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Abstract

This paper examines replication in content distribution
networks and proposes a novel mechanism for optimally
resolving performance versus cost tradeoffs. The key in-
sight behind our work is to formally and analytically
capture the relationship between performance, bandwidth
overhead and storage requirements for a web cache, ex-
press the system goals as a mathematical optimization
problem, and solve for the optimal extent of replica-
tion that achieves the desired system goals with mini-
mal overhead. We describe the design and implemen-
tation of a new content distribution network based on
this concept, called CobWeb. CobWeb can achieve a tar-
get lookup latency while minimizing network and storage
overhead, minimize access time while keeping bandwidth
usage below a set limit, and alleviate “flash crowd” ef-
fects by rapidly replicating popular objects through fast
and highly adaptive replica management. We outline the
architecture of the CobWeb system, describe its novel op-
timization algorithm for intelligent resource allocation,
and compare, through simulations and a physical deploy-
ment on PlanetLab, CobWeb’s informed, analysis-driven
replication strategy to existing approaches based on pas-
sive caching and heuristics.

1 Introduction

Caching can significantly improve user perceived laten-
cies as well as reduce the amount of aggregate network
traffic. The popularity of the web makes caching a nat-
ural place to apply caching techniques to improve client
performance, reduce server load, and minimize network
traffic. Web caches to date have been deployed in two dif-
ferent settings, one driven by clients and one by content
providers.

Web caches that are placed close to the clients are com-
monly known as proxy caches. Such demand-side caches
exploit temporal locality within the clickstream of a single
user as well as spatial locality stemming from the com-
mon interests of independent users. Proxy caches depend
on passive monitoring and opportunistic caching, where
each proxy only caches objects that have been requested
by a client that is directly connected to it. Passive oppor-

tunistic caching severely limits potential benefits because
web traffic is well-known to follow a Zipf distribution,
with a heavy tail [3, 7, 1]. Since the heavy tail of the dis-
tribution limits spatial locality, past work has examined
cooperative web caching, aimed at aggregating the cache
contents of multiple web proxies to obtain greater caching
benefits. Cooperative caching schemes that have been
proposed include hierarchical [6, 30], hash-based [16, 24],
directory based [9, 20, 28], and multi-cast schemes [21].
Yet past work on cooperative caching has examined only
passive mechanisms for cache control, and an interesting
negative result has demonstrated that cooperative caching
provides performance benefits only within limited popu-
lation bounds [31]. The large heavy-tail of the popularity
distribution, combined with purely passive measures for
cache control, makes it difficult to achieve high cache hit
ratios.

Web caches can also be placed within the network to
aid content distribution. In particular, companies such
as Akamai provide content distribution services to web
site operators by placing servers in strategic locations to
cache and replicate content. Such networks of servers
are commonly known as content distribution networks
(CDNs), and are driven by content providers rather than
content consumers. In contrast to the demand-driven na-
ture of web proxies, most CDNs proactively replicate web
objects throughout the network using heuristics aimed
at load balancing and improving performance [10, 29].
These heuristics aim to maximize the effective benefit
from the bandwidth spent on proactive content distribu-
tion, but typically do not provide any hard performance
guarantees.

The fundamental challenge faced by any web cache
is to decide which objects to replicate and to what ex-
tent. Proxy web caches sidestep this problem by passively
caching objects that local clients have requested. In do-
ing so, they limit the benefits that can be realized through
caching to only those objects that have been fetched by
the client population. CDNs, on the other hand, utilize
heuristics which offer little control over the performance
characteristics and resource consumption of the resulting
system. For example, there is no way to guarantee a cer-
tain hit rate in such systems, or to cap bandwidth con-
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sumption at a desired limit.
In this paper, we describe a novel, principled approach

for determining which objects to cache and to what extent
in a distributed CDN. We analytically model the costs and
performance benefits of replication, formalize the trade-
offs as an optimization problem, and use a novel numer-
ical solver to find a near-optimal solution that maximizes
global system goals, such as achieving a targeted hit rate,
while respecting resource limits, such as bandwidth con-
sumption. Our system, CobWeb, is a global network of
caching proxies that uses this analysis-driven approach,
which utilizes the popularity, size, and update rate of web
objects to compute the replication strategy. The resul-
tant solution provides low latency lookup to clients while
minimizing the storage and network overhead incurred by
CobWeb proxies.

Analytically modeling the overhead costs and perfor-
mance benefits of replication enables CobWeb to convert
this systems problem to an optimization problem. The op-
timization problem can then be solved to provide, for in-
stance, minimal lookup latency while staying within a net-
work bandwidth budget, or to achieve a targeted lookup
performance while minimizing bandwidth consumption.
This enables CobWeb to offer highly adjustable perfor-
mance characteristics that is not available in heuristics-
based systems.

Through simulations and measurements from a real
world deployment, we make a case for structured,
analysis-driven web caching over opportunistic heuristic-
driven caching. We show that our system provides high
performance and low overhead when compared to passive
caching systems, and propose deployment strategies for
integrating our system into the Internet.

The rest of this paper is structured as follows.
In the next section, we describe the analysis-driven
replication technique that enables CobWeb to resolve
the performance-overhead tradeoff encountered in web
caching. In Section 3, we outline the overall architec-
ture of the CobWeb cache. Section 4 describes the current
CobWeb implementation. In Section 5, we evaluate the
performance of CobWeb through extensive simulations
and a physical deployment on PlanetLab, and compare
it to existing CDNs as well as passive caching. Section 6
describes related work and Section 7 summarizes our con-
tributions.

2 Resource Optimal Replication

The central insight behind CobWeb is that the fundamen-
tal tradeoff between performance and the cost required to
achieve that performance can be treated as an optimiza-
tion problem. CobWeb analytically models this tradeoff,
poses it as an optimization problem, and finds the optimal
replica placement strategy. This optimization analysis en-

ables CobWeb to make informed decisions during repli-
cation in order to meet performance expectations with
minimal cost. Conversely, this analysis can be used to
optimize performance while keeping network and storage
consumption below a fixed limit.

