
Querying Peer-to-Peer Networks Using P-Trees

Adina Crainiceanu Prakash Linga Johannes Gehrke Jayavel Shanmugasundaram

Department of Computer Science
Cornell University

{adina,linga,johannes,jai}@cs.cornell.edu

ABSTRACT
We propose a new distributed, fault-tolerant peer-to-peer in-
dex structure called the P-tree. P-trees efficiently evaluate
range queries in addition to equality queries.

1. INTRODUCTION
Peer-to-Peer (P2P) networks are emerging as a new paradigm

for structuring large-scale distributed systems. The key ad-
vantages of P2P networks are their scalability, their fault-
tolerance, and their robustness, due to symmetrical nature
of peers and self-organization in the face of failures. The
above advantages made P2P networks suitable for content
distribution and service discovery applications [1, 7, 8, 9].
However, many existing systems only support location of
data items based on a key value (i.e. equality lookups).

In this paper, we argue for a richer query semantics for
P2P networks. We envision a future where users will use
their local servers to offer data or services described by
semantically-rich XML documents. Users can then query
this “P2P data warehouse” or ”P2P service directory” as if
all the data were stored in one huge centralized database. As
a first step towards this goal we propose the P-tree, a new
distributed fault-tolerant index structure that can efficiently
support range queries in addition to equality queries.

As an example, consider a large-scale computing grid dis-
tributed all over the world. Each grid node (peer) has an
associated XML document that describes the node and its
available resources. Specifically, each XML document has an
IPAddress, an OSType, and a MainMemory attribute, each
with the evident meaning. Given this setup, a user may wish
to issue a query to find suitable peers for a main-memory in-
tensive application - peers with a “Linux” operating system
with at least 4GB of main memory:

for $peer in //peer where $peer/@OSType = ’Linux’

and $peer/@MainMemory >= 4096

return $peer/@IPAddress

A naive way to evaluate the above query is to contact every
peer in the system, and select only the relevant peers. How-
ever, this approach has obvious scalability problems because
all peers have to be contacted for every query, even though
only a few of them may satisfy the query predicates. P2P
index structures that support only equality queries will also
be inefficient here: they will have to contact all the peers
having “Linux” as the OSType, even though a large fraction
of these may have main memory less than 4GB.

Copyright is held by the author/owner.
Seventh International Workshop on the Web and Databases (WebDB 2004),
June 17-18, 2004, Paris, France

In contrast, the P-tree supports the above query efficiently
as it supports both equality and range queries. In a stable
system (no insertions or deletions), a P-tree of order d pro-
vides O(m+logdN) search cost for range queries, where N is
the number of peers in the system, m is the number of peers
in the selected range and the cost is the number of mes-
sages. The P-tree requires O(d · logdN) space at each peer
and is resilient to failures of even large parts of the network.
Our experimental results (both on a large-scale simulated
network and in a small real network) show that P-trees can
handle frequent insertions and deletions with low mainte-
nance overhead and small impact on search performance.

In the rest of the paper we use the following terminology
and make the following assumptions. We target applications
that offer a single data item or service per peer, such as re-
source discovery applications for web services or the grid.
We call the XML document describing each service a data
item. Our techniques can be applied to systems with multi-
ple data items per peer by first using a scheme such as [4] to
assign ranges of data items to peers, and then considering
each range as being one data item. We call the attributes
of the data items on which the index is built the search key
(in our example, the search key is a composite key of the
OSType and MainMemory attributes). For ease of exposi-
tion, we shall assume that the search key only consists of a
single attribute. The generalization to multiple attributes is
similar to B+-tree composite keys [3].

2. THE P-TREE INDEX
The P-tree index structure supports equality and range

queries in a distributed environment. P-trees are highly dis-
tributed, fault-tolerant, and scale to a large number of peers.

2.1 P-tree: Overview
Centralized databases use the B+-tree index [3] to effi-

ciently evaluate equality and range queries. The key idea
behind the P-tree is to maintain parts of semi-independent
B+-trees at each peer. This allows for fully distributed in-
dex maintenance, without need for inherently centralized
and unscalable techniques such as primary copy replication.

