Experience with an Object Reputation System for Peer-@-Pidesharing

Kevin Walsh Emin Gun Sirer
Cornell University
{kwalsh,egg@cs.cornell.edu

Abstract interactions are brief and span a large set of peers that
In this paper, we describe Credence, a decentralized otghanges dynamically, the opportunity to reuse informa-
ject reputation and ranking system for large-scale peertion from past first-hand experience is limited. Another
to-peer filesharing networks. Credence counteracts polkonventional approach is to interpret a shared file as an
lution in these networks by allowing honest peers to asendorsement for that file’s contents, similar to the way
sess the authenticity of online content through securdyperlinks are interpreted as implicit votes by search en-
tabulation and management of endorsements from othegine ranking algorithms. Our data indicates that sharing
peers. Our system enables peers to learn relationships not a reliable indicator of a user’s judgment. Peer-to-
even in the absence of direct observations or interacpeer filesharing networks call for trustworthiness metrics
tions through a novel, flow-based trust computation tothat are robust, predictive, and invariant under changing
discover trustworthy peers. We have deployed Credencgetwork conditions and peer resource constraints.
as an overlay on top of the Gnutella filesharing network, In this paper, we describe Credence, a new distributed
with more than 10,000 downloads of our client softwarereputation mechanism for peer-to-peer filesharing net-
to date. We describe the system design, our experienocgorks that enables honest, participating peers to confi-
with its deployment, and results from a long-term studydently determin@bject authenticitythe degree to which
of the trust network built by users. Data from the live de-an object’s data matches its advertised description. Cre-
ployment shows that Credence’s flow-based trust compudence allows clients to explicitly label files as authentic
tation enables users to avoid undesirable content. Honesr polluted, and to compute reputation scores for peers
Credence clients can identify three quarters of the decoybased on a statistical measure of the reliability of the

encountered when querying the Gnutella network. peer’s past voting habits. Combined, these two tech-
) niques provide relevant and reliable data so that clients
1 Introduction can make informed judgments of authenticity before

Establishing trust is a fundamental problem in distributeddownloading unknown content. Credence’s mechanism
systems. Peer-to-peer systems, in which service fundor computing peer reputations is fully decentralized,
tionality is distributed across clients, eliminate the-cen is not dfected by extraneous or transient properties of
tralized components that have traditionally functioned agP€ers, and is robust even when peers collude to misrep-
de facto trust brokers, and consequently exacerbate trustesent the authenticity of files in the network.
related problems. When peers lack meaningful measures In order to gauge the trustworthiness of a peer in the
on which to base trust decisions, they end up receivingibsence of direct interactions or observations, Credence
services from untrustworthy peers, witffets that can incorporates a flow-based trust computation. Conceptu-
range from wasted resources on mislabeled content telly similar to PageRank-style algorithms for propagat-
security compromises due to trojans. These probleming reputation through links on the Web [18], Credence’s
are particularly evident in current peer-to-peer fileshar-algorithm difers in fundamental ways from previous ap-
ing networks, which are rife with corrupt and mislabeled proaches. Credence is completely decentralized, and
content [3]. Such content can waste network and clientloes not assume consensus on a set of pre-chosen peers
resources, lead users to download content they do ndtom which trust flows in the network. Instead, each Cre-
want, and aid the spread of viruses and other malwaredence client propagates trust from itself outwards into the
Recent research confirms the vulnerability of deployedhetwork, using local observations to compute reputations
filesharing networks to corrupt and mislabeled contentjn its immediate neighborhood, and input gathered from
and indicates that much of this pollution can be attributedts community to judge more distant peers.
to deliberate attacks [14]. We have built and deployed a fully functioning Cre-
The underlying problem facing clients of peer-to-peerdence client as an extension to the LimeWire [15] client
filesharing systems is that they must assess the trustwofer the Gnutella filesharing network. We have been ac-
thiness and intent of peers about which little is known.tively probing and monitoring the status of the Credence
A simple approach is to use past experience with a peemetwork since its public release. In this paper, we present
to determine that peer’s trustworthiness. But when client long-term study of the emerging properties of the Cre-

dence network using data collected over a period of nine e RelevanceThe system must use only pertinent in-
months. This data validates the underlying assumptions formation when evaluating the authenticity of ob-
used in the design of Credence, confirms that Credence’s jects and the credibility of peers.
trust mechanism allows users to discover and maintain o pjstribution and DecentralizationNo participants
useful trust relationships in the network, and provides snoyld be trusted a priori, and no central computa-
new insights into the behavior of filesharing users. tion should be required during online operation.
This paper describes the goals and assumptions of .
Credence, details the design and implementation of our
Gnutella-based overlay, and presents the results of our ; o -)
long-term study of the evolution and structure of the Cre- ® ISolation: The decision to participate in the reputa-
dence network. We show that the collective actions of tion system should be independent of decisions to
Credence users have produced a robust network of peer Participate in unrelated activities, such as sharing
relationships that lets honest peers avoid a majority of flles, contributing bandwidth, or remaining online.
the pollution they encounter during typical queries. More e Motivation: Users must have realistic incentives to
fundamentally, this work demonstrates that it is feasible participate honestly in the reputation system.

RobustnessThe system must be robust to attacks
by large numbers of coordinated, malicious peers.

system in a large-scale peer-to-peer network. dence client is organized around three main activities.
First, Credence users vote on objects based on their own
2 Approach judgment of the object’s authenticity. Second, Credence

Partici . fileshari K clients collect votes to evaluate the authenticity of ob-
articipants in a peer-to-peerfilesharing network Cooperig . they are querying. And third, clients evaluate votes
ate by routing queries from a client interested in an objec{(

L . _ rom their peers to determine the credibility of each peer
to a set of peers serving it. Each object consists of somg/

o _ om the client’s own perspective. In the base case, peer
opaque content and, to facilitate searching, a formatte

biect d . ining the obi di eights are computed by examining correlations in the
object descriptor containing the object name, enco Ing\'/oting histories of a client and its peers. In the general

content hash, and other descriptive meta-data. Clients isc'ase, pairwise weights are combined to yield a trustwor-
sue keyword queries to their peers in the network, receiw?nineSS metric using a graph flow algorithm

?atCT'n% objlec'; (Lesg_rlpttorfs n responsteh, and then may In Credence, clients express their judgments about the
ownioad selected objects Irom among the responses. authenticity of files using explicit voting, and the reputa-

_Pollution is a problem when clients cannot reliably {5 system avoids any reliance on implicitindicators of a
dlstl_n_gwsh between .descrlptors for authentic .ObJeCtscIient’sjudgment. This is in sharp contrast with past sys-
malicious decoys, mislabeled content, and accidentallysmg that rely on sharing as an implicit endorsement of a
damaged files. In anfiert to identify authentic descrip- fjie - As we show later, honest users often share corrupt
tors, typical clients rank search results according to theyr majicious files, files that they themselves were fooled
advertised file quality or the relative popularity of the jnt5 gownloading. Similarly, the decision not to share a
file among the search results received. Such measurggs s typically independent of the file's authenticity.
are easily manipulated by simple adversaries, rendering A gjient collects votes in order to evaluate the authen-
them unreliable at best and deceptive at worst. Recenfeity of prospective downloads. Credence uses a decen-
work has shown that listing search results randomly isy|ized algorithm for propagating votes from the peers
substantially more reliable than these rankings [9]. that cast them to the clients that seek them. Our imple-

In this paper, we focus on the problem of distinguish-mentation uses the underlying filesharing primitives to
ing authentic objects from polluted ones. Other typesperform vote routing and search services, and so does
of attacks can, of course, disrupt networks, and clientsot require any centralized coordination or computation.
must use additional techniques to guard against them. sjnce deployed networks contain many unreliable and
Since we abstract away the underlying peer-to-peer nefnajicious peers, a client needs robust methods for eval-
work, our work is applicable to any file sharing net- yating the credibility of its peers. By definition, a peer’s
work in which a decentralized object reputation systemcredibility with respect to judging file authenticity de-
is called for and no pre-existing trust relationships can bgyends only on the votes it casts. In the absence of global

assumed. consensus on the correctness of past votes, each client
o must decide from its own perspective if a peer’'s past
2.1 Objectives votes were useful. Specifically, a client can compute the

