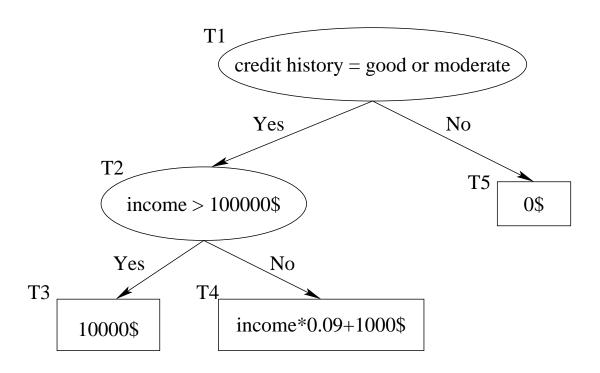
SECRET: A Scalable Linear Regression Tree Algorithm

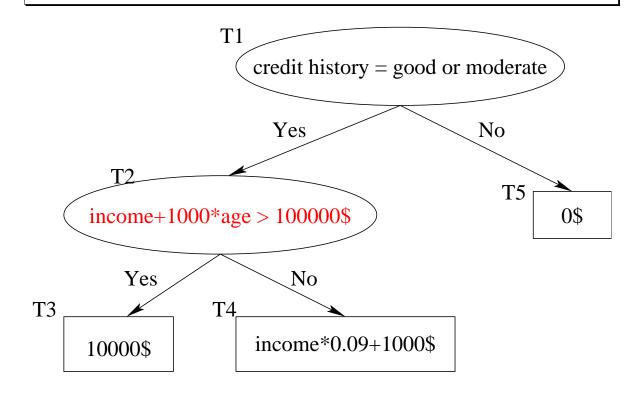
SIGKDD-2002

Alin Dobra Johannes Gehrke Cornell University

Linear Regression Trees



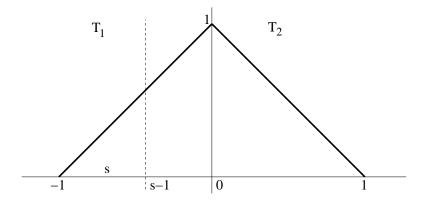
Linear Regression Trees with Orthogonal Splits



Previous Approaches

Quinlan 1992: Pretend that a regression tree with constant models in leaves is built using variance as impurity and find linear models for leaves only after growth phase

Problems:



The split-point chosen is $-(\sqrt{5}-1)/2=-0.618$ which is very far from 0. Such split criteria produce unnecessary fragmentation and unbalanced trees.

Previous Approaches (cont.)

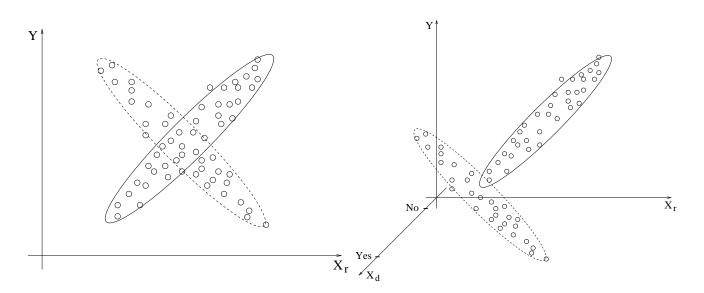
Karalic 1992

- Use error with respect to the linear model as goodness metric not variance (fixes the problem of Quinlan's algorithm)
- Exhaustive search used to find split attribute and split point
 - For every possible value of a continuous attribute a linear system has to be formed and solved
 - For discrete attributes an exponential number of linear systems have to be formed and solved since Theorem 9.4 in Breiman 1994 does not apply

Chaudhuri et al. 1994

- Avoids building many linear systems by locally classifying the data-points based on the sign of the residual w.r.t. the best linear regressor
- Usually the negative residuals surround the positive ones so the separation in classes does not provide a useful separation w.r.t. the regression problem

