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Linear Regression Trees
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Linear Regression Trees with Orthogonal Splits
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Previous Approaches

Quinlan 1992: Pretend that a regression tree with constant models in leaves is
built using variance as impurity and find linear models for leaves only after growth
phase

Problems:
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The split-point chosen is −(
√

5 − 1)/2 = −0.618 which is very far from 0. Such
split criteria produce unnecessary fragmentation and unbalanced trees.



Previous Approaches (cont.)

Karalic 1992

• Use error with respect to the linear model as goodness metric not variance
(fixes the problem of Quinlan’s algorithm)

• Exhaustive search used to find split attribute and split point

– For every possible value of a continuous attribute a linear system has to be
formed and solved

– For discrete attributes an exponential number of linear systems have to be
formed and solved since Theorem 9.4 in Breiman 1994 does not apply

Chaudhuri et al. 1994

• Avoids building many linear systems by locally classifying the data-points based
on the sign of the residual w.r.t. the best linear regressor

• Usually the negative residuals surround the positive ones so the separation in
classes does not provide a useful separation w.r.t. the regression problem



Main Idea
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• Find two Gaussian distributions in the data

• Classify points based on closeness w.r.t. these distributions

• Find best split attribute and corresponding split point using gini gain criterion
in the resulting classification problem



SECRET Algorithm

Input: node T , data-partition D
Output: regression tree T for D rooted at T

BuildTree(node T , data-partition D)
(1) normalize data-points to unitary sphere
(2) find two Gaussian clusters in regressor–output space (EM)
(3) label data-points based on closeness to these clusters
(4) foreach split attribute
(5) find best split point and determine its gini gain
(6) endforeach
(7) let X be the attribute with the greatest gini gain and

Q the corresponding best split predicate set
(8) if (T splits)
(9) partition D into D1, D2 based on Q and label node T

with split attribute X
(10) create children nodes T1, T2 of T and label

the edge (T, Ti) with predicate q(T,Ti)

(11) BuildTree(T1, D1); BuildTree(T2, D2)
(12)else
(13) label T with the least square linear regressor of D
(14)endif



Split Point and Attribute Selection

• Gini gain used as split attribute selection criterion for all types of attributes

• For discrete attributes the best split point is found by finding the partition of
the values into two sets in order to minimize gini gain

• For continuous attributes use Quadratic Discriminant Analysis
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and P [x ∈ C2 | x ≤ η] by a similar equation.



Oblique Splits

• If the distribution of the data-points with the same class label (closer to the
same Gaussian) is approximated with a Gaussian distribution, a good oblique
split can be found by finding the hyperplane that best separates the two distri-
butions

• Minimizing gini gain is hard. Fisher’s separability criterion

J(n) =
nTΣwn

nTΣbn

with

Σw =
∑
i=1,2

αi(µ− µi)(µ− µi)
T , µ =

∑
i=1,2

αiµi

Σb =
∑
i=1,2

αiΣi

is minimized instead. A point contained in the separating hyperplane is found
using unidimensional QDA on the line given by n and the origin. This means
setting ηi = nTµi and σ2

i = nTΣin in previous equations



Oblique Splits Example

Separating hyperpane



Experimental Evaluation

Datasets used
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Abalone UCI 4177 1 7
Basball UCI 261 3 17
Kin8nm DVELVE 8192 0 8
Mpg UCI 392 3 5
Mumps SatLib 1523 0 4
Stock SatLib 950 0 10
TA UCI 151 4 2
Tecator SatLib 240 0 11

Cart Breiman et al. – 10 1
Fried Friedman – 0 11
3DSin 3 sin(X1) sin(X2) – 0 3

• Compared with GUIDE [Loh 2002],
state-of-the-art regression tree con-
struction algorithm

• GUIDE uses exhaustive search,
GUIDE(S) uses 1% sample

• Experiments performed on a Pentium
III 933MHz running Redhat Linux 7.2

• Each experiment repeated 100 times

• For accuracy experiments 50% of data for training, 30% for pruning and 20%
for testing