The design of Credence is guided by several goals thadegree to which each peer’'s judgments match its own
are necessary requirements for a successful peer-to-pegast votes, and then preferentially rely on votes from
reputation mechanism: like-minded peers. In cases where direct pairwise eval-

uation is impossible due to infiicient overlap in vot- the puzzle-for-key approach, it is online but contacted
ing activity, Credence employs a novel flow-based com-only once during initial installation. In either case, the
putation which extends trust relationships transitivelycertificate authority plays no role in the filesharing net-
through known peers to more distant peers. work itself, and could be distributed using well known
The dependence on a client’s own voting record pro-distributed authentication schemes if desired [29]. In all
vides a natural incentive to participate by voting oftencases, client keys are not bound to real-world identities,
and carefully, since the client otherwise will find itself butinstead use randomly generated key pairs without any
relying on similarly careless peers. In contrast to previ-identifying information. These keys provide anonymity
ous systems that rely on characteristics of past interacsomparable to the anonymous pseudonyms found in ex-
tions, such as network bandwidth, peers in Credence aristing filesharing networks.
judged only by the votes they have cast. This isolates the We are now in a position to specify the actual proto-
reputation system from other decisions a filesharing peetol that Credence clients implement. In Section 3, we
must make, such as which peers to interact with, or howwill evaluate how the protocol behaves in a real network,
to allocate resources. Negative votes play an importandand examine evidence supporting the above assumptions
role in identifying honest peers since, even if user inter-using our long-term study of the deployed system.
ests difer or there is little overlap in the authentic files
seen by dierent users, we expect near universal agree2.4 Voting on Objects
ment on negative votes for spam and decoys among horfhe underlying goal of Credence is to allow a user to
estusers. We show later that this is borne outin practice judge the authenticity of search results, each consist-
successful spam attacks on Gnutella help shape the Créng of a file content hash and meta data, including the
dence network, and help honest peers identify each othefile’s name, size, and type. Each search result can be
22 \ote Semantics viewed as a claim about the file’s attributes. For ex-

. . ample, (H: gettysburgnamemp3=type, 12&bitrate
Credence works mostffectively when a large fract|0r! makes the claim that the file with content has$lnas the

d tend t h i biects i r!specified attributes, where the symlgois used to indi-
and so tend to agree when voling on ODJECLS In COM7; o thagettysburgs one of possibly many valid names
mon. Widely accepted semantics for positive and neg

) s — = o for the file.
ative votes will increase the chances of locating like- . : . L

: . . Credence clients express their observations by issuing
minded peers to rely on when evaluating object authen-

L " . . votes, with each vote naming a file content hash and mak-
ticity. We chose to base our system on file authenticity, o . o .
SO . ing specific claims about the file’s attributes or contents.
rather than more subjective issues of taste or quality, for)
. . : VR Other peers use these votes to evaluate the claims made
precisely this reason. This decision is in contrast to rec; = . o
. . . by search results, by comparing if the claims specified
ommender systems, which try to identify a small number .
ISR : the vote to those found in the search result. We say that

of peers with similar taste from which to make recom-

mendations about new content. Recommender systema voteappliesto a search result, either negatively or pos-

face significant challenges when clients have widely d|-'tS'V?|y’ if it e|t.her refutes or supporFs f[he.search result
claims. For instance, a vote specifyifig: mp3¢type)

vergent tastes, and the need for a peer-to-peer approach . .

.) . ._—applies negatively to the example search result above,

is unclear given the existence of successful centralized:

Since the two are mutually incompatible. Note that a
recommender systems. Credence thus focuses solely on

- ' . o vote’s application may dier somewhat from the voter’s
determining whether a file matches its description. o . o
original intention as for example a votéH: jpgé¢type)

2.3 CryptographicKeys most likely intended to say something negative but would
Credence ensures the integrity of votes by equipping evhot apply at all to the above search result.
ery client with a cryptographic key pdit that is used to Clients must agree on a common syntax and seman-

sign votes. Signatures prevent attackers from modifyindics for making statements about objects. The language
existing votes or manufacturing new ones on behalf ofmust be simple enough that ordinary users can encode
other peers. Credence limits Sybil attacks [8] by requir-their observations as votes, expressive enough to account
ing each client to possess a certificate gaigned by a for different types of pollution, and the semantics must
central authority that vouches fi's validity. Our initial ~ be faithful to the user’s intentions when voting. The vot-
implementation rate limited the generation of certificatesing language described here, and implemented in the cur-
by requiring clients to download a large file for each re-rent version of Credence, was carefully chosen to balance
quested certificate. The current implementation requireghese three often conflicting goals.

each client to solve a cryptographic puzzle, similar to the Formally, each vote is a signed tugld: S, T)x con-
scheme proposed in [2]. The certificate authority in thetaining a file content hasH, a statemerts about the file,
download-for-key approach is entirelyfiine, while in and a timestampy, together with the client’s key certifi-

cate cent. A statement is an attribute value pair, com- The user interface and vote operators were carefully
bined with set operatoss, =, ¢ and2. The attribute and designed with the goal of faithfulness in mind. In partic-
value are arbitrary strings, though Credence clients curular, thumbs-down votes do not ever support the claims
rently recognize three globally defined attributes: namepf a search result, even when the known correct bitrate is
type, and bitrate. Forfeciency, we allow multiple state- included. Thus, a user that downloads a file with an in-
ments to be concatenated using an implied logical coneorrect name and incorrect bitrate does not inadvertently
junction and signed together as a single vote. vote up the same file with afiiérent incorrect name but

The statements in votes enable users to designate pdfie correct bitrate. In contrast, positive votes can apply
ticular values as valid or invalid for a given attribute, negatively if the file’s attributes are altered to be incom-
as follows. The statement C a says thatv is a valid ~ Patible, such as would happen if the file type were modi-
value for attribute, thougha may take on other values fied after a thumbs-up vote was generated.
as well. Some attributes, most notably a file’s name, are Early versions of the Credence software allowed only
naturally multi-valued in the sense that manyfetient for an unconditional thumbs-down vote, as above, or an
values may be appropriate and valid for given unique fileunconditional thumbs-up vote. This thumbs-up vote is
content hash. This operator can be used to specify onandled as a special case and applies positively to any
of the possibly many names. In contrast; a says that search result with the specified file hash. Since much of
v is a valid value for attribute@ and all other values are the data collected in our traces comes from our initially
invalid. Attributes, such as the fixed bitrate of an audiodeployed clients, the analysis in Section 3 considers only
file, can take on only a single possible value, and thighe binary, ugdown voting logic. Non-legacy votes are
operator enables users to express that single value. 8imply translated to unconditional votes as necessary.
negative statememnt ¢ a says thatw is an invalid value
for attributea. This operator is used to refute specific file 25 Collectingand Storing Votes
advertisements, such as a single misleading file name dn Credence, a client evaluating an object’s authenticity
type. Finally,v 2 a says thath may not take on values actively queries the network to find, collect, then aggre-
other tharv. This operator allows clients to make strong, gate a sample of relevant votes. We implemented vote
broadly applicable negative statements, without commitcollection using the existing query infrastructure by issu
ting positively to the specified value. Such statementsng a vote-gatherquery, specifying the hash of the file
are particularly useful for thwarting relabeling attacks, of interest, to the underlying Gnutella network. This
where malicious peers change a file's metadata such thatactive, pull-based dissemination of votes is motivated
existing negative votes, when evaluated in a new conby the Zipf popularity distribution of objects, since any
text, might inadvertently apply positively to the modified given vote is unlikely to be of interest to many users.
metadata. Overall, these four operators enable Credence The query is routed by Gnutella to peers sharing votes
voters to express a wide range of statements through ar the object, who respond by sending their own match-
easy-to-use graphical interface. ing votes and any matching votes they have seen recently.

