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Existing content aggregators provide fast and efficient

access to large volumes of shared data and serve as crit-

ical centralized components of many peer-to-peer sys-

tems, including content discovery for BitTorrent. These

aggregators’ operators are tasked to spend significant

human resources to manually vet uploaded data to en-

sure compliance with copyright laws. This task does not

scale with today’s increasing demand for such services.

In this paper, we introduce Blindfold, a scheme to en-

sure that the operators of content aggregators are com-

pletely blind to the content that they are storing and serv-

ing, thereby eliminating the possibility to censor con-

tent at the servers. It works by partitioning the search

and upload operations into a series of dependent key-

value operations across servers under different admin-

istrative domains, with the connection between servers

obfuscated using captchas. We have implemented a pro-

totype of Blindfold to show that it is a simple, feasible,

and efficient system for serving content that is opaque to

the storage servers.

1 Introduction

BitTorrent is one of the most popular peer-to-peer proto-

cols, yet it still relies on centralized components. These

centralized components simplify difficult problems re-

lated to trust and management, resulting in a system that

is easy to deploy and understand. Centralized compo-

nents for content discovery, such as The Pirate Bay [4]

and Mininova [2], collect and provide a searchable index

of available content through a web frontend. However,

large centralized systems that rely on user contributions

face the daunting task of vetting the voluminous content,

a process that demands extensive human resources, or

risk subjecting themselves to copyright infringement lit-

igation.

This paper presents Blindfold, a novel system that en-

ables users to upload to and search a public key-value

storage server without revealing the true keys or values

to the server or third parties. The goal of Blindfold is

to empower key-value storage operators to be oblivious

to how their services are used, allowing them to operate

under the same model as public utility providers. Blind-

fold ensures that storage operators are blind to the con-

tent that they handle, keeping keys and values encrypted

and opaque to the servers.

A system that provides honest clients unrestricted ac-

cess to a corpus without revealing any information about

that corpus to the storage server or attackers is infeasible.

Instead, Blindfold provides non-authenticated clients full

access to the data through explicit keyword searches; at

the same time, it obstructs the ability to efficiently enu-

merate the stored content.

The key insight behind Blindfold is to partition the

search and upload operations into a series of dependent

key-value operations that are performed across multiple

storage servers under different administrative domains.

The servers are unaware of the partitioning and chain-

ing of operations and of each other; a simple in-browser

client controls the high-level search and upload proto-

cols and serves as a communication bridge between the

servers. Cryptographic functions hide the true content

stored on each server, and captchas obfuscate the con-

nection between servers to protect the system from auto-

mated, dictionary-based attacks.

Blindfold is fast and efficient, requiring only simple

and inexpensive cryptographic operations and a constant

number of server queries per search or upload operation.

It uses the standard key-value storage interface, allowing

the use of public key-value storage services and enabling

it to be immediately and widely deployable. We have

implemented a prototype of Blindfold and have found it

easy to use and unobtrusive to the user.

2 Related Work

There has been much work in private database systems

that define cryptographic protocols for searching over en-

crypted data. Existing protocols fall into two main cate-

gories, depending on who owns the data in question. The

larger body of work aims to encrypt a database of sensi-

tive data so that an untrusted server can store the database

and perform searches from authorized queriers without

read or write access to the cleartext. Related systems pro-

vide additional properties, such as protecting the search

keywords and search results from the server [9], reorder-

ing the entries in the encrypted database to prevent statis-

tical attacks based on data accesses [11], and designing

logarithmic-time (rather than linear-time) algorithms for

searching over encrypted data [5]. Our work also aims to
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obscure content from the server, but also enables public

access to content matching keyword searches.

Another body of work examines encrypted database

systems where the server owns the data and protects

it from unauthorized queriers. The Secure Anonymous

Database Search system [8] introduces two intermediate

servers that together provide client anonymity while en-

suring that all queries originate from a set of clients that

were authorized out-of-band. In contrast, Blindfold pro-

vides a public keyword search interface rather than one

based on access control lists. Much of the existing work

in encrypted database protocols strives to make searches

over encrypted text more efficient. In contrast, our sys-

tem stores key-value mappings, where inserted values

have associated keywords chosen by their content origi-

nators, which enable constant-time searches for content.

