
Antfarm: Efficient Content Distribution with Managed Swarms

Ryan S. Peterson Emin Gün Sirer

{ryanp,egs}@cs.cornell.edu

Department of Computer Science, Cornell University

United Networks, L.L.C.

This paper describes Antfarm, a content distribution sys-

tem based on managed swarms. A managed swarm

couples peer-to-peer data exchange with a coordinator

that directs bandwidth allocation at each peer. Antfarm

achieves high throughput by viewing content distribution

as a global optimization problem, where the goal is to

minimize download latencies for participants subject to

bandwidth constraints and swarm dynamics. The sys-

tem is based on a wire protocol that enables the Antfarm

coordinator to gather information on swarm dynamics,

detect misbehaving hosts, and direct the peers’ allot-

ment of upload bandwidth among multiple swarms. Ant-

farm’s coordinator grants autonomy and local optimiza-

tion opportunities to participating nodes while guiding

the swarms toward an efficient allocation of resources.

Extensive simulations and a PlanetLab deployment show

that the system can significantly outperform centralized

distribution services as well as swarming systems such

as BitTorrent.

1 INTRODUCTION

Content distribution has emerged as a critical applica-

tion as demand for high fidelity multimedia content has

soared. Large multimedia files require effective content

distribution services. Past solutions to the content distri-

bution problem can be categorized into two approaches,

namely client-server systems and peer-to-peer swarming

systems, whose fundamental limitations render them in-

adequate for many deployment environments.

In the client-server approach to content distribution,

the content owner operates a set of servers that pro-

vide the content to every client without tapping into any

client-side resources. The presence of a central authority

simplifies the design of client-server systems, exempli-

fied by YouTube and Akamai: provisioning the network

simply requires purchasing sufficient bandwidth for the

desired quality of service and the targeted number of

clients; accounting and admission control can be handled

by the servers; clients can be prioritized and bandwidth

can be dedicated to desired transfers at fine granularity.

The chief drawback to the client-server approach is its

cost and feasibility: the distributor must bear the entire

bandwidth cost of distributing the content, and operating

a high-bandwidth data center for a large client population

can be prohibitively expensive [11].

Peer-to-peer swarms offer an emerging alternative,

where clients interested in downloading a file provide

content to other clients interested in the same file.

Swarming protocols transfer part of the bandwidth cost

from centralized servers to the participants and their ISPs

by taking advantage of the additional upload capacity of-

fered by downloading peers. This redistribution of costs

reduces the bandwidth burden on the servers, helps im-

prove download times for clients, and reduces ingress

bandwidth demand for ISPs. Swarming protocols pro-

posed to date, including BitTorrent [1], Avalanche [24],

and Dandelion [52], have been designed to resist techni-

cal and legal attacks by avoiding management and cen-

tralization. This design choice has led to protocols that

lack coordination among peers, rely solely on directly-

obtained measurements to avoid trusting information re-

layed by peers, and depend on randomization to thwart

adversaries. The highly decentralized nature of existing

unmanaged swarming systems leads to a performance

penalty for legitimate content distributors.

To understand why unmanaged swarming architec-

tures fail to make efficient use of bandwidth in multi-

swarm environments, imagine a content provider with

two movies to distribute to two sets of users using a set of

seeders1 over which they have full control and at which

both movies are replicated. Depending on the size of the

swarms and the nature of the peers that make up each

1In this paper, seeders are trusted servers managed by the coordi-

nator that distribute data blocks to peers. This is in contrast with Bit-

Torrent terminology, where seeders are altruistic peers that have fin-

ished downloading a file and provide content without further down-

loads themselves.

1



swarm, the two swarms may have vastly different inter-

nal dynamics. Seeders and peers with blocks belonging

to multiple swarms face a difficult choice: which swarm

should they reward with their upload bandwidth? Simple

heuristics, such as round-robin, are unlikely to work well

because they do not take swarm dynamics into account.

The default BitTorrent behavior, which awards download

slots to the peers with a proven track of fast downloads,

works well within a single torrent, but can lead to whole-

sale starvation in a multi-torrent setting.

The fundamental problem is one of global optimiza-

tion: the seeders should award their bandwidth such that

download times across all swarms are minimized. Cur-

rent swarming protocols lack the mechanisms to com-

pute and operate at this point. Consequently, adminis-

trators that run torrent sites manually prune old torrents

and reallocate bandwidth to more popular downloads by

hand. This approach is not guaranteed to achieve a good

allocation of bandwidth, leads to the “heavy-tail” prob-

lem where old, unpopular torrents are difficult to find,

and does not scale.

This paper describes an efficient content distribution

system, called Antfarm, based on managed swarms. The

goal of Antfarm is to distribute a large set of files to a

potentially very large set of clients. Managed swarms

introduce a hybrid approach to swarming systems in that

they permit a coordinator, typically managed by the con-

tent distributor, to control the behavior of the swarms.

Antfarm is designed to maximize the system-wide

benefit of the critical resource, seeder bandwidth. Each

Antfarm peer provides resources to other participants, re-

ceives unforgeable tokens in return, and receives credit

for its cooperation by presenting these tokens to the

central coordinator. The Antfarm token protocol forces

each participant to divulge its upload contributions to the

swarm coordinator, which enables the coordinator to de-

termine swarm dynamics and allocate bandwidth to com-

peting swarms. This enables the coordinator to exert con-

trol while enabling peers to use microoptimizations, such

as optimistic unchoking for peer discovery, tit-for-tat for

peer selection, and rarest first, to improve the efficiency

of swarming downloads. Overall, the Antfarm transport

protocol makes the system resistant to attacks through

unforgeable tokens, reveals a coarse-grain view of the

network to the central coordinator, and enables the coor-

dinator to adopt and enforce a chosen bandwidth alloca-

tion strategy.

The key contribution of this paper is the design of an

efficient and scalable coordinator for multiple, concur-

rent swarms. Given the internal dynamics of a set of

swarms, we show how to optimize bandwidth among the

swarms such that average download latencies are mini-

mized across all peers. If desired, the algorithm can guar-

antee a minimum service level to certain swarms, avoid

starvation, and enforce prioritization among swarms.

Minimizing the average download latency in turn enables

a content distributor to achieve the best possible service

from the available bandwidth.

This paper makes two additional contributions for

achieving high throughput in a practical multiple-swarm

download service. First, the paper presents a wire-level

protocol for accurately measuring the internal dynamics

of individual swarms by making peer contributions evi-

dent to the coordinator, enabling the coordinator to opti-

mally allocate bandwidth among the competing swarms.

Second, a full implementation of the protocol, accompa-

nied by extensive simulations and a deployment on Plan-

etLab, quantifies the performance of Antfarm against a

client-server system and BitTorrent. In our experiments,

Antfarm achieves aggregate bandwidths up to a factor of

five higher than BitTorrent, and the protocol scales well

with increasing peers and swarms.

The rest of this paper is structured as follows. The

next section describes the Antfarm system and the cen-

tral optimization that underlies the approach. Section 3

outlines the protocol that Antfarm uses for data distri-

bution. Section 4 shows that the system achieves high

performance. Section 5 describes related work and high-

lights Antfarm’s differences, and Section 6 summarizes

our contributions.

2 APPROACH

Antfarm is based on a hybrid peer-to-peer architecture

that utilizes resources provided by peers according to

an optimal strategy for managing multiple swarms com-

puted by a coordinator. Each coordinator can manage

multiple swarms, a single peer may participate in swarms

managed bymultiple coordinators, and coordinatorsmay

be physically replicated to scale with the number of peers

and swarms. For simplicity, we assume a single coordi-

nator in the following discussion and address the issue of

scale in Section 3.

The coordinator’s central task is to achieve the shortest

possible download times across multiple swarms. Find-

ing the right allotment of bandwidth among swarms is

best viewed as a constrained optimization problem. The

primary constraint is the available bandwidth at the seed-

ers. The primary input to this optimization problem is the

inherent response curve of each swarm. The response

curve represents the swarm bandwidth as a function of

allocated seeder bandwidth. It depends on the number

of peers in the swarm, number of seeders, spare band-

width on upload and download links of swarm partici-

pants, and the distribution of unique blocks. Peers’ local

decisions also influence their swarms’ response curves,

2



as peers can advertise a lower upload bandwidth capacity

than they are capable of providing. However, the Ant-

farm wire protocol, discussed in Section 3, encourages

peers to cooperate within their swarms, granting the co-

ordinator more available bandwidth to optimally allocate

among all swarms in the system.

Response curves embody the critical properties of

each swarm and have a characteristic shape—a fact we

exploit in this work. Figure 1 illustrates the characteris-

tic form of the response curve for a homogeneous swarm

with static membership; for illustration purposes in this

example, peer download capacities exceed upload ca-

pacities, and the set of peers does not change through-

out the download. When the seeder bandwidth is small,

the peers in the swarm have unused upload and down-

load capacity. In this regime of operation (region A),

the swarm’s aggregate bandwidth increases rapidly with

the seeder bandwidth, since peers can use their spare up-

load bandwidth to forward new blocks to other peers.