The Credence user interface gives users the option df a peer knows many votes for the given hash, it sends
voting in various ways on files that are shared locally,only those with the most weight (from its own perspec-
were recently downloaded, or are about to be deletedive), both in order to bound the overall cost of vote col-
The user can vottaumbs-upwhich generates statements lection, and to ensure that the most useful votes are dis-
for the file's name, type, and bitrate, usiognd= where ~ seminated further in the network. Sending these addi-
appropriate. The user can vateumbs-dowrto indicate tional votes improves vote availability and overall dis-
that the file metadata was misleading, and select one ggeémination, and incurs little marginal cost. Specifically,
more attributes to include in the vote. Negative state-voters are not required to remain online, since their votes
ments are generated usigdor the file's name and type. can still be propagated by other peers.

Since the true bitrate, by contrast, can be computed di- In order to be able to respond to vote-gather queries as
rectly from the file, the vote can include a much broaderthey arrive from the network, each peer maintainete
negative statement using theoperator for the bitrate. databasdrom which matching votes can be drawn. For
Credence also supports an unconditiotimimbs-down each file content hash, the database stores a row with a
vote that generates the statemédt name= 0), which timestamp, the peer’s own vote, if any, and a list of other
appropriately refutes any search result, since all validvotes encountered recently for the object. Note that votes
such results contain a non-null name. This unconditionaére maintained in the database regardless of how the peer
vote is meant to be used when the file contains a virusoted on the file, or if the other votes agree with its own.
or otherwise wholly inappropriate content, under the asAs older entries expire, the database is constantly re-
sumption that no Credence user wishes to download alenished from the peer’'s own voting activity and from
virus even if it is correctly labeled as such. votes the peer receives after issuing its own vote-gather

gueries. The peer can further augment its database usingctly compare the voting history of the client and peer.
a straightforward gossip exchange with its peers. TheSpecifically, we say that a pair of votesnflictif there is
resulting database size is proportional to a peer’s gossip search result to which the votes apply oppositely. We
rate and frequency of voting and estimation, and inde-say the votesgreeif they do not conflict and there is a

pendent of the number of files in the network. search result that both support or both refute.
o The codficientd is computed by examining all pairs
2.6 Weighing Votes of votes between two peers and B that either con-

After collecting a set of votes for an object, the client flict or agree with each other. Let(respectivelyb) be
verifies the signature and key certificate on each of thehe fraction of such votes from peér(respectivelyB)
votes, then aggregates the set into a single reputation egsth positive intention, and lep be the fraction of such
timate to present to the user. Simply tabulating the availpairs that agree with both votes having positive intention.
able votes using unweighted averaging would be pron&hend = (p — ab) / va(1 - a)b(1 - b) is the cogficient
to manipulation, as attackers could simply flood the net-of correlation taking on values in the range, 1]. This
work with votes. Instead, each Credence client computesomputation represents a standard technigue for comput-
a trust metric for each vote, and uses weighted averagining correlations on binary data. Positive values indicate
to compute an estimate of the object’s overall reputationagreement between peers, negative values indicate dis-
The resulting score is interpreted as a personalized estagreement, and smadl indicates the absence of any sig-
mate of the authenticity of the object, and can be used tmificant relationship between the two voting histories.
make a more informed decision to accept (and fetch) or Client A normally uses weightag = 6 for the votes
reject the object. In cases where no votes could be foundast by a peeB. When peers lack sficient voting his-
the user must resort to ad hoc estimates of authenticitytory to establish a robust estimate@for when the cor-
as used in past systems. Such cases are unavoidable degtation value itself is statistically insignificant, thient
ing the initial deployment of any reputation system thatsetsrag = 0 and so disregards votes from the peer. For
does not rely on prior trust relationships. peers whose votes are all negative or all positivés

The first step in aggregating votes is to evaluate howusually undefined even if the peers are mostly or com-
the claims in each vote apply to the relevant search repletely in agreement. Such cases may be common for
sult. Votes that apply positively are given an initial value clients newly joining the network, and so Credence uses
of +1, and those that apply negativelf. From the per- a heuristic to allow such clients to quickly begin es-
spective of a client evaluating a set of votes, however, theéablishing tentative relationships. Whéns undefined,
usefulness of a particular vote depends on the relationthe software resorts to a simple vote agreement count-
ship between the client and the peer that cast the voténg metric in the range & |ragl < 0.75. This range
and so each client weighs the initial vote values accordwas chosen to be below the majority of existing correla-
ing to the strength and bias of this relationship. Intu-tion values, and reflects the decreased confidence in such
itively, peers that tend to vote identically (or inversely) heuristics as compared to the correlation computation.
on objects should develop strong positive (or negativeClients may disable this heuristic, and it may be removed
weights for each other’s votes over time, while a clientaltogether if users can be convinced of the importance of
should disregard votes from peers that, from its perspecvoting both positively and negatively early on.

tive, appear to vote randomly. A client can only compute accurate and strong peer
_ _ correlations if it has itself cast agicient number of both
2.7 Computing Correlations positive and negative votes. This restriction provides a

Statistical correlation precisely captures this notion bystrong incentive for users to participate in voting, since
comparing the shared voting history of each pair of peersusers that do not vote will find the quality of the esti-
A Credence client determines, for each of its peers, a comates they compute noticeably degraded. A user can still
relation codficientd to use as a weight during vote aggre- benefit from Credence by voting honestly but privately,
gation, based on the files voted on in common betweessuppressing the sharing and dissemination of their votes
the client and the peer. Conceptualfyjs calculated to other users.
by examining the instances when both peers make state- Credence clients use the information stored in their
ments about some file, and taking into account whethevote databases to periodically compute correlations for
the statements have a positive or negative intention. known peers. For each peer in the vote database, the
Normally, a single vote applies either positively, neg- client determines the set of objects for which it knows
atively or not at all, depending on the search result inboth the peer’s vote and its own, derives from this set
guestion. The correlation computation takes place with-a peer correlation value, and caches any strong correla-
out reference to any particular file or search result, howtions found in acorrelation table The correlation table
ever, and so uses the original intent of each vote to diis consulted when weighing votes during the evaluation

of an object’s authenticity, and for selecting votes to send Credence proposes two strategies to protect the relia-

in response to vote-gather queries from other clients. bility of its local trust graph against peers that lie about
correlations when exchanging information. First, be-

2.8 Flow-based Peer Reputation cause only locally computed correlations are exchanged,

Computing correlations directly from the local vote @ client can choose to audit the computation by request-
database works well for peers that vote on overlappindnd some or all of the inputs from its peer. Recall that in-
sets of objects, and are thus well represented in the locdluts to the correlation computation are votes from peers,
vote database. But pairwise correlations cannot robustlgigned to maintain integrity. Second, in practice, the
evaluate the relationship between a client and peers haftust graph contains significant amounts of redundant in-
ing only a few interests in common with the client. We formation in the form of cycles and densely connected
overcome this limitation by allowing clients to leverage cliques. Auditing the graphiitself can help the clientiden-
the correlations discovered by their peetEeetively ex- tify misbehavior in the form of inconsistent information,
panding their horizon along paths of correlated peersand can also help guide decisions of which peers to au-
Credence incorporates a notiontednsitive correlation dit directly. Auditing is not currently implemented in the
which enables strong correlations between a client an@eployed version of the Credence software.
a nearby peer, and again between this peer and a more The remainder of this paper presents our analysis of
distant peer, to be combined into an estimate of the reladata gathered from the deployed Credence network.
tionship between the client and the distant peer. .