CobWeb takes advantage of structured organization of
the system to analytically model resource-performance
tradeoffs. Several structured overlay systems, which or-
ganize the network to form well-defined topologies with
regular node degree and bounded diameter, have been pro-
posed in the recent past [23, 27, 19, 25, 12, 33, 18]. These
systems called Distributed Hash Tables (DHTs) provide
high failure resilience and scalability through decentral-
ization and self-organization. By layering CobWeb on a
DHT we not only inherit its high failure resilience and
scalability, but also leverage its regular topology to con-
cisely capture performance-overhead tradeoffs. We illus-
trate this structured analysis using Pastry [25] as an exam-
ple overlay.

Pastry organizes the network as a ring by assigning
identifiers to nodes from a circular identifier space. Ob-
jects are also assigned an identifier from the same space
and stored at the node with the closest identifier, called
the home node. When queries are injected into the sys-
tem, Pastry routes the queries towards the home node by
successively matching prefix digits in the identifier of the
queried object. This routing process is aided by long dis-
tance contacts with different numbers of matching prefix
digits and takes O(logN) hops in a network of N nodes.

The structured organization provides an opportunity for
replication to shorten the route of the lookup path. By
replicating objects at all nodes that are within i hops
from the home-node, the lookup latency can be reduced
to log(N) − i hops. We formalize this concept by defin-
ing a replication level for each object. An object is said
to be replicated at level l if it is stored at all nodes in the
system with l matching prefix digits. An l level object has
lookup latency of l hops and is replicated at N

bl nodes in
the system. Figure 1 illustrates the concept of replication
levels in Pastry.

Structured replication of this manner enables CobWeb
to concisely express the replication cost and lookup la-
tency for each object. CobWeb extends this to analytically
frame the global performance-overhead tradeoffs.

2.1 Analytical Model
We pose performance-overhead tradeoffs in a system of
M objects through optimization problems of the follow-
ing form:

Min.
M
∑

1

cm(lm) s.t.
∑M

1
pm(lm) ≤ T (1)

In the above expression, lm represents the replication
level of object m and functions cm(l) and pm(l) represent
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Figure 1: CobWeb Replication on top of Pastry.

cost and performance tradeoffs respectively for each ob-
ject. The above expression poses an optimization problem
to minimize the cost required to achieve a performance
target T. The converse problem to minimize lookup la-
tency without exceeding a bound on cost is of a similar
form and represented by swapping the positions of cost
and performance tradeoff functions.

We model the performance of the system with the aver-
age lookup latency of queries since content distribution
networks are primarily concerned with providing users
with low latencies through a high hit rate. The perfor-
mance tradeoff for an object at level l can be modeled as
pm(l) = qmD(l), where qm is the popularity of the ob-
ject in terms of the fraction of total queries it receives, and
D(l) is the network latency in the underlying DHT to tra-
verse l hops. For a DHT that does not take into account
network proximity during self-organization the average
delay is the same at all levels and D(l) = l. However, for
DHTs that self-organize based on network proximity [5],
the latency D(l) =

∑l

0
dj , that is the sum of the average

latencies at each hop until l. The values of dj can be ex-
perimentally determined in a deployed system and used
during optimization to account for the latency differences
across different levels.

The cost tradeoff for an object can be modeled based on
the goals of the system. If the concern is storage cost, the
cost function for object m is cm(l) = sm

N
bl , where sm is

the size of the object. Given that disk storage is cheap and
disk capacity is rapidly increasing, storage cost is unlikely
to be of much interest in practice. Network bandwidth, on
the other hand, is expensive and often the bottleneck in
distributing large objects. Hence we take special care to
model the network bandwidth cost accurately.

The bandwidth consumption for CobWeb consists of
three components: the update cost required to keep all
replicas up to date, replication cost to push copies of

the object, and any maintenance overhead required by
CobWeb to manage replication. The cost to update a sin-
gle copy of an object m is smum, where sm is the size
of the object and um is the update rate of the object, that
is, the number of updates seen by the object in unit time.
The management cost in CobWeb is a constant A for each
replica in the system.

The replication cost of an object depends upon the cur-
rent level of replication of the object. To increase the ex-
tent to which an object is replicated, that is, to reduce
its replication level, a bandwidth cost is incurred to cre-
ate additional replicas. Increasing an object’s replication
level (reducing the amount it is replicated), on the other
hand, can be accomplished at no cost. The replication
cost, rm(l) for an object can be represented thus:

rm(l) =

{

sm

(

N
bl −

N
bjm

)

∀ l < jm

0 ∀ l ≥ jm

Here, jm is the current replication level of object m. The
overall total network overhead can be expressed as:

cm(l) = (A + smum)
N

bl
+ rm(l)

Using the above cost and performance functions, com-
puting the optimal replica placement strategy involves
computing a vector L = {l1, l2, · · · , lm} such that the
cost and performance functions satisfy a desired crite-
ria. Given the size, update rates, and popularity of ob-
jects, CobWeb computes the optimal replica strategy in
two possible configurations. In the first configuration, we
set a target lookup latency, TL, and compute the replica
placement strategy that will achieve this target with the
minimum cost. In this configuration, CobWeb provides a
knob that allows system administrators to tune the perfor-
mance of the system. For example, a target of 0.5 ensures
that at least 50% of all queries do not require a network
hop. That is to say, the system will guarantee a hit rate of
at least 50%. In the second configuration, CobWeb min-
imizes the average lookup latency of queries subject to a
limit on resource consumption. Given that our measure
for cost is bandwidth overhead, a system administrator
can set the amount of bandwidth, TB that CobWeb can
consume over a time interval. CobWeb then computes
the replica placement strategy that will produce the best
lookup performance within these limits.

The above optimization problems are NP-Hard because
the replication levels of objects take integral values. One
approach to perform efficient optimization efficiently is
to model the parameters analytically and obtain a closed-
form solution through mathematical derivation. Bee-
hive [22], a replication framework of similar flavor to
CobWeb, uses such an approach. Beehive obtains analyt-
ical solutions by assuming that popularity follows a Zipf
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distribution and objects are homogeneous in size and up-
date rates.

