
Herbivore: An Anonymous
Information Sharing System

Emin Gün Sirer
August 25, 2006

Need Anonymity Online
Current networking protocols expose the identity of
communication endpoints

Anyone with access to backbone
Internet traffic can determine
communication patterns

Encryption helps conceal content,
but not identity

Constitutes a military vulnerability
Easy to determine C&C centers

Opportunities for industrial
espionage

Internet

Goals
Anonymity

Scale Performance Source Rewriting

Br
oa

dc
as

t N
et

w
or

ks

D
C

-N
ets

Source Rewriting
Packets sent through an
intermediary to mask
origin
 E.g. MIXes, Crowds,

Onion Routing, Tarzan,
AP3B

Long paths and time
delays make it difficult to
trace back

Practical, implemented
High latency
A powerful adversary,

through observations,
can ultimately trace back

“ Attack at dawn”

Silo

C
om

m
an

de
r

Broadcast Networks
Every node sends to every
other node all the time
 E.g. P5

Strong anonymity: cannot
tell who or when

Must constantly send at
peak bandwidth

Low throughput
High network load
Never implemented

Herbivore Overview
Herbivore builds on dining cryptographer
networks (DC-Nets)
 Elegant scheme for anonymous communication

[Chaum 1981]
Strong anonymity guarantee
 Even an adversary that has tapped the entire

network and observed every packet cannot
determine packet origin

Herbivore makes DC-Nets practical
 Efficient and scalable, with the same strong

anonymity guarantee

DC-Net Operation
Every pair of
participants tosses a
coin in secret
Every participant
reports the XOR of all
their coins and
messages
XORing all reported
values reveals
message
 XOR of all messages

if more than one
transmitter

AB

BC

AC

Pc = BC ⊕ ACPb = AB ⊕ BC ⊕ m

Pa = AB ⊕ AC

DC-Net Example

AB = 0

BC = 1

AC = 0

Pa ⊕ Pb ⊕ Pc =

(AB⊕AC)⊕
(AB⊕BC⊕m)⊕
(BC⊕AC) =

AB⊕AB⊕AC⊕AC⊕
BC⊕BC⊕m = m

Pa = 0

Pc = 1
m = 1
Pb = 0

m = 0
Pb = 1

0 ⊕ 0 ⊕ 1 = 1

0 ⊕ 1 ⊕ 1 = 0

DC-Net Properties
Why does it work ?
 All nodes participate in the computation of the

packet
 All nodes equally culpable
 Information theoretic guarantee

Shared anonymous broadcast channel
 Like Ethernet, but virtual

As described so far, it is not a practical
system
 Lacks protocol, scale and performance

Herbivore DC-Net Protocol

Use PRNG instead of coins
 Derive stream of coin tosses

efficiently
Fully-connected key graph
 Every pair has a unique key,

no weak points
Communication occurs in
rounds, of three phases
 Reservation
 Transmission
 Voting

Herbivore Reservation Phase

Goal: anonymously acquire exclusive
access to the channel
Divide time into transmission slots
 A node with a message to send

 selects a transmission slot, i, at random
 broadcasts a bit vector, with 0’ s everywhere

and a 1 for the ith bit
 everyone receives XOR of all reservations
 transmits in reserved slot, if succeeded

Collisions trigger Ethernet-like backoff

A: 00001000
B: 00010000
C: 00000010

 00011010

Herbivore Transmission
Phase

A node transmits its message in the slot it has
reserved
 Unreserved slots are skipped

Collisions may occur during the transmission
phase
 If an odd number of nodes select the same slot, or

if there is a malicious node
 Every packet carries data and hash
 Provides collision detection & ensures packet

integrity
Multiple rounds in parallel

Herbivore Voting Phase

Goal: signal to other nodes that a node
is in the middle of a long transaction
Delay departure until transaction is
completed, if possible
Herbivore voting is bandwidth efficient
(2 bytes)
 Special case for anonymous 1-bit voting

Herbivore Overlay Topology
Chaumian DC-Nets use
a Fully-Connected
Graph
 O(1) latency, O(N2) load

A

B

E

D

C

Pd

Pe

Pa

Pb
Pc

Herbivore Overlay Topology
Chaumian DC-Nets use
a Fully-Connected
Graph
 O(1) latency, O(N2) load

Or Ring
 O(N) latency, O(N) load

A

B

E

D

C

Pd Pa

Pb

Pc

Pe

Herbivore Overlay Topology
Chaumian DC-Nets use
a Fully-Connected
Graph
 O(1) latency, O(N2) load