Transitive correlations are computed by building and3 Evaluation
maintaining a local model of the pairwise trust relation- Credence is the first peer-to-peer reputation system to
ships between peers in the network, then periodicallybe deployed widely on a live network, with over 10,000
executing a flow-based algorithm on the resulting trustdownloads of our software since its initial public release
graph. Nodes in the trust graph represent peers in thi March, 2005. In this section we present an analysis of
network, and a weighted edge between nodes represerdata collected in a long-term study of the deployed Cre-
one peer’s correlation estimate for another. Initially, adence network. The data presented here gives a unique
client populates the trust graph using locally computedview into the individual and collective behavior of file-
correlations from its local vote database. The remainsharing peers, and demonstrates the feasibility of a fully
der of the graph is built using a gossip protocol, wheredistributed reputation system in real settings.
each client randomly selects peers in the network and ex- We collected data on Credence clients using a con-
changes locally computed correlation ffla@ents. The tinuously running crawler and have compiled more than
selection of these gossip partners is biased towards peep90 daily snapshots of the structure of the network over
with known positive correlations to preferentially expand a span of nine months. Each snapshot contains the cu-
the most useful parts of the graph. mulative set of votes discovered by the crawler. Clients

Intuitively, votes from peers distantly connected in are identified in the data set only by their randomly cho-
the graph can used to approximate the votes of peersen public key. Since a vote identifies the file to which it
more closely connected, by emulating the weighted votapplies only by the file’s hash, our vote data set does not
ing computation at each step along the path. Performingontain the corresponding names of the files being voted
a potentially large graph computation in this way dur- on. However, over a span of six months a second crawler
ing every search result evaluation is likely too expen-collected the names and hashes of files publicly shared
sive. We can approximate this computation by multi- by Credence clients, enabling us to contrast the sharing
plying the weights along paths with strong weights in and voting habits of users. In order to compile a consis-
the graph, and so precompute an approximéectve tent view of the network for analysis, both crawlers ran
weight to be used to weight the votes from each distantlysimultaneously, and all analysis was performédlioe
connected peer. As a simplification and optimization inafter data collection was finished. Cumulatively, the data
our implementation, each client periodically computescontains over 39,000 votes cast and 84,000 files publicly
only a single maximum weight path to every other peershared by over 1200 Credence clients.
in its local graph, where path weight is the product of Our dataset likely comprises only a portion of the Cre-
weights along edges. This computation is constrained t@ence user population, since peers that join and leave the
use paths where negative weights appear only on the lastetwork rapidly may be missed by our crawler. In gen-
edge in the path, since a client cannot trust a negativelgral, Credence clients do not make complete information
correlated peer to provide useful judgments about corabout their trust computations available, such as the list
relations to more distant peers. The resulting transitiveof known transitive relationships. In the analysis below,
correlations are cached for later use in weighting votesve simulate the perspective of clients in the network by
when a local correlation is not available. recomputing the pairwise and transitive correlations each

Votes Link

Cast Correlation naive

—1 —-1.0 coogj(irﬁi}ed uncoordinated |
E attackers e ! \1
5 =05 &
E10 o 1 J
E 90 % 95 % 100 %
0.0
100 isolated clients main cluster
PRGOS ICRK KR
0s N RS N
1000 L 1 1 1 J
0% 20 % 40 % 60 % 80 % 100 %

3679 1.0

Figure 2: Classification of Credence users. Isolated cliamé

Fi 1 A global vi f the Cred tati h with no correlations to any other clients. Clients outside thénma
igure 1: A global view of the Credence reputation graph With o, ,ie are further classified according to typeiive attacker

nodes and links shaded to reflect the number of votes cast by%r those that achieve only negative correlati oordinated

a peer and the correlations between peers. The large set Uttackerfor those that achieve some positive correlations but
nodes in the center tend to correlate positively with eablemt appear to be acting independently: rdinated attackeior

\IIJVhtl le clfl:_sttergt:([ﬁund tthefpt)ﬁ ”phfry akre internally cocrtéd those that appear to have coordinated voting patteiffsreint
ut contiict wi e restotthe network. from those in the main cluster.

peer normally computes, under the assumption that ouihg peers have a mix of positive and negative correla-
vote set is representative of the complete set of votes ifions with their peers. The large central component con-
the network. This has the additional advantage of allow-+tains nodes with mainly positive correlations among each
ing us to evaluate étierent parameters and thresholds forother. The smaller clusters of nodes that can be seen
the pairwise and transitive correlation computations. around the periphery of the central cluster have largely
In the next section we present a high level view of thepositive correlations internally, but mainly negative-cor
Credence reputation graph as it exists at the end of owrelations with the rest of the network. Note that we have
data collection, and in subsequent sections we evaluatgresented a global view of the graph structure, and do not
the dfectiveness of the Credence approach, examine ashow how any particular client would view the network,
sumptions behind the Credence design, and discuss ttgince each client uses its own votes to independently de-
underlying factors driving the evolution of the network. cide which nodes it considers inside its own cluster (pos-
itively correlated) and outside its cluster (negatively-co

3.1 Graph Structure) N) related). We show in the next sections that users in the
Central to the Credence protocol is the ability to discovenyain cluster can make such classifications accurately.
relationships between peers, so we begin with a global

view of the trust relationship graph, derived from the cu-Coor dination and Disagreements
mulative set of votes collected by our crawler. Figure 1 Further examination of the reputation graph produced
presents the correlation values between any pair of peesy Credence voters reveals the overall level of coordina-
with overlapping vote histories, formatted to reflect thetion and disagreement in the reputation system. If many
clustering due to positive and negative correlations. users share a common notion of authenticity and pollu-
The most striking feature of the network is that, asidetion, then clients will more easily find correlated peers in
from the completely isolated nodes at the right, the graphhe network. Figure 2 provides a classification of Cre-
is completely connected and has a very dense link strucdence users based on clustering observed in the global
ture. On average, each connected node is directly correeputation graph. Some users vote so rarely or on such
lated with 27 other peers in the network. When combinedbbscure files that they cannot derive any correlations, and
with Credence’s flow-based algorithm, this enables peerare classified aisolated A large majority of the remain-
to derive reputations for a significant portion of the en-ing users are members of the single central cluster, and
tire network. The isolated clients have no correlations, aend to agree on the authenticity of most files.
result mainly of their very low voting activity. Attheend Approximately 3% of users are classifiedresve at-
of our study, isolated clients had cast on average fewetackers since they are easily identified as voting in direct
than 5 votes, compared with 82 votes on average for theontradiction to all other connected nodes. We also find
connected nodes. The isolated clients are typically nevan additional 10% of nodes that vote more often in con-
clients, and make their way into the main cluster as theytradiction to the overall network than they vote in agree-
produce a more substantial voting record. ment. More than half of these belong to a single large
Among the active, connected clients, several votecluster ofcoordinated attackerswhich can be seen to
completely oppositely as their peers, resulting in a negthe right of the central cluster in Figure 1. The remaining
ative correlation value for every incident edge. Thesenodes either participate in smaller coordinated attaaks, o
peers are placed at the left of the figure. The remainact asndependent attackers

100%
80% |
60%
40%

90 % Positive Correlations ===== Cutoff=0.2
80 % Negative Correlations ===
o
70%
60 % Cutoff=0.3 | 20% ‘x 4
50% [0% - *
40% |+ 1 ¥ ¥ Ny
30% - 09 [i
S 20% ; 08} g
ff=0.4]
109 | G0 07 F .
o EEOOAAMAE =] 06 s . . .
°)) SRR I ©
© O %S e 0

T T
_ Connected nodes +——
Disconnected nodes +--x---

Size of usable set
(% of all votes)

Avg. number of peer correlations
% of connected nodes)

Consistency of
usable vote set

PO AN O 5% 9 %% 02 0.4 0.6 0.8 1
922292222 2222%2%2% 2%2%22%2% Carrelation strength threshold
Figure 3: Number of local and transitive correlations com- Figure 4: Characterization of votes usable by a client ugang
putable under varying correlation strength threshold. ious correlation strength thresholds.