However, Beehive’s simple analysis-driven techniques
cannot solve the optimization problems that arise in
CobWeb for three fundamental reasons. First, Web ob-
jects have orders of magnitude differences in their size
and update rates [8]; sizes can range from a few kilo-
bytes to several megabytes and update intervals from a
few seconds to no updates whatsoever. Beehive often ends
up replicating a large or frequently updated object to a
greater extent than a small static object of slightly less
popularity. Consequently, Beehive can consume signifi-
cantly more bandwidth than necessary. Second, Beehive
optimizes for storage cost and cannot handle the precise
estimate of bandwidth consumption modeled earlier. Fi-
nally, even though web objects are known to satisfy Zipf
popularity distribution, sudden increases in object popu-
larities during flash-crowds can cause deviations from the
Zipf behavior and render Beehive’s solution sub-optimal.

2.2 Numerical Optimization
CobWeb employs fast and accurate decentralized numer-
ical techniques to solve the above optimization problems.
These techniques, consisting of an optimization algorithm
and a distributed tradeoff aggregation mechanism are part
of a module we developed called Honeycomb. Honey-
comb provides an O(M log M log N) algorithm that re-
solves the general performance-overhead tradeoff prob-
lem in expression 1 and optimizes the overhead to the
granularity of one object. The only assumption made by
Honeycomb is that cm(l) and pm(l) are monotonic in l
for each object. Monotonicity implies that the optimal so-
lution lies at the boundaries of the constraint.

Honeycomb achieves high accuracy to the granularity
of one object by finding upper and lower bounds for the
optimal cost differing in replication levels for at the most
one object. These upper and lower bounds are exact op-
timal solutions to problem 1 with slightly different con-
straints; one with a constraint T1 ≤ T and another with
constraint T2 ≥ T . The solutions L∗

1
and L∗

2
differ in at

the most one object, that is, there may be one object that
has a different replication level in L∗

1
and in L∗

2
. Note that

the optimal solution L∗ for the original problem 1 with
constraint T may actually decide to replicate objects dif-
ferently from L∗

1
and L∗

2
.

The small deviation in our solution compared to the
true optimal has little impact on the performance of our
system. CobWeb ends up replicating at the most one ob-
ject per node more than the optimal. Given that an Internet
scale content distribution system hosts millions of an ob-
ject, this deviation is tiny and almost negligible. Hence,
we avoid using expensive optimization techniques such
as branch-and-bound or prune-tree search to find the true
optimal.

Honeycomb determines the upper and lower bound so-
lutions, L∗

1
and L∗

2
, through the use of a Lagrange multi-

plier to transform the constrained optimization problem to
minimize f(L, λ) =

∑M

1
cm(lm)−λ(

∑M

1
pm(lm)−T ).

The monotonicity property ensures that this function has
a single minimum over the space of λ. Honeycomb lo-
cates the minimum of f(L, λ) by iterating over λ using a
well-known bracketing technique, golden-section search,
for minimization in one-dimension. However, the run-
ning time of such a numerical iteration technique cannot
be bounded analytically.

Honeycomb achieves a fast, bounded running time
through two improvements. First, note that minimizing
f(L, λ) for a specific value λ′ can be done by indepen-
dently minimizing Cm(lm) − λ′Pm(lm) for each object.
Thus, each iteration can be performed in O(M log N)
time. Second, for each object, the minimum changes at
the most dlog Ne times while iterating over λ. This im-
plies that we need to minimize f(L, λ) for at the most
Mdlog Ne discrete values of λ. These discrete values can
be precomputed and sorted at the beginning of the opti-
mization. A binary search over the ordered, discrete space
of λ can find the upper and lower bounds in O(logM)
time. This yields a numerical algorithm whose overall
running time is O(M log M log N), including precompu-
tation, sorting, and iterations.

While the optimization algorithm provides an efficient
solution technique, it relies on tradeoff information about
all objects in the system to compute a globally optimal so-
lution. It is clearly impractical to make information about
every object in the system available to every node. At the
same time, computing replication levels based solely on
locally cached object leads to large deviations from the
global optimum. Honeycomb resolves this issue through
distributed aggregation mechanisms.

Honeycomb aggregates global tradeoff characteristics
by combining objects with similar overhead performance
tradeoffs into larger units called clusters. Clusters are
formed by comparing the ratios of the dominant factors
in cost and performance functions. In Cobweb, objects
with comparable values for qm

smum
ratios are clustered and

treated as a single unit. CobWeb maintains a constant
B number of clusters for each level of replication, that
is, all objects replicated at each level are divided into B
clusters. These clusters are then aggregated system-wide
by exchanging aggregate tradeoff factors for each cluster
between the neighbors in the overlay network. Overall,
each node determines a close estimate of the global opti-
mal by utilizing the precise overhead and performance in-
formation for the locally cached objects, and cluster-level
coarse-grained information for other objects.
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Figure 2: System Organization

3 System Architecture
CobWeb operates as a globally distributed ring of coop-
erating nodes. Each CobWeb node acts as a Web proxy
capable of serving any HTTP request. We envision that
institutions that currently have large Web caches at their
gateway to the Internet, will let the caches join the global
CobWeb ring and share cache content intelligently and
optimally. Other publicly available Web caches, such as
Squid, may also be part of the CobWeb system taking
the benefits independent users. The overall architecture
of CobWeb is illustrated in Figure 2.

CobWeb distributes objects uniformly between its
nodes through consistent-hashing [17]. Each web object
is assigned a unique identifier that is a SHA-1 hash of its
URL. When a CobWeb proxy receives a request from a
client, it routes the request through the underlying over-
lay, directing the query toward the object’s home node,
the node whose identifier is numerically closest to the
object’s identifier. The first node along the routing path
which has a copy of the object returns the object to the
origin CobWeb proxy, which is responsible for delivering
it to the client.

Web objects are not loaded into CobWeb unless re-
quested. When a URL is first requested, its home node
is responsible for fetching the object from the origin web
server and inserting it into the system. Subsequently, the
home node is also responsible for renewing the object
when it expires and propagating changes to other nodes.
Non-cacheable web objects are simply delivered to the
client but not stored within the CobWeb system. Home
nodes also delete objects from the system if they do not
receive any queries over a long period of time.

