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Abstract 1. Introduction

We extend spectral methods to random graphs with
skewed degree distributions through a degree based nor-
malization closely connected to the normalized Laplacian.
The normalization is based on intuition drawn from per-
turbation theory of random matrices, and has the effect
of boosting the expectation of the random adjacency ma-
trix without increasing the variances of its entries, leading
to better perturbation bounds.

The primary implication of this result lies in the realm of

spectral analysis of random graphs with skewed degree dis- Spectral analysis is a widely used heuristic for a range

tributions, such as the ubiquitous “power law graphs’. Re- of clustering problems. However, there have been relatively

cently Mihail and Papadimitriou [22] argued that for ran- ; . .
domly generated graphs satisfying a power law degree dis_few theoretical results .'[0 support |te use (notable exceptions
tribution, spectral analysis of the adjacency matrix will sim- mc!ude. [30, 19]). As it appears difficult to make general

. . claims about worst-case data, researchers have looked to an-
ply produce the neighborhoods of the high degree nodes as

its eigenvectors, and thus miss any embedded structure. ngyzmg spectral algorithms applied to generative models for

present a generalization of their model, incorporating la- graphs, specifically with an eye towards recovering planted

. latent structure [26, 6, 2]. In particular, Azar et al argue
tent structure, and prove that after applying our transfor- . .
. : : . in [6] that reconstruction through spectral methods works
mation, spectral analysis succeeds in recovering the latent

structure with high probability. well for gra_lphs produced by independent random_ rounding

of the entries of a low rank matrix. However, their results
make significant assumptions about the magnitudes of ele-
ments in the matrix and their reconstructive result does not
apply to the degree distributions found in many real net-
works, which tend to exhibit a heavy tail.

Indeed, the effects of heavy tailed distribution of data
have long plagued practitioners of spectral analysis. Ding et
al [11] discuss the effect of term-frequency distributions on
latent semantic indexing and showed that the current tech-
niques for normalizing term frequencies are often insuffi-
cient to remove a spectral bias towards the high frequency
terms. A recent paper of Mihail and Papadimitriou [22] pro-
vides a more damning argument: In random graphs where
the maximum degrees far outstrip the average degree, the
largest eigenvalues are in correspondence with the nodes
of highest degrees, and the corresponding eigenvectors are
x Dept. of Computer Science, email:adg@cs.cornell.edu. Supported bysimply the characteristic vectors of their neighborhoods.
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The analysis of large networks has come to the forefront
of much research, with examples such as the internet, social
networks, bibliographic databases, energy distribution net-
works, and global networks of economies motivating the de-
velopment of the field. The ubiquity of large networks in so-
cial and technological fields makes the analysis of the com-
mon properties of these networks important. A central prob-
lem in this setting is that of finding communities, clusters,
and other latent structure.




tions. On such graphs with skewed degrees, spectral analysimilar size. While this will not affect the bound on the per-
sis ignores the graph’s latent structure in favor of high de- turbation, it does inflate the expected matrix against which
gree nodes. Needless to say, this caused some concern in tithe perturbation is measured. If one views the entries in a
spectral analysis community, as it effectively implies that row « as the result ofl, samples from an arbitrary distri-
spectral methods will simply fail in these domains. bution, the variances of thi, 1} entries in rowu are pro-
: o : portional tod,,. Multiplying an entry by(dpay/d.)*/? mul-
In this paper we develop a normalization technique basedtiplies its variance byl /d,, and is therefore the correct

on intuition drawn from the perturbation theory of random factor t vt h " ity th . A lo-
matrices, and closely connected to the normalized laplacian actorto apply to each row fo l.m'fy © Va{';”;r‘ces- N analo
in the case of undirected graphs. We demonstrate the effi-IOUS argumentjustllflgs applylrﬁd_méx/dv) to each C?"
ciency of the normalization technique by applying it to a Umno- Modu!o thedjax factor, this is what our normaliza-
model for skewed degree structured random graphs based©n accomplishes.

on the planted partition model[21]. We prove that the tech-
nigue reconstructs the latent partition in the face of dramat-
ically skewed degrees, and can even take advantage of th

skewing to yield better bounds.