The Credence network has no authoritative source of
content or a priori trusted peers. In particular, although
we have labeled nodes outside the main cluster as attack-
ers, it is not possible from our data to ascribe malicious
intent to these nodes. They may simply haveféedent
concept of file authenticity and pollution than the major- !
ity of nodes, or may not understand the voting process. wor L W]
From the perspective Of the nOdeS in the Central C|USter' 0 main cluster coordinated uncoc;;t;inated isolalet; nodes
however, peer intent is irrelevant and all outside nodes attackers attackers
can be fairly labeled as attackers. In Credence, howeveEigure 5: Number of votes cast according to client type. The
such attackers are not necessarily damaging to individlow voting rate of isolated clients can be attributed to askat
uals or the network as a whole. The votes from naivea'e either inactive, or have just recently joined the nekwor
attackers, for instance, are simply inverted by all other
clients in the system, and so actually provide a tangibleServed in the network, and in part to a bias against nega-
benefit to the system. Overall, the high level of agree-tiVe values in the transitive correlation computation.
ment indicates that file authenticity is a fairly universal Setting the correlation threshold allows a client to
concept among filesharing users, justifying Credence’dnake an important tradéoa larger number of peer cor-
reliance on voting and correlation as a method of identiY€lations could allow a client to take advantage of more

60
T median ===
0 - 1 first and third quartile --—+--+

a0 | : g

Number of
votes cast

30 _

20 | : ‘ 1

fying authentic files and credible peers. votes from the network, but can also decrease the quality
of estimates by including votes from weakly correlated
Local and Transitive Relationships and frequently inconsistent peers. Figure 4 illustratess th

The set of peer correlations computed by a client playgradedt by comparing the size of the set of usable votes
a significant role in Credence, since it defines the set ofor a given correlation threshold, and the consistency of
votes that are normally used by the client when evaluatthis set of votes. To measure consistency, we compute
ing objects in the network. In this section, we show thatthe number of pairs of votes in agreement divided by the
clients participating in Credence’s reputation system aréaumber of pairs in agreement or conflict. As a client in-
able to identify both positively and negatively correlated creases its correlation threshold, it will have fewer peer
peers in the network, and so can take advantage of a larg@rrelations available, prompting both a decrease in the
fraction of the votes in the network. number of votes that can be used, and an increase in the

Credence clients use direct, pairwise correlations taconsistency of the usable vote set.
peers when possible, and use transitive correlations to
propagate trust through these correlations to more disAssimilation of New Clients
tant peers in the network. Figure 3 shows the impact Clients newly joining the Credence network must be
of both pairwise and transitive correlation computationsable to quickly discover peers with which they are cor-
on a client’s view of the network, under varying strengthrelated, so that the accuracy of their authenticity calcula
criteria. We can see that the number of correlations comtions can quickly increase. Our previous work, based on
putable directly from local information is fairly small simulations, showed that transitive correlations play an
on average, but that, depending on the choice of threshimportant role in allowing new clients to quickly join the
old value, a much larger set of correlations can be comnetwork [24]. After an initial period to establish a local
puted by clients using transitive information. The greatervoting record and a few pairwise correlations, the flow-
number of positive correlations found is due mainly to based computation can immediately take advantage of
the overall trend toward agreement and cooperation obthe correlation results computed by already established

1000 g7 T T T
Decoy Files
a LimeWire Related Files
Other Files
Zipf alpha=0.42

100

T
Decoy Files

LimeWire Related Files
Other Files

Zipf alpha=0.40

100 | %0 E

10 b - E

Popularity (no. times shared)
©

Popularity (no. hosts sharing)
&

1k 1 1 1 .\‘ =
1 10 100 1000 10000 100000 1 10 100 1000
Files (sorted by popularity) Files (sorted by popularity)

10000 100000

Figure 6: File popularity by number of times shared is approx Figure 7: File popularity by number of hosts sharing a file is
mately Zipf in the Credence network, but the most populasfile Zipf over the entire range, with the exception of certainsfile
are nearly all either decoys or related to LimeWire, and are n included in our software distribution.

ticeably overrepresented in the distribution.

) a “free” iPod giveaway is highly prevalent, in part be-
peers. Figure 5 shows the number of votes cast by eachy ;se a set of nodes on the Gnutella network sends it

type of client at the end of our study, and highlights thej, resnonse to every query and leads inattentive users to
small number of votes necessary to become connectefyynioad it). Some of the other highly prevalent files

and the relative inactivity of clients that are not yet con- 4e arfitacts of the LimeWire and Credence software dis-
nected. Looking at the data over time, 70% of connectedyiptions, such as icons, source files, and software up-
clients discover their first peer correlation after castingyates Fi’gure 6 labels a{ll Known dec,oy and LimeWire

fewer than 18 votes, which is the median for honestgateq files, discovered through manual examination of
clients in the figure above. the 100 most frequently encountered files. These cases
3.2 Filesin Credence account for nearly all of the deviation from a strict Zipf

In this section we examine the overall distribution of files Popularity distribution.
in the network, estimate the extent of pollution in our ~ The apparent popularity of many decoy files does not
data set and its impact on C”ents’ and examine how thi§ome from wide distribution in the network, but rather
pollution helps shape the overall structure of the Crefrom a small number of hosts sharing the decoy files
dence trust network. In Section 3.3, we show that clientgnany times under dierent names. We can more accu-
are able to avoid this pollution using Credence’s objectately see theféects of decoy attacks on the network by
authenticity rankings. measuring file popularity as the number of hosts shar-
We collected lists of shared files from a set of 681 Cre-ing the file, shown in Figure 7, rather than as the num-
dence clients. These users advertise a total of 84,838er of replicas of the file. The figure shows two distinct
files, of which 67,794 are unique, roughly following a types of decoy files. Those decoys that remain at the

Zipf popularity distribution as shown in Figure 6. left of the distribution have spread to several peers in
the network. The remaining decoys are shifted to the

Decoys and Artifacts low end of the popularity distribution, meaning that they

The most frequently shared files are noticeably overare shared by only a few peers. This shows that the ap-
represented, and are shared an order of magnitude moparently high popularity of some decoy files observed in
often than would be predicted by a strict Zipf distribu- Figure 6 is due to large-scale replication on a small num-
tion. Here we show that this deviation is due almost enber of clients, and provides clear evidence of malicious
tirely to the efect of decoy attacks, demonstrating the Pollution in the underlying network.
substantial impact of pollution on the overall character- Overall, our sharing data provides strong evidence that
istics of the filesharing network. The remaining discrep-0ngoing decoy attacks are targeting Credence clients,
ancy can be explained by several files that appear to band that some of these decoy files are propagating suc-
widely, but inadvertently, shared by Credence users. ~ cessfully through the network. Other decoys rely on

We manually examined all files shared under at leastarge scale replication by only a small number of clients,
nine distinct names, and found all to be clear example@nd these files do not propagate widely. We account for
of decoy attacks — typically, movies or pictures contain-the diference in propagation in Section 3.3, showing that
ing advertisements (not surprisingly, the advertisementéhe larger decoy attacks are being suppressed by voting
were often misleading; a movie containing an ad forfrom honest Credence participants.