Conceptually, each peer views the search key values as
being organized in a ring, with the highest value wrapping
around the lowest value (see Figure 1). When constructing
its semi-independent B+-tree, each peer views its search key
value as being the smallest value in the ring (on a ring, any
value can be viewed as the smallest). In a P-tree, each peer
stores and maintains only the left-most root-to-leaf path of
its corresponding B+-tree. Each peer relies on a selected
sub-set of other peers to complete its tree.

5

13

30

p3

p2
p1

p4p6

p7

p8 7

23
29

31

42

 5| 7|13|23
p2p3

 5|29|31
p5 p7

 7|13|23|29
p2 p3 p4

 7|29|31|5
p5 p7

p5

42| 5
p8 p1

42| 7|23|30
p2 p4

31|42| 5
p7 p8

31| 7|29
p2 p5

13|23|29|30
p3 p4

13|29|42| 7
p5 p8

p5

23|29|30
p4 p5

p7 p1

p6

23|31| 5p5

29|30|31
p5 p6

29|42| 7
p8 p2

p7

30|31
p6 p7

p8 p2

30|42| 7

p4p1

p1

p6

p6 1

1

1

1

1

1

1

1

2
2

2

2

2
2

2

2

p1

p2

Figure 1: Full P-tree

As an illustration, consider Figure 2. The peer p1, which
stores the item with value 5, only stores the root-to-leaf
path of its B+-tree. To complete the remaining parts of
its tree - i.e., the sub-trees corresponding to the search key
values 29 and 31 at the root node - p1 simply points to the
corresponding nodes in the peers p5 and p7 (which store the
data items corresponding to 29 and 31, respectively). p5

and p7 also store the root-to-leaf paths of their independent
B+-trees, as shown in Figure 1, so p1 just points to the
appropriate nodes in p5 and p7 to complete its own B+-tree.

To illustrate an important difference between P-trees and
B+-trees, consider the semi-independent B+-tree at peer p1.
The root node of this tree has three sub-trees stored at the
peers with values 5, 29, and 31, respectively. The first sub-
tree covers values in the range 5-23, the second sub-tree cov-
ers values in the range 29-31, and the third sub-tree covers
values in the range 31-5. These sub-trees have overlapping
ranges, and the same data values (31 and 5) are indexed
by multiple sub-trees. Such overlap is permitted because it
allows peers to independently grow or shrink their tree; this
in turn eliminates the need for excessive coordination and
communication between peers.

The above P-tree structure has the following advantages.
First, since the P-tree maintains the B+-tree-like hierarchi-
cal structure, it provides O(logdN) search performance for
equality queries in a consistent state. Second, since the or-
der of values in the ring corresponds to the order in the
search key space, range queries can be answered efficiently
by first finding the smallest value in the range (using equal-
ity lookup), and then scanning the relevant portions of the
ring. Third, since each peer is only responsible for maintain-
ing the consistency of its leftmost root-to-leaf path nodes,
it does not require global coordination and does not need to
be notified for every insertion/deletion. Finally, since each
peer only stores tree nodes on the root-to-leaf path, and each
node has at most 2d entries, the total storage requirement
per peer is O(d · logdN).

2.2 P-tree: Structure and Properties
Consider the peer p storing an item with search key value

p.value. Formally, the data structure for the P-tree nodes
at p is a double indexed array p.node[i][j], where 0 ≤ i ≤
p.maxLevel and 0 ≤ j < p.node[i].numEntries. Each entry
in this array is a pair (value, peer), which points to the peer

29|30|31 31|42| 5 5| 7|13|23

 5|29|31

5 7 13 23 29 30 31 42
p1 p2 p3 p4 p5 p6 p7 p8

Figure 2: P-tree nodes for p1’s tree

29|30 5| 7

 5|23|29|30

5 7 13 23 29 30 31 42

29|31| 7

 5|42

 23|29

23|30|42| 7

30|31 42|5

42| 7|23|3030|42| 7

p1
p2 p3 p4 p5 p6 p7 p8

Figure 3: Inconsistent P-tree

peer storing the data item with search key value value. For
convenience, we define level 0 in the P-tree at p as having d
entries (p.value, p). We define succ(p) to be the peer p′ such
that p′.value appears right after p.value in the clockwise
traversal of the P-tree ring. In Figure 1, succ(p1) = p2,
succ(p8) = p1, and so on. We similarly define pred(p). To
easily reason about the ordering of peers in the P-tree ring,
we introduce the comparison operator <p. Intuitively, <p