Each individual block the seeders feed into the swarm

will be shared among many peers, highly leveraging the

bandwidth committed by the seeder. Once the peers

in a homogeneous swarm have saturated their uplinks,

the marginal benefit from additional seeder bandwidth

drops significantly. In this regime (region B), any addi-

tional bandwidth that a peer receives only benefits that

peer, since saturated upload links render it unable to for-

ward the data to other peers. Finally, once downlinks of

swarm participants are saturated (region C), the swarm

has reached its maximum aggregate bandwidth. Further

bandwidth provided by the seeders will not impact down-

load latency. If download capacities are lower than up-

load capacities, region B will simply not exist, yielding a

response curve with only two regions.

A coordinator relies on two key properties of response

curves to maximize the achieved aggregate swarm band-

width while respecting the seeder bandwidth constraint.

First, response curves are monotonic: a swarm’s aggre-

gate bandwidth will never decrease as a result of increas-

ing the seeder bandwidth to the swarm. Second, response

curves are concave; that is, their derivatives monoton-

ically decrease over possible seeder bandwidths. Con-

cavity implies that a swarm’s aggregate bandwidth ex-

hibits diminishing returns as the seeders increase their

bandwidth to the swarm. When the seeders increase their

bandwidth beyond a swarm-specific threshold, the peers’

uplinks and downlinks saturate, decreasing their ability

to receive and forward data from the seeders and other

peers.

Real-life swarms are more complex than the idealized

swarms discussed above in that they may comprise het-

erogeneous hosts and exhibit peer churn. They neverthe-

less exhibit several critical properties that Antfarm ex-

0 50 100 150 200
0

200

400

600

seeder bandwidth (KB/s)

a
g
g
re

g
a
te

 b
a
n
d
w

id
th

 (
K

B
/s

)

 

 

theory

smoothed response curve

measured dataA

B

C

Figure 1: Response curves of a theoretical homogeneous

swarm and a measured heterogeneous swarm on Planet-

Lab. Aggregate bandwidth increases rapidly as seeder band-

width increases (A) until peer uplink capacity is exhausted (B)

and reaches its maximum when downlinks are saturated (C).

ploits. In heterogeneous swarms, where peer uplinks and

downlinks are nonuniform, the transitions between the

disparate regions of the response curves are smoother.

This is because different peers’ upload and download ca-

pacities saturate at different points, smoothing the dis-

continuous transition seen in a homogeneous swarm. In

addition to heterogeneity, real swarms exhibit peer churn,

where peers can join at any time and leave due to failure,

cancellation, or completion. Such membership changes

shift the response curve because their influence affects

the swarm’s dynamics, but do not violate the monotonic-

ity and concavity properties outlined above. Section 3

describes how Antfarm maintains an accurate view of

the system and adjusts its behavior in the presence of dy-

namic membership.

The monotonicity and concavity of swarm response

curves form the foundation of Antfarm’s multiple-swarm

optimization. Intuitively, when a seeder is supporting a

swarm that has a large number of saturated peers, such as

in regions B or C in Figure 1, it should reduce its band-

width to that swarm and divert it to a swarm whose peers

can readily share additional bandwidth. More generally,

given a response curve for each swarm Antfarm is cur-

rently distributing, the coordinator “climbs” each of the

curves, always preferring the steepest curve, until it has

allocated all seeder bandwidth. The resulting point of

operation on each curve represents the amount of band-

width the seeders plan to feed to each swarm and the ex-

pected aggregate bandwidth within each swarm based on

the seeder bandwidth. Given each swarm’s measured re-

sponse curve, this allocation of seeder bandwidth is opti-

mal [40]: decreasing the seeder bandwidth to one swarm

in favor of another will not improve the overall perfor-

mance of the system. Antfarm’s allocation of seeder

3



t1
t2

t3

a1

a2

a3

s1 s2 s3

seeder bandwidth

a
g
g
re

g
a
te

b
a
n
d
w

id
th

Figure 2: Optimal bandwidth allocation for three concur-

rent swarms. The Antfarm coordinator awards seeder band-

width by hill-climbing the steepest response curves first until

all available bandwidth has been allocated.

bandwidth ensures that the content distributor achieves

the highest performance possible from its servers’ band-

width.

The optimization process described above may reach

a point at which the seeders have excess bandwidth to

award, yet the derivatives of multiple response curves

are identical, indicating that multiple swarms offer the

same global benefit (Figure 2). In such cases of equiva-

lent global benefit, Antfarm uses a tie-breaker algorithm

to maximize perceived improvement by peers. Suppose

that two swarms t1 and t2 have response curves with

equivalent slopes at seeder bandwidths s1 and s2, corre-

sponding to swarm aggregate bandwidths of a1 and a2,

with a1 > a2. While this indicates that awarding a block

to either swarm would improve average download times

across the entire network by an equal amount, the in-

cremental benefit to members of t1, which already en-

joy a larger aggregate throughput, is small compared to

the relative improvement that members of t2 would per-

ceive. Consequently, Antfarm breaks ties by awarding

bandwidth to swarms with lower bandwidth when mul-

tiple response curves have the same slope. This mecha-

nism ensures that the system maintains its primary goal

of minimizing download time, while the participants re-

ceive maximal marginal benefit whenever there is free-

dom in making a bandwidth allocation that is in line with

the primary goal.

3 IMPLEMENTATION

The Antfarm implementation is centered around a token-

based wire protocol that implicitly reveals peer dynam-

ics to the coordinator. This section provides an overview

of the Antfarm implementation, outlines the wire pro-

tocol and the use of tokens, and describes how tokens

are used in the larger context of bandwidth allocation.

We illustrate the common case first and treat the corner

cases stemming from token misuse, peer misbehavior,

and overall scalability in Sections 3.4 and 3.5.

3.1 Overview

An Antfarm deployment consists of two types of servers

provided by the content provider. Coordinators man-

age the system by issuing tokens, computing response

curves, and determining bandwidth allocations. Seed-

ers expend their bandwidth to distribute blocks of files

to peers. For small deployments, a single server machine

can act as both coordinator and seeder, while large de-

ployments will comprise multiple physical hosts.

Antfarm seeders are members of all swarms and dis-

tribute data blocks without downloading any themselves.

They may be under the direct administrative control of

the coordinator, or they may be deployed by ISPs to re-

duce their ingress bandwidth demand; in either case, they

may be geographically distributed to improve bandwidth

to peers. Seeders do not demand tokens from peers in

exchange for blocks because they do not place resource

demands on the system.

Peers interact with coordinators, seeders, and each

other to download files. Each peer in Antfarm is identi-

fied by a certificate acquired from the coordinator during

an initial, one-time registration. Once a connection with

a peer has been established and the peer has been au-

thenticated with the coordinator, wire messages identify

peers using a public IP address and port pair that is short-

hand for the verified certificate. Antfarm assumes that

peers are either rational, where the protocol will incen-

tivize them to contribute resources to the global pool, or

malicious, where they may behave in a Byzantine man-

ner; the protocol is resilient to such malicious hosts (see

Section 3.5).

The Antfarm wire protocol is designed around peer-

to-peer data exchange in return for tokens. A token is

a cheap, unforgeable capability that the bearer may ex-

change for a data block in a given swarm. Logically,

a token is composed of a unique, randomly generated ID

string, an expiration time after which the token is invalid,

a reference to the intended spender of the token, and a

reference to the file for which the token should be spent.

The coordinator records these four fields when it mints

a new token for a particular peer. A token can only be

spent by the peer to which it was issued in exchange for

blocks of the designated file; tokens are not interchange-

able between swarms.

Downloadable files in Antfarm are described by a

“.ant” swarm description, analogous to a “.torrent” file,

which contains the name of the file, the address and port

4



of the coordinator managing the swarm, data block size,

and a hash of each data block.

3.2 A Peer’s Perspective

An Antfarm peer joins a swarm by opening a connection

to the swarm’s coordinator and authenticating itself us-

ing its peer certificate. Once a connection has been estab-

lished, all correspondencewith the coordinator and peers

occurs with the exchange of protocol messages summa-

rized in Table 1. When a new peer joins a swarm, the

coordinator sends the peer a subset of the peers in the

swarm and an initial allowance of tokens unless the new

peer has a history of malicious behavior. The peer can

similarly join additional swarms, acquiring peer lists and

initial tokens for each.

The basic data transmission protocol in Antfarm has

three phases consisting of peer and block selection, data-

for-token exchange, and bandwidth allocation.

Peers may determine their own criteria for selecting

peers and blocks. This enables Antfarm peers to per-

form optimizations based on local information, reduc-

ing the burden on the centralized coordinator. The de-

fault behavior in Antfarm for peer and block selection is

identical to BitTorrent. Peers retain a prioritized list of

other peers with which to exchange data blocks (to un-

choke). The priority order is determined by the running

average bandwidth achieved through that peer’s history

of interactions. Blocks are chosen using a rarest-first al-

gorithm; peers maintain a bitmap of blocks held by each

connected peer constructed from block acquisition noti-

fications sent by peers after each block transfer. Since

swarming systems that rely solely on local information

and randomized interactions may operate at reduced ef-

ficiency due to lack of information [30], the Antfarm

coordinator uses its global knowledge to influence peer

selection. The coordinator monitors each peer’s upload

history and identifies underutilized peers. It sends lists

of such peers as candidates for data exchange through an

asynchronous notification. This is an advisory notifica-

tion that causes the recipient to increase the priority of

the named, underutilized peers. This is a no-cost opti-

mization for Antfarm; a peer is under no obligation to

follow the recommendations and the protocol’s correct-

ness does not depend on the peer-selection algorithm.