&.2. Related Work

Theoretical analysis of spectral algorithms applied to
large random graphs is an active research area [26, 1, 6, 19].
An important issue is how to normalize the data before ap-

i , plying spectral techniques. Practitioners of information re-

Rather than analyze a graph’s adjacency matrix, we ap-gieya| have addressed the issue of distribution of document
ply spectral analysis to an alternate matrix, constructed bY|engths and term frequencies by various heuristics [33, 18].
reweighting the edges of the graph. IMdtbe the inputadja-  These heuristics have had varying experimental success but
cency matrix andD, and , D.. be diagonal matrices whose  there is a lack of provable bounds on their performance.
ent/ri\es are respectively the degrees of the rows and columns Ding et al [11] noted that the effect of term-frequencies
in M. The normalization we consider is the matrix on singular values often survives current normaliza-

tion techniques. Mihail and Papadimitriou [22] observed
that in random graphs with power law degree distribu-
tions, the degree sequence essentially determines the large
eigenvalues, and the eigenvectors that result are of lit-
tle value.

Use of the normalized Laplacian has been promoted by
several practitioners of spectral analysis, [13, 12, 8]. The
works of [13, 12] examine the performance of the normal-

First, the normalized laplacian does not extend well to di- ized Laplacia_n in spectral algori_th_ms for multi-partition.
rected and bipartite graphs, both extensively used in ana-IrI these, as in other work examining the performance of

lyzing LSI [15], recommendation systems, and web Searchspectral heuristic§, th.e use of th_e normalized Laplacian
[6, 25, 20]. Second, the important spectral structurb-of., has largely been inspired by the idea of low conductance

is found in its eigenvectors of smallest eigenvalue. By con- graph bisection. Chung et al[8], studied the eigengap in the
sideringi instead, the eigenvectors are promoted to the normalized Laplacian for the Mihail/Papadimitriou random

most significant eigenvalues, and the techniques of ma’trixgraph model. .

perturbation theory [10, 31] and that of near optimal low "€ SALSA algorithm of Lempel and Moran [27] for

rank approximations [14, 2] translate effortlessly. ranking wep pages is very closely _related to our approach.
A natural motivation for usingA; in place of M is found SALSA weights pages by conducting a backward-forward

in the results of Azar et al [6], who bound the perturbation random walk by alternately following random in-links and

; ; ; ; t-links, ranking pages by their stationary probability. In
of a random matrix from its expectation by the largest vari- ou T . . .
ance of any of its entries. With this bound in hand, when- [27, 28] it 1s argued that SALSA is the first algorithm that

. . . . is stable on a certain class of authority based graphs (those
ever the variances af/ are not uniform one can imagine . . .
scaling the low variance entries up until all variances are of graphs for which their random Walk. IS connected),_whereas
HITS [20], for example, is not. As it turns out, their score
converges to the principal right singular vectorigfscaled

1 We use the™ notation on capitalized letters to refer to random matri- 1/2 L
ces. While this may appear cumbersome, we will make much use of by abD term, Where% HITS converges to the prmmpal

expected matrices, represented by the unadorned corresponding letright singular vectors oM. This appears to further support
ters. the use ofL.

1.1. The Normalization

L =D '?MD;/2. 1)

Stated aIternateI)i is constructed by dividing each entry
of M by the geometric mean of its corresponding row and
column degrees.

The matrixL is closely related to the normalized Lapla-
cian of a graph, which for symmetric graphs is equal to
I — L. We prefer the matrix. for two significant reasons:




1.3. The Model minimum total degree of parts iA. In the case of symmet-
ric probability matrices, we refer to the partition of nodes as
We will briefly describe the random graph model of Mc- . We will also use the notations, ands,, loosely, to re-
Sherry [21], called the “Planted Partition Model”, as this fer to either or a row or column scalar depending on the use
will be our starting point in establishing a graph model that of v as a row or column index, which should be clear from
supports skewed degree distributions. We note that there iontext.
a large community of researchers investigating models for
skewed degree random graphs, but we will focus on thel.4. Statement of Results
planted partition model as it lends itself to spectral analy-
sis expressly. The main result of the paper states that we can extract the
The underlying assumption in the planted partition partition, ande. from an observed matritZ, provided
model is that each directed edge,v) is present inde-  the expected row and column vectors of different parts are
pendently with probabilityG.,,, and that the matrix of  separated in a normalized sense. We start with a theorem

probabilitiesG is a block matrix that has row andk col- that addresses the case of symmedd¢ and then follow
umn blocks. The adjacency matrix is then formed by  with a corollary stating the result for non-symmethi.
randomly rounding the entries 6f: For reasons of analysis, we must restrict our theorem to

those degree distributiodd,, }, {d, } with the property that
a uniformly random bipartitioning of the rows or columns
yields partsA, B for which s > s, /4 ands? > s, /4 for
Thus, there are latent partitions. and . of them rows  all u, with probability at leass /4.