Or Ring
 O(N) latency, O(N) load Pa

A

B

E

D

C

Me

Pd

Pc

Pb
mm

m
m

Herbivore uses a Star topology
 All nodes send their packets to a “ center” node

in each round
 Center duties rotate deterministically at each

round
 O(1) latency, O(N) load

Herbivore Protocol Efficiency

Topology
 Low latency, low load overlay organization

Reservation
 We derive and use optimal vector size

Transmission
 We run multiple transmission rounds concurrently

Voting
 We extend system lifetime with efficient 1-bit

voting

Herbivore Scale

Traditional DC-Nets do not scale
 Protocol is too heavy-weight for use at planetary

scale

Divide and conquer!
 Self-organize the network into cliques of k-nodes
 Use the relatively heavy-weight protocol in small

cliques

Decouple protocol cost from system size

Herbivore Clique Management

Use a P2P overlay to organize N participants
into cliques of minimum size k
 Clique size ranges from k to 3k, for k = 20 or so

Every node solves a crypto-puzzle to obtain a
node-id and join the system
 Puzzle solution randomizes entry into cliques
 Nodes demonstrate solution of the puzzle to each

preexisting clique member
 No central authority is involved

Use Pastry to map nodes to clique

Herbivore Cliques

A clique of more than
3k nodes is split into 2
cliques

When nodes depart
and clique size drops
below k, the nodes
depart and join closest
existing cliques

Interclique Operation

Within a clique, all communication is
anonymous
 Uses the Herbivore DC-Net protocol

Between cliques, packets are forwarded via
randomly selected proxies

Interfacing with the outside world also occurs
through randomly selected proxies

DC-Net Filesharing

Naïve solution is simple
 Every node has a list of files it offers for

downloads
 Queries are broadcast from clique to clique
 Files are transferred back if query hit

Naïve solution is open to intersection attacks
 RIAA queries for “ Metallica” , examines clique

membership of all cliques that respond, takes the
intersection over time

 Whoever remains is guilty of placing Metallica
songs online

Herbivore Filesharing

Batch download system with a simple user
interface
 List of files to publish
 List of files to acquire

Every node has two file stores
 A-list: files available to others but not yet

disseminated to anyone
 B-list: LRU cache of files recently sent in response

to queries

Herbivore Filesharing

When a query arrives for a file held in the A or B-list,
the node responds with the file
 If on A-list, the file is transferred to the B-list

When a file is overheard on the broadcast channel, it
is placed on the B-list
 Hence, all nodes in the clique have state identical to the

originator
 Can be done probabilistically, with p < 0.5

No way to determine the originator, despite use of
small anonymization groups!
 Can search or sue everyone in the clique (not under US law)
 Published files may get dropped for lack of interest

Herbivore Status

Implemented the system
 Anonymous filesharing, instant messaging and

web browsing
 YIM-like interface for FS and IM + web proxy
 ~27,000 lines of code

Deployed on Planetlab

The system is practical
 First known deployment of DC-Nets
 Scales well, efficient protocol

Herbivore Bandwidth

Herbivore Bandwidth

0

50

100

150

200

250

10 15 20 25 30 35 40
Clique Size

Ba
nd

w
id

th
 (K

b/
s)

1­sender
2­senders
3­senders
4­senders

Herbivore Latency

Herbivore Latency

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

10 15 20 25 30 35 40
Clique Size

La
te

nc
y

(s
)

Series1
Series2
Series3
Series4

Summary

Herbivore provides strong anonymity,
scalability and performance
 DC-Nets are practical!

Enables participants to share
information anonymously, even in the
presence of omnipotent adversaries

Further Information

E. Gün Sirer
egs@cs.cornell.edu
http://www.cs.cornell.edu/People/egs/herbivore/

mailto:egs@cs.cornell.edu

Attacks and Defenses

Sybil: use cryptopuzzles
Jamming: use commitment and trap
Intersection: use A and B-lists
Statistical: DC-Nets
Sloth: accrues strikes
Center: accrues a fractional strike
Eclipse: check adjacent clique members on
clique creation
Abuse: selective revocation with secret
sharing

Anonymity and Abuse
What if someone uses the system to perform
nefarious activities ?
 E.g. plot a terrorist attack

Serious problem
 But not new, police have mechanisms for tracking

down criminals with similar anonymous channels
in the real world

Technical solution
 Share secret keys using (n, k)-secret sharing
 Revoke anonymity when k out of n participants

agree