This process of aiding peer selection could be improved

by the use of network proximity measures [19, 33, 41],

though our current implementation does not yet include

this optimization.

Once a peer (receiver) has chosen another peer

(sender) and determined a suitable block for download,

it sends a data-exchange request. If the sender has un-

choked the receiver, it sends the requested block to the re-

Connections

handshake Sent by peers to establish connections; in-

cludes the identifier of a file the sender wants to down-

load and the public port of the sender.

handshake response Sent in response to a handshake.

join swarm Sent to the coordinator to become a swarm

member.

leave swarm Sent to the coordinator to be removed from

a swarm.

time request Sent by a peer to the coordinator to get the

system time.

time response Sent in response to a time request; con-

tains the time according to the coordinator.

Node state

choke Informs the recipient that the sender is not accept-

ing block requests from the recipient.

unchoke Informs the recipient that the sender is now

accepting block requests from the recipient.

interested Informs the recipient that it has at least one

block that the sender needs.

not interested Informs the recipient that the recipient

does not have any blocks that the sender needs.

have block A notification sent to directly-connected

peers when a peer receives a new block.

bitfield Contains a bitfield of all the blocks the sender

possesses. Normally sent after establishing a new con-

nection.

Block transfers

request A request for a specific block.

block A block of file data, sent in response to a request.

Swarm info

peer request Sent by a peer to the coordinator to request

a set of peers in the swarm.

peer response A set of peers’ addresses and ports.

good peers Sent periodically by the coordinator to each

peer to notify them of peers to unchoke.

bad peers A notification containing a set of peers the

coordinator has identified as malicious.

allocation Sent by the coordinator to inform peers of the

desired allocation of their upload bandwidth.

Token management

new tokens Sent by the coordinator to deliver a set of

fresh tokens to a peer.

token receipt Receipt for a block transfer; sent from one

peer to another in response to a block message.

token ledger Contains a set of spent tokens sent to the

coordinator in exchange for fresh tokens.

token replace Contains a set of fresh tokens sent to the

coordinator in exchange for new tokens with later expi-

ration times.

Table 1: Antfarm wire protocol. A comprehensive list

of peer-peer and coordinator-peer messages. The protocol

comprises messages to establish connections, notify peers of

progress and status, exchange blocks, and handle tokens.

5



ceiver. Upon completion of the transfer, a non-malicious

receiver checks the hash of the block against the hash

specified in the swarm description and sends an unex-

pired token to the sender of the data block. Each peer

maintains a purse of unused tokens issued by the coordi-

nator for use by that peer, and a ledger of tokens received

from other peers in exchange for data blocks. Tokens

flow from the purse of the receiver to the ledger of the

sender.

Peers communicate periodically with the coordinator

to refresh their purses and ledgers. Each unexpired to-

ken in the ledger entitles the peer to a fresh token for its

purse. This communication takes place every minute in

the current implementation. If a newly received token in

the ledger is going to expire before the next scheduled re-

fresh, or if the purse contains nearly expired unspent to-

kens, the peer can preemptively redeem selected tokens

for new tokens with later expiration times.

Peers following the above protocol will face a stream

of competing requests for data blocks. Peers use a leaky-

bucket algorithm to restrict upload bandwidth according

to the coordinator-prescribed allocation. Altruistic peers

that finish downloading a file may remain in the swarm

and continue to upload content, functioning similarly to

seeders.

3.3 The Coordinator’s Perspective

The coordinator collects statistics on peer network be-

havior, computes response curves and bandwidth alloca-

tions for each peer and seeder, and steers the swarm to-

ward an efficient operating point. It affects these through

manipulation of the token supply and direct interaction

with cooperative peers. Finally, it keeps track of mali-

cious and uncooperative participants, excising them from

the network when their misbehavior affects performance.

The primary task of the coordinator is to monitor

network characteristics and swarm dynamics by keep-

ing track of tokens for each data block transaction be-

tween peers. Each token the coordinator receives informs

the coordinator of the swarm in which a transaction oc-

curred, the specific peers involved in the transaction, and

a window of time in which the data block was transferred

based on the token’s minting and expiration times. This

information is sufficient to maintain two key parameters

for each peer p: the set of swarms Tp that p is a mem-

ber of and a rolling average of its upload bandwidth up.

In addition, the coordinator keeps track of the set of all

seeders S and two pieces of state for each swarm: a set

Pt of peers in swarm t and a response scatterplot for each
swarm, represented as a collection of data points with

associated time-decaying weights. Data points decay ac-

cording to 1/t and are removed after 30 minutes.

∆σt

t

seeder bandwidth

a
g
g
re

g
a
te

b
a
n
d
w

id
th

∆δt

∆σt

Figure 3: Bandwidth allocation. The black dots denote the

allocation of bandwidth for swarm t before and after one it-

eration of allocation. For each ∆σ tasked to a seeder by the

hill-climbing algorithm, a randomly selected peer with spare

upload capacity is tasked with allocating a corresponding ∆δ.

The dotted line has a slope of 1, accounting for the seeders’

contribution to the swarm’s aggregate bandwidth.

The coordinator chooses swarms to grant bandwidth

based on collected swarm statistics. The response scat-

terplots are not immediately suitable for use in comput-

ing bandwidth allocation, as they contain artifacts due

to measurement errors and changes over time, creating

false local minima and maxima. The coordinator gen-

erates a response curve from a response scatterplot by

fitting a piecewise linear function that respects the mono-

tonicity and concavity constraints, contains a segment

for each measurement point, and minimizes error using

least-squares.

The coordinator computes the amount of bandwidth

each seeder and peer should dedicate to each swarm

based on the computed response curves, represented as

two matrices σ and δ. For each swarm t, σs,t captures

the amount of bandwidth seeder s will dedicate to t, and
δp,t captures the amount of bandwidth peer p is expected

to dedicate to t. This determines the critical allocation of

seeder upload bandwidth σt =
∑

s∈S σs,t to swarm t in
order to achieve a swarm aggregate bandwidth (σt + δt),
where δt =

∑
p∈Pt

δp,t is the bandwidth component re-

sulting from peer-to-peer uploads. The coordinator com-

putes this allocation periodically, every 5 minutes in our

current implementation, and also when the area under

the curve has changed by more than 10%. In comput-

ing σ and δ the coordinator operates under two hard con-

straints. First, δp =
∑

i∈Tp
δp,t can never exceed p’s

upload capacity up. Second, the node must have the file

to seed; a peer will never be tasked to upload blocks of a

file it is not interested in downloading. The coordinator

determines σ and δ iteratively. Initially, σs,t = δp,t = 0
for all peers p, seeders s, and swarms t. The coordi-

nator determines the allocation of bandwidth through a

6



greedy hill-climbing algorithm using the computed re-

sponse curves and its knowledge of the seeders’ upload

capacities, illustrated in Figure 3. It allocates bandwidth

in discrete units to the swarms whose response curves

have the highest gradient, breaking ties in favor of the

swarm with the lower value of (σ + δ), as described in

Section 2. For each increase in seeder bandwidth ∆σt to

swarm t, the algorithm chooses a peer at random from

Pt with spare upload bandwidth and tasks it with up-

loading an additional ∆δt to t, as prescribed by t’s re-
sponse curve. The coordinator continues the process un-

til all seeder bandwidth has been allocated. The final

peer allocation δ satisfies the two critical constraints de-

scribed above and ensures that peer transfers within each

swarm achieve the previously measured aggregate band-

width based on the seeders’ allocation σ.

Computation of bandwidth allocation is not a highly

time-critical task. Delays in network measurements and

peer interactions imply inherent delays between comput-

ing an allocation and seeing a change in the network.

Since the latency of computing the bandwidth allocation

is dwarfed by the latency of data exchange, the computa-

tion can be performed in the background. The optimiza-

tion algorithm is linear in the number of peers and grows

according to O(n lg n) with the number of swarms, en-

abling the system to scale. The primary metric that deter-

mines the quality of the solution is the freshness of data

on swarm dynamics.

Antfarm’s token protocol incentivizes peers to report

statistics to the coordinator in a timely manner. A to-

ken’s expiration time (5 minutes in the current imple-

mentation) and spender-specificity force peers to return

tokens to the coordinator in order to receive bandwidth

in the future. The circulation of tokens reveals enough

information to the coordinator to perform the allocation

described above.