compares peers on the ring based on their values, by treating
p.value as the smallest value. For example, for the <p3

operator, we treat p3.value as the smallest value in the ring
in Figure 1. We thus have p6 <p3 p7, p8 <p3 p1, p1 <p3 p2,
and so on. We define the operator ≤p similarly.

We define the “reach” of a node at level i at peer p, de-
noted reach(p, i). Intuitively, reach(p, i) is the “last” peer
that can be reached by following the right-most path in the
sub-tree rooted at p.node[i]. In Figure 1, reach(p1, 2) = p1

since the last entry of p1.node[2] points to p7.node[1], whose
last entry in turn points to p1. Formally, let lastPeer(p, i)
denote the peer in the last entry of p.node[i]. Then reach(p, 0) =
p, and reach(p, i + 1) = reach(lastPeer(p, i + 1), i).

We now define the key properties that characterize a con-
sistent P-tree index. If a P-tree satisfies all of the four prop-
erties then it is called consistent; else it is called inconsistent.
Consider a set of peers P , and a P-tree of order d > 1.
Property 1 (Number of Entries Per Node) All non-
root nodes have between d and 2d entries, while the root
node has between 2 and 2d entries. Formally, for any p ∈ P :
∀i < p.maxLevel (p.node[i].numEntries ∈ [d, 2d])
p.node[p.maxLevel].numEntries ∈ [2, 2d]
Allowing the number of entries in a node to vary makes

nodes more resilient to insertions and deletions as the in-
variant will not be violated for every insertion/deletion.
Property 2 (Left-Most Root-to-Leaf Path) This prop-
erty captures the intuition that each peer stores the nodes in
the left-most root-to-leaf path of its semi-independent B+-
tree. In other words, the first entry of every node in a peer
p points to p. Formally, for all peers p ∈ P , and for all levels
i ∈ [0, p.maxLevel], p.node[i][0] = (p.value, p).

This condition limits the storage requirements at each
peer to be O(d·logdN). It also prevents the P-tree nodes at a
peer from having to be updated after every insertion/deletion.
Property 3 (Coverage) This property ensures that all

search key values are indeed indexed by the P-tree; i.e., it
ensures that no values are “missed” by the index structure.
As an illustration of the type of problem that could occur if
the coverage property is not satisfied, consider the example
in Figure 3. Peer p1 has three index nodes. Consider the
second level node in p1 (with entries having values 5, 23, 29,
and 30). The sub-tree rooted at the first entry of this node
(with value 5) is stored in p1, and this sub-tree indexes the
range 5-7. The sub-tree rooted at the second entry of this
node (with value 23) is stored in p4 and indexes the range
23-29. However, neither of these sub-trees is indexing the
value 13. Therefore, if a search is issued at p1 for the value
13, the index can be used only to reach up to p2, which stores
the value 7. After reaching p2, the search will have to do
a sequential scan along the ring to reach p3 that stores the
data item for value 13. Although p3 is the successor of p2

in this example, in general, there could be many “missed”
values in between p2 and p3, and the search performance
can deteriorate due to the long sequential scan along the
ring (although the search will eventually succeed).

As illustrated, “gaps” between adjacent sub-trees imply
that search cost for certain queries can no longer be guar-
anteed to be logarithmic. The coverage property addresses
this problem by ensuring that there are no gaps between
adjacent sub-trees. A similar issue is ensuring that the sub-
tree rooted at the last entry of each root node wraps all the
way around the P-tree ring. These two properties together
ensure that all values are reachable using the index.

Formally, let p.node[i][j] = (valj , pj) and p.node[i][j+1] =
(valj+1, pj+1) be two adjacent entries in the node at level i
at peer p. The coverage property is satisfied by this pair of
entries iff pj+1 ≤pj succ(reach(pj , i− 1)).

