
SECRET: A Scalable Linear Regression Tree Algorithm

Alin Dobra
Department of Computer Science

Cornell University
Ithaca, NY 14853

dobra@cs.cornell.edu

Johannes Gehrke
Department of Computer Science

Cornell University
Ithaca, NY 14853

johannes@cs.cornell.edu

ABSTRACT
Recently there has been an increasing interest in developing
regression models for large datasets that are both accurate
and easy to interpret. Regressors that have these proper-
ties are regression trees with linear models in the leaves,
but so far, the algorithms proposed for constructing them
are not scalable. In this paper we propose a novel regres-
sion tree construction algorithm that is both accurate and
can truly scale to very large datasets. The main idea is,
for every intermediate node, to use the EM algorithm for
Gaussian mixtures to find two clusters in the data and to
locally transform the regression problem into a classification
problem based on closeness to these clusters. Goodness of
split measures, like the gini gain, can then be used to de-
termine the split variable and the split point much like in
classification tree construction. Scalability of the algorithm
can be enhanced by employing scalable versions of the EM
and the classification tree construction algorithms. Tests on
real and artificial data show that the proposed algorithm
has accuracy comparable to other linear regression tree al-
gorithms but requires orders of magnitude less computation
time for large datasets.

1. INTRODUCTION
Regression is a very important data mining problem. One

very important class of regression models is regression trees.
Even though they were introduced early in the development
of classification trees (CART, Breiman et al. [4]), regression
trees received far less attention from the research commu-
nity. Quinlan [16] generalized the regression trees in CART
by using a linear model in the leaves to improve the accu-
racy of the prediction. The impurity measure used to choose
the split variable and the split point was the standard devi-
ation of the predictor for the training examples at the node.
Karalilc [11] argued that the mean square error of the lin-
ear model in a node is a more appropriate impurity measure
for the linear regression trees since data well predicted by a
linear model can have large variance. This is a crucial ob-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

servation since evaluating the variance is much easier than
estimating the error of a linear model (which requires solv-
ing a linear system). Even more, if discrete attributes are
present among the predictor attributes and binary trees are
built (as is the case in CART), the problem of finding the
best split attribute becomes intractable for linear regression
trees since the theorem that justifies a linear algorithm for
finding the best split (Theorem 9.4 in [4]) does not seem to
apply. To address computational concerns of normal linear
regression models, Alexander and Scott [1] proposed the use
of simple linear regressors (i.e., the linear model depends
on only one predictor attribute), which can be trained more
efficiently but are not as accurate.

Torgo proposed the use of even more sophisticated func-
tional models in the leaves (i.e., kernel regressors) [19, 18].
For such regression trees both construction and deployment
of the model is expensive but they potentially are superior
to the linear regression trees in terms of accuracy. More
recently, Li et al. [12] proposed a linear regression tree algo-
rithm that can produce oblique splits1 using Principal Hes-
sian Analysis but the algorithm cannot accommodate dis-
crete attributes.

There are a number of contributions coming from the
statistics community. Chaudhuri et al. [5] proposed the use
of statistical tests for split variable selection instead of error
of fit methods. The main idea is to fit a model (constant,
linear or higher order polynomial) for every node in the tree
and to partition the data at each node into two classes: data-
points with positive residuals2 and datapoints with negative
residuals. In this manner the regression problem is locally
reduced to a classification problem, so it becomes much sim-
pler. Statistical tests used in classification tree construction,
Student’s t-test in this case, can be used from this point on.
Unfortunately, it is not clear why differences in the distribu-
tions of the signs of the residuals are good criteria on which
decisions about splits are made. A further enhancement
was proposed recently by Loh [13]. It consists mostly in the
use of the χ2-test instead of the t-test in order to accom-
modate discrete attributes, the detection of interactions of
pairs of predictor attributes, and a sophisticated calibration
mechanism to ensure the unbiasedness of the split attribute
selection criterion.

In this paper we introduce SECRET (Scalable EM and
Classification based Regression Trees), a new construction

1Oblique splits are linear inequalities involving two or more
predictor attributes.
2Residuals are the difference between the true value and the
value predicted by regression model.

algorithm for regression trees with linear models in the leaves,
which produces regression trees with accuracy comparable
to the ones produced by existing algorithms and at the
same time requiring far less computational effort on large
datasets. Our experiments show that SECRET improves
the running time of regression tree construction by up to
two orders of magnitude compared to previous work while
at the same time constructing trees of comparable quality.
Our main idea is to use the EM algorithm on the data par-
tition in an intermediate node to determine two Gaussian
clusters, hopefully with shapes close to flat disks. We then
use these two Guassians to locally transform the regression
problem into a classification problem by labeling every dat-
apoint with class label 1 if the probability of belong to the
first cluster exceeds the probability of belong to the sec-
ond cluster, or class label 2 if the converse is true. A split
attribute and a corresponding split point to seperate the
two classes can be determined then using goodness of split
measures for classification trees like the gini gain [4]. Least
square linear regression can be used to determine the linear
regressors in the leaves.

The local reduction to a classification problem allows us to
avoid forming and solving the large number of linear systems
of equations required for an exhaustive search method such
as the method used by RETIS [11]. Even more, scalable
versions of the EM algorithm for Gaussian mixtures [3] and
classification tree construction [9] can be used to improve
the scalability of the proposed solution. An extra benefit of
the method is the fact that good oblique splits can be easily
obtained.

The rest of the paper is organized as follows. In Section
2 we give short introductions to classification and regres-
sion tree construction and to the EM algorithm for Gaus-
sian mixtures. In Section 3 we present in greater detail
some of the previously proposed solutions and we comment
on their shortcomings. Section 4 contains the description
of SECRET, our proposal for a linear regression tree algo-
rithm. We show results of an extensive experimental study
of SECRET in Section 5 and we conclude in Section 6.

2. PRELIMINARIES
In this section we give a short introduction to classification

and regression trees and the EM algorithm for Gaussian
mixtures.

2.1 Classification Trees
Classifiers are functional mappings from the crossproduct

of the domains of predictor attributes X1 . . . Xm to the do-
main of the predicted attribute C. Usually the values of C
are called class labels.

A special type of classifier is a classification tree. A classi-
fication tree is a directed, acyclic graph T with a tree shape.
The root of the tree (denoted by Root(T)) does not have any
incoming edges. Every other node has exactly one incoming
edge and may have 0, 2 or more outgoing edges. We call
a node T without outgoing edges a leaf node, otherwise T
is called an internal node. Each leaf node is labeled with
one class label; each internal node T is labeled with one
predictor attribute XT , XT ∈ {X1, . . . , Xm} called the split
attribute. We denote the label of node T by Label(T).