Token-based economies can suffer from inflation, de-

flation, and bankruptcy if left unmonitored. Based on

analyses of scrip systems [32], the Antfarm coordina-

tor maintains a constant number of tokens per swarm per

peer (30 in the current implementation). New peers re-

ceive an initial allowance of 30 tokens. As unspent to-

kens expire, the coordinator redistributes an equal num-

ber of new tokens to random peers to prevent a token

deficit when peers depart with positive token balances.

Token unforgeability prohibits deflation, and token redis-

tribution enables bankrupt peers to acquire new blocks

and reintegrate themselves into the swarm.

The coordinator rewards peers that contribute to the

system both directly, by offering seeder bandwidth to

peers that have donated bandwidth to peers, and indi-

rectly, by suggesting which peers are underutilized. The

latter partly influences unchoking decisions as described

previously. The coordinator determines this list for each

peer by selecting a small subset of the top uploaders to

that swarm, chosen randomly from a probability distri-

bution determined by upload bandwidth.

Peer churn and changes in network conditions cause

response curves to become stale over time. In addi-

tion, transient measurement errors can skew response

curves, causing the system to operate suboptimally. Ant-

farm maintains response curves by actively exploring

the swarm’s response at different seeder bandwidths. In

each epoch, the coordinator randomly perturbs the cur-

rent bandwidth allocation by a small amount for each

swarm, on the order of 5 KB/s (kilobytes per second).

Such variances provide additional datapoints for the re-

sponse scatterplot, enabling the system to overcome false

local minima due to transient effects.

The coordinator does not enforce peers’ compliance

with the coordinator’s directives in allocating their up-

load bandwidth. A peer is free to shift bandwidth away

from one swarm in favor of another at its discretion. In

such a scenario, the coordinator will simply observe a

shift in the swarms’ dynamics, which will be reflected in

the response curves. In the next epoch, the coordinator

will perform a new bandwidth allocation that takes the

peer’s behavior into account.

3.4 Scalability

The Antfarm coordinator is optimized to ensure that the

logical centralization does not pose a CPU or bandwidth

scalability bottleneck.

Shuttling tokens to and from the coordinator for each

data block transaction is the main source of coordinator

bandwidth expenditure. To reduce the burden, Antfarm

does not rely on public-key cryptography to issue or ex-

change tokens. The Antfarm protocol minimizes the size

of tokens on the wire, transmitting only relevant fields

when tokens change hands. Only a token’s ID, file refer-

ence, and expiration time are sent on the wire when the

coordinator sends fresh tokens, and only the ID and expi-

ration time are sent on the wire when a peer sends another

peer a token. Spent tokens sent back to the coordinator

are representedwith only the token’s ID and the identifier

of the peer that spent the token. Using 4-byte token IDs,

each token exchange requires less than 24 bytes of to-

tal bandwidth and less than 16 bytes of bandwidth at the

coordinator for each data block of around 32-128 KB.

Antfarm uses highly compact versions of token iden-

tifiers to reduce bandwidth. A 4-byte ID is sufficient to

disincentivize forgery because the coordinatorwill detect

a malicious peer’s attempt to forge a token upon its first

failure to produce a legitimate token. In the event that a

peer correctly guesses an active token’s ID, it is unlikely

7



to correctly identify the token’s intended spender. In the

worst case, should a peer successfully forge a token, it

will only gain one data block for its efforts, whereas fail-

ures will lead to remedial action against the peer, de-

scribed in Section 3.5. Thus, with 4-byte token IDs, sev-

eral million peers, and several hundred million tokens,

the likelihood of a successful, undetected token forgery

is around 10−8 when tokens are uniformly distributed.

With a skewed token distribution where some peers have

100 times more tokens than the average peer, the like-

lihood might rise as high as 10−6. Downloading ten

blocks with forged tokens is as likely as discovering a

collision for a cryptographically secure hash function.

The Antfarm coordinator expends its bandwidth to

send tokens to peers, receive spent tokens back from

peers, and periodically send swarm allocations and lists

of top contributors to peers and seeders. To alleviate the

bandwidth demands placed on the coordinator, the Ant-

farm protocol enables the coordinator to be distributed

hierarchically. A lead coordinator machine handles com-

puting response curves and determining swarm band-

width allocations. The remaining coordinators, called

token coordinators, issue tokens, collect tokens back

from peers, and periodically send each peer’s upload and

download rates to the lead coordinator each time the lead

coordinator computes bandwidth allocations. The lead

coordinator redirects each peer to a token coordinator

based on a hash of the peer’s IP address. When a token

coordinator receives a spent token from an assigned peer,

it applies the same hash function to the IP address of the

token’s original owner, a field in the token itself, so it can

verify the token with the token coordinator that issued it.

Thus, each token exchanged between peers involves at

most two token coordinators.

Token coordination is an embarrassingly parallel task.

The high ratio between token size and data block length

ensures that the coordinator bandwidth is leveraged sev-

eral thousand-fold. Section 4 shows that distributing the

coordinator incurs negligible overhead and that the par-

allel nature of token management enables the system to

grow linearly with the number of coordinator machines.

The coordinator performs two periodic CPU-bound

tasks: it computes response curves from scatterplots and

allocates seeders’ and peers’ bandwidth. These tasks are

computed centrally in order to derive bandwidth alloca-

tions based on the most recent measurements. Our cur-

rent implementation on a 2.2 GHz CPU with 3 GB of

memory takes 6 seconds to perform these computations

for 1,000,000 peers and 10,000 swarms whose populari-

ties follow a realistic Zipf distribution. The lead coordi-

nator can easily be replicated to mask network and host

failures.

3.5 Security

A formal treatment of the security properties of the un-

derlying Antfarm wire protocol is beyond the scope of

this paper. Past work on similar, though heavier-weight,

protocols [52] has established the feasibility of a secure

wire protocol. Consequently, the focus of this section is

to enunciate our assumptions, describe the overall goals

of the protocol, provide design alternatives, and outline

how to mitigate attacks targeting the bandwidth alloca-

tion algorithm.

Antfarm makes standard cryptographic assumptions

on the difficulty of reversing one-way hashes and as-

sumes that peers cannot snoop on or impersonate other

peers at the IP level. Violation of the first assumption

would render the Antfarm wire protocol, as well as most

cryptographic algorithms, insecure; consequently, much

effort has gone into the design of secure hash functions.

Violation of the second assumption is unlikely without

ISP collusion, and damage is limited to IP addresses that

an attacker can successfully snoop and masquerade.

Antfarm requires peers to contribute bandwidth to

their swarms, engage in legitimate token-for-block trans-

actions with other peers, and report accurate statistics to

the coordinator. The token protocol, coupled with verifi-

cation at the coordinator, ensures detection of dishonest

peers with relatively low overhead.

In order to measure accurate response curves, the co-

ordinator verifies that all token transactions occur within

the intended swarm, by the intended peer, and within the

intended period of time. The coordinator detects token

forgery upon receiving an invalid token from a peer by

simply comparing the token ID against its own registry

of active tokens. Similarly, the coordinator compares its

own record of the intended sender with the spender as

reported by the peer returning the token to prevent peers

from spending maliciously obtained tokens. Peers are

required to report the actual spender in order to receive

a fresh replacement token. The coordinator detects all

counterfeit tokens, but when it detects an invalid token,

it is unable to differentiate the peer sending the token

from its ledger from the peer that originally spent the to-

ken as the culprit. Therefore, it notifies both peers of the

forgery so the honest peer can blacklist the culprit.

To hold peers more accountable for their actions when

the coordinator is unable to precisely identify malicious

peers, Antfarm peers employ a strikes system to record

and act on undesirable behavior. Peers maintain a tally

of strikes against other peers and disconnect from peers

that have exceeded a threshold. By default, misbehaviors

that can stem from network congestion, such as a late

response to a block request or payment with a recently

expired token, result in one strike against the offending

8



peer. Circulating a counterfeit token results in automatic

termination of the connection. In general, when the co-

ordinator is unable to determine the identity of a mali-

cious peer, it appeals to the strikes system rather than

erroneously penalizing an honest peer. While it is pos-

sible to build a centralized reputation system for peers,

the current Antfarm implementation avoids this to reduce

burden on the coordinator.

Using cryptographically signed tokens can provide

stronger guarantees than Antfarm currently does at the

cost of additional overhead and complexity. In such a

scheme, the coordinator can sign all minted tokens be-

fore issuing them to peers, enabling peers to verify that

they are exchanging legitimate tokens with each other

during each transaction. In addition, if the spender of

a token were required to sign the token before send-

ing it, peers could prove the identities of token double-

spenders. Token signatures would prevent malicious

peers from snooping packets and tampering with tokens

without the recipient’s knowledge. Antfarm does not im-

plement a cryptographic scheme because the added over-

head is not accompanied by a clear increase in perfor-

mance.

It is possible for Antfarm peers to collude in order to

coerce the coordinator into providing their swarm with

more bandwidth. In particular, peers could band together

and send each other large numbers of tokens without

sending each other blocks in exchange. The resulting in-

flated estimate of that swarm’s aggregate bandwidth can

lead the system to deviate from a desired allocation. Sev-

eral techniques mitigate such attacks. First, the coordi-

nator never issues more tokens than strictly necessary to

download the file, thereby bounding the impact of fake

transactions by the number of Sybils. Second, forcing

participants to register with a form of hard identity, such

as credit card numbers, can mitigate Sybils [12]. Finally,

the coordinator can mandate that peers trade with a di-

verse set of peers, reducing the effect of collusion among

a small fraction of the swarm. Although the token proto-

col does not eliminate the possibility of malicious behav-

ior, its simplicity and ability to detect malicious activity

limit the harm peers can inflict.