The coverage property is satisfied by the root node of a
peer p if p ≤veryLastPeer succ(reach(p, p.maxLevel)), where
veryLastPeer = lastPeer(p, p.maxLevel).

The coverage property is satisfied for the entire P-tree iff
the above conditions are satisfied for every pair of adjacent
entries and root nodes, for every peer in the system.

As an implementation issue, note that checking the cover-
age requires only one message if we store an additional entry
in each node to estimate the reach of that node.
Property 4 (Separation) The coverage property deals
with the case when adjacent sub-trees are too far apart.
A different concern arises when adjacent sub-trees overlap.
Some overlap is possible and desirable because the sub-trees
can then be independently maintained. However, excessive
overlap (see the three last entries in the level 2 node at p1 in
Figure 3) can compromise logarithmic search performance.
The separation property ensures that the overlap between
adjacent sub-trees is not excessive by ensuring that two adja-
cent entries at level i have at least d non-overlapping entries
at level i−1. This ensures that the search cost is O(logdN).
Formally, let (valj , pj) and (valj+1, pj+1) be two adjacent
entries as before. The separation property is satisfied be-
tween these two entries iff pj .node[i−1][d−1].peer <pj pj+1.

The separation property is satisfied for the entire P-tree iff
the separation property is satisfied for every pair of adjacent
entries for every peer in the system.

3. P-TREE ALGORITHMS
We now describe fully distributed algorithms for searching

and updating P-trees. The main challenge is to ensure the
consistency of the P-tree in the face of concurrent peer in-

P-tree

succ &
pred

Ring Stabilization: maintains correct
successor and predecessor pointers

P-tree Stabilization: repaires the
inconsistent entries in the P-tree

Ping Process: detects if entries are
alive and consistent

Figure 4: P-tree maintenance

sertions, deletions, and failures. The key idea is to allow the
P-tree to be in a state of local inconsistency, where some
P-tree nodes do not satisfy coverage or separation. Local
inconsistency allows searches to proceed correctly, with per-
haps a slight degradation in performance1 even if peers are
continually being inserted and deleted from the system. Our
algorithms will eventually transform a P-tree from a state
of local inconsistency to a fully consistent state.

3.1 High-Level System Architecture
Figure 3 shows the high-level architecture of a P-tree com-

ponent at a peer. The underlying ring structure is main-
tained by one of the well-known successor-maintenance al-
gorithms from the P2P literature; in our implementation we
use the algorithm described in Chord [9]. Thus, the P-tree
ring leverages all of the fault-tolerant properties of Chord.

Although the underlying ring structure provides strong
fault-tolerance, it only provides linear search performance.
The logarithmic search performance of P-trees is provided
by the actual P-tree nodes at the higher levels.

The consistency of the P-tree nodes is maintained by two
co-operating processes, the Ping Process and the Stabiliza-
tion Process. There are independent copies of these two
processes that run at each peer. The Ping Process at peer
p detects inconsistencies in the P-tree nodes at p and marks
them for repair by the Stabilization Process. The Stabi-
lization Process at peer p periodically repairs the incon-
sistencies detected by the Ping Process. Even though the
Stabilization Process runs independently at each peer, we
can formally prove that the (implicit and loose) cooperation
between peers as expressed in the Ping and Stabilization
Process leads eventually to a globally consistent P-tree.

We now describe how peers handle search, insertion of new
peers, and deletion of existing peers, and then we describe
the Ping Process and the Stabilization Process.

3.2 Search Algorithm
We assume that each query originates at some peer p in

the P2P network. The search takes as input the lower-bound
(lb) and the upper-bound (ub) of the range query, and the
peer where the search was originated. The search procedure
at each peer selects the farthest away pointer that does not
overshoot lb and forwards the query to that peer. Once the
algorithm reaches the lowest level of the P-tree, it traverses
the successor list until the value of a peer exceeds ub. At
the end of the range scan, a SearchDoneMessage is sent to
the peer that originated the search.