Each edge (T, T ′) from an internal node T to one of its
children T ′ has a predicate q(T,T ′) associated with it where
q(T,T ′) involves only the splitting attribute XT of node n.

The set of predicates Q on the outgoing edges of an internal
node T , which we call splitting predicates of T , must be
non-overlapping and exhaustive.

For a given decision tree T , predictions are made in the
usual recursive manner: (1) if the node T is a leaf return
Label(T), (2) if the node T is an intermediate node and for
some j q(T,Tj) is true, return the prediction of node Tj .

Given a dataset D, called the set of training examples, we
would like to build a classification tree that best captures the
patterns in this dataset. Such a classification tree should not
only predict well the class label of the training datapoints
but also generalize to unseen examples that are coming from
the same source as the training examples. For this reason
a classification tree is usually constructed in two phases [4].
In phase one, the growth phase, an overly large classification
tree is constructed from the training data. In phase two,
the pruning phase, the final size of the tree T is determined
with the goal to minimize the error on unseen examples.

Most classification tree construction algorithms grow the
tree top-down in the greedy way [4] shown in Figure 1. Note
that the algorithm shown in Figure 1 takes a split selection
criterion as argument. A number of such split criteria have
been proposed in the literature: gini gain, information gain,
gain ratio, χ2-test, G2-statistic, etc., [15]. We define here
only the gini gain since is the only one we use in the present
work. The gini gain is based on gini index (introduced by
Breiman et al.[4]):

gini(T)
def
= 1−

J∑
i=1

P [i|T]2

The gini gain of a node T when split using the split predi-
cates Q on the predictor attribute X is defined as:

GG(T, X, Q)
def
= gini(T)−

n∑
j=1

P [q(T,Tj)(X)|T] · gini(Tj)

The gini index is an impurity measure and gini gain repre-
sents the gain in purity if the split is made. Choosing split
variables X and split predicates Q with greater values of the
gini gain result in more progress being made. For the case
when there are only two class labels and all the splits are
binary, gini gain has a very important property, namely the
split predicate can be found in linear time in the size of the
domain of the attribute (Theorem 9.4 in [4]). Also, in this
situation, gini gain takes the simpler form:

GGb(T, X, Q) = P [1|T]2
(P [1|T1]− P [T1])

2

P [T1](1− P [T1])
(1)

A great number of pruning methods have been proposed
[15]. In this paper we use Quinlan’s resubstitution error
pruning [17]. It consists in eliminating subtrees in order to
obtain a tree with the smallest error on a separate dataset,
called pruning set.

2.2 Regression Trees
Regression models or regressors are functional mappings

from the cross product of the domains of predictor attributes
X1, . . . , Xm to the domain of the continuous predicted at-
tribute, Y . They only differ from classifiers in the fact that
the predicted attribute is real valued.

Regression Trees, the particular type of regressors we are
interested in, are the natural generalization of decision trees

Input: node T , data-partition D, split selection method V
Output: classification tree T for D rooted at T

Top-Down Classification Tree Induction Schema:
BuildTree(node T , data-partition D,

split attribute selection method V)
(1) apply V to D to find the split attribute X for node T
(2) let n be the number of children of T
(2) if (T splits)
(3) partition D into D1, . . . , Dn and label node T

with split attribute X
(4) create children nodes T1, . . . , Tn of T and label

the edge (T, Ti) with predicate q(T,Ti)

(5) foreach i∈{1, .., n}
(6) BuildTree(Ti, Di, V)
(7) endforeach
(8) else
(9) label T with the majority class label of D
(10) endif

Figure 1: Classification Tree Induction Schema

for regression problems. Instead of a class label being associ-
ated to every node, a real value or a functional dependency
of some of the inputs is used to predict the value of the
output.

Regression trees in CART have a constant numerical value
in the leaves and use the variance as a measure of impurity
[4]. Thus the split selection measure for a node T is:

Err(T)
def
= E

[
(Y − E [Y |T])2

]
∆Err(T) = Err(T)−

n∑
j=1

P [qj(X)|T] · Err(Tj)
(2)

The use of variance as the impurity measure is justified by
the fact that the best constant predictor in a node is the ex-
pected value of the predicted variable given that datapoints
belong to the node, E [Y |T]; the variance is thus the mean
square error of this best predictor.

As in the case of classification trees, prediction is made by
navigating the tree following the branches with predicates
that are satisfied until a leaf is reached. The numerical value
associated with the leaf is the prediction of the model.

Usually a top-down induction schema algorithm like that
in Figure 1 is used also to build regression tress.

Like for classification trees, pruning is used to improve the
accuracy on unseen examples. Pruning methods for classifi-
cation trees can be straightforwardly adapted for regression
trees [20].

2.3 The EM Algorithm for Gaussian Mixtures
In this section we give a short introduction to the problem

of approximating some unknown distribution, from which a
sample is available, with a mixture of Gaussian distribu-
tions. The EM algorithm [6] can be used to determine the
parameters of the Gaussian distributions of a locally opti-
mal mixture. Our introduction follows mostly the excellent
tutorial [2] where details and complete proofs of the EM
algorithm for Gaussian mixtures can be found.

The Gaussian mixture density estimation problem is the
following: find the most likely values of the parameter set
Θ = (α1, . . . , αM , µ1, . . . , µM , Σ1, . . . , ΣM) of the probabilis-

tic model:

p(x, Θ) =

M∑
i=1

αipi(x|µi, Σi) (3)

pi(x|µi, Σi) =
1

(2π)d/2|Σi|1/2
e−

1
2 (x−µi)

T Σ−1
i (x−µi) (4)

given sample X = (x1, . . . ,xN) (training data). In the above
formulas pi is the density of the Gaussian distribution with
mean µi and covariance matrix Σi. αi is the weight of the
component i of the mixture, M is the number of mixture
components or clusters and is fixed and given, and d is the
dimensionality of the space.

The EM algorithm for estimating the parameters of the
Gaussian components proceeds by repeatingly applying the
following two steps until values of the estimates do not
change significantly:

Expectation (E step):

hji =
αipi(xj|µi, Σi)∑M

k=1 αkpk(xj|µk, Σk)
(5)

Maximization (M step):

αi =
1

N

N∑
j=1

hij , µi =

∑N
j=1 hijxj∑N

j=1 hij

Σi =

∑N
j=1 hij(xj − µi)(xj − µi)

T∑N
j=1 hij

3. PREVIOUS SOLUTIONS TO LINEAR RE-
GRESSION TREE CONSTRUCTION

In this section we analyze some of the previously proposed
construction algorithms for linear regression trees and, for
each, we point major drawbacks.