100 1000

T 8 —— 1
Isolated Clients

T
all votes

E < E

positive votes E Naive Attackers B m] oo G 1

negative votes N Other Attackers O e mo O o]

Zipf alpha=0.46 K= Mgiﬁ Clu%er 0. O E\Zl o]

5 SR 0

- g = o

3 3. 100 ES o 3

|53 . = E E

5 10f — E g = H]

> _ []

o — 0 =

£ £)
= S O Og

K] 5 10 E% Hno <

=] = - 3

53 é o~ o x XDO]

o 3 = X [0x XXOX X [K] XRDK XX

1] % X % X X CHEOBHCK X O x o

1= X X XX Db XTI Bdoooxk [X B X

1k

1 1 1 I 1 _ 0bx T XY PR o aRgaIp oo JFOGEORON) {1

1 10 100 1000 10000 100000 0 1 10 100 1000
File (sorted by popularity) Number of files shared by user

Figure 8: File popularity by number of votes received is Zipf Figure 9: Credence user voting and sharing rate are largely i
The most popular files, all decoys and artifacts, are skgintt dependent, with users outside the main cluster found mainly
derrepresented. Solid and dashed lines show the numbes-of poalong the x axis with no voting activity, and in the lower righ
itive and negative votes for each file, averaged within eagh p of the graph with less voting activity than sharing activity
ularity level, and indicate that positive votes are spreamhky
across the entire range of file polaritigs, while negativeeso Comparing the sharing and voting activity of individ-
cluster especially at the most popular files. ual users in Figure 9 shows that there is little correlation
File Vioting Popularity petween the numb(_er of files voted on anq the number of
7 _ files shared, especially among the users in the large cen-
Our voting data set comprises 39,761 votes cast Ofy| cluster. Notably, nearly all Credence users outside
35,690 unique files. The file most often voted on hadine central cluster display much more sharing than voting
30 votes, while 33,530 files received only a single vote.pehavior, whether the user is disconnected, or connected
The distribution of votes among files follows & Zipf pop- tg the central cluster through purely or mostly negative
ularity distribution, as shown in Figure 8, with the ex- correlations. This confirms that users who vote infre-
ception of the most popular files which are slightly un- quently will tend to find themselves isolated in the rep-

derrepresented. Also shown is a breakdown of positivgtation network, and provides incentive for honest users
and negative voting frequency for each popularity level.g participate in voting.

This data shows that positive votes are spread across files
fairly evenly, without regard to the popularity of the file. voting Can Contradict Sharing
Negative votes, however, have a more skewed distribu- There is some overlap in voting and sharing activity

tlon,_W|th many negative votes concentrated on a smalky gy iqyal clients, but we find that a client’s explicit
fraction of all files.

results, and thesg files are pregisely those shown as thIﬁhis behavior accounts for roughly two thirds of the ob-
most popular in Figure 6, indicating that users are VolinGseryed files. The remaining third of cases represent con-
on those decoys that mostect them. tradictory behavior, where a client has voted down a file
- : they are also sharing. Interestingly, strictly rational be
Voting isIndependent of Sharin L '
9 ep 9 . havior is observed on less than half (46%) of the users

A key design goal of Credence is to ensure that USerg, he set. More surprising however is that nearly three
can_control the factors that influence their network rep—quarters (72%) of the users display at least one case of
utation, and that users rely only on relevant data wheny, . nsjstent behavior, actively sharing files they explic-
judging the authenticity of files. Past systems have reyyy \oted against. This justifies our reliance on explicit

lied on sharing as proxy for users’ explicit evaluations Ofvoting rather than implicit sharing as an indicator of a
files. We show in this section that not only are Sharinguser’sjudgment of file authenticity.

and voting behavior largely independent of each other in

our data set, but that they are often contradictory as well3.3 End-to-End Performance

This validates our reliance on explicit voting rather thanAs an end-to-end test of thdfectiveness and utility of
implicit sharing indicators, and confirms that many usersCredence, we examine how Credence performs when
do not dfectively monitor their sharing behavior. users execute typical queries in the Gnutella network,

and how the Credence algorithms modify the relative or- 40% Y —
dering of the search results returned to the user. We used_ 5% Identified decoys mm== 1
a load generator to repeatedly query the Gnutella net-
work for typical keywords over a 24 hour period, and
logged the search results returned. Query strings were
generated from our earlier data set by extracting the four
longest words from each file name shared by a Credence § 0% | .
user. We selected terms in this way to mimic the inter- ° so | H
ests of actual Credence users. This should not bias our o9 U lomccaca o, ...
. . . ae 12 3 45 6 7 8 9 101112 13 14 15 16 17 18 19
query results, as sharing and voting behavior within Cre- Size of decoy attack (number of locations)
dence clients are essentially unrelated to each other, 3Sgure 10: Distribution of the size of decoy attacks encoun-
our previous analysis has shown. tered, showing fraction of attacks successfully identifisghol-
Queries that returned no search results were discardetition and those missed by Credence clients in the main clus-
Each search result returned to our server consists of a filer. Error bars are not visible, because these clients skaviyn
hash, a file name, various quality metrics, and a set ofdentical performance in identifying the decoys encoueder
network addresses for the file. Using our voting data set,

we matched the file hits returned to votes found in the) .
data set generated by our crawler. clients in the central cluster to serve as vantage points,

In all, Credence was able to provide some input to thednd computed how the clients would score each sear_ch
search result ordering for 50.2% of the queries. Of thgesult. In all cases where a decoy was encountered during

queries for which Credence could provide no input, thed duery, the clients were able to successfully identify 246

majority (79%) matched two or fewer files in the net- (75%) as pollution on average. _The clients were not able
work. Of all the query replies received, more than ato |dent|fy as pollution the remaining 82 (25%) decoy at-
third were for files that had been voted on by Credencd@CkS Since no one appears to have voted on them. The

users. This result is quite encouraging, considering théje‘”at'ohrl in results betwefen ﬁllednts was nearfzero, be-
very small number of Credence voters in comparison t°2use the negative votes for the decoys come from peers

the size of Gnutella network being queried. that are weighted positively by honest clients.

30% 1
25% 1

20% 1

attacks encountered

15% | 1

Resistanceto Decoy Attacks ~ Resistanceto Collusion

In the above analysis, the distribution of query replies .
is skewed due to the popularity of certain files. Here, Notall decoy attacks have equal impact on Credence
we examine the impact of decoy attacks on our query reYSers. In this section, we show_that_the decoys m|ss_ed by
sults and the ability of Credence clients to identify the Crédence are those that have little impact on users in any
decoy attacks encountered by our load generator. Thease. Figure 10 shows the dlstr|but|on_of the sizes of each
specificity and scale of decoy attacks vary: some decoy§€coy result encountered, measured in terms of the num-
are returned only for specific queries, while others areP€r of locations purportedlyftering the file. The data
encountered for nearly all queries, and in both cases thghows that any decoyfiered by three or more peers is
number of responses naming the decoy can range frorpuccessfully identified. Credence misses sev_er_al sma_lller
just one to several hundred. Thus, among the entire sélecoy att_acks, but even z_;\t th_ese low levels still identifies
of search results returned to our engine, only 12% conn€arly twice as many as it misses.
tained unique file hashes, and only 1% of these are files When Credence fails to identify some search results
for which Credence users have cast votes. In other word$S Polluted or authentic, it sorts these results according
although Credence users voted on only a small fractiod0 their apparent popularity, just as non-Credence clients
of files encountered, less than 80 in all, these files repdo. Larger attacks are more likely to rise to the top of
resent more than a third of the total query replies. Insuch rankings, attracting the attention and negative votes
previous sections we showed that Credence users tend af honest users, while the smaller attacks are more likely
vote negatively more often on a small fraction of files. 0 be ignored by users. This tendency accounts for the
This suggests that many Credence users are likely beingck of votes for such small decoy attacks.
affected by a few very large decoy attacks, and are re- We can conclude from these results that Credence
sponding by voting negatively on them. users in the large central cluster of honest users are able

Using the list of decoy files identified by hand from to identify most decoy files as pollution by virtue of their
our earlier analysis, we examine the impact of decoy atown negative votes, or by the negative votes of other
tacks on filesharing search results, and characterize Crélonest users, and that Credence is especially successful
dence’s ability to identify such files when they are en-When attacks become ficiently damaging to draw the
countered. For this experiment, we selected individuapttention of typical users.

1 - - - - will serve only to induce additional negative votes from
honest participants, and more importantly, reveals the at-
tacking peer to not be credible. Thiffect can be seen
as the nodes in main cluster of the network identify peers
. with consistently strong negative correlations.

i A client’s correlation values play a key role in its re-
sistance to attack, and renders many attackentve.