Example: Consider the range query 30 ≤ value ≤ 39
that is issued at peer p1 in Figure 1. The search algorithm

1We study and quantify this degradation in Section 4.

first determines that the farthest away known peer with a
value not overshooting 30 is p5 with value 29 (the second
entry at the second level of p1’s P-tree nodes). The search
message is thus forwarded to p5. p5 follows a similar proto-
col, and forwards the search message to p6 (which appears
as the second entry in the first level of p5’s P-tree). Since
p6 stores the value 30, which falls in the desired range, this
value is returned to p1; similarly, p6’s successor (p7) returns
its value to p1. The search terminates at p7 as the value of
its successor does not fall within the query range.

In a consistent P-tree, the search procedure will go down
one level of the P-tree every time a search message is for-
warded, until the lowest level is reached. This is similar
to the behavior of B+-trees, and guarantees that we need
at most logd N steps. If a P-tree is inconsistent, however,
the search cost may be more than logd N . Note that even if
the P-tree is inconsistent, it can still answer queries by using
the index to the maximum extent possible, and then sequen-
tially scanning along the ring, as illustrated in the example
under Property 3 in Section 2.2 (note that the fault-tolerant
ring is still operational even in the presence of failures).

It is important to note that every search query cannot
always be guaranteed to terminate in a P2P network. For
example, a peer could crash in the middle of processing a
query, in which case the originator of the query would have
to time out and try the query again. This model is similar
with that used in most other P2P systems [7, 8, 9]. We can
prove the following properties about search.
Lemma: (Correctness of Search) If we search for a value
v that is in the fault-tolerant ring for the entire duration of
the search, either v will be found or the search will timeout.
Lemma: (Performance of Search) In a stable network
of N peers with a consistent P-tree of order d, a range query
that returns m results takes at most O(m+logdN) messages.

3.3 Peer Insertions and Deletions/Failures
As in many P2P networks, we assume that a new peer

p indicates its desire to join the system by contacting an
existing peer. p issues a regular query to the existing peer
in order to determine p’s predecessor, pred(p), in the P-tree
value ring. There are now three things that need to be done
to integrate the new peer p into the system. First, p needs
to be added to the virtual ring. This is done by the ring
stabilization protocol. Second, the P-tree nodes of p need
to be initialized. They are initialized with the P-tree nodes
copied from pred(p) in which the first entry is replaced with
an entry corresponding to p. Finally, some of the P-tree
nodes of existing peers may need to be updated to take into
consideration the addition of p. This is eventually done by
the Ping and Stabilization Processes in the existing nodes.

In a P2P network, peers can leave or fail at any time, with-
out notifying other peers in the system. There are two main
steps involved in recovering from such failures/deletions.
The first is to update the ring, for which we rely on the stan-
dard successor maintenance protocol. The second step is to
make existing P-tree tree nodes aware of the deletion/failure.
Again, no special action is needed for this step because we
just rely on the Ping Process to detect possible inconsisten-
cies and on the Stabilization Process to repair them.

3.4 The Ping Process
The Ping Process runs periodically at each peer; its pseudo-

code is shown in Algorithm 1. The Ping Process checks

Algorithm 1 : p.Ping()

1: for l = 1; l ≤ p.maxLevel; l = l + 1 do
2: j = 1
3: repeat
4: if p.node[l][j].peer has failed then
5: Remove(p.node[l], j)
6: else
7: p.node[l][j].state =

CheckCovSep(p.node[l][j − 1], p.node[l][j])
8: j++
9: end if

10: until j ≥ p.node[l].numEntries
11: end for

Algorithm 2 : p.Stabilize()

1: l = 1
2: repeat
3: root=p.StabilizeLevel(l)
4: l + +
5: until (root)
6: p.maxLevel = l − 1

whether a peer has been deleted/failed (line 4), and if so, it
removes the corresponding entry from the P-tree node and
decrements numEntries (line 5). The Ping Process also
checks whether the entries are consistent with respect to the
coverage and separation properties (line 7). If any entry is
inconsistent, its state (a variable associated with each P-tree
entry) is set to either coverage or separation. Note that
the Ping Process does not repair any inconsistencies — it
merely detects them. Detected inconsistencies are repaired
by the Stabilization Process.