3.1 Quinlan’s construction algorithm
For efficiency reasons, the algorithm proposed by Quinlan

[16] pretends that a regression tree with constant models in
the leaves is constructed until the tree is fully grown, when
linear models are fit on the datapoints available at leaves.
This is equivalent to using the split selection criterion in
Equation 2 during the growing phase. Then linear regressors
in the leaves are constructed by performing another pass
over the data in which the set of datapoints from the training
examples corresponding to each of the leaves is determined
and the least square linear problem for these datapoints is
formed and solved (using the SVD decomposition [10]).

The same approach was latter used by Torgo [18, 19] with
more complicated models in the leaves like kernels and local
polynomials.

As pointed out by Karalic [11] the variance of the output
variable is a poor estimator of the purity of the fit when
linear regressors are used in the leaves since the points can
be arranged along a line (so the error of the linear fit is
almost zero) but they occupy a significant region (so the
variance is large). To correct this problem, he suggested
that the following impurity function should be used:

Errl(T)
def
= E

[
(Y − E [f(X)|T])2

]
(6)

where f(x) = [1 xT]c is the linear regressor with the smallest
least square error. It is easy to see (see for example [10]) that

c is the solution of the LSE equation:

E

[[
1 XT

X XXT

]∣∣∣∣T] c = E

[[
1
X

]
Y

∣∣∣∣T] (7)

To see more clearly that Err(T) given by Equation 2 is
not appropriate for the linear regressor case, consider the
situation in Figure 2. The two thick lines represent a large

s−1 1

1

−1 0
s

T2T1

Figure 2: Example of situation where average based
decision is different from linear regression based de-
cision

number of points (possibly infinite). The best split for the
linear regressor is x = 0 and the fit is perfect after the split
(thus Errl(T1) = Errl(T2) = 0). Obviously the split has the
maximum possible gini gain (1/12).

For the case when Err(T) is used, E [Y |T] = 1/2 so Err(T) =
1/12. To determine the split point for this situation suppose
the split point is s−1 in Figure 2. The points with property
x < s− 1 belong to T1 and the rest to T2. Then E [Y |T1] =
s/2, Err(T1) = s3/12, E [Y |T2] = (−2 + s2)/2(−2 + s) and
Err(T2) = (4 − 8s + 12s2 − 8s3 + s4)/(24 − 12s). Thus
by doing the split the impurity decreases by ∆Err(T) =
(1− s)2s/4(2− s) The extremum points in the interval [0, 1]
are s = 1 and s = (3−

√
5)/2. Looking at the second deriva-

tive in these points one can observe that ∆Err(T) has a min-
imum in s = 1 and a maximum in s = (3−

√
5)/2. Thus the

maximum impurity decrease is obtained if the split point is
−(
√

5 − 1)/2 = −0.618034 or symmetrically 0.618034. Ei-
ther of this splits is very far from the split obtained using
Errl(T) (at point 0), thus splitting the points in proportion
19% to 81% instead of the ideal 50% to 50%.

This example suggests that the split point selection based
on Err(T) produces an unnecessary fragmentation of the
data that is not related to the natural organization of the
datapoints for the case of linear regression trees. This frag-
mentation produces unnecessarily large and unnatural trees,
anomalies that are not corrected by the pruning stage. In-
deed, when we used a dataset with the triangular shape
described above as the input to a regression tree construc-
tion algorithm that used Err(T) from Equation 2 as split
criterum we obtained the following split points starting from
the root and navigating breadth first for three levels: 0.6185,
-0.5255, 0.8095, -0.7625, 0.3585, 0.7145, 0.9055. Splits are
not only anintuitive but the generated tree is very unbal-
anced. Note that this example is not an extreme case but
rather a normal one so this behavior is probably the norm
not the exception.

3.2 Karalic’s construction algorithm
Using the split criterion in Equation 6 the problem men-

tioned above is avoided and much higher quality trees are
built. If exhaustive search is used to determine the split
point, the computational cost of the algorithm becomes pro-
hibitively expensive for large datasets for two main reasons:

• If the split attribute is continuous, all possible values
of this attribute have to be considered as split points.
For each of them a linear system has to be formed and
solved. Even if the matrix and the vector that form the
linear system are maintained incrementally (which can
be dangerous from numerical stability point of view),
for every level of the tree constructed, a number of
linear systems equal to the size of the dataset have to
be solved.

• If the split attribute is discrete the situation is worse
since Theorem 9.4 in [4] does not seem to apply for
this split criterion. This means that an exponential,
in the size of the domain of the split variable, number
of linear systems have to be formed and solved.

The first problem can be alleviated if a sample of the
points available are considered as split points. Even if this
simplification is made, the datapoints have to be sorted in
every intermediate node on all the possible split attributes.
Also, it is not clear how this modifications influence the ac-
curacy of the generated regression trees. The second prob-
lem seems unavoidable if exhaustive search is used.

3.3 Chaudhuri’s et al. construction algorithm
In order to avoid forming and solving so many linear sys-

tems, Chaudhuri et al. [5] proposed to locally classify the
datapoints available at an intermediate node based on the
sign of the residual with respect to the least square error
linear model. For the datapoints in Figure 3 (the set of dat-
apoints is identical to the one in Figure 2) this corresponds
to points above and below the dashed line. As it can be
observed, when projected on the X axis, the negative class
surrounds the positive class so two split points are necessary
to differentiate between them (the node has to be split into
three parts). When the number of predictor attributes is
greater than 1 (multidimensional case), the separating sur-
face between class labels + and − is nonlinear. Moreover, if
best regressors are fit in these two classes, the prediction is
only slightly improved. The solution adopted by Chaudhuri
et al. is to use Quadratic Discriminant Analysis (QDA) to
determine the split point. This usually leads to choosing
as split point approximatively the mean of the dataset, irre-
spective of where the optimal split is, so the reduction is not
very useful. For this reason GUIDE [13] uses this method
to select the split attribute but not the split point.

4. SCALABLE LINEAR REGRESSION TREES
For constant regression trees, algorithms for scalable clas-

sification trees can be straightforwardly adapted [9]. The
main obstacle in doing the same thing for linear regression
trees is the observation previously made that the problem of
partitioning the domain of a discrete variable in two parts
is intractable. Also the amount of sufficient statistics that
has to be maintained goes from two real numbers for con-
stant regressors (mean and mean of square) to quadratic in
the number of regression attributes (to maintain the matrix

1−1 0

1

−

+

Figure 3: Example where classification on sign of
residuals is unintuitive.