andn columns intok parts. The presence of each edge is Theorem 1 Let G, D, M come from an instance of the
independept events, V\./ho.se.probability depend only on theplanted partition problem wherg/ = M7, and leto? >
partsto which each of its indices belong. (logn)®/n be an upper bound on the entries @1 There

Itis worth noting that the degrees that we expectto see injg 5 constant: such that for sufficiently large, if when
this model are fairly uniform. For each part, each node hasw(u) £ (v)

an identical distribution over edges, and since the minimum
degrees allowed by the model of [21] is at leélsizn)",
these distributions are concentrated.

o _{1 with probability G ,,,

0 otherwise

Smin dmin

|D1/2(G“ - Gv)|2 > co’klogk <n + log(n/é))

Extended Planted Partition problem : We extend the  then with probabilityl — § — n=+(1), we can efficiently re-
planted partition model by specifying scalats > 1 and covery fromM, D, k, Smin, ando.
d, > 1 for each rowu and columnv corresponding to their

Th ial f th if d lanted partiti
intended degrees. We scale the probabilities oy the val- © Speclsr tass of The UNHorm cegree panee panrion

problem handled in [21] can be obtained by instantiating

uesd, andd, and form the new matrid/ distributed as: d, = 1 for all u. Furthermore, as thd,, increase from
o 1 with probability d,, Gy d., 1, the difference on th.e left hand ;ide becom_es more pro-
w =9 0 otherwise nounced and the required separation on the right hand side

becomes smaller, demonstrating that increakechn actu-
Letting M,, = d,G.,d, denote the probability that edge ally help recover latent structure.
J\//.Tw exists, we can writd/ = D,GD,, whereD,. andD,,
are diagonal matrices of tHel,, } and{d, } values.

In this formulation the expected degree of a raws
du Y, Guody. The sumy", G, d, is the same for all rows Corollary 2 LetG _e_RmX”, D, M come from an instance
in the part),.(u), so while the expected degrees of the nodes Of the planted partition problem, and assume> m. Let
do not necessarily equdl,, the degrees of nodes andus o2 > (logn)®/n be an upper bound on the entries @h
within a partare proportiona":o du1 a_nddu2 .ltisto this ex- There is a constant such that for SUfﬁCiently Iargm, n, if
tent that we represent arbitrary skewed degree distributions Wheny,.(u) # ¢ (v)

The non-symmetric form of the result is similar, only
with more notation.

Smin dmin

Notation: A word about notation is needed here. We refer |(GT _ GT\pl/22 > c¢o%klogk < n_ log(n/5))
to columny of a matrix X by X,, and rowu of X by XI. -
We letd,,., andd,,;,, be the greatest and leakt, d, of any

. ’ and wheny,. c
row or column. We will lets,, be the total degree of the part Welu) # ve(v)
to whichw belongs, and,,;,, equal the least total degree of
any part. For a set of columng, we lets?. refer to the

min

IDY*(Gy — G > co’klogh (” + log(”/‘s))

Smin dmin



then with probabilityl — 6 — n=“(), we can efficiently re-
covery,. andvy. from M, D,.,D., k, Symin, ando.

While the scalargl, may not be known, knowledge of
the expected degrees of the graph is sufficient. Letting:
Z;‘zl M., be the expected degree of nadedefiningdqq
as the average expected degree@pg ands,,;, as above,
we have the following corollary.

Corollary 3 Let M € R™*™ be defined as in the extended
planted partition problem, and let, be the expected de-
gree of nodeu. If there is a constant such that for suffi-
ciently largen, wheny (u) # ¢ (v)

n

n log® (n/5)>

dmin

|Mu/du - ]V[v/dv‘l Z Cy/ kdavg <

Smin
then with probabilityl — 6 — n=«(), we can efficiently re-
covery from M, D, k, Simin, ando.