The most similar work to Blindfold is Peekaboo [12],

a key-value store that splits keys and values across mul-

tiple servers to preserve the privacy of clients. Unlike

Blindfold, Peekaboo assumes that servers do not col-

lude. Moreover, Peekaboo relies on a distributed pro-

tocol among servers rather than operating across servers

under different administrative domains that can be un-

aware of each other’s existence. Much of Peekaboo’s im-

plementation is centered around enforcing access control

on content without breaking its privacy properties.

Decentralized storage systems allow searches over

data that is potentially spread across many machines.

Freenet [7] implements a peer-to-peer approach to data

storage where users add named files that can be retrieved

by other users. Freenet’s main goal is to prevent censor-

ship by anonymizing queries with sequences of pseudo-

random hops from query originators to content location,

and to prevent tampering through signatures. These goals

are orthogonal to our own, and one could implement

Blindfold on top of Freenet to achieve the properties of

both systems.

3 Approach

The Blindfold architecture comprises three components:

two or more servers, jointly called the aggregator, which

store mappings from search keywords to content; a stan-

dalone service, which generates image captchas [10] that

require human interaction to solve; and clients, which

orchestrate uploading new content and searching for ex-

isting content. Each content object (e.g., a BitTorrent

file in the case of an aggregator) has an associated set of

search keywords chosen by the content’s originator. A

search query, consisting of one or more keywords, yields

all content objects that are associated with all the key-

words. For simplicity, we assume that the aggregator is

made up of two logically centralized servers, providing a

service analogous to that of existing BitTorrent aggrega-

tors.

3.1 The Blindfold Protocol

The basic Blindfold protocol splits search keywords and

content objects across two servers that operate under dif-

ferent administrative domains. The two servers are the

index server SI , which stores mappings from keywords

to captcha images, and the content server SC , which

stores mappings from captcha solutions to content ob-

jects. Clients are users in the system that issue search

queries for content and upload new content. Lastly,

Blindfold relies on a captcha generator G, a standalone

service that issues signed captcha images. Blindfold

handles uploading content and processing search queries

without requiring SI , SC , or G to communicate with

each other; in fact, the three servers can be oblivious of

each other’s existence.

Blindfold requires clients to perform explicit search

queries to reveal content at the aggregator. The aggrega-

tor stores only hashes of search keywords and stores all

content encrypted with keys known only to its origina-

tors. These encryption keys are generated from the con-

tent’s associated keywords. The intuition behind Blind-

fold is that search keywords are necessary and sufficient

for generating both the hashed keywords stored on the

aggregator as well as keys that decrypt the content stored

under those keywords, obviating the need for trusted

third parties.

We begin by specifying our notation. Let h be a

well known one-way hash function. Exponentiating h

indicates repeated composition: h3(x) = h(h(h(x))).
{X}K denotes the encryption of X under key K , and

K
pub

A
and K

pri

A
denote agent A’s public and private keys

of an asymmetric key pair, respectively. All keys are

symmetric unless designated public or private. We use

〈x, y〉 to denote the concatenation of x and y and x ⊕ y

to denote the bitwise exclusive OR of x and y. We use

hmack(m) to denote the HMAC of message m under

symmetric key k [6]. Lastly, captcha(p) represents the

solution to captcha p, where captcha is a one-way func-

tion that can be computed easily with human interaction,

but is difficult to compute automatically.

To upload new content to the aggregator, a client

chooses search keywords to associate with the new con-

tent and requests a new captcha for each keyword from

the captcha generator. It sends the unsolved image

captchas and hashed keywords to the index server and

sends solved captchas and encrypted content to the con-

tent server. To prevent the index server from tamper-

ing with captchas and their mappings from keywords,

the client binds keywords to captchas using HMACs with

keywords as the secret keys, which it also sends to the

index server. The client encrypts a separate copy of the

content for each of its keywords. The encryption key for

each copy is deterministically computed from a keyword

2



Client A uploads content C with keywords w1, . . . , wm:

1. G → A : 〈gi, {h(gi)}K
pri

G

〉 for i = 1..m, where each gi

is a new captcha image.

2. A → SI :
〈hα(wi), gi, {h(gi)}K

pri

G

, hα(hmacwi
(gi))〉 for i =

1..m for large, globally known integer α.