Input: node T , data-partition D
Output: regression tree T for D rooted at T

Linear regression tree construction algorithm:
BuildTree(node T , data-partition D)
(1) normalize datapoints to unitary sphere
(2) find two Gaussian clusters in regressor–output space (EM)
(3) label datapoints based on closeness to these clusters
(4) foreach split attribute
(5) find best split point and determine its gini gain
(6) endforeach
(7) let X be the attribute with the greatest gini gain and

Q the coresponding best split predicate set
(8) if (T splits)
(9) partition D into D1, D2 based on Q and label node T

with split attribute X
(10) create children nodes T1, T2 of T and label

the edge (T, Ti) with predicate q(T,Ti)

(11) BuildTree(T1, D1); BuildTree(T2, D2)
(12) else
(13) label T with the least square linear regressor of D
(14) endif

Figure 4: SECRET algorithm

AT A that defines the linear system). This can be a problem
also.

In this work we make the distinction in [13] between pre-
dictor attributes: (1) discrete attributes – used only in the
split predicates in intermediate nodes in the regression tree,
(2) split continuous attributes – continuous attributes used
only for splitting, (3) regression attributes – continuous at-
tributes used in the linear combination that specifies the
linear regressors in the leaves as well as for specifying split
predicates. By allowing some continuous attributes to par-
ticipate in splits but not in regression in the leaves we add
greater flexibility to the learning algorithm. The partition-
ing of the continuous attributes in split and regression is
beyond the scope of the paper (and is usually performed by
the user [13]).

The main idea behind our algorithm is to locally trans-
form the regression problem into a classification problem by
first identifying two general Gaussian distributions in the
regressor attributes–output space using the EM algorithm
for Gaussian mixtures and then classifying the datapoints
based on the probability of belonging to these two distribu-
tions. Classification tree techniques are then used to select
the split attribute and the split point. Our algorithm, called
SECRET, is summarized in Figure 4.

The role of EM is to find two natural classes in the data
that have approximatively a linear organization. The role of

Y

X r

Figure 5: Projection on Xr, Y space of training data.

the classification is to identify predictor attributes that can
make the difference between these two classes in the input
space. To see this more clearly suppose we are in the process
of building a linear regression tree and we have to decide on
the split attribute and split point for the node T . Suppose
the set of training examples available at node T contains
tuples with three components: a regressor attribute Xr, a
discrete attribute Xd and the predicted attribute Y . The
projection of the training data on the Xr, Y space might
look like Figure 5. The datapoints are approximatively or-
ganized in two clusters with Gaussian distributions that are
marked as ellipsoids. Differentiating between the two clus-
ters is crucial for prediction, but information in the regres-
sion attribute is not sufficient to make this distinction even
though within a cluster they can do good predictions. The
information in the discrete attribute Xd can make this dis-
tinction, as can be observed from Figure 6 where the projec-
tion is made on the Xd, Xr, Y space. If more split attributes
had been present, a split on Xd would have been preferred
since the resulting splits are pure.

Observe that the use of the EM algorithm for Gaussian
mixtures is very limited since we have only two mixtures
and thus the likelihood function has a simpler form which
means less local maxima. Since EM is sensitive to distances,
before running the algorithm, training data has to be nor-
malized by performing a linear transformation that makes
the data look as close as possible to a unitary sphere with
the center in the origin. Experimentally we observed that,
with this transformation and in this restricted scenario, the
EM algorithm with clusters initialized randomly works well.

We describe first how the EM algorithm can be imple-
mented efficiently followed by details on the integration of
the resulting mixtures with the split selection procedure and
the linear regression in the leaves.

4.1 Efficient Implementation of EM Algorithm
The following two ideas are used to implement efficiently

the EM algorithm: (1) steps E and M are performed simul-
taneously, which means that quantities hij do not have to
be stored explicitly, (2) all the operations are expressed in
terms of Cholesky decomposition Gi of covariance matrix
Σi = GiG

T
i . Gi has the useful property that is lower di-

Y

X rNo

Xd

Yes

Figure 6: Projection on Xd, Xr, Y space of same
training data as in Figure 5

agonal, so solving linear systems takes quadratic effort in
the number of dimensions and computing the determinant
is linear in the number of dimensions. Note that this modi-
fications can be made in addition to the techniques used in
[3] to make the EM algorithm scalable.

Using the Cholesky decomposition we immediately have
Σ−1

i = G−1T
i G−1

i and |Σi| = |Gi|2. Substituting in Equa-
tion 4 we get:

pi(x|µi, Gi) =
1

(2π)d/2|Gi|
e−

1
2 ‖G−1

i (x−µi)‖2

Quantity x′ = G−1
i (x − µi) can be computed by solving

the linear system Gix
′ = x− µi and takes quadratic effort.

For this reason the inverse of Gi needs not be precomputed
since solving the linear system takes as much time as vector
matrix multiplication.

The following quantities have to be maintained incremen-
tally for each cluster:

si =

N∑
j=1

hij , sx,i =

N∑
j=1

hijxj , Si =

N∑
j=1

hijx
T
j xj

and for every training example xj quantities hij are com-
puted with the formula in Equation 5. and are discarded
after updating si, sx,i, Si for every cluster i.

After all the training examples have been seen, the new
parameters of the two distributions are computed with the
formulas:

αi =
si

N
, µi =

sx,i

si
,

Σi =
Si

si
− µi

T µi, Gi = Chol(Σi)

Moreover, if the datapoints are coming from a Gaussian
distribution with mean µi and covariance matrix GiG

T
i the

transformation x′ = G−1
i (x− µi) results in datapoints with

Gaussian distribution with mean 0 and identity covariance
matrix. This means that this transformation can be used
for data normalization in the tree growing phase.

4.2 Split point and attribute selection
Once the two Gaussian mixtures are identified, the data-

points can be labeled based on the closeness to the two clus-
ters (i.e. if a datapoint is closer to cluster 1 than cluster 2 it
is labeled with class label 1, otherwise it is labeled with class
label 2). In this moment, locally, split point and attribute
selection methods from classification tree construction can
be used.

We are using gini gain as the split selection criteria to
find the split point. That is, for each attribute (or collec-
tion of attributes for oblique splits) we determine the best
split point and compute the gini gain. Then the predic-
tor attribute with the greatest gini gain is chosen as split
attribute.

For the discrete attributes the algorithm of Breiman et
al. [4] finds the split point in time linear in the size of the
domain of the discrete attribute (since we only have two class
labels). We use this algorithm, unchanged, in the present
work to find the split point for discrete attributes.

