We call on system designers to abolish unre-
liable heuristics in favor of a more princi-
pled approach to resolving difficult resource
management problems.

Acknowledgments
I thank Venugopalan Ramasubramanian, Yee

Jiun Song, Ryan Peterson, Bernard Wong, Kelvin
So, Dan Williams, Alan Shieh, and Rohan N.
Murty for designing, building, and deploying
systems based on the approach described in this
article. This work was supported in part by US
National Science Foundation grants CAREER

0430161 and CCF-0424422.

References

1. J. Nabrzyski, J.M. Schopf, and J. Weglarz,
eds., Grid Resource Management: State of the
Art and Future Trends, Kluwer Academic,
2004.

2. V. Ramasubramanian and E.G. Sirer, “Bee-
hive: Exploiting Power Law Query Distribu-
tions for O(1) Lookup Performance in Peer-
to-Peer Overlays,” Proc. Networked Systems
Design and Implementation (NSDI 04),
Usenix, 2004, pp. 99–112.

3. V. Ramasubramanian and E.G. Sirer, “The
Design and Implementation of a Next Gener

56 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

The use of mathematical

optimization in system design

enables strong performance

guarantees and provides

assurance under a wide, well-

characterized set of workloads.

ation Name Service for the Internet,” Proc.
SIGCOMM, ACM Press, 2004, pp. 331–343.

4. J. Jung et al., “DNS Performance and Effec-
tiveness of Caching,” Proc. ACM SIGCOMM

Internet Measurement Workshop, 2001; www.
imconf.net/imw-2001/proceedings. html.

5. L. Breslau et al., “Web Caching and Zipf-Like
Distributions: Evidence and Implications,”
Proc. 18th Ann. Joint Conf. IEEE Computer
and Communications Societies (Infocom 99),
vol. 1, IEEE Press, 1999, pp. 126–134.

6. H. Liu and E.G. Sirer, “Client Behavior and
Feed Characteristics of RSS, a Publish-Sub-
scribe System for Web Micronews,” Proc.
Internet Measurement Conf., Usenix, 2005;
www.usenix.org/events/imc05/tech/full_
papers.liu_hongzhou/liu_hongzhou_html.

7. A. Wolman et al., “On the Scale and Perfor-
mance of Cooperative Web Proxy Caching,”
Proc. 17th ACM Symp. Operating System Prin-
ciples (SOSP), ACM Press, 1999, pp. 16–31.

8. V. Ramasubramanian, R. Peterson, and E.G.
Sirer, “Corona: A High-Performance Publish-
Subscribe System for the World Wide Web,”
to be published in Proc. 3rd Usenix/ACM
Symp. Networked System Design and Imple-
mentation (NSDI 06), 2006.

9. D. Williams and E.G. Sirer, “Optimal Para-
meter Selection for Efficient Memory
Integrity Verification Using Merkle Hash
Trees,” Proc. 3rd Int’l Symp. Network Com-
puting, IEEE CS Press, 2004, pp. 383–388.

Emin Gün Sirer is an assistant professor of
computer science at Cornell University. His
research interests include self-organizing peer-
to-peer systems, reputation systems, and a new
operating system for trusted computing. He
received his PhD in computer science from
the University of Washington. Contact him at
Cornell Univ., Dept. of Computer Science,
4119A Upson Hall, Ithaca, NY 14853; egs
@cs.cornell.edu.

Autonomic Communication:
Business-Driven Revolution
Hakima Chaouchi, National Institute
of Telecommunication
Mikhail Smirnov, Fraunhofer FOKUS

The communications world has seen a
tremendous variety of technologies, mech-
anisms, and architectures over the past sev-
eral decades—from circuit- and packet-
switching to service-switching, from fixed
to wireless networks such as mobile, ad
hoc, or sensor networks, and so on. How-
ever, the enormous deployment of TCP/IP
networks—a result of their internetworking
simplicity—is currently hindering further

development of the underlying network
infrastructure.

The problem arises from disincentives
for carriers to make infrastructure invest-
ments that they find it hard to charge cus-
tomers for. Recently described as the Inter-
net profit dilemma,1 the problem has three
interdependent causes:

• best-effort TCP service model—adding
capacity for premium services also
improves best-effort services, so end
users are less motivated to upgrade to the
premium services;

• lack of settlement interfaces—Internet
service providers don’t have commercial-
grade interfaces to bill each other for any-
thing more complex than aggregates of
best-effort traffic, so any premium service

degrades to best-effort at interdomain
boundaries; and

• convergence—as traditional carrier ser-
vices converge on the Internet, the rev-
enues from them are disappearing.