CobWeb inherits high failure resilience from the over-

lay substrate. When a home node fails, the next closest
node in the identifier automatically becomes the home
node of an object. Objects for which home nodes has the
sole copy, simply disappear from the system. This behav-
ior is perfectly correct because CobWeb serves merely as
a performance enhancing soft cache, rather than a perma-
nent store. Moreover, popular objects would not be lost in
this manner because they will be widely replicated in the
neighborhood of the home node.

Users access CobWeb in a transparent way without re-
quiring any extensions or reconfigurations to the browser.
In order take advantage of CobWeb, a user merely needs
to append “.cobweb.org:8888” to the main URL of a
web site. The http request is diverted to the closest
CobWeb server through DNS-redirection. Subsequently,
all web pages accessed through links on the main URL
are automatically redirected through CobWeb. The lat-
ter is achieved through URL rewriting. Alternatively,
CobWeb is also available as a conventional proxy service,
which can be accessed by setting the proxy options in the
browser to point to the closest CobWeb node.

An important issue in any cooperative web cache is that
a single compromised node can introduce misleading con-
tent into the system and launch phishing attacks. While,
this is not a problem if CobWeb were to be deployed un-
der centralized management, such as inside Akamai or
on Planet-Lab, a collaborative environment poses security
risks that need to be tackled. The security issue is further
heightened because web objects are not self-certifying. To
reduce this vulnerability, we propose a collaborative ap-
proach for certifying web content. A small quorum of
CobWeb nodes can independently fetch objects and sign
objects using a shared key exchanged through threshold
cryptographic protocols [34, 15]. Such a collaborative ap-
proach prevents individual rogue nodes from introducing
corrupt content into the system by mistake or for malice.

The rest of this section describes how resource optimal
replication is managed in CobWeb.

3.1 Popularity Aggregation
The optimization algorithm described in Section 2.2 takes
as input the performance and cost characteristics of the
object. The object-specific cost information, such as
the size, update rate, and server imposed load limit, can
be stored and replicated along with the object. The
workload-specific characteristics, that is, the query rate of
an object, on the other hand, needs to be aggregated in the
system, since queries are spread over all nodes caching
that object.

A naive way to compute the query rate of an object, is
to have each node periodically measure, in some aggrega-
tion interval, the number of queries an object receives in a
given period. However, if the query distribution is heavy-
tailed, as if often the case in web traffic [3], there can
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be several orders of magnitude of difference between the
query rates of the popular and unpopular objects. Hence,
no single aggregation interval would be large enough to
accurately estimate the query rates of all objects and small
enough to allow the system to detect rapid changes in
the popularity of objects, which may arise during a flash-
crowd.

One alternative is to measure the inter-arrival times of
each object at each node and use those measurements to
determine the query rate. However, since objects may be
replicated at different nodes, any single node cannot esti-
mate the global query inter-arrival time of an object.

CobWeb uses a hybrid of the two approaches, namely
query-rate estimation and inter-arrival time estimation.
Nodes with cached objects measure the number of queries
for those objects in each aggregation interval. Each node
periodically transmits the data collected for each object
towards the home node of that object. Each node along
the path of the route aggregates the data they receive and
continues to route the data toward the home node. Ulti-
mately, each node receives a count of queries for all the
objects for which it is the home node. To reduce aggrega-
tion overhead, CobWeb sends aggregation messages only
if they are non-zero. This reduces the number of aggrega-
tion messages sent at each aggregation interval.

Home nodes, then estimate the inter-arrival time using
the aggregate query-rate received by it. For unpopular ob-
jects which may not be queried for in many aggregation
intervals, the home node estimates the query inter-arrival
time in terms of the number of aggregation intervals be-
fore a query is seen. That is, if an object receives one
query every ith aggregation interval, it has a query inter-
arrival time of i. For popular objects, which many queries
in the same aggregation intervals, it estimates their query
inter-arrival time as 1/j, where j is the number of queries
seen in a single aggregation interval. This technique al-
lows us to choose very small values for the aggregation
interval, which in turn enables CobWeb to quickly detect
changes in the query rate and adapt accordingly.

3.2 Replication Protocol
Given the replica placement solution provided by the nu-
merical solver, CobWeb needs to ensure that objects are
replicated at the appropriate levels. To accomplish this,
nodes periodically exchange information about objects
and their replication levels.

For every object m, a node A is the parent of a node B
if A is the next node along the path from B to the home
node of m. Periodically, each node sends information to
its parents about the replicas that they are caching from
their parent nodes. If the parent node determines that a
child is lacking an object that it ought to be caching, the
parent node sends that object to the child. The parent node
also sends the child node a list of objects that the child

should continue to cache. Upon receiving this list, the
child determines which objects it should no longer cache,
and deletes them.

To reduce the cost for this exchange of information, in-
formation exchange between parent and child nodes are
encoded in bloom filters. These bloom filters are then
piggy-backed on aggregation messages that are sent ev-
ery aggregation interval.

Once a node receives a replica from its parent, it is re-
sponsible for independently determining whether the ex-
tent of replication for that object needs to be increased. If
that is the case, that node will inform its child nodes that
they too need to maintain a copy of the replica.

This simple replication protocol allows CobWeb to ef-
ficiently handle churn in the network. When a new node
joins the system, it obtains all the objects it needs to cache
by contacting its parent nodes. When a node leaves the
system, the overlay network ensures that its role is auto-
matically taken over by another node.

3.3 Update Propagation
A common concern in maintaining replicas at multiple lo-
cations is the issue of maintaining consistency. Due to the
structure of its overlay network, CobWeb is capable of ef-
ficiently maintaining consistency among objects. When a
web object expires, its home node is responsible for fetch-
ing a new copy from the origin web server. This new copy
is then propagated proactively to all nodes with cached
copies of the object. Given the replication level of an ob-
ject, each node can determine exactly the set of nodes it
needs to deliver the updates to, allowing this process to be
fast and efficient.

A version number is attached to each object. As objects
are refreshed, their version numbers are increased. This
allows nodes that miss a proactive update to restore them-
selves to a consistent state. When parent nodes exchange
aggregation messages with child nodes, the version num-
bers of each object is also passed from the parent node to
the child node. This exchange of version number is sent
in a compressed message in the following way. The ver-
sion number and the object identifier of each object are
passed through a hash function to create a version key for
each object. Version keys are then encoded in a bloom-
filter which is sent along with the aggregation message. If
a parent node notices that there is a discrepancy between
its version key and that of its child, it sends a copy of the
object to the child. Upon receiving a copy of an object
that has a larger version key, the child node replaces its
copy of the object with the new one.