3. SI → A : Bi = 〈g′

i, h
α(hmacwi

(g′

i))〉 for i = 1..m,

where

Bi =

{

〈gi, h
α(hmacwi

(gi))〉 if MI(h
α(wi)) = ∅

MI(h
α(wi)) otherwise

.

SI also verifies the captchas’ signatures and ensures that

each h(gi) /∈ HI . It then updates MI with mapping

hα(wi) 7→ 〈gi, h
α(hmacwi

(gi))〉 for i = 1..m if no

mapping exists for that key and adds each h(gi) to HI .

4. A → SC : 〈{C}Ki
, h(captcha(g′

i))〉 for i = 1..m after

solving the captchas, where each encryption key

Ki = hα−1(hmacwi
(g′

i)).

5. SC updates MC with mapping h(captcha(g′

i)) 7→
MC(h(captcha(g′

i))) ∪ {{C}Ki
} for i = 1..m.

Figure 1: The protocol for uploading new content to the

aggregator.

and its corresponding captcha. This enables queriers

searching for those keywords to generate the decryption

keys, provided that they obtain the captchas from the in-

dex server. The client hashes values α times for storage

on SI and encrypts content with keys computed from the

α − 1 hash for storage on SC . This ensures that the en-

cryption keys cannot be computed from the values stored

on SI .

The servers that comprise the aggregator, SI and SC ,

are independent key-value stores with key-value map-

pings MI and MC , respectively. At a high level, MI

is a mapping from hashed keywords to unique captchas,

and MC is a one-to-many mapping from hashed captcha

solutions to encrypted content. Initially, MI and MC

map all values to the empty set. When the index server

SI receives a content upload request, it verifies that the

captcha image is signed by the captcha generator. SI

maintains a set HI of the hashes of all captchas stored

in MI , which it uses to reject duplicate captchas. If the

captcha is unique and its signature is valid, SI adds to

MI the mapping from hashed keyword to captcha image

for each keyword that is not yet mapped. It returns to the

client each keyword’s captcha after updating MI , which

the client solves to compute the new content’s keys on the

content server. The content server updatesMC by adding

the new content to the sets mapped from the captchas’

solutions. The index server never replaces existing key-

value mappings, so the captchas’ solutions always refer

to the same keys on the content server. This ensures that

searches for a keyword result in all content that has been

Client A queries the aggregator for keywords w1, . . . , wm:

1. A → SI : hα(wi) for i = 1..m and large, globally

known integer α.

2. SI → A : MI(h
α(wi)) =

〈gi, h
α(hmacwi

(gi))〉 for i = 1..m.

3. A → SC : h(captcha(gi)) for i = 1..m, after verifying

the keyword-captcha HMACs and solving the captchas.

4. SC → A :
⋃m

i=1
MC(h(captcha(gi))) =

{Cj}Kj
for j = 1..n, where n is the number of search

results.

5. A computes Kj = hα−1(hmacw(g)) for j = 1..n,
where w is the keyword that SC mapped to search result

j and g is its corresponding captcha, and uses them to

decrypt each Cj .

Figure 2: The protocol for issuing a search query to the

aggregator and decrypting the results.

inserted under that keyword.

Figure 1 lists the full protocol for uploading new con-

tent. The protocol prevents malicious users from cor-

rupting the aggregator when uploading new content: the

index server’s mapping is write-once per key, and extra

mappings on either server are of no consequence. The

protocol as described in this section assumes that the ag-

gregator servers provide basic key-value storage primi-

tives, enabling Blindfold to operate on existing key-value

store services. Section 4 describes how using a special-

ized many-to-many key-value store on the content server

enables it to store only one copy of each encrypted con-

tent object instead of a copy per associated keyword.

To search for content, a client hashes each keyword in

a query string and sends them to the index server. The

index server responds with one captcha per search key-

word, each with the HMAC that binds it to its search key-

word. The client verifies the HMACs to ensure that the in-

dex server did not tamper with its mappings, then solves

the captchas and sends their hashed solutions to the con-

tent server. The content server responds with a set of en-

crypted search results. The client computes the content’s

decryption keys from the HMAC of any keyword from the

original query and the keyword’s corresponding captcha

from the index server. Lastly, the client prunes duplicate

search results after decrypting them. Figure 2 lists the

full search protocol.