3.6 Summary

The Antfarm protocol strikes a balance between micro-

managing peers and granting them freedom over block

transfers. Tokens that must be returned to the coordi-

nator enable the coordinator to collect accurate statistics

on swarm dynamics and peer behavior. Systems such as

BitTorrent, which grant peers full autonomy, do so at the

expense of control and efficiency. At the other extreme,

a centralized solution that precomputes the entire down-

load schedule for all participants would limit peers’ abil-

ity to quickly determine which peers have blocks they

require and retrieve them without intervention. Antfarm

provides a hybrid approach that leaves peers free to de-

termine their own local behavior while extracting suffi-

cient information from the network to compute the glob-

ally optimal allocation of available bandwidth among

swarms.

4 EVALUATION

We have implemented the full protocol described in this

paper, as well as a simulator of the Antfarm and BitTor-

rent protocols. The Antfarm deployment runs on Win-

dows, Linux, and Mac OS X. Both the implementation

and the simulator contain optimizations present in ver-

sion 5.0.9 of BitTorrent, including optimistic unchoke,

regular unchoke, and local-rarest-block-first. For the ex-

periments in this section, Antfarm’s system parameters

(block size=64KB, optimistic unchoke interval=30s, reg-

ular unchoke interval=10s) are identical to those found in

this version of BitTorrent. We pick upload and download

bandwidths representative of cable-connected end nodes.

This section evaluates the performance of the Ant-

farm protocol in comparison to BitTorrent and tradi-

tional client-server approaches. Through simulations, we

illustrate scenarios under which BitTorrent misuses its

seeder capacity and show howAntfarm can achieve qual-

itatively higher performance by allocating seeder band-

width to swarms that provide the highest return. A Plan-

etLab deployment confirmsAntfarm’s allocation strategy

under realistic network conditions. Lastly, this section

shows that Antfarm’s coordinator can scale to support

large deployments using modest resources.

4.1 Simulations

The differences between Antfarm and BitTorrent in a

multi-swarm setting stem from the way the two protocols

allocate their bandwidth to competing swarms. Whereas

BitTorrent seeders allocate their bandwidth greedily to

peers that absorb the most bandwidth, Antfarm allocates

the precious seeder bandwidth preferentially to swarms

whose response curves demonstrate the most benefit. As

a result, there is a qualitative and significant difference

between the two protocols; under some scenarios, Bit-

Torrent can starve swarms and perform much worse than

Antfarm, while in others with ample bandwidth, seeder

allocation may have little impact on client download

times. Figure 4 shows Antfarm’s performance in com-

parison to BitTorrent and a traditional client-server sys-

tem similar to YouTube for two swarm distribution sce-

narios. In the bimodal scenario, there is a single swarm

9



bimodal
60 KB/s

bimodal
2400 KB/s

zipf
60 KB/s

zipf
200 KB/s

0

1000

2000

3000

4000
a
g
g
re

g
a
te

 b
a
n
d
w

id
th

 (
K

B
/s

)
Client-server
BitTorrent
Antfarm

Figure 4: Aggregate bandwidth for a client-server system,

BitTorrent, and Antfarm. When seeder bandwidth is plen-

tiful, even a client-server model can deliver high throughput.

When seeder bandwidth is limited, Antfarm outperforms Bit-

Torrent by allocating bandwidth to swarms that receive the

most benefit. Error bars indicate 95% confidence intervals.

of 30 peers and 30 swarms of one peer each. The Zipf

scenario comprises swarms of sizes 50, 25, 16, 12, 10, 8,

and 5, and 400 singleton participants. Each set of three

bars shows the average aggregate bandwidth for a corre-

sponding scenario and seeder bandwidth.

Overall, Antfarm achieves the highest aggregate

download bandwidth. In scenarios where there is ample

seeder bandwidth, the differences between the three sys-

tems are negligible and even a client-server approach is

competitive with BitTorrent and Antfarm. As available

seeder bandwidth per peer drops, however, swarming

drastically outperforms the client-server approach, high-

lighting the efficiency of peer-to-peer over a client-server

system using comparable resources. For the scaled-down

but realistic Zipf scenario, Antfarm achieves a factor of

5 higher aggregate download bandwidth than BitTorrent.

BitTorrent misallocates bandwidth by preferentially un-

choking hosts based on their recent behavior, regardless

of their potential to share blocks. In contrast, Antfarm

steers the seeder’s capacity to swarms where blocks can

be further shared among peers.

Antfarm’s dynamic bandwidth allocation adapts well

to changes in swarm dynamics. A well-known phe-

nomenon is that when swarms become large, they are

often able to saturate their peers’ uplinks, and some-

times even their downlinks, without the aid of seeder

bandwidth. Such self-sufficient swarms yield flat re-

sponse curves. Antfarm’s allocation strategy naturally

avoids dedicating bandwidth to self-sufficient swarms

when there are other swarms that can benefit more. In

contrast, BitTorrent does not take swarm dynamics into

account, and can end up dedicating seeder bandwidth at

the exclusion of available peer bandwidth, leading to a

shortage of seeder bandwidth for other, needier swarms.

BitTorrent Antfarm
0

10

20

30

a
v
e
ra

g
e
 d

o
w

n
lo

a
d
 b

a
n
d
w

id
th

 p
e
r 

p
e
e
r 

(K
B

/s
)

BitTorrent starves the singleton swarm

self-sufficient swarm
singleton swarm

Figure 5: Bandwidth of a singleton swarm and a large, self-

sufficient swarm. Even though a self-sufficient swarm can sat-

urate its peers’ bandwidth without seeder bandwidth, BitTor-

rent awards bandwidth to peers in the swarm. In contrast, Ant-

farm awards seeder bandwidth to the singleton swarm because

it receives high marginal benefit.

Figure 5 shows an exaggerated scenario that illustrates

this effect. The figure shows the average download band-

widths of peers in BitTorrent and Antfarm of the two

swarms. In this scenario, the seeder has a capacity of

100 KB/s, and each peer downloads a 10 MB file with

30 KB/s download capacity and 10 KB/s upload capac-

ity. The self-sufficient swarm saturates peers’ uplinks

without seeder bandwidth and has a fresh peer arrive

every second, resulting in a swarm of approximately

1000 peers. The Antfarm coordinator determines that the

self-sufficient swarm does not benefit from seeder band-

width, and awards bandwidth to the singleton swarm in-

stead. Under Antfarm, the singleton peer is able to com-

plete its download in an average of 6 minutes. BitTorrent

fails to provide the singleton swarm any bandwidth over

the course of the 20 minute simulation.

The problems with BitTorrent’s allocation strategy are

compounded in larger, more realistic scenarios. While

large swarms are often self-sufficient, smaller non-

singleton swarms can receive large multiplicative ben-

efits from the seeder because their peers have available

upload capacity to forward blocks. In contrast to the

previous experiment, which examined the impact on a

swarm at the tail end of the popularity distribution, Fig-

ure 6 illustrates the impact of seeder bandwidth alloca-

tion on a file of medium popularity. The figure shows the

total amount of seeder bandwidth that Antfarm and Bit-

Torrent allocate to a set of self-sufficient swarms, a new

swarm of 5 peers, and 32 singleton swarms. It also shows

the resulting average download bandwidths of peers in

each swarm. The peers have 30 KB/s download capaci-

ties and 20 KB/s upload capacities, and the self-sufficient

swarms have peer interarrival times of 3, 6, 12, 24, 50,

and 100 seconds. In the left-hand graph, BitTorrent ded-

10



        
self-sufficient

            new                    
singleton

                 

swarms, ordered largest to smallest

0

5

10

15

20

25

b
an

d
w

id
th

 (
K

B
/s

)

BitTorrent
total seeder bandwidth
avg download bandwidth per peer

        
self-sufficient

            new                    
singleton

                 

swarms, ordered largest to smallest

0

5

10

15

20

25

b
an

d
w

id
th

 (
K

B
/s

)

Antfarm
total seeder bandwidth
avg download bandwidth per peer

Figure 6: BitTorrent versus Antfarm serving the middle of the popularity distribution. The shaded region indicates a new

swarm of 5 peers. Swarms to its left are self-sufficient; swarms to its right are singletons. BitTorrent (left) starves the new swarm,

favoring to dedicate bandwidth to the many peers in self-sufficient swarms. Antfarm (right) allocates enough seeder bandwidth

to the new swarm to saturate its peers’ upload bandwidths, and allocates the rest to singleton swarms because they receive high

marginal benefit.