4 Implementation
The previous sections outlined the core distributed algo-
rithms and mechanisms that enable a CDN to achieve high
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performance while respecting resource consumption con-
straints. In this section, we describe the CobWeb imple-
mentation and show how the algorithmic advantages of
the analytical framework can be made practical, transpar-
ent and easy to use.

CobWeb is implemented on FreePastry v1.3, an open-
source implementation of Pastry [25]. Layering CobWeb
on Pastry enables the system to build on the strong failure-
resilience, scalability, worst-case performance guarantees
provided by Pastry, and to complement these properties
with strong average-case performance guarantees.

The CobWeb replication framework is practical and
straight-forward to implement. Table 1 shows the size of
the different components of the system. The total com-
plexity of the numerical solver, combined with the high-
performance web cache front-end, is roughly comparable
to the complexity of the Pastry overlay. In fact, most of
the complexity resides in mundane issues like HTTP pars-
ing, streaming content from multiple sources to clients,
and coordination of concurrent threads, as opposed to the
numerical solver.

We envision that CobWeb will be deployed on server-
class hosts deployed close to the network core, under a
single administrative authority. This is identical to the
Akamai model as well as the current deployment model
where our research group runs the open CobWeb cache
on PlanetLab. Even though CobWeb is built on a peer-to-
peer proxy that can integrate any host anywhere, admit-
ting poorly provisioned hosts located behind cable lines
into the system is unlikely to offset the additional over-
head they entail. Further, in a collaborative deployment,
where nodes under different administrative domains are
part of the CobWeb network, some nodes may be mali-
cious and either attack the overlay or corrupt the content
cached in the system. This problem can be easily solved
if web servers provide digitally signed certificates along
with content. An alternative solution that does not require
changes to servers is to use threshold-cryptography to
generate a certificate for content [34, 15]. When new con-
tent is to be inserted into the ring, the object can be fetched
and partially-signed by a quorum of ring members. If the
quorum size exceeds a threshold, partial signatures may
be combined into a single signature that attests that t out
of n nodes in a wedge on the CobWeb ring agree on the
content. Such a scheme can ensure that rogue nodes be-
low a threshold level cannot corrupt the system with bad
content and other measures [4] can protect the underlying
substrate from malicious nodes. However, the design and
implementation of such a threshold-cryptographicscheme
for a non-collaborative environment is beyond the scope
of this paper.

In the rest of this section, we describe the choices we
made in the implementation of CobWeb.

Component Lines of code
FreePastry 17,712
Numerical Solver 6,163
Web Cache and Proxy 7,798

Table 1: Code complexity of the components of CobWeb

4.1 User Interface
CobWeb provides two different interfaces for different
classes of uses. Users that can change the proxy set-
tings in their browser can simply designate a CobWeb
node as a proxy. In designating the proxy node, users
can either specify the explicit address of a CobWeb node
close to them, or instead use the generic proxy address
“cobweb.closestnode.com”. As described in Section 4.3
below, CobWeb uses the Meridian mechanism [32] based
on active measurements to locate the CobWeb node clos-
est to the client.

Although the proxy interface is fast and relatively easy
to use, it is not always possible for users to change
the proxy settings of their browsers. Further, content
providers, such as Slashdot, who wish to take advan-
tage of the load-shedding and performance improvement
provided by the CobWeb cache may not be in a po-
sition to force their clients to modify their proxy des-
ignations. In these cases, clients can be redirected to
use the CobWeb cache by appending the suffix “cob-
web.org:8888” to the host name of any URL. For in-
stance, the CNN.com can be accessed via the URL
“http://www.cnn.com.cob-web.org:8888”. Rewriting the
host name suffix forces client browsers to look up the
name with the CobWeb DNS server, which again uses the
Meridian mechanism to route the client’s request to the
closest CobWeb node.

4.2 URL Rewriting
CobWeb performs URL rewriting on the fly in order to
provide clients with a seamless experience, where all re-
sources on a “cobwebbed” URL are fetched from the
CobWeb cache instead of the origin server. This enables
CobWeb to support high-volume sites such as Slashdot.
Consider a web page that consists of a HTML page that is
hosted on one server, and many images that are hosted on
another server with a different host name. URL-rewriting
ensures that when the page is requested through CobWeb,
all the images will be accessed through CobWeb as well,
alleviating the load on both the HTML server and the
image server. The Coral CDN, which does not perform
URL rewriting, cannot cache resources that are referenced
within HTML pages as absolute URLs. Because the host
name is explicitly specified in these URLs, Coral clients
will request these resources directly from the origin server
instead of through the CDN. Naturally, URL rewriting in-
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curs additional overhead, which we compensate by setting
the target performance slightly lower than what it oth-
erwise would be. Note that URL rewriting occurs only
once when a page is first fetched by a CobWeb node from
the origin server. Subsequent accesses incur no overhead
since the resultant page is then cached in the system.

4.3 Proximity Detection
Lookup latency performance is critical in any web cache.
To provide low latency performance, it is important that
users are directed to the CobWeb proxy that is closest to
them. CobWeb accomplishes this by using the Merid-
ian algorithm for closest node selection [32]. When a
user first queries for a cobwebbed URL, a DNS request
is sent to CobWeb’s DNS server, which initiates a recur-
sive Meridian lookup. Under the Meridian scheme, each
node maintains a list of peers that are organized into con-
centric, non-overlapping rings with exponentially increas-
ing radii, based on the node’s distance from each of these
peers. Each Meridian node determines its distance d to
the client using a reverse DNS query or an ICMP ping,
examines its rings in the range d/2 to 3d/2 to find suit-
able peers, and asks those peers to measure their distances
to the client. If a suitable peer is found, the query is for-
warded to that peer and the process continues recursively;
otherwise, the current node is designated as the closest
proxy for that client. Note that the Meridian algorithm
reduces the distance between the candidate proxy and the
client node exponentially at each hop, has been proven to
succeed with very high probability under general models
for the Internet latency space, and achieves low error rates
in practice.