4.2.1 Split point selection for continous attributes
Since the EM algorithm for Gaussian mixtures produces

two normal distributions, it is reasonable to assume that
the projection of the datapoints with the same class label
on a continuous attribute X has also a normal distribution.
The split point that best separates the two normal distribu-
tions can be found using Quadratic Discriminant Analysis
(QDA). The reason for preferring QDA to a direct minimiza-
tion of the gini gain is the fact that it gives qualitatively
similar splits but requires less computational effort [14]. Let
αi, ηi, σ

2
i be the apriory probability, mean and variance of

the distribution i ∈ 1, 2. The solution of the QDA problem
is the point between the centers of the two normal distribu-
tions where the two densities are equal. Thus the separation
point η satisfies:

α1
1

σ1

√
2π

e−(η1−η)2/2σ2
1 = α2

1

σ2

√
2π

e−(η2−η)2/2σ2
2

that is equivalent to the second order equation:

η2

(
1

σ2
1

− 1

σ2
2

)
− 2η

(
η1

σ2
1

− η2

σ2
2

)
+

η2
1

σ2
1

− η2
2

σ2
2

=

2 ln
α1

α2
− ln

σ2
1

σ2
2

From the two solutions of the equation the one between η1

and η2 is preferred. If σ2
1 is very close to σ2

2 , solving the
second order equation is not numerically stable. In this case
it is preferable to solve the linear equation:

2η(η1 − η2) = η2
1 − η2

2 − 2σ2
1 ln

α1

α2

From Equation 1 it is obvious that to compute the gini
gain all we need to compute is:P [x ∈ C1|x ≤ η] and P [x ∈
C2|x ≤ η], and put P [x ∈ C1] = α1 and P [x ≤ η] = P [x ∈
C1]P [x ∈ C1|x ≤ η] + P [x ∈ C2]P [x ∈ C2|x ≤ η]. P [x ∈
C1|x ≤ η] is the p-value of the normal distribution with
mean η1 and variance σ2

1 with respect to x ≤ η. That is:

P [x ∈ C1|x ≤ η] =

∫
x≤η

1

σ1

√
2π

e−(x−η1)2/2σ2
1dx

=
1

2

(
1 + Erf

(
η1 − η

σ1

√
2

))
P [x ∈ C2|x ≤ η] is obtained similarly.

4.2.2 Finding a good oblique split for two Gaussian
mixtures

Ideally, given two Gaussian distributions, we would like
to find the separating hyperplane that maximizes the gini
gain. Fukanaga showed that the problem of minimizing the
expected value of the 0-1 loss (the classification error func-
tion) generates an equation involving the normal of the hy-
perplane that is not solvable algebraically [8]. Following
the same treatment, it is easy to see that the problem of
minimizing the gini gain generates the same equation. A
good solution to the problem of determining a separating
hyperplane can be found using Linear Discriminant Analy-
sis (LDA) [8].

The solution of an LDA problem for two mixtures consists
of minimizing Fisher’s separability criterion:

J(n) =
nT Σwn

nT Σbn

with

Σw =
∑

i=1,2

αi(µ− µi)(µ− µi)
T , µ =

∑
i=1,2

αiµi

Σb =
∑

i=1,2

αiΣi

which has as result a vector n, with the property that the
projections on this vector of the two Gaussian distributions
is as separated as possible. The solution of the optimization
problem is [8]:

n =
Σ−1

w (µ1 − µ2)

‖Σ−1
w (µ1 − µ2)‖2

The value of Fisher’s criterion is invariant to the choice of
origin on the projection so we can make the projection on the
line given by the vector n, that optimizes Fisher’s criterion,
and the origin of the coordinate system.

The two multidimensional Gaussian distributions are trans-
formed into unidimensional normal distributions on the pro-
jection line with means ηi = nT µi and the variances σ2

i =
nT Σin for i = 1, 2, the coordinates being line coordinates
with the coordinate of the projection of the origin as the 0.

In this moment the QDA, as in the previous section, can
be used to find the split point η on the projection. The
point η on the projection line corresponds to ηn in the initial
space. The equation of the separating hyperplane that has
n as normal and contains point ηn is nT (x − ηn) = 0 ⇔
nT x − η = 0. With this, a point x belongs to the first
partition if sign(η1 − η)(nT x − η) ≥ 0. The hyperplane
that contains this point of the projection line and that is
perpendicular to the projection line is a good separator of
the two multidimensional Gaussian distributions.

In order to be able to compare the efficacy of the split with
other splits, we have to compute its gini gain. The same
method as for the case of unidimensional splits of continu-
ous variables can be used here. The only unsolved problem
is computing the p-value of a Gaussian distribution with re-
spect to a half-space. The solution is given by the following
result:

Proposition 1. For a Gaussian distribution with mean
µ and covariance matrix Σ = GGT , positive definite, and
density pµ,Σ(x) and a hyperplane with normal n that con-
tains the point xc, the p-value with respect to the hyperplane

is:

P [nT (x− xc) ≥ 0|µ, Σ] =

∫
nT (x−xc)≥0

pµ,Σ(x)dx

=
σ

2
√
|Σ||S|

(
1 + Erf

(
µ′1

σ
√

2

))
where

Σ′−1 =

(
s wT

w S

)
= MT Σ−1M

with M orthogonal such that MT n = e1, σ = 1/
√

s−wT S−1w
and µ′ = MT (µ− xc).

Proof. See Appendix A.

4.2.3 Finding linear regressors
If the current node is a leaf or in preparation for the sit-

uation that all the descendents of this node are pruned we
have to find the best linear regressor that fits the training
data. We identified two ways the LSE linear regressor can
be computed.

The first method consist of a traversal of the original
dataset and an identification of the subset that falls into
this node. The least square linear system in Equation 7 is
formed with these datapoints and solved. Note that, in the
case that all the sufficient statistics can be maintained in
main memory, a single traversal of the training dataset per
tree level will suffice.

The second method uses the fact that the split selection
method tries to find a split attribute and a split point that
can differentiate best between the two Gaussian mixtures
found in the regressor–output space. The least square prob-
lem can be solved at the level of each of these mixtures un-
der the assumption that the distribution of the datapoints
is normal with the parameters identified by the EM algo-
rithm. This method is less precise since the split is usually
not perfect but can be used when the number of traversals
over the dataset becomes a concern.

5. EMPIRICAL EVALUATION
In this section we present the results of an extensive ex-

perimental study of SECRET, the linear regression tree con-
struction algorithm we propose. The purpose of the study
was twofold: (1) to compare the accuracy of SECRET with
GUIDE [13], a state-of-the-art linear regression tree algo-
rithm and (2) to compare the scalability properties of SE-
CRET and GUIDE through running time analysis.