Notice thati/, /d,, is the probability distribution of the
edges for node. If each part represents a substantially dif-
ferent distribution, we will be able to distinguish one part
from another and reconstrugt In interpreting this result,
notice that if the right hand side is more thanthe condi-

Our work builds on a result of McSherry [21], who ob-
serves that the optimal rarnkapproximation to a random
matrix is a good approximation to the expected matrix, if
that matrix has rank at most In [21] it is proven that

Theorem 4 Let X be am x n matrix whose entries are in-
dependent random variables concentrated on a unit inter-
val. Leto® > log®(m 4 n)/(m +n) be an upper bound on
the variances of the entries &f. If X = E[)?] has rank at
mostk, then with probability at least — 2¢=7"(m+n)/4,

X - X®|2 < 1280%k(m+n).

This theorem bounds the difference between the com-
putable matrixX(*), and the matrix of expectation&

that reveals the latent rarikstructure. McSherry shows in
[21] that when the variances ¢f are small enough com-
pared to the row and column separation in the expected
matrix GG, the partitionsy,., 1. can be recovered froi.

For the skewed degree model, note that¥fy, < 1,
0%(Gup) ~ Guy Ut 02(Myy) ~ dyGuody

The maximum variance of th@uv, on which Theorem 4
is based, increases in proportiond§),.., while the aver-

tion is never satisfied. In order for the right hand side to be age of the entries)/,, = d.,Gu.d,, only increase in pro-

less than 1, it must be the case that, >> log®n. This

portion tod?

avg*

For highly skewed degree distributions, the

imp”es that our ana|ysis does not app'y to Over|y Sparse error can eaSIly OVerWheIm.the Iatent structure Of the e.X'
graphs. Even when the graph is dense, we must concern ourPected matrix, thereby causing the approach of [21] to fail.
selves with the relative sizes Ofuin, dave, @Ndsmin. The With the bound of Theorem 4 in mind, we now motivate

corollary derives from Theorem 1, and an analogous form the normalization by showing that it undoes the skewing of

can be derived from Corollary 2.

1.5. Paper Outline

In Section 2 we motivate and present our algorithm for

extracting the column patrtition, followed by a proof of its

variances brought on by the skew#d d,,, and can actually
improve performance. Recalling that= D V2MD;Y?,
observe that its entrie,,, satisfy

0*(Luy) < 0*(Gu)

~ ~

and E[L.,] > FE[Gu],
with equality only whend,, = d,, = 1. Comparingi with

correctness in Section 2.2. In Section 3 we discuss some exG, the entries of, have favorable variance and expectation.

tensions, and propose future research.

2. Algorithm and Proof

We start with a review of some linear algebra tools. An
important notion in spectral analysis is that of an optimal
rankk approximation, which for any matriX is the rankk
matrix X (*) minimizing || X — X *)|| . This matrix can also
be described as th@ojectionof X onto thek-dimensional
subspace spanned by the fikssingular column vectors.
That is,

R = pO(R)
X

whereP)ﬁf) is the projection onto the the span of the first

singular column vectors. The reader can find more details

in [6], or in the text of [17].

-~

Moreover,L = E[L] is a rankk matrix exhibiting the same
latent structure a€, albeit scaled by’ and D2, Intu-
itively, it should be as easy or easier to recover latent struc-
ture from L than fromG, and indeed we show this is the

case in the planted partition setting.

For clarity and future reference, we note down the fol-
lowing corollary of Theorem 4.

Corollary 5 Letthe matriced,., D.,GandM = D,GD,
be defined as in thextended planted partition problem,
and lets? > (logn)®/n bound the largest entry ii.
Defining

L=D;'?MD;'?* and L=D;'?MD;'/?,
with probability at leastl — 2e=7"7/4,

IL-L®2 < 2560%kn .



It is important to note that this corollary represents more 4. Lety; be the characteristic vector &h part oszr, and
than just a slight tweaking of the parameter space for which letv; = Di/2yi.
the spectral approach applies. Graphs with heavy tailed de-
gree distributions have maximum degmeechlarger than
their average degree, a polynomial factonifor power-law  Notice that if the expected matrik was availableProjec-
distributions. As is argued in [22], this difference is signifi- tion(Dj 127 ,0) would identify the actual clusters af,,
cant enough in many domams to render spectral technlque%nol returnPék), the projection on the column space of the

5. Return the projection onto the space spanned bythe

useless when applied fd/. expected Laplaciah, so it is not completely unnatural. The
. parameter is present to make the clustering by Pmjec-
2.1. Our Algorithm tion method tolerant of the error in the input.

In the following section we describe our algorithm and Theorem 6 Under the assumptions of Theorem 2, letting
present an analysis of it. The algorithm and its analysis ) )
show how to extract the column partitiogls, the case for T = co'klogk x n/64smin ,
row partitions being completely analogous.