3.5 The Stabilization Process
The Stabilization Process is the key to maintaining the

consistency of the P-tree. At each peer p, the Stabilization
Process wakes up periodically and repairs the tree level by
level, from bottom to top (see Algorithm 2), within each
level starting at entry 0. This bottom-to-top, left-to-right
repair of the tree ensures local consistency: the repair of
any entry can rely only on entries that have been repaired
during the current period of the Stabilization Process.

Algorithm 3 describes the Stabilization Process within
each level of the P-tree data structure at a peer. The first
loop from lines 2 to 17 repairs existing entries in the P-
tree. If an entry p.node[l][j] is not consistent (with resect
to the previous entry), it is repaired by either inserting a
new entry, if coverage is violated (line 7), or by replacing
the current entry (line 9), in case separation is violated.
In both cases, we make a conservative decision: we pick
as new entry the closest peer to prevPeer that still satis-
fies the separation and coverage properties. By the defini-
tions in Section 2.2, this is precisely the peer newPeer =
succ(prevPeer.node[l− 1][d− 1].peer), which can be deter-
mined using just two messages — one to prevPeer, and
another one to prevPeer.node[l − 1][d − 1].peer. (We can
also reduce this overhead to one message by caching rele-
vant entries). After the adjustments in lines 7 or 9, the
current entry is consistent. We now have to check whether
the pair (p.node[l][j], p.node[l][j + 1]) satisfies coverage and
separation, which happens through function CheckCovSep

Algorithm 3 : p.StabilizeLevel(int l)

1: j = 1
2: while j < p.node[l].numEntries do
3: if p.node[l][j].state 6= consistent then
4: prevPeer = p.node[l][j − 1].peer
5: newPeer =

succ(prevPeer.node[l − 1][d− 1].peer)
6: if p.node[l][j].state == coverage then
7: INSERT(p.node[l],j,newPeer)

p.node[l].numEntries + +(max 2d)
8: else
9: REPLACE(p.node[l],j,newPeer)

10: end if
11: p.node[l][j + 1].state =

CheckCovSep(p.node[l][j], p.node[l][j + 1])
12: end if
13: if COVERS(p.node[l][j], p.value) then
14: p.node[l].numEntries = j + 1
15: end if
16: j++
17: end while
18: while ¬ COVERS(p.node[l][j − 1], p.value)

∧ j < d do
19: prevPeer = p.node[l][j − 1].peer
20: newPeer =

succ(prevPeer.node[l − 1][d− 1].peer)
21: INSERT(p.node[l],j,newPeer)
22: j++
23: end while
24: if COVERS(p.node[l][j − 1], p.value) then
25: return true

26: else
27: return false

28: end if

in line 11. Line 13 contains a sanity check: if the current
entry already wraps around the tree, i.e., its subtree covers
up to p.value, then this level is the root level, and we can
stop (line 14). The loop in lines 18 to 23 makes sure that
p.node[l] has at least d entries (unless this is the root level).
Lines 24 to 28 return whether this level is the root of the
tree. We can prove the following lemma:

Lemma: (Eventual Consistency) Given that the fault-
tolerant ring is connected and no peers enter or leave the
system after time t, there is a time t0 such that after time
t + t0 the P-tree is consistent.

4. EXPERIMENTAL EVALUATION
We evaluate the performance of P-trees using both a sim-

ulation study and a small real distributed implementation.

4.1 Experimental Setup
We wrote (in Java JDK 1.4) a peer-to-peer simulator to

evaluate the performance of P-tree over large-scale networks.
In the simulator, each peer is associated with a search key
value and a unique address. The peer with address 0 is used
as the reference peer, and any peer that wishes to join the
P2P network contacts this peer. We simulate the function-
ality of the Ping Process by invalidating/deleting necessary
entries before the Stabilization Process runs. We use the
message cost (the number of messages exchanged between
peers for a given operation) as the performance metric.