The main findings of our study are:

• Accuracy of prediction. SECRET is more accu-
rate than GUIDE on three datasets, as accurate on
six datasets and less accurate on three datasets. This
suggests that overall the prediction accuracy to be ex-
pected from SECRET is comparable to the accuracy
of GUIDE. On four of the datasets, the use of oblique
splits resulted in significant improvement in accuracy.

• Scalability to large datasets. For datasets of small
to moderate sizes (up to 5000 tuples), GUIDE slightly
outperforms SECRET. The behavior for large datasets
of the two methods is very different; for datasets with
256000 tuples and 3 attributes, SECRET runs about
200 times faster than GUIDE. Even if GUIDE con-
siders only 1% of the points available as possible split

points, SECRET still runs 20 times faster. Also, there
is no significant change in running time when SECRET
produces oblique splits.

5.1 Experimental testbed and methodology
GUIDE [13] is a regression tree construction algorithm

that was designed to be both accurate and fast. The ex-
tensive study by Loh [13] showed that GUIDE outperforms
previous regression tree construction algorithms and com-
pares favorably with MARS [7], a state-of-the-art regression
algorithm based on spline functions. GUIDE uses statistical
techniques to pick the split variable and can use exhaustive
search or just a sample of the points to find the split point.
In our accuracy experiments we set up GUIDE to use ex-
haustive search. For the scalability experiments we report
running times for both the exhaustive search and split point
candidate sampling of size 1%.

For the experimental study we used nine real life and three
synthetic datasets. All datasets except 3DSin have been
used before extensively.
Real life datasets:

Abalone Dataset from UCI machine learning repository used
to predict the age of abalone from physical measure-
ments. Contains 4177 cases with 8 attributes (1 nom-
inal and 7 continuous).

Baseball Dataset from UCI repository, containing informa-
tion about baseball players used to predict their salaries.
Consists of 261 cases with 20 attributes (3 nominal and
17 continuous).

Boston Data containing characteristics and prices of houses
around Boston, from UCI repository. Contains 506
cases with 14 attributes (2 nominal and 12 continu-
ous).

Kin8nm Data containing information on the forward kine-
matics of an 8 link robot arm from the DVELVE repos-
itory. Contains 8192 cases with 8 continuous attributes.

Mpg Subset of the auto-mpg data in the UCI repository (tu-
ples with missing values were removed). The data con-
tains characteristics of automobiles that can be used
to predict gas consumption. Contains 392 cases with
8 attributes (3 nominal and 5 continuous).

Mumps Data from SatLib archive containing incidence of
mumps in each of the 48 contiguous states from 1953
to 1989. The predictor variables are year and longitude
and latitude of state center. The dependent variable is
the logarithm of the number of mumps cases. Contains
1523 cases with 4 continuous attributes.

Stock Data containing daily stock of 10 aerospace compa-
nies from SatLib repository. The goal is to predict the
stock of the 10th company from the stock of the other
9. Contains 950 cases with 10 continuous attributes.

TA Data from UCI repository containing information about
teaching assistants at University of Wisconsin. The
goal is to predict their performance. Contains 151
cases with 6 attributes (4 nominal and 2 continuous).

Tecator Data from SatLib archive containing characteris-
tics of spectra of pork meat with the purpose of pre-
dicting the fat content. We used the first 10 principal
components of the wavelengths to predict the fat con-
tent. Contains 240 cases with 11 continuous attributes.

Synthetic datasets:

Cart Synthetic dataset proposed by Breiman et al.([4] p.238)
with 10 predictor attributes: X1 ∈ {−1, 1}, Xi ∈
{−1, 0, 1}, i ∈ {2 . . . 10} and the predicted attribute
determined by if X1 = 1 then Y = 3 + 3X2 + 2X3 +
X4 + σ(0, 2) else Y = −3 + 3X5 + 2X6 + X7 + σ(0, 2).
We interpreted all the 10 predictor attributes as dis-
crete attributes.

Fried Artificial dataset used by Friedman [7] containing 10
continuous predictor attributes with independent val-
ues uniformly distributed in the interval [0, 1]. The
value of the predictor variable is obtained with the
equation: Y = 10 sin(πX1X2)+20(X3−0.5)2+10X4+
5X5 + σ(0, 1).

3DSin Artificial dataset containing 2 continuous predictor
attributes uniformly distributed in interval [−3, 3], with
the output defined as Y = 3 sin(X1) sin(X2). There is
no noise added.

We performed all the experiments reported in this paper
on a Pentium III 933MHz running Redhat Linux 7.2.

5.2 Experimental results: Accuracy
For each experiment with real datasets we used a random

partitioning into 50% of datapoints for training, 30% for
pruning and 20% for testing. For the synthetic datasets we
generated randomly 16384 tuples for training, 16384 tuples
for pruning and 16384 tuples for testing for each experi-
ment. We repeated each experiment 100 times in order to
get accurate estimates. For comparison purposes we built
regression trees with both constant (by using all the con-
tinuous attributes as split attributes) and linear (by using
all continuous attributes as regressor attributes) regression
models in the leaves. In all the experiments we used Quin-
lan’s resubstitution error pruning [17]. For both algorithms
we set the minimum number of datapoints in a node to be
considered for splitting to 1% of the size of the dataset,
which resulted in trees at the end of the growth phase with
around 75 nodes.

Table 1 contains the average mean square error and its
standard deviation for GUIDE, SECRET and SECRET with
oblique splits (SECRET(O)) with constant (left part) and
linear (right part) regressors in the leaves, on each of the
twelve datasets. GUIDE and SECRET with linear regressor
in the leaves have equal accuracy (we considered accuracies
equal if they were less than three standard deviations away
from each other) on six datasets (Abalone, Boston, Mpg,
Stock, TA and Tecator), GUIDE wins on three datasets
(Baseball, Mumps and Fried) and SECRET wins on the
remaining three (Kin8nm, 3DSin and Cart). These findings
suggest that the two algorithms are comparable from the
accuracy point of view, neither dominating the other. The
use of oblique splits in SECRET made a big difference in
four datasets (Kin8nm 27%, Stock 24%, Tecator 35% and
3DSin 45%). These datasets usually have less noise and are
complicated but smooth (so they offer more opportunities
for intelligent splits). At the same time the use of oblique
splits resulted in significantly worse performance on two of
the datasets (Baseball 13% and Fried 19%).

5.3 Experimental results: Scalability
We chose to use only synthetic datasets for scalability ex-

periments since the sizes of the real datasets are too small.