The basic spirit of our algorithm is fairly simple: Given with probabilityl —§—n~*() M has the property that each
M, D,, D, we form the matrixl, and compute a low rank  invocation ofNormalized Partitior(M, D,., D, ) satisfies
approximation to it. At this point, we can apply a greedy .
clustering algorithm to the columns of the projected ma- el (v) Fu—Fl < Ye(w) e (v) P = Fl )
trix yielding v.. For technical reasons, we will actually first
partition the data set into two pieces and cross-train to avoidwith constant probability strictly greater thaty2.

conditioning issues, arriving at the algorithm L. .
9 9 9 An MST on columnsF;, satisfying (2) will connect the

Normalized Partition (1\7, D,, D, 1): nodes within every part ofy. before connecting any two
1 LetT = D=Y20DY2 andN = LD- Y2 parts. As the probability of success is strictly greater than
' " ¢ L 1/2, we can amplify the probability of success by repeat-

2. Randomly partition the columns dfinto L 4, L. ing the process several times and taking the majority an-
3. Compute swer. The proof of Theorem 6 appears at the end of the Sec-
tion 2.2.
Q¥ = Projection(D; /2LP, 1)

QW = Projection(D; 1/213(16) 7) 2.2. Analysis

4. Compute a minimum spanning tree on the columns of ) )
Our approach to proving Theorem 6 is to argue that the

F o= [QWN4,QWNg. computed columng’, are each very close @, and ob-
_ ~ serve thatN,, = N, if and only if ¢.(u) = ¥.(v). If

Sever thet — 1 heaviest edges, and return the partition .~ N, for all u, then given a sufficient separation be-
of columns defined by the connected components. tween differing N, and N,,, the distance betweeR, and

The methodProjection(X, ), for reasons of analysis, £ Will reflect the distance betwee¥, andN,.
computes a column projection from a clustering thess Our main tool in equating, and N,, is the triangle in-
of X, in which the characteristic vector of each cluster equality, bounding
serves as a basis vector. The clustering of rows is performed
greedily, repeatedly selecting a row and extracting all of its [Ny — Fu

[N = Q' Nul + Q55" (V. = V)|
nearby neighbors into a cluster. [Ny — Fy| — N,

N, — QYN | + 10 (N, — N,)|

The first term is the error that the projecti@‘f) or Qg:)
applies to the common expected vectdis which we will

<
<

Projection(X, 7):
1. Let all rows be initially unmarked.

2. Forifrom1to k: call the systematic errar The second error is the result
(a) Letu; be a random unmarked row, choosing row ©f projecting the perturbation associated with the random
u with probability proportional tal, . rounding of each column onto the-dimensional space,

which we will call therandom error Lemma 8 bounds the

R systematic error, and Lemma 9 bounds the random error.

3. Definet,. by assigning each rowto its closest center.  After seeing these lemmas, we will combine them into the
Specifically, set),(v) = argmin,; | XTI — formal statement of Theorem 6.

(b) Mark each row for which | X7 — X7 | < 7.




Before proceeding to the heart of the analysis, we reit-
erate the list of conditions in Theorem 1. Entries(ofare
bounded byr? > (log n)®/n and whenp,(u) # . (v),

IN, — N, |2 > co®klog k (” n W) 3)

min dmin
As an immediate consequence, whenelg:) # ¥.(v)
Ny, — Ny| > 87

Remark: Our analysis is conducted for the columns\of.
The bounds applynutatis mutandigor the columns ofVg.

2.2.1. Systematic Error We start our analysis of the sys-
tematic error by proving that the partitioﬁ that Projec-
tion computes is a good approximationde, in the sense
that each of the parts @ﬁ? are built around a core of nodes
that are only slightly perturbed.

We recall that inProjection, X = D,Tl/%f), and in-
troduce the corresponding notatidh= D, /L 4.

Lemma 7 Under the assumptions of Theorem 2, for any
fixed probabilitye, we can choose such that with prob-
ability at leastl — e each of thek nodesu; selected in step
2a of Projectionwill satisfy

X - XTI < 71/2 (4)

Proof: The proof is essentially a counting argument, argu-
ing that there is at mogtZ. — L(*)||2, error to share amongst
the X" and the probability of selecting a node that violates

(4) is therefore small. The complete details are in the ap-

pendix. O

If each nodey; selected satisfies (4), then by marking all
v within 7 we mark all other rows fronp,.(u;) that satisfy
(4). Therefore, each; is from a different part ofy,., and
each of thé; parts oszT can be associated with a partaf.
For notation’s sake, we arran&e o) that@r(ui) = U (u;).
With this useful lemma in place, we now bound the sys-
tematic error associated with each node.