Automation solutions
The Internet Engineering Task Force

recognized the lack of intercarrier settle-
ment interfaces for IP traffic as a problem
when it began quality-of-service (QoS)
work on differentiated services (www.ietf.
org/html. charters/OLD/diffserv-charter.
html). This standardization effort assumed
that contracted access to the Internet is
feasible. It proposed access automation as a
self-acting process at the business bound-
ary. Carriers would negotiate intercarrier
service-level agreements, and SLA techni-
cal specifications would configure QoS

network elements accordingly.
The IETF failed to standardize straight-

forward automated access for two reasons.
First, even with automated access, it’s

impossible to ensure invariance under
aggregation2 without coordinated automa-
tion of other in-network processes, such as
traffic engineering. (A network achieves
invariance under aggregation if it can han-
dle a packet marked with a DiffServ service
class on every one of its links regardless of
link utilization and state. This is possible
only with runtime traffic engineering in
place—a complex task that’s still far away.

Second, automating access at both retail
(end-user access) and wholesale (service
settlement) business boundaries requires
access, service, and resource control medi-
ation3 that’s impossible to achieve in a sin-
gle layer of a protocol stack.

Adaptation solutions
IP’s designers succeeded in finding the

least common functionality required for
forwarding, address resolution, and routing
of packetized media over any link layer
technology. They systematically designed
the protocol with self-adaptation in mind.
Routing experience proves that fairly com-
plex and intelligent functionality can be
safely placed inside the datagram network,
but only if the functionality can act self-
adaptively by, for example, recovering from
topology changes.

The end-to-end principle, a term coined
to prevent the in-network placement of func-
tions and intelligence that couldn’t recover
automatically, is currently in question.4 Its
relaxation for any other feature will require
either a self-adaptation internetworking
layer like IP or, much more feasible, cross-
layer optimization of a protocol stack.

Reconfiguration approaches
The Wireless World Research Forum

(www.wireless-world-research.org) sees
reconfigurability as a way to enable a seam-
less experience in all-IP infrastructures. In
the wireless domain, reconfigurability ex-
pands the principles of software-defined
radio beyond the composite-radio environ-
ments tailored to the telecom sector.5 The
need for end-to-end reconfiguration adds an
abstraction layer to an already complicated
network management architecture. The ex-
tension requires cross-layer integration, but
only at the wireless ends of the communica-
tion channel.

MARCH/APRIL 2006 www.computer.org/intelligent 57

The enormous deployment of

TCP/IP networks—a result of

their internetwork simplicity—

is currently hindering further

development of the underlying

network infrastructure.

In more general settings, reconfigurability
appears as a business layer that controls busi-
ness relationships,1 not networks. The busi-
ness layer forces traditional services to move
to the overlay as much as the current abstrac-
tion requires. In both cases, the reconfigura-
tion pushes the complexity of either radio or
trade to a dedicated layer, while the underly-
ing network mechanisms stay largely un-
aware of the reconfiguration process.

Evolution
The global information infrastructure

evolves concurrently in many dimensions
and increases protocol stack diversity. Auto-
mation, adaptation, and reconfigurability
contribute to a seamless service experience.
However, they can’t properly address self-
adaptation based on network context with-
in a highly heterogeneous networking envi-
ronment.6

A recently proposed network pluralism
architecture embraces heterogeneity in the
hope of allowing radical innovation.7 This
architecture doesn’t abandon the homoge-
neous Internet architecture but retains it as
one architecture among many. The architec-
ture divides the world into homogeneous
contexts understood as sets of bindings.
Interstitial functions interconnect distinct
contexts; endpoints can belong to different
contexts simultaneously and dynamically.
This view seemingly dissects the Internet
effort, unless we assume that the endpoint’s
protocol stack enables the hypothetical inter-
stitial functions.

