SECRET: A Scalable Linear Regression Tree Algorithm

SIGKDD-2002

Alin Dobra
Johannes Gehrke
Cornell University

Linear Regression Trees

Linear Regression Trees with Orthogonal Splits

Previous Approaches

Quinlan 1992: Pretend that a regression tree with constant models in leaves is built using variance as impurity and find linear models for leaves only after growth phase

Problems:

The split-point chosen is $-(\sqrt{5}-1) / 2=-0.618$ which is very far from 0 . Such split criteria produce unnecessary fragmentation and unbalanced trees.

Previous Approaches (cont.)

Karalic 1992

- Use error with respect to the linear model as goodness metric not variance (fixes the problem of Quinlan's algorithm)
- Exhaustive search used to find split attribute and split point
- For every possible value of a continuous attribute a linear system has to be formed and solved
- For discrete attributes an exponential number of linear systems have to be formed and solved since Theorem 9.4 in Breiman 1994 does not apply

Chaudhuri et al. 1994

- Avoids building many linear systems by locally classifying the data-points based on the sign of the residual w.r.t. the best linear regressor
- Usually the negative residuals surround the positive ones so the separation in classes does not provide a useful separation w.r.t. the regression problem

Main Idea

- Find two Gaussian distributions in the data
- Classify points based on closeness w.r.t. these distributions
- Find best split attribute and corresponding split point using gini gain criterion in the resulting classification problem

SECRET Algorithm

Input: node T, data-partition D
Output: regression tree \mathcal{T} for D rooted at T
BuildTree(node T, data-partition D)
(1) normalize data-points to unitary sphere
(2) find two Gaussian clusters in regressor-output space (EM)
(3) label data-points based on closeness to these clusters
(4) foreach split attribute
(5) find best split point and determine its gini gain
(6) endforeach
(7) let X be the attribute with the greatest gini gain and Q the corresponding best split predicate set
(8) if (T splits)
(9) partition D into D_{1}, D_{2} based on Q and label node T with split attribute X
(10) create children nodes T_{1}, T_{2} of T and label the edge $\left(T, T_{i}\right)$ with predicate $q_{\left(T, T_{i}\right)}$
(11) BuildTree $\left(T_{1}, D_{1}\right)$; BuildTree $\left(T_{2}, D_{2}\right)$
(12) else
(13) label T with the least square linear regressor of D
(14) endif

Split Point and Attribute Selection

- Gini gain used as split attribute selection criterion for all types of attributes
- For discrete attributes the best split point is found by finding the partition of the values into two sets in order to minimize gini gain
- For continuous attributes use Quadratic Discriminant Analysis

$$
\alpha_{1} \frac{1}{\sigma_{1} \sqrt{2 \pi}} e^{-\left(\eta_{1}-\eta\right)^{2} / 2 \sigma_{1}^{2}}=\alpha_{2} \frac{1}{\sigma_{2} \sqrt{2 \pi}} e^{-\left(\eta_{2}-\eta\right)^{2} / 2 \sigma_{2}^{2}}
$$

To compute gini gain is enough to compute:

$$
\begin{aligned}
P\left[x \in C_{1} \mid x \leq \eta\right] & =\int_{x \leq \eta} \frac{1}{\sigma_{1} \sqrt{2 \pi}} e^{-\left(x-\eta_{1}\right)^{2} / 2 \sigma_{1}^{2}} d x \\
& =\frac{1}{2}\left(1+\operatorname{Erf}\left(\frac{\eta_{1}-\eta}{\sigma_{1} \sqrt{2}}\right)\right)
\end{aligned}
$$

and $P\left[x \in C_{2} \mid x \leq \eta\right]$ by a similar equation.

Oblique Splits

- If the distribution of the data-points with the same class label (closer to the same Gaussian) is approximated with a Gaussian distribution, a good oblique split can be found by finding the hyperplane that best separates the two distributions
- Minimizing gini gain is hard. Fisher's separability criterion

$$
J(\mathbf{n})=\frac{\mathbf{n}^{T} \Sigma_{w} \mathbf{n}}{\mathbf{n}^{T} \Sigma_{b} \mathbf{n}}
$$

with

$$
\begin{gathered}
\Sigma_{w}=\sum_{i=1,2} \alpha_{i}\left(\mu-\mu_{i}\right)\left(\mu-\mu_{i}\right)^{T}, \quad \mu=\sum_{i=1,2} \alpha_{i} \mu_{i} \\
\Sigma_{b}=\sum_{i=1,2} \alpha_{i} \Sigma_{i}
\end{gathered}
$$

is minimized instead. A point contained in the separating hyperplane is found using unidimensional QDA on the line given by \mathbf{n} and the origin. This means setting $\eta_{i}=\mathbf{n}^{T} \mu_{i}$ and $\sigma_{i}^{2}=\mathbf{n}^{T} \Sigma_{i} \mathbf{n}$ in previous equations

Oblique Splits Example

Experimental Evaluation

Datasets used

20rs	sot			- Compared with GUIDE [Loh 2002], state-of-the-art regression tree construction algorithm
Abalone	UCI	4177	17	
Basball	UCI	261	317	
Kin8nm	DVELVE	8192	08	- GUIDE uses exhaustive search,
Mpg	UCI	392	3	GUIDE(S) uses 1\% sample
Mumps	SatLib	1523	0	
Stock	SatLib	950	010	- Experiments performed on a Pentium
TA	UCI	151	2	- Experiments performed on a Pentium
Tecator	SatLib	240	011	III 933MHz running Redhat Linux 7.2
Cart	Breiman et al.	-	10	Each experiment repeated 100 tim
Fried	Friedman	-	011	Each experiment repeated 100 tim
3DSin	$3 \sin \left(X_{1}\right) \sin \left(X_{2}\right)$	-	0	