Lemma 8 Let sf be the sum off, of those columns il
for which,.(u) = 1.(v), and assume that! > s, /4. Un-
der the assumptions above, with probability at le®st, for
all u

N, = QYN < 16[La— L3/

Proof: We start with the observation that, = N, when
Ye(v) = ¥.(u), allowing us to write

Ny = QPN =3 N - QPN /st (B)
vEY.(u)
=37 (L) — QY (La)ul?/sik (6)
vEY.(u)
< N La—QWLal%/ s @)

We now define a useful matrik 4, of corresponding di-
mension tal 4, whose entries are

(Ep)w = dY2G dL/?

Pr(u)dhe(v)
We can viewE 4 as whatl. 4 would look like if its columns
obeyed the partitioy,. but its rows obeyed the partitiaf..
Notice thatQ(:)EA = F4, as the columns aof 4 lie in the
space spanned by the, the basis vectors of the projection
fo). On the other hand, The differengé 4 — QX")YHF is
minimized atY” = L 4, and so

1La— QW Lalp < |La— Eallr ®)

which can be inserted into (7),

To make the transition tQL 4 — fff)H% in the numer-
ator we considef{Ls — E4||% as the sum of squaredw
lengths.

ILa—Ealz = D 1(La)y — (Ba)if?
u

If ¢, (u) = O (u), then(Ly)T = (ET),, and their differ-
ence is zero. Alternately, consider two cluster centeend
u; chosen in Step 2a d¢frojection, and a node: for which

P (1) = ¥y (u;), Ut (u) = ¥, (u;). For such a node, re-
calling thatX = D*l/QE(f) andX = D~Y2L,,

(La)y =d,/2X5 and (Ba)y =d/*X]]
As v was associated with; instead ofu;, it must be that

©)

We now start a series of inequalities with the triangle in-
equality (11), from which Lemma 7 yields (12). We then
apply (9) to yield (13), and Lemma 7 again to yield (14).

X - Xl < X0 - X0

X, — X (10)

< x5 - XD+ IXT - X0 (11)

< XD -XD+IXD-XD+7/2 (12)

< |XE - X7+ |XT - XT|+7/2 (13)

< IXE - X7+ |1XT - xT|+7 (14)
Reorganizing and restating (14),

X0 - X0 < 2X]-X[|+7  (15)

Using our assumption thaf! > s,,/4, it is the case that
X — XTI > |(GT —GT)DY?| /4 > 27
bi L5 J bi
Inserted into (15),

IxE - xT| < 4XT - X7 (16)



Recalling our definitions ok, X, and multiplying bydql/z,

(La)h = (Ba)i| < 4IEP)] - (Lol (7)
Finally, squaring and summing over all

|La—Ealp < 16[L —Lal  (18)

which, when substituted in (8), concludes the proof. O

2.2.2. Random Error We now move on to address the
random error

(N, - N,) and QW (N, - N,)

Letting s.,in to refer to the least total degree of the rows in
any part ofy,., notice thatv;|?> = 3;. After instantiating

t = 40%log(k/8)/dy, + 410g*(k/8) /Smind?

we apply a union bound, concluding that all of théerms
are bounded bywith probability at least — §. In the proof
of Lemma 7 we see that, is at least,, /2, which we use to
remove thes, terms. ]

2.2.3. Proof of Theorem 6We now combine our bounds
on the systematic and random error to prove Theorem 6.

Proof: We first recall that the probability that the random
split of columns intoA and B satisfiess > s,/4 and

The argument is at heart a Chernoff bound, although a little sZ > s,, /4 with probability1/2 + . We conduct the rest of

care must be taken to get it into this form.

Lemma 9 (Random Error) Leto? be an upper bound on

the entries of~, and Iethf) be a projection computed by
Projection With probabilityl — 9,

QW (N, — N < 4ko*log(nk/s)/d, +
8k 1og2(nk/6)/sfﬁndi
for all columnsu € B

Proof: The vectorsv; that defineQSf“) are disjoint,

and therefore orthogonal. As such, we can decomposeBoth

\Q(f) (N, — Nu)|2 into a sum oft parts, defined by the vec-
tor's projection onto each of the /|v;|.