The autonomic communication vision
sees a stack instance as being dynamically
composed on demand and shaped by avail-
able network contexts. This doesn’t mean
that all interfacing functions are limited to
endpoints only. We see a control within auto-
nomic communication being instantiated as
a tree rooted at an endpoint and having as
much in-network support as current context
can provide. The true self-management then
will be the result of autonomic decision-
making in collaboration with other end-
points and network infrastructure when
available. The continuously evolving com-
plexity in the communication system makes
it necessary to design a protocol stack that
can learn and evolve to fill a newly identi-
fied need. This contrasts with providing a
“face lift” for a communication system de-
signed to be simple whenever a new need is
expressed. Such an approach will have only
limited impact.

Revolution
We claim that the future of communica-

tion is being defined now by autonomic
communication research and experimenta-
tion. This work aims to replace a network
architecture of predefined, layered function-
ality with a ready-to-evolve architecture that
will include three sets of functionalities:

• basic functionalities, which can be lay-
ered or cross-layered;

• advanced functionalities, which will
emerge as the network architecture
evolves; and

• evolving functionalities, which will be
capable of learning and adding new prop-
erties and treatments in the network.

A ready-to-evolve architecture will be
open to include new technologies, mecha-

nisms, and functionalities that the network
can handle differently. The evolving func-
tionality allows network architecture to be
seen as a program.

An autonomic communication roadmap
would identify the vital relationships be-
tween evolving functionality and the set of
basic network functionalities, the evolving
process, and the programming languages
for building functionality that assumes pro-
grammers might not necessarily be humans.
Network programming will necessarily be
context-driven, where context will influ-
ence both “code” and its requirements.

The necessary technology is already out
there in bits and pieces. The targeted re-
search must build a coherent “program-
ming environment,” in which coprogram-
ming entities are as natural as coexisting
elements within an ecosystem. This “Net

ecology” will revolutionize the way we
communicate and do business over the Net.
It might also require us to learn how best to
coexist with a new ecosystem.

References

1. T. Nolle, “A New Business Layer For IP Net-
works,” Business Communications Rev., July
2005, pp. 24–29.

2. K. Nichols and B. Carpenter, Definition of
Differentiated Services per Domain Behav-
iors and Rules for Their Specification, IETF
RFC 3086, Apr. 2001; www.ietf.org/rfc.
rfc3086.txt.

3. G. Cortese et al., “CADENUS: Creation and
Deployment of End-User Services in Pre-
mium IP Networks,” IEEE Communications,
vol. 41, no 1, 2003, pp. 54–60.

4. D.D. Clark et al., “Making the World (of Com-
munication) a Different Place,” ACM Com-
puter Communication Rev., vol. 35, no. 2,
2005, pp. 91–96.

5. P. Demestichas et al., “Evolution in Wireless
Systems Management Concepts: From Com-
posite Radio Environments to Reconfigura-
bility,” IEEE Communications, vol. 42, no. 5,
2004, pp. 90–98.

6. N. Niebert et al., “Ambient Networks—An
Architecture for Communication Networks
Beyond 3G,” IEEE Wireless Communica-
tions, vol. 11, no. 2, 2004, pp. 14–22.

7. J. Crowcroft et al., “Plutarch: An Argument
for Network Pluralism,” ACM Computer
Communication Rev., vol. 33, no. 4, 2003, pp.
258–266.

Hakima Chaouchi is an associate professor at
the National Institute of Telecommunication in
France. Her research interests are in wireless and
mobile networks. She received her PhD in net-
working from Paris VI University. She is cochair
of the Autonomic Communication Forum’s self-
ware group and a member of UNESCO’s Interna-
tional College to help deploy new technologies
in the third world. Contact her at National Inst.
of Telecommunication, 9 rue Charles Fournier,
91011 Evry, France; hakima.chaouchi@int-
evry.fr.

Mikhail Smirnov is a member of the board of
directors of Fraunhofer FOKUS Research Institute
for Open Communication Systems and an adjunct
professor at Technical University Berlin. His
research interests include advanced Internet ser-
vices, distributed and autonomic communication,
scalable group communication, and policy-based
programmability. He received his PhD in com-
puter science from St. Petersburg Electrotechni-
cal University, Russia. He is vice chair of Info-
com 2006. Contact him at Fraunhofer FOKUS,
Kaiserin-Augusta-Allee 31, Berlin 10589, Ger-
many; mikhail.smirnov@ fokus.fraunhofer.de.

58 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

The autonomic communication

vision sees a protocol stack

instance as being dynamically

composed on demand and

shaped by available network

contexts.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