The only link between the two aggregator servers is

the captchas, which remain unsolved on the index server,

with their hashed solutions indexing the mapping on the

content server. Solving captchas efficiently requires hu-

man interaction, obscuring the links between related en-

tries on the two servers except when a client searches

for those keywords. The result is that keywords, whose

hashed values are stored on the index server, are difficult

to link to content objects on the content server, which
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are encrypted using their associated keywords. Even if

a link between entries on the servers were known, the

hashed keywords on the index server are insufficient to

decrypt the content on the content server.

3.2 Security

Blindfold’s primary goal is to protect the aggregator’s

operators from discovering the content that they are serv-

ing. Blindfold achieves this without relying on out-

of-band authenticators, allowing any client to perform

searches. It is impossible for a public search inter-

face to differentiate between honest clients andmalicious

clients. Blindfold’s security goals, then, are to prevent

the aggregator’s data from being quickly and systemati-

cally discovered while remaining unobtrusive to honest

users as they issue targeted searches for content.

The primary defense against attackers is the separa-

tion of hashed keywords from the encrypted content.

Section 3.1 discussed the motivations for splitting the

data across two administrative domains. An attacker that

compromises only the index server gleans very little in-

formation about the content. The index server does not

store any content, limiting the attacker to mounting a

dictionary attack to discover the keywords in the sys-

tem. The index server’s mapping can be pre-loaded with

captchas whose solutions do not appear on the content

server. Pre-loading such a mapping for every English

word would effectively hide the real keywords, reducing

the viability of this attack. Because each hashed keyword

maps to a unique captcha, a snapshot of the server con-

tains no information about the popularities of keywords.

A statistical analysis of requests over time or an exam-

ination of server request logs would reveal popularities

of entries on the servers, but would not reveal the actual

keywords or content stored on the aggregator.

An attacker that compromises only the content server

would have access to the content objects, each encrypted

with one or more keywords and their corresponding

captchas on the index server. Without access to the

captchas themselves, an attacker cannot decrypt the con-

tent. Unfettered access to either server alone leaks no

information of the content stored on the aggregator.

Compromising both aggregator servers does not help

automated attackers unravel the mapping from keywords

to content, as each mapping is protected with a captcha.

If the index server is pre-loaded with mappings, as de-

scribed above, an attacker would have to solve poten-

tially many captchas before discovering a link between

an index server mapping and a content server mapping.

Even after discovering a link, the keyword hashed on the

index server does not reveal the plain-text keyword re-

quired to decrypt the corresponding content on the con-

tent server. An attack on Blindfold would require sig-

nificant resources, both computational and human, to de-

crypt each content object.

4 Implementation

We have implemented a full prototype of Blindfold in

three parts. The first is a key-value store service that im-

plements get and put operations. The index and content

servers are both instances of this generic key-value store,

with parameters that specify how they handle key colli-

sions on insertion. The index server implements a write-

once mapping, where it discards a put request if a map-

ping from the key already exists. The content server’s

one-to-many mapping stores all values inserted under

each key by mapping keys to expandable sets of values.

Second, we implemented a captcha generator that returns

randomly generated captchas and signs each captcha im-

age with its private key. Alternatively, Blindfold can use

existing services that generate captchas, which are plen-

tiful [1,3]. Lastly, we implemented the client, which sup-

ports upload and search operations, each of which causes

the client to interact with the other components. The

Blindfold prototype is open source and publicly available

at http://www.cs.cornell.edu/∼ryanp/blindfold/.

The Blindfold prototype is surprisingly easy to use.

Our experience is that solving one captcha per search

keyword is unintrusive and requires little effort. Setting

global parameter α to 105 provides a reasonable trade-

off between search latency and the cost of mounting a

dictionary attack to derive content decryption keys; on

a modest desktop machine, a search requires approxi-

mately two seconds of CPU time per keyword plus the

time required to solve the captchas. The delay is neg-

ligible to honest clients because clients compute con-

tent decryption keys at the same time the user is solving

captchas.