QR (N = NP = D (0] (N = Nu))*/Juif?
i<k

the proof under the assumption that this condition occurs.

Recall the triangle inequality,

Ny —Ful < |Nu=QWN,|+1QW (N, — N,)|
INy = Fu| < Ny = QYN+ Q% (N — N,

The systematic errors are bounded by Lemma 8 as
Pk
16]Za = L[5/ simin

= (k
16]|Ls — LY |%/s8

min

ILa — 292 and || Ls — L¥||2. are bounded by

Corollary 5 as

1La— LW )2 < 2560%kn
ILs — W% < 2560%kn

We consider each of theterms separately, observing that With probability 1 — 4e=7"". Combining this with the as-

each is a sum of independent random variables with mearsumption that;, > smin/4 ands2;,

zero. In particular, note that
UzT(Nu —N,) = y?(ﬂu - My)/dy

The entries of\/ are independeift/ 1 random variables. We

> Smin/4, and tak-
ing ¢ sufficiently large bounds

IN,— QPN < co®kn/325min
IN, = QYN < cokn/325min

will apply one form of the Chernoff bound [23], which says with probability1 — de=o"m,

that for a sum of)/1 random variablesX,

< max{exp(—t*/4p),exp(~1/2)}

If we apply this to our sum, we see that

Pr{lX - E[X][ > 1]

Pr(jvT (N, — N,)|? > 1]
Prlyl' (M, — M,) > d,t*/?]

<
< max{exp(—d?t/4pu), exp(—d,t'/?/2)}

wherey = E[yT M,] is bounded by
g d,d, max G
ij

P (v)=i
S du/S\l 0'2

E[yI'M,] <

We now integrate the random error bound. This argu-
ment is a bit less direct, complicated by the involvement of
randomness from both/ and the algorithm. Given a fixed
La satisfyings# > s, /4, we can vier(f) as a random
variable. The probability that any column of violates
the bound of Lemma 9 for an fraction of theQ(f) is at

mostd /e, by the Markov inequality. Formally,
violation] >¢] < d/e

Prﬁ [PT
. <
violation] >¢] < d/e

PTJVA[PT

Qi{”[
Qf,_f)[
For al — 246/¢ fraction of thelM, the bound of Lemma 9
holds for al — ¢ fraction of the projectioné)f), Sgk). By



increasing the leading constant on the bound of Lemma 9,different approach to avoid conditioning is to remove each

we can decrease the valuesofo an arbitrary constant, say

1/16.

Combining the two bounds, notice that if we insert the
assumptionr? > (logn)®/n, the systematic error exceeds
the second term in the bound of Lemma 9. Each execution

of Normalized Partition therefore satisfies, for a large

IN, — F,)> < co*(nk/smin + klog(n/8)/d,)/16 (19)

for all , when
1. The split of degrees is balanced,
2. Lemma 7 holds foﬂVA andﬁB,
3. Lemma 9 holds fonf) anng).
The probability all occur is

(probabitis)
(prob.(15/16)2)
(prob.14/16)

3/4 —3/4(1 — (15/16)%) — 3/4(1 — 14/16) > 1/2.

As when(u). # 1.(v) the separationN,, — N, |? is at
least sixteen times the right hand side of (19),

[N, — Fy| < min

N, — N,|/4. (20
- wcw)#wc(v)' / (20)

Using the triangle inequality,

node from the vertex set before analyzing it. In effect, for
computing the projection for columm we removeu from
the vertex set and then ruprojection on the remaining
data. Though this approach has the potential of being ro-
bust against the aforementioned degree distributions, prov-
ing the analogue of Lemma 7 for this method seems hard.
Finally, it would be interesting to apply this normaliza-
tion technigue and analysis to other, less synthetic domains.
For example, collaborative filtering experiences a tremen-
dous skew in the popularity of items that users rate. At the
same time, the utility of such systems is to discover less
common items of interest, as common interesting items are
usually easily discovered. This particular application seems
like it could benefit substantially from normalization, both
in theory and in practice.
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Appendix : Proof of Lemma 7

Proof: Recall that we wanted to prove that each node se-
lected as cluster center satisfies
X,

Uq

—)A(UTT < 7/2

with probability at least5/16.
Let us call any node that satisfies this bound “good”;
other rows will be called “bad”. Notice that if at each step