Main Idea



- Find two Gaussian distributions in the data
- Classify points based on closeness w.r.t. these distributions
- Find best split attribute and corresponding split point using *gini gain* criterion in the resulting classification problem

SECRET Algorithm

Input: node T, data-partition D

 $\textbf{Output} \colon \mathsf{regression} \mathsf{\ tree}\ \mathcal{T} \mathsf{\ for\ } D \mathsf{\ rooted\ at\ } T$

BuildTree(node T, data-partition D)

- (1) normalize data-points to unitary sphere
- (2) find two Gaussian clusters in regressor—output space (EM)
- (3) label data-points based on closeness to these clusters
- (4) foreach split attribute
- (5) find best split point and determine its gini gain
- (6) endforeach
- (7) let X be the attribute with the greatest gini gain and Q the corresponding best split predicate set
- (8) **if** (T splits)
- (9) partition D into D_1, D_2 based on Q and label node T with split attribute X
- (10) create children nodes T_1, T_2 of T and label the edge (T, T_i) with predicate $q_{(T, T_i)}$
- (11) BuildTree (T_1, D_1) ; BuildTree (T_2, D_2)
- (12) else
- (13) label T with the least square linear regressor of D
- (14) end if

Split Point and Attribute Selection

- Gini gain used as split attribute selection criterion for all types of attributes
- For *discrete* attributes the best split point is found by finding the partition of the values into two sets in order to minimize *gini gain*
- For continuous attributes use Quadratic Discriminant Analysis

$$\alpha_1 \frac{1}{\sigma_1 \sqrt{2\pi}} e^{-(\eta_1 - \eta)^2 / 2\sigma_1^2} = \alpha_2 \frac{1}{\sigma_2 \sqrt{2\pi}} e^{-(\eta_2 - \eta)^2 / 2\sigma_2^2}$$

To compute *gini gain* is enough to compute:

$$P[x \in C_1 \mid x \le \eta] = \int_{x \le \eta} \frac{1}{\sigma_1 \sqrt{2\pi}} e^{-(x-\eta_1)^2/2\sigma_1^2} dx$$
$$= \frac{1}{2} \left(1 + \operatorname{Erf} \left(\frac{\eta_1 - \eta}{\sigma_1 \sqrt{2}} \right) \right)$$

and $P[x \in C_2 \mid x \leq \eta]$ by a similar equation.

Oblique Splits

- If the distribution of the data-points with the same class label (closer to the same Gaussian) is approximated with a Gaussian distribution, a good oblique split can be found by finding the hyperplane that best separates the two distributions
- Minimizing gini gain is hard. Fisher's separability criterion

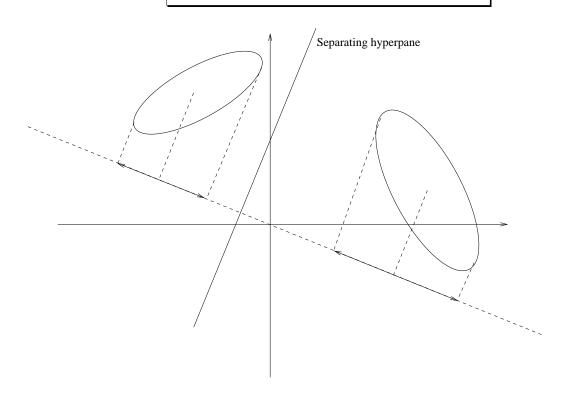
$$J(\mathbf{n}) = \frac{\mathbf{n}^T \Sigma_w \mathbf{n}}{\mathbf{n}^T \Sigma_b \mathbf{n}}$$

with

$$\Sigma_w = \sum_{i=1,2} \alpha_i (\mu - \mu_i) (\mu - \mu_i)^T, \quad \mu = \sum_{i=1,2} \alpha_i \mu_i$$
$$\Sigma_b = \sum_{i=1,2} \alpha_i \Sigma_i$$

is minimized instead. A point contained in the separating hyperplane is found using unidimensional QDA on the line given by \mathbf{n} and the origin. This means setting $\eta_i = \mathbf{n}^T \mu_i$ and $\sigma_i^2 = \mathbf{n}^T \Sigma_i \mathbf{n}$ in previous equations