• Quinlan’s resubstitution error pruning used



Accuracy Results

Constant Regressors Linear Regressors
GUIDE SECRET SECRET(O) GUIDE SECRET SECRET(O)

Abalone 5.32±0.05 5.50±0.10 5.41±0.10 4.63±0.04 4.67±0.04 4.76±0.05
Baseball 0.224±0.009 0.200±0.008 0.289±0.012 0.173±0.005 0.243±0.011 0.280±0.009
Boston 23.34±0.72 28.00±0.92 30.91±0.94 40.63±6.63 24.01±0.69 26.11±0.66
Kin8nm 0.0419±0.0002 0.0437±0.0002 0.0301±0.0003 0.0235±0.0002 0.0222±0.0002 0.0162±0.0001
Mpg 12.94±0.33 30.09±2.28 26.26±2.45 34.92±21.92 15.88±0.68 16.76±0.74
Mumps 1.34±0.02 1.59±0.02 1.56±0.02 1.02±0.02 1.23±0.02 1.32±0.04
Stock 2.23±0.06 2.20±0.06 2.18±0.07 1.49±0.09 1.35±0.05 1.03±0.03
TA 0.74±0.02 0.69±0.01 0.69±0.01 0.81±0.04 0.72±0.01 0.79±0.08
Tecator 57.59±2.40 49.72±1.72 28.21±1.75 13.46±0.72 12.08±0.53 7.80±0.53

3DSin 0.1435±0.0020 0.4110±0.0006 0.2864±0.0077 0.0448±0.0018 0.0384±0.0026 0.0209±0.0004
Cart 1.506±0.005 1.171±0.001 N/A N/A N/A N/A
Fried 7.29±0.01 7.45±0.01 6.43±0.03 1.21±0.00 1.26±0.01 1.50±0.01

• GUIDE and SECRET have comparable accuracy

• Oblique splits sometimes make a big difference



Scalability Results: 3DSin

Size GUIDE GUIDE(S) SECRET SECRET(O)

250 0.07 0.05 0.21 0.21
500 0.13 0.07 0.33 0.34

1000 0.30 0.12 0.55 0.58
2000 0.94 0.24 1.08 1.12
4000 3.28 0.66 2.11 2.07
8000 12.58 2.40 4.07 4.12

16000 48.93 9.48 8.16 8.37
32000 264.50 43.25 16.71 16.19
64000 1389.88 184.50 35.62 35.91

128000 6369.94 708.73 73.35 71.67
256000 25224.02 2637.94 129.95 131.70
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• Only tree growth time reported (pruning much faster)

• SECRET and SECRET(O) have comparable performance

• GUIDE and GUIDE(S) have quadratic (in the number of tuples) running time

• SECRET and SECRET(O) have linear running time



Scalability Results: Fried

Size GUIDE GUIDE(S) SECRET SECRET(O)

250 0.09 0.07 0.47 0.43
500 0.17 0.14 0.87 0.92

1000 0.36 0.28 1.85 1.83
2000 1.12 0.80 3.58 3.69
4000 2.90 2.38 7.33 7.36
8000 10.46 8.43 13.77 14.05

16000 42.16 33.09 27.80 28.68
32000 194.63 123.63 56.87 58.01
64000 1082.70 533.16 122.26 124.60

128000 4464.88 1937.94 223.42 222.75
256000 18052.16 8434.33 460.12 470.68
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• The increase of the number of attributes to 11 (was 3 before) results in slow-
downs of about 3.5 for GUIDE(S), SECRET and SECRET(O) but GUIDE
slightly faster

• For large datasets SECRET two orders of magnitude faster than GUIDE and
one order of magnitude faster than GUIDE(S)



Conclusions

• Main idea: locally transform the regression problem into a classification problem

– First identify two Gaussian distributions in the data

– Classify the points based on closeness w.r.t. these Gaussian

– Find best split attribute and best split point for resulting classification prob-
lem

– Find best predictors using linear regression

• SECRET is comparably accurate but much faster than GUIDE

• Oblique splits are easy to obtain and give sometimes 45% accuracy increase

• Most of the running time of SECRET spent in EM. Sampling or scalable EM
versions should give significantly speed up
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