To mask the latency of proximity detection from the
client, CobWeb employs caching at two levels. Internally,
CobWeb caches internal measurements taken during the
Meridian routing process that are used to determine inter-
node distances. In addition, when the closest node to a
client is found, the identity of that node is cached at the
DNS server for a relatively long period of 5 minutes, al-
lowing subsequent queries from that client to be satisfied
instantly.

5 Evaluation
In this section, we evaluate the performance of CobWeb
through extensive simulations and measurements from a
real world deployment of our system.

5.1 Simulations
We first compare the performance of CobWeb, in its two
different configurations, with Beehive, the state of the art
in using proactive replication to achieve low latency per-
formance. In addition, we compare CobWeb with PCPas-
try, a passive caching system, to show the difference in
the characteristics of a proactive replication system such

as CobWeb and that of a passive, opportunistic caching
system. Finally, we examine the performance of CobWeb
in the face of “flash crowds” and show that it is capable
of quickly adapting to rapid changes in the popularity of
objects.

In the experiments below, we run CobWeb in two dif-
ferent configurations. In the first configuration, CobWeb-
TL, CobWeb is configured to achieve a Target Latency to
guarantee high performance. In our experiments, we set
this target latency to 0.5 hops, which implies that more
than 50% of queries will be satisfied at the local CobWeb
proxy. In the second configuration, CobWeb-TB, CobWeb
is set to meet a target bandwidth limit. This emulates the
situation where a CDN needs to provide optimal perfor-
mance subject to a resource constraint. In our experiment,
we set the bandwidth limit to 0.25 kb/s. In both cases,
CobWeb-TL and CobWeb-TB are configured with an ag-
gregation interval of 10 minutes.

We compare these two CobWeb configurations to Bee-
hive, a state of the art DHT that provides constant time
lookup performance through proactive replication. Unlike
CobWeb, however, Beehive does not make use of object
sizes and update rates when computing its replica place-
ment, and assumes that queries follow a Zipf distribution.
Beehive is also configured to meet the same latency target
of 0.5 hops.

Where appropriate, we also compare CobWeb to PC-
Pastry, which is a version of Pastry extended to perform
common opportunistic caching at each node; every node
simply caches all content that it receives. The efficacy
of such a passive caching scheme depends entirely on
the workload, and typically does not perform well under
heavy-tailed popularity distributions. As a baseline for
comparison, we also include plain Pastry in our simula-
tions, with no caching at all.

For each of these systems, our simulations model a
1024 node network. We inject queries to these servers
based on a workload extracted from the UCB Home IP
traces [11]. The workload consists of a total of 409,600
queries for 10,000 objects. The workload distribution
follows a Zipf distribution with parameter 0.78. The
queries are uniformly divided among the clients, which
send queries into the system at a steady rate. The total
query rate seen by the system is about 6 queries per sec-
ond.

5.1.1 Proactive Replication
Figure 3 shows the latency average latency of CobWeb
and Beehive systems over the duration of the experiment.
As expected, CobWeb-TL and Beehive both converge to
the target latency within the first few hours. CobWeb-TB,
on the other hand, experiences a slower improvement in
latency because it has to stay within its bandwidth limit.
CobWeb-TB’s performance stabilizes after about 5 hours,
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at a steady average lookup latency of about 0.8, because
the aggressive bandwidth constraints that were placed on
CobWeb-TB do not allow it to maintain a sufficient num-
ber of replicas to match CobWeb-TL and Beehive’s per-
formance.

Figure 4 shows that analytically informed caching can
achieve high performance while keeping bandwidth con-
sumption modest. Not surprisingly, CobWeb-TB con-
verges to its target bandwidth limit of 0.25 kb/s very
quickly, and its bandwidth consumption remains at this
level in the steady state. Both Beehive and CobWeb-TL,
which target lookup performance instead of bandwidth
consumption, meet their targets with a bandwidth con-
sumption of 0.5 kb/s.

Unlike CobWeb-TB, Beehive and CobWeb-TL experi-
ence an initial bandwidth spike. This is a result of the
aggressive replication that occurs at the beginning of the
experiment, as both systems try to rapidly improve their
hit rates to meet their performance goals. Between the
two, CobWeb-TL consumes much lower network band-
width as it converges to its performance target. The rea-
son for this lower overhead is two-fold. First, CobWeb
does not require an accurate estimate of the Zipf parame-
ter of the workload, in fact, it does not even assume a Zipf
distribution, allowing it to converge to an optimal solution
much faster than Beehive. Second, because CobWeb-TL
takes object sizes into account when computing its repli-
cation solution, it is able to minimize network usage.

Figure 5 shows the storage overhead of each node dur-
ing the experiment. We observe that the storage overhead
of the systems corresponds closely to that of the network
overhead. Note that Beehive’s storage overhead initially
overshoots its steady state value before gradually settling
on its steady-state value. This is a result of an overestima-
tion of the optimal amount of replication as Beehive tries
to obtain an accurate estimate of the Zipf parameter of
the workload distribution. In comparison, CobWeb-TL,
by preferentially replicating smaller objects, incurs only
about half the overhead of Beehive while achieving the
same performance.

The storage overhead of CobWeb-TB is lower because
it is indirectly limited by its bandwidth constraint. Al-
though CobWeb-TB’s resource consumption limit is de-
fined in terms of network overhead, this creates an indi-
rect limit on storage consumption due to the fact that each
replicated object consumes network bandwidth for update
propogation and aggregation overhead. When the system
reaches a state where all available network bandwidth is
being consumed by maintenance overhead in this fashion,
CobWeb-TB can no longer cache additional objects.

5.1.2 Comparison to Passive Caching
To observe the difference in the characteristics of a proac-
tive caching system such as CobWeb and that of a passive
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Figure 3: Average Lookup Latency: Beehive and CobWeb-
TL quickly converge to their target latency of 0.5; CobWeb-
TB achieves lower performance.
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Figure 4: Per Node Network Overhead: CobWeb-TL incurs
significantly lower network overhead than Beehive, while
CobWeb-TB uses the least network overhead, being able to
stay below its allotted bandwidth limit

caching system, we also compare CobWeb-PL to PCPas-
try and Pastry. Note that for this experiment, we increased
the target latency of CobWeb-TL to 1.0. This allows
CobWeb-TL to match PCPastry’s performance so that we
can make a reasonable comparisons of the two systems’
resource consumption.