Parameter Range Default
NumPeers 1, 000− 250, 000 100, 000

Order 2− 16 4
SPTimePeriod 1− 700 25

IDRatio 0.001− 1000 1

Table 1: Parameters

0

50

100

150

200

250

300

350

1000 10000 100000

In
s
e
rt

io
n
/D

e
le

ti
o
n
 C

o
s
t

Number of Peers

0

2

4

6

8

10

12

14

250000

S
e
a
rc

h
 C

o
s
t

Insertion/Deletion
Search

0

100

200

300

400

500

600

700

800

2 4 6 8 10 12 14 16

In
s
e
rt

io
n
/D

e
le

ti
o
n
 C

o
s
t

Order

0

1

2

3

4

5

6

7

8

S
e
a
rc

h
 C

o
s
t

Insertion/Deletion
Search

Figure 5: Nb. of peers Figure 6: Order

The parameters varied in our experiments are shown in
Table 1. NumPeers is the number of peers in the system
and Order is the order of the P-tree. SPTimePeriod is the
number of operations after which the Stabilization Process
is run (on all peers at all required levels). IDRatio is the
ratio of insert to delete operations in the workload.

For each set of experiments, we vary one parameter and
we use the default values for the rest. Since the main com-
ponent in the cost of range queries is the cost of finding the
data item with the smallest qualifying value (the rest of the
values are retrieved by traversing the successor pointers),
we only measure the cost of equality searches. We calcu-
late the cost of a search operation by averaging the cost of
performing a search for a random value starting from every
peer. We calculate the insertion/deletion message cost by
averaging over 100 runs of the Stabilization Process.

4.2 Experimental Results
Varying Number of Peers Figure 5 shows the message
cost for insertion/deletion and search operations, when the
number of peers is varied. The scale for the update opera-
tions is on the left side and the one for search operations is
on the right side. The search cost increases logarithmically
with the number of peers (note the log scale on the x-axis).
The logarithmic performance is to be expected as the height
of the P-tree increases logarithmically with the number of
peers. The figure also shows that the message cost for inser-
tions and deletions is a small fraction of the total number of

0

50

100

150

200

250

300

350

1 2 4 8 16 32 64 128 256 512

In
s
e
rt

io
n
/D

e
le

ti
o
n
 C

o
s
t

P-tree Stabilization Process Time Period

0

2

4

6

8

10

12

14

S
e
a
rc

h
 C

o
s
t

Insertion/Deletion
Search

0

50

100

150

200

250

300

350

0.001 0.01 0.1 1 10 100 1000

In
s
e

rt
io

n
/D

e
le

ti
o

n
 C

o
s
t

Insertions/Deletions Ratio

0

1

2

3

4

5

6

7

S
e

a
rc

h
 C

o
s
t

Insertion/Deletion
Search

Figure 7: SP frequency Figure 8: I/D ratio

peers in the system, implying that the effects of insertions
and deletions are highly localized. In particular, the mes-
sage cost for insertions and deletions also increases roughly
logarithmically with the number of peers.
Varying Order Figure 6 shows the effect of varying the
order of the P-tree. As expected, the search cost decreases
with increasing order because each subtree is wider, which in
turn reduces the height of the entire tree. The cost for inser-
tions/deletions, on the other hand, increases because each
peer has a larger number of entries (note that the number of
entries per peer is bounded by 2d · logdN , which is strictly
increasing for d > 2). Thus the associated cost of main-
taining the consistency of these entries in the presence of
peer insertions/deletions increases. The implication of this
result is that P-trees having high orders are not likely to be
very practical. This is in contrast to B+-trees, where higher
order reduces both search and insertion/deletion cost.
Varying Stabilization Process Frequency Figure 7 shows
the effects of varying the frequency at which the Stabiliza-
tion Process is invoked. When the Stabilization Process is
called relatively infrequently, the search cost increases be-
cause large parts of the trees are inconsistent. However, the
cost per insertion/deletion decreases because the overhead
of calling the Stabilization Process is amortized over many
insertions and deletions. This illustrates a clear tradeoff
in deciding the frequency of the Stabilization Process (and
similarly the Ping Process) - frequent invocations of the Sta-
bilization Process will decrease the search cost, but will in-
crease the overhead of maintaining the P-tree structure in
the face of multiple insertions/deletions.
Varying Insertions/Deletions Ratio Figure 8 shows the
results of varying the ratio of insert to delete operations.
The cost per operation is higher when there are more in-
sertions. This is attributable to the fact that we run our
experiments after building a tree of 100,000 peers. Since
a growing tree is likely to have a high fill factor, there is
a higher likelihood of an overflow due to an insertion, as
opposed to an underflow due to a deletion. When we ran
experiments on a shrinking tree (not shown), deletions had
a higher message cost.