Constant Regressors Linear Regressors
GUIDE SECRET SECRET(O) GUIDE SECRET SECRET(O)

Abalone 5.32±0.05 5.50±0.10 5.41±0.10 4.63±0.04 4.67±0.04 4.76±0.05
Baseball 0.224±0.009 0.200±0.008 0.289±0.012 0.173±0.005 0.243±0.011 0.280±0.009
Boston 23.34±0.72 28.00±0.92 30.91±0.94 40.63±6.63 24.01±0.69 26.11±0.66
Kin8nm 0.0419±0.0002 0.0437±0.0002 0.0301±0.0003 0.0235±0.0002 0.0222±0.0002 0.0162±0.0001
Mpg 12.94±0.33 30.09±2.28 26.26±2.45 34.92±21.92 15.88±0.68 16.76±0.74
Mumps 1.34±0.02 1.59±0.02 1.56±0.02 1.02±0.02 1.23±0.02 1.32±0.04
Stock 2.23±0.06 2.20±0.06 2.18±0.07 1.49±0.09 1.35±0.05 1.03±0.03
TA 0.74±0.02 0.69±0.01 0.69±0.01 0.81±0.04 0.72±0.01 0.79±0.08
Tecator 57.59±2.40 49.72±1.72 28.21±1.75 13.46±0.72 12.08±0.53 7.80±0.53

3DSin 0.1435±0.0020 0.4110±0.0006 0.2864±0.0077 0.0448±0.0018 0.0384±0.0026 0.0209±0.0004
Cart 1.506±0.005 1.171±0.001 N/A N/A N/A N/A
Fried 7.29±0.01 7.45±0.01 6.43±0.03 1.21±0.00 1.26±0.01 1.50±0.01

Table 1: Accuracy on real (upper part) and synthetic (lower part) datasets of GUIDE and SECRET. In
parenthesis we indicate O for orthogonal splits. The winner is in bold face if it is statistically significant and
in italics otherwise.

Size GUIDE GUIDE(S) SECRET SECRET(O)

250 0.07 0.05 0.21 0.21
500 0.13 0.07 0.33 0.34

1000 0.30 0.12 0.55 0.58
2000 0.94 0.24 1.08 1.12
4000 3.28 0.66 2.11 2.07
8000 12.58 2.40 4.07 4.12

16000 48.93 9.48 8.16 8.37
32000 264.50 43.25 16.71 16.19
64000 1389.88 184.50 35.62 35.91

128000 6369.94 708.73 73.35 71.67
256000 25224.02 2637.94 129.95 131.70 0.01

0.1

1

10

100

1000

10000

100000

100 1000 10000 100000 1e+06

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

�

Dataset size (tuples)

GUIDE
GUIDE(S)

SECRET
SECRET(O)

Figure 7: Running time (in seconds) of GUIDE, GUIDE with 0.01 of point as split points, SECRET and
SECRET with oblique splits for synthetic dataset 3DSin (3 continuous attributes).

Size GUIDE GUIDE(S) SECRET SECRET(O)

250 0.09 0.07 0.47 0.43
500 0.17 0.14 0.87 0.92

1000 0.36 0.28 1.85 1.83
2000 1.12 0.80 3.58 3.69
4000 2.90 2.38 7.33 7.36
8000 10.46 8.43 13.77 14.05

16000 42.16 33.09 27.80 28.68
32000 194.63 123.63 56.87 58.01
64000 1082.70 533.16 122.26 124.60

128000 4464.88 1937.94 223.42 222.75
256000 18052.16 8434.33 460.12 470.68 0.01

0.1

1

10

100

1000

10000

100000

100 1000 10000 100000 1e+06

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

�

Dataset size (tuples)

GUIDE
GUIDE(S)

SECRET
SECRET(O)

Figure 8: Running time (in seconds) of GUIDE, GUIDE with 0.01 of point as split points, SECRET and
SECRET with oblique splits for synthetic dataset Fried (11 continuous attributes).

The learning time of both GUIDE and SECRET is mostly
dependent on the size of the training set and on the number
of attributes, as is confirmed by some other experiments we
are not reporting here. As in the case of accuracy experi-
ments, we set the minimum number of datapoints in a node
to be considered for further splits to 1% of the size of the
training set. We measured only the time to grow the trees,
ignoring the time necessary for pruning and testing. The
reason for this is the fact that pruning and testing can be
implemented efficiently and for large datasets do not make a
significant contribution to the running time. For GUIDE we
report running times for both exhaustive search and sample
split point (only 1% of the points available in a node are
considered as possible split points), denoted by GUIDE(S).

Results of experiments with the 3DSin dataset and Fried
dataset are depicted in Figures 7 and 8 respectively. A num-
ber of observations are apparent from these two sets of re-
sults: (1) the performance of the two versions of SECRET
(with and without oblique splits) is virtually indistinguish-
able, (2) the running time of both versions of GUIDE is
quadratic in size for large datasets, (3) as the number of
attributes went up from 3 (3DSin) to 11 (Fried) the compu-
tation time for GUIDE(S), SECRET and SECRET(O) went
up about 3.5 times but went slightly down for GUIDE, (4)
for large datasets (256000 tuples) SECRET is two orders
of magnitude faster than GUIDE and one order of magni-
tude faster than GUIDE(S). It is also worth pointing out
that, for SECRET, most of the time is spent in the EM
algorithm. If used, sampling would not decrease the preci-
sion of EM much and at the same time would considerably
decrease the computation time. For this reason the compar-
ison with GUIDE(S) is not fair, nevertheless starting from
medium sized datasets SECRET outperforms significantly
the sampled version of GUIDE.

6. CONCLUSIONS
In this paper we introduced SECRET, a new linear regres-

sion tree construction algorithm designed to overcome the
scalability problems of previous algorithms. The main idea
is, for every intermediate node, to find two Gaussian clus-
ters in the regressor–output space and then to classify the
datapoints based on the closeness to these clusters. Tech-
niques from classification tree construction are then used
locally to choose the split variable and split point. In this
way the problem of forming and solving a large number of
linear systems, required by an exhaustive search algorithm,
is avoided entirely. Moreover, this reduction to a local clas-
sification problem allows us to efficiently build regression
trees with oblique splits. Experiments on real and synthetic
datasets showed that the proposed algorithm is as accurate
as GUIDE, a state-of-the-art regression tree algorithm if
normal splits are used, and on some datasets up to 45%
more accurate if oblique splits are used. At the same time
our algorithm requires significantly smaller computational
resources for large datasets.