0 3000 6000 9000
0

500

1000

1500

2000

time (min)

ba
nd

w
id

th
 (

K
B

/s
)

 

 

agg system total

seeder total

agg singleton swarms only

0 3000 6000 9000
0

500

1000

1500

2000

time (min)

ba
nd

w
id

th
 (

K
B

/s
)

 

 

Figure 7: Time versus bandwidth for Antfarm. The figures show seeder and aggregate bandwidths of the bimodal experiment

with seeder bandwidths of 800 KB/s (left) and 80 KB/s (right). Antfarm follows drastically different bandwidth allocation strategies

(dashed and dotted lines) to achieve high throughput (solid lines).

icates almost all of its bandwidth to the self-sufficient

swarms, whose peers are already saturated, and some

randomly to singleton swarms, which are unable to for-

ward blocks. The right-hand graph shows that Antfarm

awards enough bandwidth to the new swarm to saturate

its peers’ uplinks and dedicates the rest of its bandwidth

evenly among several singleton swarms because they re-

ceive high marginal benefit. BitTorrent’s optimistic un-

choking protocol causes it to dedicate its bandwidth to

only a few singleton swarms over the 20 minute sim-

ulation. Overall, Antfarm achieves an order of magni-

tude increase in average download speed for the affected

swarms without a corresponding penalty for the popular

swarms.

Figure 7 shows Antfarm’s bandwidth allocation over

time to provide insight into Antfarm’s strategy. The left-

hand graph shows that when seeder bandwidth is plenti-

ful, Antfarm spends the vast majority of its bandwidth on

small swarms since they receive the most marginal ben-

efit. When seeder bandwidth is constrained, as shown in

the right-hand graph, Antfarm achieves high aggregate

bandwidth by preferentially seeding large swarms that

can leverage their upload capacity to multiply the bene-

fits from the seeder. As peers of the large swarm com-

plete their downloads at 5000 seconds, the seeder shifts

its bandwidth to the singleton swarms. The staircase be-

havior is due to different swarms completing at different

times.

Overall, Antfarm qualitatively outperforms BitTorrent

in a multi-torrent setting by allocating bandwidth based

on dynamically measured response curves and preferen-

tially serving those swarms that benefit most from seeder

bandwith.

4.2 PlanetLab Deployment

We tested Antfarm’s performance through a Planet-

Lab [5] deployment. To demonstrate Antfarm’s response

curves in practice, Figure 8 shows a measured response

curve of a swarm comprised of 25 PlanetLab nodes, each

11



0 20 40 60 80 100
0

400

800

1200

seeder bandwidth to swarm (KB/s)

s
w

a
rm

 a
g
g
re

g
a
te

 b
a
n
d
w

id
th

 (
K

B
/s

)

Figure 8: A response curve for a swarm consisting of

25 PlanetLab nodes, each with an upload capacity of

50 KB/s. Each data point is based on the average swarm aggre-

gate bandwidth over 10 minutes. Real-world response curves

confirm simulations.

with an upload capacity of 50 KB/s. The graph plots both

the response scatterplot and the response curve as com-

puted by the coordinator from the token exchange. The

results confirm the simulations.

Figure 9 compares the aggregate bandwidth achieved

by Antfarm, BitTorrent, and traditional client-server

downloads across 300 PlanetLab nodes, each with an up-

load capacity of 50 KB/s. Swarms have size 100, 50, 25,

12, 6, 3, and 1. In practice, the stock BitTorrent imple-

mentation uploads only a few hand-picked files concur-

rently; to evaluate BitTorrent in the presence of many

swarms, we measured two values by running multiple

seeder instances, each with its own upload capacity. Bit-

Torrent Equal indicates the aggregate system bandwidth

when the BitTorrent seeder splits its upload bandwidth

equally among all swarms, including singleton swarms.

BitTorrent Proportional shows performance when the

seeder allocates to each swarm an upload bandwidth pro-

portional to the size of the swarm.

Antfarm outperforms BitTorrent by allocating its

bandwidth to the swarms that receive the most benefit.

Antfarm’s advantages over BitTorrent become more pro-

nounced in systems with many swarms accompanied by

relatively small seeder uplink capacities, a realistic sce-

nario for a distribution center with a large number of files

and a bandwidth bottleneck. In these experiments, Ant-

farm outperforms traditional client-server by a factor of

between 50 and 100, BitTorrent Equal by a factor of 8

to 18, and BitTorrent Proportional by a factor of 1.2 to 3.

4.3 Scalability

In this section, we examine how the Antfarm coordinator

scales. We examine the steady-state bandwidth cost of

running a coordinator in a setting where peers download

a file made up of 64 KB blocks with upload and down-

50 100 200

seeder bandwidth (KB/s)

0

2000

4000

6000

8000

a
g
g
re

g
a
te

 b
a
n
d
w

id
th

 (
K

B
/s

)

Client-server
BitTorrent Equal

BitTorrent Proportional

Antfarm

Figure 9: PlanetLab experiments showing aggregate band-

width in Antfarm versus BitTorrent and client-server.

300 PlanetLab nodes are distributed among swarms ranging in

size from 1 to 100. Antfarm achieves high average performance

by making efficient use of limited bandwidth.

0 20000 40000 60000 80000 100000
0

1000

2000

3000

4000

number of peers

a
g

g
re

g
a

te
 b

a
n

d
w

id
th

 (
M

B
/s

)

 

 

8−machine coordinator

4−machine coordinator

2−machine coordinator

1−machine coordaintor

Figure 10: Aggregate bandwidth of swarms managed by

varying sizes of coordinator clusters. Each coordinator ma-

chine runs on a PlanetLab node with an artificial bandwidth

cap of 100 KB/s to limit scalability. The task of the token co-

ordinator is embarrassingly parallel; the system capacity scales

linearly with the size of the coordinator cluster.

load capacities of 64 KB/s.

Figure 10 shows the bandwidth consumption at the co-

ordinator as a function of the number of peers based on

experiments run on PlanetLab. In the experiment, the

lead coordinator and each token coordinator ran on its

own PlanetLab node, and peers were simulated across

other PlanetLab nodes, engaging in the Antfarm proto-

col without sending actual data. The results show that

even for large numbers of peers, the bandwidth consump-

tion at the coordinator is modest. A coordinator running

on a single PlanetLab host suffices for deployments of

80,000 peers or more. To demonstrate the scalability

of the hierarchically distributed coordinator, we test a

coordinator distributed across multiple PlanetLab hosts

in a system with an aggregate bandwidth approaching

12



5 GB/s. To maximize generated load, peers omit the data

exchange but engage in the token protocol with the coor-

dinator. Further, we artificially limit the bandwidth avail-

able to each physical coordinator node to 100 KB/s to

gain insight into the performance of multiple coordinator

nodes running with severe bandwidth constraints. The

bottom curve shows the capacity of a single, artificially-

bottlenecked coordinator node, which is able to handle

the tokens and peer lists of approximately 9000 peers be-

fore its performance reaches a plateau. Adding a second

such coordinator node doubles the capacity of the sys-

tem. Because the token coordinators engage in a mas-

sively parallel task with little communication overhead,

increasing the number of coordinators linearly increases

the maximum supported number of peers.

5 RELATED WORK

There has been much past work on content distribution,

which can be grouped roughly into work on content dis-

tribution networks, token-based systems, and multicast

and streaming systems.

CDNs: Content distribution networks are scalable

systems used to alleviate server load, reduce download

times, and avoid network hotspots. Akamai [31], for ex-

ample, is a widely deployed infrastructure-based CDN

that many content providers rely on to distribute their

content. Similarly, cooperativeweb caching [7,25,27,57,

58] removes load from origin servers. ECHOS [34] pro-

poses distributing servers using a peer-to-peer network of

set-top boxes distributed at the Internet’s periphery, man-

aged by a single entity that can optimize system perfor-

mance, but does not address bandwidth management at

the servers. Although distributed CDNs scale, the band-

width cost of operating them resides entirely with the

content provider and distributor.

Peer-to-peer CDNs effectively shift bandwidth costs

from the content provider to clients. BitTorrent [8] is one

of the most popular client-based peer-to-peer CDNs, and

studies consistently show that BitTorrent traffic consti-

tutes a significant fraction of Internet traffic [43, 53]. Pi-

atek et al. [46] augment the BitTorrent protocol to enable

peers to share reputation information through one level

of intermediary nodes; it does not address the issue of

multiple swarms. CoBlitz [44] is an HTTP-based content

distribution network that splits a file into chunks, which

are cached at distributed nodes. Choffnes et al. [15] re-

duce cross-ISP traffic in peer-to-peer systems by harvest-

ing data from existing CDNs for locality information.

Shark [3] and ChunkCast [9] reduce client-perceived

download latency via a structured overlay, and Coral [23]

and Bamboo [50] assist clients in finding nearby copies

of data. Antfarm similarly shifts cost to clients; however,

it retains control of network behavior by carefully allo-

cating bandwidth to each swarm.

Further, many systems such as the Data Oriented

Transfer (DOT) architecture [42, 54] use peer-to-peer

swarming to speed up downloads.