Oblique Splits Example



Experimental Evaluation

Datasets used

Harre	Source	*	cases *	nominal *
Abalone	UCI	4177	1	7
Basball	UCI	261	3	17
Kin8nm	DVELVE	8192	0	8
Mpg	UCI	392	3	5
Mumps	SatLib	1523	0	4
Stock	SatLib	950	0	10
TA	UCI	151	4	2
Tecator	SatLib	240	0	11
Cart	Breiman et al.	_	10	1
Fried	Friedman	_	0	11
3DSin	$3\sin(X_1)\sin(X_2)$	_	0	3

- Compared with GUIDE [Loh 2002], state-of-the-art regression tree construction algorithm
- GUIDE uses exhaustive search,
 GUIDE(S) uses 1% sample
- Experiments performed on a Pentium III 933MHz running Redhat Linux 7.2
- Each experiment repeated 100 times
- For accuracy experiments 50% of data for training, 30% for pruning and 20% for testing
- Quinlan's resubstitution error pruning used

Accuracy Results

	(Constant Regressor	rs		Linear Regressors	5
	GUIDE	SECRET	SECRET(O)	GUIDE	SECRET	SECRET(O)
Abalone	5.32±0.05	5.50±0.10	5.41±0.10	4.63±0.04	4.67±0.04	4.76±0.05
Baseball	0.224 ± 0.009	0.200 ± 0.008	$0.289 {\pm} 0.012$	0.173 ± 0.005	$0.243 {\pm} 0.011$	0.280 ± 0.009
Boston	$23.34 {\pm} 0.72$	28.00 ± 0.92	30.91 ± 0.94	40.63 ± 6.63	24.01 ± 0.69	26.11 ± 0.66
Kin8nm	0.0419 ± 0.0002	0.0437 ± 0.0002	$0.0301 {\pm} 0.0003$	$0.0235 {\pm} 0.0002$	$0.0222 {\pm} 0.0002$	$0.0162 {\pm} 0.0001$
Mpg	12.94 ± 0.33	30.09 ± 2.28	$26.26{\pm}2.45$	34.92 ± 21.92	$15.88 {\pm} 0.68$	16.76 ± 0.74
Mumps	$1.34 {\pm} 0.02$	$1.59 {\pm} 0.02$	$1.56 {\pm} 0.02$	$1.02{\pm}0.02$	1.23 ± 0.02	$1.32 {\pm} 0.04$
Stock	$2.23{\pm}0.06$	$2.20 {\pm} 0.06$	2.18 ± 0.07	1.49 ± 0.09	$1.35{\pm}0.05$	$1.03 {\pm} 0.03$
TA	0.74 ± 0.02	$0.69 {\pm} 0.01$	$0.69{\pm0.01}$	$0.81 {\pm} 0.04$	$0.72 {\pm} 0.01$	0.79 ± 0.08
Tecator	57.59 ± 2.40	49.72 ± 1.72	28.21 ± 1.75	$13.46 {\pm} 0.72$	12.08 ± 0.53	$7.80 {\pm} 0.53$
3DSin	0.1435±0.0020	0.4110±0.0006	0.2864±0.0077	$0.0448 {\pm} 0.0018$	0.0384±0.0026	$0.0209 {\pm} 0.0004$
Cart	$1.506 {\pm} 0.005$	1.171 ± 0.001	N/A	N/A	N/A	N/A
Fried	$7.29 {\pm} 0.01$	$7.45 {\pm} 0.01$	6.43 ± 0.03	1.21 ± 0.00	1.26 ± 0.01	1.50 ± 0.01

- GUIDE and SECRET have comparable accuracy
- Oblique splits sometimes make a big difference