A naive attacker that votes consistently in opposition to
T honest clients will find itself cutf® from the main clus-

CDF

03 s s s . ter of honest nodes. At the other extreme, an attacker
0 2 06 08 ! that votes randomly also becomes isolated, since it will

. . Number of search result .) .
inversions due to Credence (normalized) generate no correlations with other peers. A rational at-

Figure 11: CDF of the normalized number of inversions in thetgcker must carefully tradeffthonest votes on some files
search result rankings due to Credence. Credence conside\gﬁth dishonest votes on others, and so is required to leak

legacy ordering at least 15% incorrect for half of the querie a certain amount of correct information to the network.
The strongest attack we have explored vghitewash-

" . , ing attack in which the attacker first votes honestly on a

: I_n _add|t|on to searching for and collecting votes for large set of sacrificial files before voting dishonestly on

individual search results selected by the user, Credencg (..o target set. In our study, we find that such at-

|s_ablye to estimate file authenticity ba_sed on votes in e ackers may be included or excluded depending on each
client’s local vote database, and modify the sorting OrderClient’s perspective. An individual client excludes the

of the re_sfl'ts ac_cordmgly. Here we §how thatCredence Aittacker if, from the clients own perspective, the infor-
authenticity estimates have a significant impact on the?nation gained from the attacker's honest votes is out-

presentation of typicgl s_earch results. Speci_fically, W%eighed by the damage from the dishonest votes. In
look at how the ordering in a non-Credence client, rank-g,q instances, clients find that the attacker’s negative

ing files by the_ number of peers shanng the_ f'ldf.ds votes does so little damage and provides so much hon-
from the ordering in a Credence client, ranking files US-est information as to make it worthwhile to include the

ing known votes weighted by known peer correlations. attacker as a partially credible peer. Client perspectives

We use the number of inversions required to transform, . * making it more diicult for attackers to select the
one sorted listing to the other, normalized to the range, qyificial files on which to vote honestly. Further, mul-

[Q’ 1], as a measure o]‘ﬂ]erence. A score O_f 0 _WOUId IN" " tiple independent attacks of this form can easily cancel
dicate that Credence’s result ordering coincides exactly,. \n other and lead to an overall net gain of honest in-
with the non-Credence ordering, a score of 1 indicate?ormation ir,1 the system

that the Credence client orders the list exactly backwards

compared to the legacy ranking, and a score 5inbuld attack scenarios can be found in a previous work [24],

result if the Iegacy’ ranklr!g were purely’random with "€ hased on simulations of the Credence protocol.
spect to Credence’s ranking. Credence’s default behavior

of sorting according to the legacy ordering when no VOteS; & ~redence Over head

are available introduces a conservative bias towards zer8 d ; . i i the back q
in this difference metric. Figure 11 shows a CDF of the redence periorms various operations in the background,

normalized number of inversions due to Credence, show"fmd S_O requwes some prpcessmg and ngtwork resources
on client machines. A client representative of the most

ing that the legacy ordering is no better than purely ran-""" . _ !
dom, with respect to Credence’s order, in about 10% o ctive eX|st|ng USErS, haV|r_lg cast 250 votes and having
cases. We conclude that Credence can provide users Wieﬁxaprggdt(())\;g::cs ZLZ?;?&';;T?' ;88 tbhytigzi)z(: \ézt;}()sr;g%?
substantial credibility rankings in most cases. additional background tfac due to Credence. Thisis in
3.4 Responseto Attack comparison to LimeWire's approximately 60 bytes per
The design of Credence promotes subtle feedback loopsecond of incoming background fii@. Outbound tréic

and incentives that give rise to the resilience and overaldepends strongly on the popularity of the client’s votes,
dynamics shown in the previous sections. In our data sethe client’s reputation, and Gnutella connectivity. Ongo-
we observe that polluted files that begin with an apparening background processing of additional Gnutella queries
high popularity, and a correspondingly high legacy rank-and Credence gossip requests in the same scenario de-
ing, are quickly discovered and voted dowrfimiently mands less than 1% of a 1.7GHz processor, while a com-
often by honest users so as to put them at the bottom gflete recomputation of all correlations can be completed
the sorting order. An attacker’s positive votes in this casdén under three seconds.

Ranking Performance

A more complete discussion of this and other potential

4 Related Work network. Micropayments can be used to induce coop-
eration (e.g. [23, 26, 17]). Fair exchange systems [10]
provide similar properties and incentives, but without re-
lying on currency. These schemes do not address content
ollution, and so are complementary to our approach.
Credence does not address freeloading or service dif-
ferentiation problems, but rather content pollution. In a
broad study of denial-of-service vulnerabilities in peer-
to-peer networks, Dumitriu et al. [9] discuss pollution
Distributed Peer Reputation: Past work on peer-to- based attacks and factors that make them successful in
peer reputation focuses mainly on servicadientiation, existing networks, and note the tendency of clients to
which refers to the ability of clients to make intelligent inadvertently share corrupted files. The authors esti-
decisions about which peer among many to select for semmate the potential impact of a general class of peer-based
vice. Typically, the goal of such systems is to discourageeputations systems, and find them to be fiisient to
freeloaders by excluding them from the network, or opti-counter pollution-based attacks. Using simulation and
mize download performance by selecting high perform-epidemiological models of the spread of pollution in file-
ing peers. Thus, past work relies mainly on peer reputasharing networks, Thommes and Coates [22] show that
tion based on performance measures of peers, rather th&redence’s object-based approach can have a significant
object reputation as we propose. impact on network-wide pollution levels, even when only
Eigentrust [13] computes a single performance scoré fraction of participants use Credence.
for each peer, reflecting their past behavior in paleseCentralized Pollution Control: Problems similar to

interactions. Although the protocol is distributed, itiult filesharing pollution have long been recoanized in other
mately relies on a fixed set of trusted nodes at which itdomains 9 prior o the emergence of mg(])dern cer-to
roots the computation of trust. Collusion can also disrupt P . 9 P

OEeeer networks. For instance, recommender systems

straightforward eigenvalue computations, and technique 201) aim to distinguish ted and ted
to make eigenvalue-based systems more resistant to ¢ .g._[]) aim to Istinguish wanted and unwanted con-
tent in Usenet and in other domains, and online market-

lusion [28] rely heavily on centralized computation. X X
[28] rely y P laces often provide some form of reputation system so

Other approaches [1, 25, 7, 4] enable each client tcg .
: uyers can avoid untrustworthy sellers. Although Cre-
compute a personalized, rather than global, performancgence is not a recommender system, our distributed flow-

score for peers in the netwo_rk_, _and alsq d|st|ngU|_sh P€€) ased correlation computations resemble the centralized
performar_lce gnd peer credibility. A client considers recommender algorithms in [27] for use in online mar-
peer credible if the clle_nt and peer_tend to agree on moﬁgetplaces. Guha et al. [11] examine how both positive
performance observations maqie in the past. Howeyerand negative evaluations might be propagated through
peers in such a system are unlikely to be found cred|bl%1 web of bairwi b : _
. . L . pairwise observations, and we share a similar
due simply to the wide variation in network perspectives, : . o .
. L . - —'model of information propagation in Credence. In gen
changing performance characteristics over time, locality o
. : : eral, however, past approachesto pollution-like problems
based peer selection, and the high degree of object repli- : . -
cation in tvpical filesharing networks rely heavily on centralized components and are not di
YRe [)Q]D and ¥Re ?5] o tend.the ork in [4] rectly applicable to peer-to-peer networks.
b b X w ! BitTorrent has remained relatively free of pollution,
by additionally computing object reputations based on

. . : . partly due to human moderation of BitTorrent lists and
weighted peer voting, with the weights based on past vot:. o
.) : tight binding of trackers to nodes [19]. Recent trends
ing behavior of peers. These protocols require peers tQ~ . ; :

. indicate that decentralized tracking and auto-generated
be online during each object evaluation phase in orde