- For accuracy experiments 50\% of data for training, 30\% for pruning and 20\% for testing
- Quinlan's resubstitution error pruning used

Accuracy Results

	Constant Regressors			Linear Regressors		
	GUIDE	SECRET	SECRET(O)	GUIDE	SECRET	SECRET(O)
Abalone	5.32 ± 0.05	5.50 ± 0.10	5.41 ± 0.10	4.63 ± 0.04	4.67 ± 0.04	4.76 ± 0.05
Baseball	0.224 ± 0.009	0.200 ± 0.008	0.289 ± 0.012	$\mathbf{0 . 1 7 3} \pm \mathbf{0 . 0 0 5}$	0.243 ± 0.011	0.280 ± 0.009
Boston	$\mathbf{2 3 . 3 4} \pm \mathbf{0 . 7 2}$	28.00 ± 0.92	30.91 ± 0.94	40.63 ± 6.63	24.01 ± 0.69	26.11 ± 0.66
Kin8nm	0.0419 ± 0.0002	0.0437 ± 0.0002	0.0301 ± 0.0003	0.0235 ± 0.0002	0.0222 ± 0.0002	$\mathbf{0 . 0 1 6 2} \pm 0.0001$
Mpg	$\mathbf{1 2 . 9 4} \pm 0.33$	30.09 ± 2.28	26.26 ± 2.45	34.92 ± 21.92	15.88 ± 0.68	16.76 ± 0.74
Mumps	1.34 ± 0.02	1.59 ± 0.02	1.56 ± 0.02	1.02 ± 0.02	1.23 ± 0.02	1.32 ± 0.04
Stock	2.23 ± 0.06	2.20 ± 0.06	2.18 ± 0.07	1.49 ± 0.09	1.35 ± 0.05	1.03 ± 0.03
TA	0.74 ± 0.02	0.69 ± 0.01	0.69 ± 0.01	0.81 ± 0.04	0.72 ± 0.01	0.79 ± 0.08
Tecator	57.59 ± 2.40	49.72 ± 1.72	28.21 ± 1.75	13.46 ± 0.72	12.08 ± 0.53	7.80 ± 0.53
3DSin	0.1435 ± 0.0020	0.4110 ± 0.0006	0.2864 ± 0.0077	0.0448 ± 0.0018	0.0384 ± 0.0026	0.0209 ± 0.0004
Cart	1.506 ± 0.005	1.171 ± 0.001	N/A	N/A	N/A	N/A
Fried	7.29 ± 0.01	7.45 ± 0.01	6.43 ± 0.03	1.21 ± 0.00	1.26 ± 0.01	1.50 ± 0.01

- GUIDE and SECRET have comparable accuracy
- Oblique splits sometimes make a big difference

Scalability Results: 3DSin

Size	GUIDE	GUIDE(S)	SECRET	SECRET(O)	100000	GUIDEGUIDE(S)SECRETSECRET(O)		
250	0.07	0.05	0.21	0.21	10000 =			
500	0.13	0.07	0.33	0.34	-			
1000	0.30	0.12	0.55	0.58 흘	1000			
2000	0.94	0.24	1.08	1.12 涣	100			
4000	3.28	0.66	2.11	2.07 .				
8000	12.58	2.40	4.07	4.12 .	10			
16000	48.93	9.48	8.16	8.37	1			
32000	264.50	43.25	16.71	$16.19{ }^{\sim}$				
64000	1389.88	184.50	35.62	35.91	0.1			
128000	6369.94	708.73	73.35	71.67	0.01			
256000	25224.02	2637.94	129.95	131.70	100			

- Only tree growth time reported (pruning much faster)
- SECRET and SECRET(O) have comparable performance
- GUIDE and GUIDE(S) have quadratic (in the number of tuples) running time
- SECRET and SECRET(O) have linear running time

Scalability Results: Fried

- The increase of the number of attributes to 11 (was 3 before) results in slowdowns of about 3.5 for GUIDE(S), SECRET and SECRET(O) but GUIDE slightly faster
- For large datasets SECRET two orders of magnitude faster than GUIDE and one order of magnitude faster than GUIDE(S)

Conclusions

- Main idea: locally transform the regression problem into a classification problem
- First identify two Gaussian distributions in the data
- Classify the points based on closeness w.r.t. these Gaussian
- Find best split attribute and best split point for resulting classification problem
- Find best predictors using linear regression
- SECRET is comparably accurate but much faster than GUIDE
- Oblique splits are easy to obtain and give sometimes 45% accuracy increase
- Most of the running time of SECRET spent in EM. Sampling or scalable EM versions should give significantly speed up

References

[1] P. S. Bradley, U. M. Fayyad, and C. Reina. Scaling clustering algorithms to large databases. In Knowledge Discovery and Data Mining, pages 9-15, 1998.
[2] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees. Wadsworth, Belmont, 1984.
[3] P. Chaudhuri, M.-C. Huang, W.-Y. Loh, and R. Yao. Piecewise-polynomial regression trees. Statistica Sinica, 4:143-167, 1994.
[4] J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest - a framework for fast decision tree construction of large datasets. In Proceedings of the 24th International Conference on Very Large Databases, pages 416-427. Morgan Kaufmann, August 1998.
[5] A. Karalic. Linear regression in regression tree leaves. In International School for Synthesis of Expert Knowledge, Bled,Slovenia, 1992.
[6] W.-Y. Loh. Regression trees with unbiased variable selection and interaction detection. Statistica Sinica, 2002. in press.
[7] J. R. Quinlan. Learning with Continuous Classes. In 5th Australian Joint Conference on Artificial Intelligence, pages 343-348, 1992.