Figure 6 shows the latency performance of PCPastry
and CobWeb-TL. We observe that the latency perfor-
mance of PCPastry converges very slowly to a lookup
latency of about 1 hop, as cached copies of objects are
slowly created throughout the network in response to the
workload. CobWeb-TL converges rapidly to the targeted
performance level. Being a passive system, PCPastry is
incapable of providing any means of trading off more re-
sources for performance gains.

Although PCPastry and CobWeb-TL provide similar
steady state performance, CobWeb-TL is able to accom-
plish the performance target at much lower cost. Fig-
ure 7 shows the storage overhead of the two systems. The
storage overhead of PCPastry increases steadily over the
course of the experiment. As more queries are injected
into the system, the passive caching mechanism of PC-
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Figure 5: Per Node Storage Overhead: CobWeb-TL incurs
significantly lower storage overhead than Beehive, while
CobWeb-TB, because of its bandwidth limit constraint, in-
curs the least storage overhead.
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Figure 6: CobWeb-TL converges to the target latency of 1
rapidly, while PCPastry converges much more slowly.

Pastry indiscriminately caches every object that passes
through every node. In sharp contrast, CobWeb-TL com-
putes an optimal replication strategy and stores a much
smaller set of objects at each node. Once CobWeb-TL
achieves a steady state where it is able to meet its perfor-
mance target, its storage overhead remains constant.

5.1.3 Flash Crowds
One of the goals of the CobWeb system is to alleviate
the “Slashdot effect”, also known as “flash crowds.” We
simulate the conditions of a flash crowd and show that
CobWeb adapts rapidly to such situations. In this experi-
ment, the workload consists of 409,600 queries for a total
of 5000 unique objects. The query distribution follows a
Zipf distribution with exponent 0.9 and the aggregation
interval for CobWeb is set to 45 seconds. The two sys-
tems, CobWeb-TL and CobWeb-TB, are configured with
a target latency of 1 hop, and a target bandwidth limit of 2
kbps respectively. In order to simulate a flash crowd, the
popularities of the 10 least popular objects in the system
are increased by three orders of magnitude, after 10 hours,
making them the most popular objects in the system.

Figure 8 shows the average latency observed by clients
over the course of the experiment. At the 10th hour, when
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Figure 7: Per Node Storage Overhead: CobWeb-TL’s stor-
age overhead reaches a low, steady-state value rapidly, while
PCPastry’s storage overhead increases steadily overtime.

5 10 15 20
0.5

0.75

1

1.25

1.5

time (hours)

la
te

nc
y 

(h
op

s)

CobWeb TL
CobWeb TB

Figure 8: Network bandwidth consumed during a “flash
crowd”: CobWeb-TL sees a sudden increase in network
bandwidth usage which rapidly returns to its previous steady
state; CobWeb-TB shows little change in network band-
width usage.

the “flash crowd” occurs, both CobWeb-TL and CobWeb-
TB experience a sudden increase in the average latency.
However, both systems quickly recover to their steady
state average latency within a matter of minutes.

The corresponding network bandwidth consumption is
shown in Figure 9. When the “flash crowd” occurs,
CobWeb-TL’s network bandwidth consumption increases
rapidly, because CobWeb-TL aggressively replicates the
newly popular objects in order to meet its performance
targets. CobWeb-TB, on the other hand, sees only a small
increase in its network bandwidth consumption.

Our results show that CobWeb performs well under
“flash crowd” conditions. CobWeb’s fast aggregation
techniques allowed the system to detect changes to ob-
ject popularity quickly and change replication strategy ac-
cordingly. As a result, both CobWeb-TL and CobWeb-
TB were able to recover to their steady state performance
within minutes. CobWeb-TB was able to accomplish this
while staying within its target bandwidth limit.
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Figure 9: Average lookup latency during a “flash crowd”:
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Figure 10: Cdf of latency to fetch web objects: clients using
CobWeb observed a large performance increase over clients
fetching web objects directly from web servers.

5.2 Physical Deployment
We next show results from a live deployment of CobWeb
on PlanetLab to demonstrate that the performance benefits
seen in simulations are achievable in practice.

Our deployment consists of a set of 90 widely dis-
tributed Planet-Lab [2] nodes, each acting as a CobWeb
server. Each CobWeb server is configured in CobWeb-
TL mode, minimizing network overhead while aiming a
target lookup latency of 0.5 hops. We use a workload de-
rived from a week-long trace from a busy proxy server
that is part of the IRCache project at the National Lab-
oratory for Applied Network Research [13]. Our trace
contains a total of 100,000 queries for 24,713 unique ob-
jects. The query distribution closely follows a Zipf-like
distribution with parameter 0.83.

We divide this workload uniformly and issue HTTP re-
quests from 20 PlanetLab nodes. The aggregate rate of
queries sent into the system is about 240 queries per sec-
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Figure 11: Hit Rates over time: CobWeb-TL converges to a
target hit rate of 0.5

ond. We measure the time taken to complete each query
as seen by each of these clients, as well as the network
overhead and cache hit rates seen by each CobWeb server.
Next, we repeat the experiment on Coral, another content
distribution network deployed on Planet-Lab [10]. Fi-
nally, we measure the latency seen by each of the clients
when they fetched web objects directly from the origin
servers without the use of any web proxies.

We note that CoralCDN is not a performance-oriented
content distribution network. Instead, it is designed to
alleviate load on popular but poorly provisioned web
sites. Therefore, a direct performance comparison be-
tween CobWeb and CoralCDN is unfair. Our inclusion
of CoralCDN in our measurements serves merely as a in-
dication of the performance of a representative content
distribution network deployed on the same platform as
CobWeb.

Our experimental results show that CobWeb provides
a significant performance improvement over fetching ob-
jects directly from the origin server. Figure 10 shows
the cumulative distribution of lookup latencies for fetch-
ing objects through CobWeb and directly from the origin
server. Note that the horizontal axis of the graph is plotted
on a log scale. We observe that the cumulative distribution
graph for CobWeb rises steeply to about 0.58. This steep
rise corresponds to the large portion of queries that were
satisfied by a hit in the local cache. Approximately 60%
of queries were satisfied in less than 30 milliseconds. In
contrast, less than 5% of direct fetches were completed in
that time. The graph shows that the median time to fetch
an object through CobWeb was 27 milliseconds, while the
median time to fetch an object directly from the origin
web server was 200 milliseconds.