7. ACKNOWLEDGEMENTS
We would like to thank Wei-Yin Loh for providing help

with GUIDE, Rich Caruana for making comments on an
early draft of this paper and Rimon Barr for suggesting the
name SECRET for our algorithm.

8. REFERENCES

[1] W. P. Alexander and S. D. Grimshaw. Treed
regression. Journal of Computational and Graphical
Statistics, (5):156–175, 1996.

[2] J. Bilmes. A gentle tutorial of the EM algorithm and
its application to parameter estimation for gaussian
mixture and hidden markov models. Technical report,
University of California at Berkeley, 1997.

[3] P. S. Bradley, U. M. Fayyad, and C. Reina. Scaling
clustering algorithms to large databases. In Knowledge
Discovery and Data Mining, pages 9–15, 1998.

[4] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.
Stone. Classification and Regression Trees.
Wadsworth, Belmont, 1984.

[5] P. Chaudhuri, M.-C. Huang, W.-Y. Loh, and R. Yao.
Piecewise-polynomial regression trees. Statistica
Sinica, 4:143–167, 1994.

[6] N. M. Dempster,A.P. Laird and D. B. Rubin.
Maximum likelihood from incomplete data via the EM
algorithm. J. R. Statist. Soc. B, 39:185–197, 1977.

[7] J. H. Friedman. Multivariate adaptive regression
splines. The Annals of Statistics, 19:1–141 (with
discussion), 1991.

[8] K. Fukanaga. Introduction to Statistical Pattern
Recognition, Second edition. Academic Press, 1990.

[9] J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest
– a framework for fast decision tree construction of
large datasets. In Proceedings of the 24th International
Conference on Very Large Databases, pages 416–427.
Morgan Kaufmann, August 1998.

[10] G. H. Golub and C. F. V. Loan. Matrix Computations.
Johns Hopkins, 1996.

[11] A. Karalic. Linear regression in regression tree leaves.
In International School for Synthesis of Expert
Knowledge, Bled,Slovenia, 1992.

[12] K.-C. Li, H.-H. Lue, and C.-H. Chen. Interactive
tree-structured regression via principal hessian
directions. journal of the American Statistical
Association, (95):547–560, 2000.

[13] W.-Y. Loh. Regression trees with unbiased variable
selection and interaction detection. Statistica Sinica,
2002. in press.

[14] W.-Y. Loh and Y.-S. Shih. Split selection methods for
classification trees. Statistica Sinica, 7(4), 1997.

[15] S. K. Murthy. Automatic construction of decision
trees from data: A multi-disciplinary survey. Data
Mining and Knowledge Discovery, 1997.

[16] J. R. Quinlan. Learning with Continuous Classes. In
5th Australian Joint Conference on Artificial
Intelligence, pages 343–348, 1992.

[17] J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufman, 1993.

[18] L. Torgo. Functional models for regression tree leaves.
In Proc. 14th International Conference on Machine
Learning, pages 385–393. Morgan Kaufmann, 1997.

[19] L. Torgo. Kernel regression trees. In European
Conference on Machine Learning, 1997. Poster paper.

[20] L. Torgo. A comparative study of reliable error
estimators for pruning regression trees. In H. Coelho,
editor, Iberoamerican Conference on Artificial
Intelligence. Springer-Verlag, 1998.

APPENDIX

A. PROOF OF PROPOSITION 1
For a Gaussian distribution with mean µ and covariance

matrix Σ = GGT , positive definite, and density pµ,Σ(x) and
a hyperplane with normal n that contains the point xc, the
p-value with respect to the hyperplane is:

P [nT (x− xc) ≥ 0|µ, Σ] =

∫
nT (x−xc)≥0

pµ,Σ(x)dx

=
σ

2
√
|Σ||S|

(
1 + Erf

(
µ′1

σ
√

2

))

where

Σ′−1 =

(
s wT

w S

)
= MT Σ−1M

with M orthogonal such that MT n = e1, σ = 1/
√

s−wT S−1w
and µ′ = MT (µ− xc).

Proof. Since MT n = e1 the first column in M has to
be n (which is supposed to have unitary norm) and the rest
of columns are vectors orthogonal on n. Such an orthogonal
matrix can be found using Gram-Schmidth orthogonaliza-
tion starting with n and the d−1 least paralel with n versor
vectors. Doing the transformation x′ = MT (x − xc) that
transforms the hyperplane n,xc into e1, 0 we get x − µ =
M(x′−µ′). Using the notation Φ for P [nT (x−xc) ≥ 0|µ, Σ]
and substituting in the definition we get:

Φ =

∫
x′1≥0

∫
x′2

· · ·
∫

x′
d

p(x′)dx′

=

∫
x′1≥0

∫
x′2

· · ·
∫

x′
d

1

(2π)d/2
√
|Σ|

e−
1
2 [(x′−µ′)T Σ′−1(x′−µ′)]dx′

With the notation y = x′ − µ′ and L for the set of indeces
2 . . . d, the exponent in the above integral can be rewritten
like:

yT Σ′−1y = sy2
1 + 2y1y

T
Lw + yT

LSyL

= sy2
1 − y2

1wT S−1w

+ (yL + y1S
−1w)T S(yL + y1S

−1w)

With this we get:

ΦL(x′1) =

∫
x′

L

exp

(
−1

2
[(x′ − µ′)T Σ′−1(x′ − µ′)]

)
dx′L

=

∫
yL

exp

(
−1

2
[sy2

1 − y2
1wT S−1w

+(yL + y1S
−1w)T S(yL + y1S

−1w)]
)

dyL

=
(2π)

d−1
2√

|S|
exp

(
−1

2
(x′1 − µ′1)

2(s− wT S−1w)

)

and substituting back in A we have:

Φ =

∫
x′1≥0

1

(2π)d/2
√
|Σ|

ΦL(x′1)

=
σ√
|Σ||S|

∫
x′1≥0

1√
2πσ

e−(x′1−µ′1)2/2σ2

=
σ√
|Σ||S|

∫
t≥−µ′1/σ

√
2

1√
π

e−t2dt

=
σ√
|Σ||S|

(
1

2

2√
π

∫ 0

− µ1
σ
√

2

e−t2dt +
1√
π

∫ ∞

0

e−t2dt

)

=
σ

2
√
|Σ||S|

(
1 + Erf

(
µ′1

σ
√

2

))
We show now that s − wT S−1w > 0 thus the above com-
putations are sound. Since Σ is positive definite by supposi-
tion, Σ′−1 = MT Σ−1M is positive definite. This means that
vT Σ′−1v > 0 for any nonzero v. Taking v = [1 S−1w]T we
get the required inequality.