. : forrent lists are opening BitTorrent up to pollution [16].
to compute and transmit their votes, and do not shar P g biop [16]

the computed weights among peers. Information sharing redence techniques can be applicable in such contexts.
and diline operation are critical features for a peer-to- .
peer reputation system due to the sparse workloads an% Conclusions
session lengths observed in peer-to-peer networks [21].Credence is a new approach for combating the
Alternative approaches to the freeloader problem havevidespread presence of decoys, malware, and other ma-
been proposed without resort to peer reputation. Guptdicious content in peer-to-peer filesharing systems. The
Judge, and Ammar propose an economic model [12fkystem provides incentives for peers to participate hon-
where peers earn credits for participation and pay creditestly in voting, enables peers to compute object reputa-
to gain service, and explore the tradfisdetween relia- tions that reflect their authenticity, and is robust to co-
bility and overhead when accounting is distributed in theordinated attacks. We have made a complete Credence

Deployed peer-to-peer systems are known to be wvul
nerable to many forms of malicious activity. A recent
study [3] gives clear evidence of intentional pollution at-
tacks in four large filesharing networks, and discusse®
the lack of reliable tools available for peers to avoid this
pollution. Similarly, Ross [14] finds evidence of rampant
pollution in the decentralized Kazaa network.

implementation, with source code, freely available. Datg10]
from a long-term study of the emerging properties of the
deployed network suggests that Credence users are able
to identify malicious filesharing activity and mitigate the 11]
impact of dishonest peers in the Credence reputation syé-
tem.

The techniques we have developed in Credence are ngi?]
specific to the Gnutella network in which they are cur-
rently deployed, but are applicable to a broader class of
distributed systems. These systems are characterized T%]
the need for users to make local trust decisions about net-
worked objects and services, without a priori trust rela-
tionships imposed by a central authority. As critical net-
work infrastructure services become more decentralized}4]
conventional centralized trust decisions will necesgaril
become unsuitable. Such systems can benefit from th&>!
Credence approach. [16]

Acknowledgments [17]
This work was supported in part by NSF Career grant 0546568[18]
and TRUST (The Team for Research in Ubiquitous Secure
Technology), which receives support from the National Sci-
ence Foundation (CCF-0424422) and the following organiza{1®]
tions: Cisco, ESCHER, HP, IBM, Intel, Microsoft, ORNL,
Qualcomm, Pirelli, Sun and Symantec.

References 20]

[1] S. Buchegger and J.-Y. L. Boudec. A Robust Reputation Sys

tem for P2P and Mobile Ad-hoc Networks. YWorkshop on the
Economics of Peer-to-Peer Systef@eston, MA, June 2004.

M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. 8l-W
lach. Secure Routing for Structured Peer-to-Peer Overlety N
works. InSymposium on Operating Systems Design and Imple-,
mentation Boston, MA, December 2002.

N. Christin, A. S. Weigend, and J. Chuang. Content Adaita
ity, Pollution and Poisoning in File Sharing Peer-to-Peet-N
works. INACM Conference on Electronic Commersancouver,
Canada, June 2005.

F. Cornelli, E. Damiani, S. D. C. di Vimercati, S. Parablis and

P. Samarati. Choosing Reputable Servents in a P2P Network. |
International World Wide Web Conferenddonolulu, HI, May
2002.

N. Curtis, R. Safavi-Naini, and W. Susilo. 2Rep: Enhanced
Trust Semantics for the XRep Protocol.Applied Cryptography
and Network Securityyellow Mountain, China, June 2004.

E. Damiani, S. D. C. di Vimercati, S. Paraboschi, P. Satiar
and F. Violante. A Reputation-Based Approach for Choosiag R
liable Resources in Peer-to-Peer Networks ABM Conference
on Computers and Communications Secufiyashington, DC,
October 2002.

R. Dingledine, M. Freedman, and D. Molnar. The Free Haven
Project: Distributed Anonymous Storage Service.Warkshop

on Design Issues in Anonymity and UnobservahilBgrkeley,
CA, July 2000.

[8] J. R. Douceur. The Sybil Attack. Imternational Workshop on
Peer-to-Peer System&ambridge, MA, March 2002.

D. Dumitriu, E. Knightly, A. Kuzmanovic, |. Stoica, and
W. Zwaenepoel. Denial-of-Service Resilience in PeerderP
File Sharing Systems. IACM SIGMETRICSBant, Canada,
June 2005.

[21]
(2]

(22]

(3]
(23]

(4]
(24]

(5] [25]

(6]
[26]

7 [27]

(28]

El [29]

P. Gauthier, B. Bershad, and S. D. Gribble. Dealing Witieaters
in Anonymous Peer-to-Peer Networks. Technical Report D4-0
03, University of Washington, January 2004. Computer S&en
and Engineering.

R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propayaf
Trust and Distrust. Ihnternational World Wide Web Conference
New York, NY, May 2004.

M. Gupta, P. Judge, and M. Ammar. A Reputation System for
Peer-to-Peer Networks. WCM Intl. Workshop on Network and
Operating System Support for Digital Audio and Vigédon-
terey, CA, June 2003.

S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. Higen-
Trust Algorithm for Reputation Management in P2P Netwotks.
International World Wide Web Conferendgudapest, Hungary,
May 2003.

J. Liang, R. Kumar, Y. Xi, and K. W. Ross. Pollution in PEfe
Sharing Systems. IEEEE INFOCOM Miami, FL, March 2005.

LimeWire. httpf/www.limewire.comnj.

T. Mennecke. New Breed of Corrupt Torrent InfiltratesTBi-
rent, September 2005. htffslyck.cominews.php?stor296.

MojoNation. http/www.mojonation.net

L. Page, S. Brin, R. Motwani, and T. Winograd. The pagkrei-
tation ranking: Bringing order to the web, 1998. Stanfordifai
Libraries Working Paper.

J. Pouwelse, P. Garbacki, D. Epema, and H. Sips. A Measur
ment Study of the BitTorrent Peer-to-Peer File-SharingtSys
Technical Report PDS-2004-003, Delft University of Tedhno
ogy, April 2004.

P. Resnick, N. lacovou, M. Suchak, P. Bergstrom, andiedIR
GroupLens: An Open Architecture for Collaborative Filteriof
Netnews. IPACM Conference on Computer Supported Coopera-
tive Work Chapel Hill, NC, October 1994.

S. Saroiu, K. P. Gummadi, and S. D. Gribble. A Measuremen
Study of Peer-to-Peer File Sharing SystemaMiliitimedia Com-
puting and NetworkingSan Jose, CA, January 2002.

R. Thommes and M. Coates. Epidemiological Models offee
Peer Viruses and Pollution. Technical report, McGill Unsity,
June 2005. Department of Electrical and Computer Engingeri

V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer. KARM

A Secure Economic Framework for P2P Resource Sharing. In
Workshop on the Economics of Peer-to-Peer Syst&askeley,

CA, June 2003.

K. Walsh and E. G. Sirer. Fighting Peer-to-Peer SPAM Bed
coys with Object Reputation. IWorkshop on the Economics of
Peer-to-Peer SystemBhiladelphia, PA, August 2005.

L. Xiong and L. Liu. PeerTrust: Supporting ReputatiBased
Trust in Peer-to-Peer Communities.|IEEE Transactions on
Knowledge and Data Engineering, Special Issue on Peeret-P
Based Data Managemerit6(7), July 2004.

B. Yang and H. Garcia-Molina. PPay: Micropayments feeP
to-Peer Systems. IACM Conference on Computers and Com-
munications SecurifyWashington, DC, October 2003.

G. Zacharia, A. Moukas, and P. Maes. Collaborative Ramn
Mechanisms in Electronic Marketplaces.Hawaii International
Conference on System Scienddaui, HI, January 1999.

H. Zhang, A. Goel, R. Govindan, K. Mason, and B. V. Roy.
Making Eigenvector-Based Reputation Systems Robust Tia-Col

sion. InWorkshop on Algorithms and Models for the Web-Graph
Rome, Italy, October 2004.

L. Zhou, F. B. Schneider, and R. van Renesse. COCA: Ai®ecu
Distributed On-line Certification Authority ACM Transactions
on Computer System20(4):329-368, 2002.