We also measured the hit rates observed at each of
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Figure 12: Network Overhead Per Node: CobWeb incurred
a modest network overhead.

the CobWeb proxies. Figure 11 shows the change in hit
rates as the experiment progressed. As CobWeb proxies
learned about the object and query distribution, objects
begin to be replicated in the network, causing hit rates to
gradually increase. We see that after 4 hours, CobWeb’s
hit rate stabilizes around 0.5. This shows that CobWeb
successfully meets its performance targets.

Our measurements shows that the network overhead in-
curred was modest, never exceeding 500 bytes per second
(Figure 12).

CobWeb demonstrates that informed, proactive repli-
cation is capable of supporting a high-performance con-
tent distribution network that minimizes resource over-
head by taking into account object popularity, sizes, and
update rate when computing the optimal replication solu-
tion. The modest network overhead incurred suggests that
CobWeb can scale to support a large population of clients
with a high query rate.

5.3 Summary
Overall, our results show that CobWeb performed well
under a variety of conditions. Our simulation results show
that CobWeb was able to meet performance targets while
minimizing resource consumption overhead. In particu-
lar, CobWeb-TL successfully achieved a target latency of
0.5, matching that of Beehive while incurring only half
the storage overhead. In addition, CobWeb-TB was able
to optimize lookup latency while respecting the consump-
tion constraints placed on it.

When compared to passive caching, our results show
that CobWeb’s proactive replication approach is not only
capable of achieving better performance, when set to
match PCPastry’s steady state performance, CobWeb
achieves converges to the desired performance faster, and

at a lower overhead cost.
Our simulations also showed that CobWeb was capa-

ble of alleviating the decreased performance that is typi-
cally observed during a “flash crowd”. Using a short ag-
gregation interval, CobWeb was able to react quickly to
sharp changes in object popularity and adjust its replica-
tion strategy accordingly to meet performance targets. In
addition, CobWeb-TB was able to adapt quickly to the
“flash crowd” while staying under its bandwidth limit.

Finally, we verified our simulation results through mea-
surements from a real world deployment of CobWeb. Our
measurement results show that CobWeb is indeed capa-
ble of achieving a high hit rate under a real work load.
CobWeb achieved a median fetch latency of 27 millisec-
onds compared to the median fetch latency of 200 mil-
liseconds for fetching objects directly from the origin
server.

6 Related Work

Web caching has been an active area of research, with
many proposed algorithms for cooperative caching [6, 30,
16, 24, 9, 20, 28, 21, 10, 29]. However, previous work has
mostly been based on opportunistic, passive caching al-
gorithms or heuristic approaches. The CobWeb approach,
based on an analysis-driven approach for proactive repli-
cation, qualitatively differs from demand-driven caching
by proactively propagating replicas, and from existing
content distribution networks by relying on a near-optimal
solution instead of heuristics for replication.

Recently, several research groups have looked at ap-
plying peer-to-peer techniques to web caching. One such
system is Squirrel, a peer-to-peer web cache targeted at
replacing central demand-side web caches within a lo-
cal are network [14]. The Squirrel system is a passive,
opportunistic cache that is functionally equivalent to the
PCPastry system used for comparison in our simulation
experiments.

Backslash, a collaborative web mirroring system, also
uses a distributed hash table overlay to cache resources.
It aims to aggressively replicate popular resources to al-
leviate “flash crowds”. Stavrou et al. propose using a
randomized overlay to achieve similar goals [26]. How-
ever, both systems focus solely on mitigating the effects
of flash crowds and suffer from high latency, making their
performance undesirable under normal conditions.

Besides CobWeb, two other CDNs are currently de-
ployed on Planet-Lab. Codeen is an academic test bed
CDN that explores different CDN control algorithms and
evaluates the design space of heuristics-based CDN redi-
rection algorithms that balance load, locality, and prox-
imity [29]. Coral is a peer-to-peer content distribution
network that relies on a hierarchical structure “distributed
sloppy hashtables” to reduce the load seen by web servers,
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shielding ill-provisioned websites from excess traffic.
Beehive is a DHT that uses optimization techniques

similar to CobWeb [22]. Beehive is a DHT based on opti-
mal structured replication that is capable of constant time
lookup performance. However, Beehive is ill-suited for
use in a CDN setting because it makes several critical as-
sumptions about the object and query distribution of the
application it serves. First, Beehive assumes that the pop-
ularity of objects follows a strict Zipf distribution. Sec-
ond, Beehive assumes objects are of uniform sizes and
thus the replication cost of one object is the same as any
other. Third, Beehive does not take into account the up-
date rates of objects, and hence fails to account for the
cost of keeping replicated objects consistent. In CobWeb,
we have shown how these shortcomings can be overcome
by a more general analytical model and a more powerful
distributed solver.

7 Conclusion

In this paper, we presented CobWeb, a globally dis-
tributed content distribution network that takes a princi-
pled approach to the problem of web object caching.

Overall, this paper makes three contributions. First, we
formally capture the fundamental tradeoff between per-
formance and cost of web caches in an analytical model,
and pose it as a mathematical optimization problem. We
propose a novel algorithm and show that the optimization
problem can be resolved in a near-optimal fashion.

Second, we show how our analytical model and its nu-
merical solution can be implemented in a distributed fash-
ion on a peer-to-peer substrate. The resulting content dis-
tribution network, CobWeb, benefits from the resilience
and self-organizing properties of distributed hashtables,
allowing it to scale and recover from failures. In addi-
tion, CobWeb is able to achieve a target lookup latency
while minimizing network and storage overhead, opti-
mize lookup latency while meeting a resource consump-
tion budget, and adapt quickly to changes in workloads.

Finally, through extensive simulations driven by real
world trace data, and measurements from a real deploy-
ment of the CobWeb system on Planet-Lab, we show that
CobWeb is indeed capable of meeting its target perfor-
mance goals.
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