Token-based Incentives: Early model and analysis

by Qiu and Srikant [49] of BitTorrent’s incentive mech-

anism showed that the system converges to a Nash equi-

librium where all peers upload at their capacity. How-

ever, more recent work, BitTyrant [45], BitThief [35],

and Sirivianos et al. [51], has demonstrated that average

download times currently depend on significant altruism

from high capacity peers that, when withheld, reduces

performance for all users. Further, BitTorrent’s tit-for-

tat mechanism only operates within an individual swarm;

it does not provide information on how to allocate re-

sources, such as seeder bandwidth, among swarms.

Dandelion [52] and BAR gossip [36] avoid the prob-

lem of relying on altruism to distribute data. They

use a cryptographic fair exchange mechanism that re-

quires a client to upload content to other clients in ex-

change for virtual credit, which can be redeemed for fu-

ture service. Microcurrencies [10, 37, 47, 59] similarly

rely on cryptographically protected tokens for fair re-

source exchange, and optionally provide additional fea-

tures such as spender anonymity. Antfarm’s token sys-

tem is domain-specific and significantly lighter-weight

than these approaches.

Decentralized resource allocation in peer-to-peer sys-

tems requires incentives for participants to contribute re-

sources. Ngan et al. [39] suggest cooperative audits to

ensure that participants contribute storage commensurate

with their usage. Samsara [16] considers storage allo-

cation in a peer-to-peer storage system and introduces

cryptographically signed storage claims to ensure that

any user of remote storage devotes a like amount of stor-

age locally. Both techniques center around audits of re-

sources that are spatial in nature.

Karma [56] and SHARP [22] resource allocation can

apply to renewable resources such as bandwidth. Karma

employs a global credit bank, with which clients main-

tain accounts. The value of a client’s account increases

when it contributes and decreases when it consumes. A

client can only consume resources if its account con-

tains sufficient credit. SHARP operates at the granular-

ity of autonomous systems or sites. To join the system a

SHARP site must negotiate resource contracts with one

or more existing group members. These contracts, in ef-

fect, specify the system’s expectations of the site and the

site’s promise of available resources to the system. Ac-

countable claims make it possible to monitor each partic-

ipant’s compliance with its contracts, simplifying audits

and making collusion more difficult in SHARP relative

13



to other decentralized peer-to-peer systems.

Streaming and Multicast: Multicast and streaming

are alternative designs for distributing content. For in-

stance, the seminal work by Deering proposed IP mul-

ticast to efficiently deliver content to multiple destina-

tions [20]. Deployment difficulties with global IP multi-

cast [18] led to application-level multicast systems such

as End System Multicast [14], Your Own Internet Distri-

bution (YOID) [21], and others [60].

Several techniques have been proposed to dis-

tribute data efficiently using application-level multi-

cast. Overcast [26] distributes content by construct-

ing a bandwidth-optimized overlay tree among dedicated

infrastructure nodes. SplitStream [13] distributes con-

tent via a peer-to-peer overlay that disseminates content

along branches of trees constructed on top of a peer-to-

peer substrate. Bullet [29] and Bullet′ [28] also use a ran-

domized overlay mesh to distribute data. Chainsaw [48]

is a peer-to-peermulticast based on an unstructured over-

lay mesh in which peers explicitly request packets from

neighbors. This mechanism ensures that peers are able to

receive all packets and avoid receiving duplicate packets.

ChunkySpread [55] is a hybrid that uses both structured

and unstructured overlays to distribute content. Antfarm

differs from streamingmulticast systems in that it aims to

maximize aggregate system bandwidth for multiple con-

current batch downloads.

Another set of work proposes augmenting BitTorrent-

like protocols to accommodate streaming video in a peer-

to-peer setting. BASS [17] exemplifies this approach by

adding peer-to-peer interactions to a client-server model

where peers stream video from the server while trading

blocks with other peers to alleviate load on the server

in the future. Antfarm also incorporates a peer-to-peer

protocol to alleviate load, but manages the interactions

via the coordinator to achieve high throughput for mul-

tiple swarms. Siddhartha et al. [4] propose a BitTorrent-

like protocol with small neighborhoods of topographi-

cally close peers for exchanging blocks, using heuristics

to handle swarms of heterogeneous link capacities.

Finally, many streaming and multicast architectures

use coding to increase content delivery reliability [2,

6, 24, 38]. Integrating coding techniques into Antfarm

could further improve performance.

6 CONCLUSIONS

In this paper we introduced Antfarm, a peer-to-peer con-

tent distribution system for the batch dissemination of

large files. Antfarm explores a novel space in the de-

sign of swarming protocols; whereas past systems avoid

all vestiges of centralization for both technical and legal

reasons and suffered from lack of coordination across

swarms, Antfarm examines how modest planning by

a centralized coordinator can help a set of competing

swarms achieve high performance.

The key to Antfarm’s performance is its restatement

of the download management task as an optimization

problem. The hill-climbing algorithm we propose effec-

tively leverages available bandwidth, accommodates de-

sired minimum bandwidth limits, avoids starvation, and

enforces desired swarm priorities. The wire-level pro-

tocol enables performance information to be extracted

from the network, enabling a practical deployment that

reacts to changing network and swarm conditions. Even

though the approach embodies a logically centralized co-

ordinator, the computational requirements of the coordi-

nator are modest, the bandwidth requirement is feasibly

small, and the coordinator carries out an embarrassingly

parallel task that is easy to replicate across datacenters.

PlanetLab deployments and simulations indicate that the

system is practical, scalable, and capable of achieving

significantly higher bandwidth than previous approaches.

Acknowledgments: We would like to thank Hakim Weath-

erspoon for his help refining the protocol, Aaron Lenfestey

for implementing the least-squares algorithm that generates re-

sponse curves, Ymir Vigfusson for his help formalizing swarm

metrics, and Steve Gribble for his input in early discussions of

this work. This work was supported in part by NSF-CAREER

0546568.

References

[1] Bittorrent. http://bittorrent.com.

[2] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Net-

work Information Flow. IEEE Transactions on Informa-

tion Theory, 46(4), July 2000.

[3] S. Annapureddy, M. J. Freedman, and D. Mazières.

Shark: Scaling File Servers Via Cooperative Caching.

Symposium on Networked System Design and Implemen-

tation, Boston, MA, May 2005.

[4] S. Annapureddy, S. Guha, C. Gkantsidis, D. Gunawar-

dena, and P. Rodriguez. Is High-quality Vod Feasible

Using P2p Swarming? International World Wide Web

Conference, Banff, Canada, May 2007.

[5] A. C. Bavier, M. Bowman, B. N. Chun, D. E. Culler, S.

Karlin, S. Muir, L. L. Peterson, T. Roscoe, T. Spalink,

and M. Wawrzoniak. Operating Systems Support For

Planetary-scale Network Services. Symposium on Net-

worked System Design and Implementation, San Fran-

cisco, CA, March 2004.

[6] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege.

A Digital Fountain Approach To Reliable Distribution Of

Bulk Data. SIGCOMM Conference, Vancouver, Canada,

August 1998.

14



[7] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F.

Schwartz, and K. J. Worrell. A Hierarchical Internet Ob-

ject Cache. USENIX Annual Technical Conference, San

Diego, CA, January 1996.

[8] B. Cohen. Incentives Build Robustness In Bittorrent.

Workshop on the Economics of Peer-to-Peer Systems,

Berkeley, CA, May 2003.

[9] B.-G. Chun, P. Wu, H. Weatherspoon, and J. Kubiatow-

icz. An Anycast Service For Large Content Distribution.

International Workshop on Peer-to-Peer Systems, Santa

Barbara, CA, February 2006.

[10] J. Camp, M. Sirbu, and J. D. Tygar. Token And Notational

Money In Electronic Commerce. USENIX Workshop on

Electronic Commerce, New York, NY, July 1995.

[11] M. Calore. Zudeo Announces Deal With Bbc. Wired Blog

Network, December 19 2006.

[12] M. Castro, P. Druschel, A. J. Ganesh, A. I. T. Rowstron,

and D. S. Wallach. Secure Routing For Structured Peer-

to-peer Overlay Networks. Symposium on Operating Sys-

tem Design and Implementation, Boston, MA, December

2002.

[13] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,

A. I. T. Rowstron, and A. Singh. Splitstream: High-

bandwidth Multicast In Cooperative Environments. Sym-

posium on Operating Systems Principles, Bolton Land-

ing, NY, October 2003.

[14] Y.-h. Chu, S. G. Rao, S. Seshan, and H. Zhang. A Case

For End System Multicast. IEEE Journal on Selected Ar-

eas in Communications, 20(8), October 2002.

[15] D. R. Choffnes and F. E. Bustamante. Taming The Tor-

rent: A Practical Approach To Reducing Cross-isp Traffic

In Peer-to-peer Systems. SIGCOMMConference, Seattle,

WA, August 2008.

[16] L. P. Cox and B. D. Noble. Samsara: Honor Among

Thieves In Peer-to-peer Storage. Symposium on Oper-

ating Systems Principles, Bolton Landing, NY, October

2003.

[17] C. Dana, D. Li, D. Harrison, and C.-N. Chuah. Bass:

Bittorrent Assisted Streaming System For Video-on-

demand. IEEE Workshop on Multimedia Signal Process-

ing, 2005.