4.3 Results from a Real Implementation
We now present some preliminary results from a real dis-

tributed implementation of P-trees. Our implementation
was done using C#, and we implemented the full function-
ality of P-trees, including the Ping and Stabilization algo-
rithms. Our experiments were done on six 2.8GHz with 1GB
of RAM Pentium IV PCs connected via a LAN. We varied
the number of ”virtual peers” from 20 to 30. We mapped 5
virtual peers to each of the 4-6 physical machines. Each vir-
tual peer had associated a unique search key value. The
virtual peers communicated using remote-procedure calls
(RPCs). We set up the Ping Process and the Stabilization
Process to run once per second at each virtual peer. We used
the elapsed (wall-clock) time as our performance metric, and
each result was averaged over 5 independent runs.

The experimental results are shown in Table 2. As shown,
the average search time for a single data item in a fully con-
sistent P-tree is about 0.044s, for 20 to 30 virtual peers. The
average search time with a failure of 25% of the virtual peers
(uniformly distributed in the value space) is also relatively
stable at about 3s. The time for the P-tree to stabilize to a
fully consistent state after failures varies from 13-19s. The
search and stabilize times are of the order of seconds because

Real (Virtual) Peers 4 (20) 5 (25) 6 (30)
Search (stable) 0.044s 0.043s 0.043s

Search (inconsistent) 3.085s 2.976s 2.796s
Stabilization 13.25s 19s 17.25s

Table 2: Experimental Results

we run the periodic processes only once per second.

5. RELATED WORK
Systems like [7, 8, 9] implement distributed hash tables to

provide efficient equality lookup. The hash function used by
these systems destroys the order in the key value space, mak-
ing them impractical for processing range queries. Moreover,
these systems rely on the fact that values are almost evenly
distributed in the indexing space and they cannot be easily
adapted to a skewed distribution. The P-trees can be viewed
as a non-trivial adaptation of Chord to skewed data distri-
bution. [5] uses order-preserving hash functions to process
range queries. However, they can only provide approximate
answers, while the P-trees provide exact answers to range
queries. Distributed database index structures (e.g. [6]) are
inadequate in a P2P framework as they do not allow peers
to leave the system at will. Skip Graphs [2] support range
queries, but they only provide probabilistic guarantees even
when the index is fully consistent. Moreover, the search per-
formance of the Skip Graphs is O(d · logdN) while the search
performance of the P-trees is only O(logdN). The scheme
presented in [4] supports range queries, but the performance
of the system depends on certain heuristics for insertions.
The search performance can be linear in the worst case even
with a consistent index.

6. CONCLUSION
We have proposed the P-tree index, a novel P2P index

structure well suited for applications such as resource dis-
covery for web services and the grid, by supporting range
queries in addition to equality queries. Results from our sim-
ulation study and real implementation show that P-trees ef-
ficiently support search, insertion and deletion, with average
message cost per operation being approximately logarithmic
in the number of peers.

7. REFERENCES
[1] K. Aberer. P-grid: A self-organizing access structure

for p2p information systems. In CoopIS, 2001.

[2] J. Aspnes and G. Shah. Skip graphs. In SODA, 2003.

[3] D. Comer. The ubiquitous b-tree. In Computing
Surveys, 11(2), 1979.

[4] A. Daskos et al. Peper: A distributed range addressing
space for p2p systems. In DBISP2P, 2003.

[5] A. Gupta et al. Approximate range selection queries in
peer-to-peer systems. In CIDR, 2003.

[6] D. B. Lomet. Replicated indexes for distributed data.
In PDIS, 1996.

[7] S. Ratnasamy et al. A scalable content-addressable
network. In SIGCOMM, 2001.

[8] A. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location, and routing for
large-scale peer-to-peer systems. In Middleware, 2001.

[9] I. Stoica et al. Chord: A scalable peer-to-peer lookup
service for internet applications. In SIGCOMM, 2001.