The semantics of the index server’s write-once and

content server’s one-to-many stores are typical of key-

value stores. However, if the more sophisticated seman-

tics of a one-to-many store are unavailable, a write-once

store can be used to implement a one-to-many store with

only modifications to the client. If a client attempting

to insert mapping k 7→ v finds that mapping k 7→ v′

already exists, it inserts mapping h(k) 7→ v instead.

To perform a lookup for key k, a client issues requests

for k, h(k), h2(k), . . . until it receives the empty set as a

value, signaling to the client that it has reached the end

of the chain. The union of all returned values is equiva-

lent to the intended one-to-many mapping k 7→ {v, v′}.
The write-once semantics of the underlying store prevent

malicious clients from modifying an existing chain.

Our implementation of Blindfold uses two optional

mechanisms that prevent clients from hijacking key-

words without increasing the number of captchas that

queriers must solve. First, it uses a trusted captcha gen-
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erator that signs captchas coupled with a modified index

server that verifies signatures to ensure that all captchas

are solvable and require human interaction. Second, the

index server rejects duplicate captchas to prevent multi-

ple keywords from mapping to the same captcha, which

would reduce the effort required to enumerate content.

Lacking a trusted captcha generator or a modified in-

dex server, the correctness of the protocol remains in-

tact if the index server stores a separate captcha for each

content object under the same keyword. This requires

queriers to solve a captcha for each search result, but the

user could stop at any time to view a partial list of results.

An optimization on the content server enables each

encrypted content object to be stored only once in-

stead of once per associated keyword. This requires

SC to expose multiput, which maps multiple keys to

a single instance of the value, making MC a many-to-

many mapping. The Blindfold protocol changes accord-

ingly: when a client adds content C under keywords

w1, . . . , wm with corresponding captchas g1, . . . , gm ac-

cording to SI , it generates just one random encryption

key K and constructs vectors ~p = h(g1), . . . , h(gm);

~q = h(captcha(g1)), . . . , h(captcha(gm)); and ~b =
b1, . . . , bm, where bi = K ⊕ hα−1(hmacwi

(gi)). The

purpose of bi is to enable a querier for keyword wi to

compute the key K and decrypt C. The client sends to

SC the value 〈{〈C, ~p〉}K ,~b, ~q〉. When SC receives the

upload request, it adds to MC a reference to the value

〈{〈C, ~p〉}K ,~b〉 under each hashed captcha solution in ~q.

When SC processes search queries, it returns the inter-

section of the requested sets because values for the same

content are identical, reducing bandwidth at the server.

When a querier receives a search result, it generatesm

potential decryption keys Ki = bi ⊕ hα−1(hmacw(g))
using an arbitrary keywordw from its query and w’s cor-

responding captcha g, and attempts to decrypt {〈C, ~p〉}K

with each key Ki until it succeeds. The client treats ~p as

a checksum, recognizing a successful decryption when

h(g) matches some element of ~p. Because each content

object will only have a few possible decryption keys, one

computed from each element of~b, the additional time re-

quired to perform a search is imperceptible to the querier.

The key-value store in the Blindfold prototype supports

themultiput operation and implements this optimization.

A pragmatic issue in running key-value stores is re-

moving old content to reclaim space. This is particularly

important in Blindfold because the security of captchas

decays over time as automated attacks become more so-

phisticated. Removing key-value entries in Blindfold

poses a challenge because each entry in the index server

is used to service queries for multiple content objects.

Blindfold can be extended to use a versioning scheme un-

der which each keyword on the index server maps to two

captchas at any one time: an active captcha, under which

newly uploaded content is placed, and a legacy captcha,

which expires when its last content object expires. Ac-

tive captchas replace expired legacy captchas, and a new

active captcha takes its place on the next content upload

for that keyword. This scheme places an upper bound on

the age of captchas at the cost of requiring queriers to

solve up to twice as many captchas to perform searches.

5 Conclusions

In this paper, we described Blindfold, a system that en-

ables users to upload to and search a public key-value

store without revealing the true keys or values to the store

or third parties. The system works by partitioning and

chaining upload and search operations into a series of

key-value operations across servers in different admin-

istrative domains. The connection between the servers

is obscured and protected by captchas. We showed that

the system is simple and feasible with a prototype imple-

mentation, and we have found from experience with the

system that it is surprisingly unintrusive to the user and

easy to use.
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