Scalability Results: 3DSin

Size	GUIDE	GUIDE(S)	SECRET	SECRET(O)	1	100000	GUIDE			
250	0.07	0.05	0.21	0.21	-	10000	GUIDE(S)* SECRET*			1
500	0.13	0.07	0.33	0.34	(s	1000	SECRET(O)		/ /×	
1000	0.30	0.12	0.55	0.58	(spuo:	1000				1
2000	0.94	0.24	1.08	1.12	(sec	100				- 1
4000	3.28	0.66	2.11	2.07	time				×	1
8000	12.58	2.40	4.07	4.12	ing	10				1
16000	48.93	9.48	8.16	8.37	Runn	1		A X		1
32000	264.50	43.25	16.71	16.19	ш		- X	.*		1
64000	1389.88	184.50	35.62	35.91		0.1	**			1
128000	6369.94	708.73	73.35	71.67		0.01				
256000	25224.02	2637.94	129.95	131.70		100	1000	10000	100000	1e+06
							Da	taset size (tuple	es)	

- Only tree growth time reported (pruning much faster)
- SECRET and SECRET(O) have comparable performance
- GUIDE and GUIDE(S) have quadratic (in the number of tuples) running time
- SECRET and SECRET(O) have linear running time

Scalability Results: Fried

Size	GUIDE	GUIDE(S)	SECRET	SECRET(O)		100000	GUIDE ——
250	0.09	0.07	0.47	0.43		10000	GUIDE(S)
500	0.17	0.14	0.87	0.92	(S	1000	SECRET(O) — =
1000	0.36	0.28	1.85	1.83	(spuo:	1000	
2000	1.12	0.80	3.58	3.69	(sec	100	
4000	2.90	2.38	7.33	7.36	time		
8000	10.46	8.43	13.77	14.05	ning	10	
16000	42.16	33.09	27.80	28.68	Runn	1	
32000	194.63	123.63	56.87	58.01	14		
64000	1082.70	533.16	122.26	124.60		0.1	*******
128000	4464.88	1937.94	223.42	222.75		0.01	
256000	18052.16	8434.33	460.12	470.68		10	0 1000 10000 100000 1e+06
							Dataset size (tuples)

- The increase of the number of attributes to 11 (was 3 before) results in slow-downs of about 3.5 for GUIDE(S), SECRET and SECRET(O) but GUIDE slightly faster
- For large datasets SECRET two orders of magnitude faster than GUIDE and one order of magnitude faster than GUIDE(S)

Conclusions

- Main idea: locally transform the regression problem into a classification problem
 - First identify two Gaussian distributions in the data
 - Classify the points based on closeness w.r.t. these Gaussian
 - Find best split attribute and best split point for resulting classification problem
 - Find best predictors using linear regression
- SECRET is comparably accurate but much faster than GUIDE
- Oblique splits are easy to obtain and give sometimes 45% accuracy increase
- Most of the running time of SECRET spent in EM. Sampling or scalable EM versions should give significantly speed up

References

- [1] P. S. Bradley, U. M. Fayyad, and C. Reina. Scaling clustering algorithms to large databases. In *Knowledge Discovery and Data Mining*, pages 9–15, 1998.
- [2] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. *Classification and Regression Trees.* Wadsworth, Belmont, 1984.
- [3] P. Chaudhuri, M.-C. Huang, W.-Y. Loh, and R. Yao. Piecewise-polynomial regression trees. *Statistica Sinica*, 4:143–167, 1994.
- [4] J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest a framework for fast decision tree construction of large datasets. In *Proceedings of the 24th International Conference on Very Large Databases*, pages 416–427. Morgan Kaufmann, August 1998.
- [5] A. Karalic. Linear regression in regression tree leaves. In *International School for Synthesis of Expert Knowledge*, *Bled*, *Slovenia*, 1992.
- [6] W.-Y. Loh. Regression trees with unbiased variable selection and interaction detection. *Statistica Sinica*, 2002. in press.
- [7] J. R. Quinlan. Learning with Continuous Classes. In *5th Australian Joint Conference on Artificial Intelligence*, pages 343–348, 1992.