[18] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balen-

siefen. Deployment Issues For The ip Multicast Service

And Architecture. IEEE Network, 14(1), January 2000.

[19] F. Dabek, R. Cox, M. F. Kaashoek, and R. Morris. Vi-

valdi: A Decentralized Network Coordinate System. SIG-

COMM Conference, Portland, OR, August 2004.

[20] S. E. Deering. Multicast Routing In Internetworks And

Extended Lans. SIGCOMM Conference, Stanford, CA,

August 1988.

[21] P. Francis, Y. Pryadkin, P. Radoslavov, R. Govindan,

and B. Lindell. Yoid: Your Own Internet Distribution.

http://www.isi.edu/div7/yoid, March 2001.

[22] Y. Fu, J. S. Chase, B. N. Chun, S. Schwab, and A. Vah-

dat. Sharp: An Architecture For Secure Resource Peer-

ing. Symposium on Operating Systems Principles, Bolton

Landing, NY, October 2003.

[23] M. J. Freedman, E. Freudenthal, and D. Mazières. De-

mocratizing Content Publication With Coral. Symposium

on Networked System Design and Implementation, San

Francisco, CA, March 2004.

[24] C. Gkantsidis and P. Rodriguez. Network Coding For

Large Scale Content Distribution. IEEE International

Conference on Computer Communications, Miami, FL,

March 2005.

[25] S. Gadde, J. S. Chase, and M. Rabinovich. Web Caching

And Content Distribution: A View From The Interior.

Computer Communications, 24(2), May 2001.

[26] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek,

and J. O’Toole, Jr. Overcast: Reliable Multicasting With

An Overlay Network. Symposium on Operating Sys-

tem Design and Implementation, San Diego, CA, October

2000.

[27] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R.

Dhanidina, K. Iwamoto, B. Kim, L. Matkins, and Y.

Yerushalmi. Web Caching With Consistent Hashing. In-

ternational World Wide Web Conference, 1999.

[28] D. Kostic, R. Braud, C. Killian, E. Vandekieft, J. W.

Anderson, A. C. Snoeren, and A. Vahdat. Maintaining

High-bandwidth Under Dynamic Network Conditions.

USENIX Annual Technical Conference, Anaheim, CA,

April 2005.

[29] D. Kostic, A. Rodriguez, J. R. Albrecht, and A. Vahdat.

Bullet: High Bandwidth Data Dissemination Using An

Overlay Mesh. Symposium on Operating Systems Princi-

ples, Bolton Landing, NY, October 2003.

[30] T. Karagiannis, P. Rodriguez, and K. Papagiannaki.

Should Internet Service Providers Fear Peer-assisted

Content Distribution? Internet Measurement Conference,

Berkeley, CA, October 2005.

[31] D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy,

M. S. Levine, and D. Lewin. Consistent Hashing And

Random Trees: Distributed Caching Protocols For Re-

lieving Hot Spots On The World Wide Web. ACM Sym-

posium on Theory of Computing, El Paso, TX, May 1997.

[32] I. A. Kash, E. J. Friedman, and J. Y. Halpern. Optimizing

Scrip Systems: Efficiency, Crashes, Hoarders, And Al-

truists. ACM Conference on Electronic Commerce, San

Diego, CA, June 2007.

[33] J. Ledlie, P. Gardner, and M. Seltzer. Network Coordi-

nates In The Wild. Symposium on Networked System De-

sign and Implementation, Cambridge, MA, April 2007.

[34] N. Laoutaris, P. Rodriguez, and L. Massoulie. Echos:

Edge Capacity Hosting Overlays Of Nano Data Centers.

ACM SIGCOMM: Computer Communication Review, 38,

January 2008.

15



[35] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer. Free

Riding In Bittorrent Is Cheap. Workshop on Hot Topics in

Networks, Irvine, CA, November 2006.

[36] H. C. Li, A. Clement, E. L. Wong, J. Napper, I. Roy, L.

Alvisi, and M. Dahlin. Bar Gossip. Symposium on Op-

erating System Design and Implementation, Seattle, WA,

November 2006.

[37] M. Manasse. The Millicent Protocol For Electronic Com-

merce. USENIXWorkshop on Electronic Commerce, New

York, NY, August 1995.

[38] P. Maymounkov and D. Mazières. Rateless Codes And

Big Downloads. International Workshop on Peer-to-Peer

Systems, Springer Lecture Notes in Computer Science

2735, Berkeley, CA, February 2003.

[39] T.-W. Ngan, D. S. Wallach, and a. P. Druschel. Enforc-

ing Fair Sharing Of Peer-to-peer Resources. Interna-

tional Workshop on Peer-to-Peer Systems, Springer Lec-

ture Notes in Computer Science 2735, Berkeley, CA,

February 2003.

[40] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An

Analysis Of Approximations For Maximizing Submod-

ular Set Functions. Mathematical Programming, 14(1),

December 1978.

[41] T. S. E. Ng and H. Zhang. Towards Global Network Po-

sitioning. ACM SIGCOMM Internet Measurement Work-

shop, San Francisco, CA, November 2001.

[42] H. Pucha, D. G. Andersen, and M. Kaminsky. Exploiting

Similarity For Multi-source Downloads Using File Hand-

prints. Symposium on Networked System Design and Im-

plementation, Cambridge, MA, April 2007.

[43] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips. The

Bittorrent P2p File-sharing System: Measurements And

Analysis. International Workshop on Peer-to-Peer Sys-

tems, Springer Lecture Notes in Computer Science 3640,

Ithaca, NY, February 2005.

[44] K. Park and V. S. Pai. Scale And Performance In Coblitz

Large-file Distribution Service. Symposium on Networked

System Design and Implementation, San Jose, CA, May

2006.

[45] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and

A. Venkataramani. Do Incentives Build Robustness In

Bittorrent? Symposium on Networked System Design and

Implementation, Cambridge, MA, April 2007.

[46] M. Piatek, T. Isdal, A. Krishnamurthy, and T. Ander-

son. One Hop Reputations For Peer To Peer File Sharing

Workloads. Symposium on Networked System Design and

Implementation, 2008.

[47] T. Poutanen, H. Hinton, and M. Stumm. Netcents:

A Lightweight Protocol For Secure Micropayments.

USENIX Workshop on Electronic Commerce, Boston,

MA, August 1998.

[48] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and

A. E. Mohr. Chainsaw: Eliminating Trees From Overlay

Multicast. International Workshop on Peer-to-Peer Sys-

tems, Springer Lecture Notes in Computer Science 3640,

Ithaca, NY, February 2005.

[49] D. Qiu and R. Srikant. Modeling And Performance

Analysis Of Bittorrent-like Peer-to-peer Networks. SIG-

COMM Conference, Portland, OR, August 2004.

[50] S. C. Rhea, D. Geels, T. Roscoe, and J. Kubiatow-

icz. Handling Churn In A Dht (awarded Best Paper!).

USENIX Annual Technical Conference, Boston, MA,

June 2004.

[51] M. Sirivianos, J. H. Park, R. Chen, and X. Yang. Free-

riding In Bittorrent Networks With The Large View Ex-

ploit. International Workshop on Peer-to-Peer Systems,

2007.

[52] M. Sirivianos, X. Yang, and S. Jarecki. Dandelion: Co-

operative Content Distribution With Robust Incentives.

USENIX Annual Technical Conference, 2007.

[53] S. Saroiu, P. K. Gummadi, R. J. Dunn, S. D. Gribble, and

H. M. Levy. An Analysis Of Internet Content Delivery

Systems. Symposium on Operating System Design and

Implementation, Boston, MA, December 2002.

[54] N. Tolia, M. Kaminsky, D. G. Andersen, and S. Patil. An

Architecture For Internet Data Transfer. Symposium on

Networked System Design and Implementation, San Jose,

CA, May 2006.

[55] V. Venkataraman, P. Francis, and J. Calandrino.

Chunkyspread: Multi-tree Unstructured Peer-to-peer. In-

ternational Workshop on Peer-to-Peer Systems, Santa

Barbara, CA, February 2006.

[56] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer.

Karma: A Secure Economic Framework For P2p Re-

source Sharing. Workshop on the Economics of Peer-to-

Peer Systems, Berkeley, CA, May 2003.

[57] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell,

A. R. Karlin, and H. M. Levy. On The Scale And Perfor-

mance Of Cooperative Web Proxy Caching. Symposium

on Operating Systems Principles, Kiawah Island, SC, De-

cember 1999.

[58] L. Wang, K. Park, R. Pang, V. S. Pai, and L. L. Peterson.

Reliability And Security In The Codeen Content Distri-

bution Network. USENIX Annual Technical Conference,

Boston, MA, June 2004.

[59] P. Wayner. Digital Cash: Commerce On The Net. Morgan

Kaufmann, April 1996.

[60] Y. Zhu, W. Shu, and M.-Y. Wu. Approaches To Establish-

ing Multicast Overlays. IEEE International Conference

on Services Computing, 2, July 2005.

16


