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Abstract

We extend spectral methods to random graphs with
skewed degree distributions through a degree based nor-
malization closely connected to the normalized Laplacian.
The normalization is based on intuition drawn from per-
turbation theory of random matrices, and has the effect
of boosting the expectation of the random adjacency ma-
trix without increasing the variances of its entries, leading
to better perturbation bounds.

The primary implication of this result lies in the realm of
spectral analysis of random graphs with skewed degree dis-
tributions, such as the ubiquitous “power law graphs”. Re-
cently Mihail and Papadimitriou [22] argued that for ran-
domly generated graphs satisfying a power law degree dis-
tribution, spectral analysis of the adjacency matrix will sim-
ply produce the neighborhoods of the high degree nodes as
its eigenvectors, and thus miss any embedded structure. We
present a generalization of their model, incorporating la-
tent structure, and prove that after applying our transfor-
mation, spectral analysis succeeds in recovering the latent
structure with high probability.
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1. Introduction

The analysis of large networks has come to the forefront
of much research, with examples such as the internet, social
networks, bibliographic databases, energy distribution net-
works, and global networks of economies motivating the de-
velopment of the field. The ubiquity of large networks in so-
cial and technological fields makes the analysis of the com-
mon properties of these networks important. A central prob-
lem in this setting is that of finding communities, clusters,
and other latent structure.

Spectral analysis is a widely used heuristic for a range
of clustering problems. However, there have been relatively
few theoretical results to support its use (notable exceptions
include: [30, 19]). As it appears difficult to make general
claims about worst-case data, researchers have looked to an-
alyzing spectral algorithms applied to generative models for
graphs, specifically with an eye towards recovering planted
latent structure [26, 6, 2]. In particular, Azar et al argue
in [6] that reconstruction through spectral methods works
well for graphs produced by independent random rounding
of the entries of a low rank matrix. However, their results
make significant assumptions about the magnitudes of ele-
ments in the matrix and their reconstructive result does not
apply to the degree distributions found in many real net-
works, which tend to exhibit a heavy tail.

Indeed, the effects of heavy tailed distribution of data
have long plagued practitioners of spectral analysis. Ding et
al [11] discuss the effect of term-frequency distributions on
latent semantic indexing and showed that the current tech-
niques for normalizing term frequencies are often insuffi-
cient to remove a spectral bias towards the high frequency
terms. A recent paper of Mihail and Papadimitriou [22] pro-
vides a more damning argument: In random graphs where
the maximum degrees far outstrip the average degree, the
largest eigenvalues are in correspondence with the nodes
of highest degrees, and the corresponding eigenvectors are
simply the characteristic vectors of their neighborhoods.
In particular, their results apply to graphs with power-law
distributed vertex degrees, as most social networks appear
to be. While their results were argued for purely random
graphs without any latent structure, they apply equally well
to structured random graphs with skewed degree distribu-



tions. On such graphs with skewed degrees, spectral analy-
sis ignores the graph’s latent structure in favor of high de-
gree nodes. Needless to say, this caused some concern in the
spectral analysis community, as it effectively implies that
spectral methods will simply fail in these domains.

In this paper we develop a normalization technique based
on intuition drawn from the perturbation theory of random
matrices, and closely connected to the normalized laplacian
in the case of undirected graphs. We demonstrate the effi-
ciency of the normalization technique by applying it to a
model for skewed degree structured random graphs based
on the planted partition model[21]. We prove that the tech-
nique reconstructs the latent partition in the face of dramat-
ically skewed degrees, and can even take advantage of the
skewing to yield better bounds.

1.1. The Normalization

Rather than analyze a graph’s adjacency matrix, we ap-
ply spectral analysis to an alternate matrix, constructed by
reweighting the edges of the graph. Let̂M be the input adja-
cency matrix1 andDr and ,Dc be diagonal matrices whose
entries are respectively the degrees of the rows and columns
in M̂ . The normalization we consider is the matrix

L̂ = D−1/2
r M̂D−1/2

c . (1)

Stated alternately,̂L is constructed by dividing each entry
of M̂ by the geometric mean of its corresponding row and
column degrees.

The matrixL̂ is closely related to the normalized Lapla-
cian of a graph, which for symmetric graphs is equal to
I − L̂. We prefer the matrix̂L for two significant reasons:
First, the normalized laplacian does not extend well to di-
rected and bipartite graphs, both extensively used in ana-
lyzing LSI [15], recommendation systems, and web search
[6, 25, 20]. Second, the important spectral structure ofI−L̂
is found in its eigenvectors of smallest eigenvalue. By con-
sidering L̂ instead, the eigenvectors are promoted to the
most significant eigenvalues, and the techniques of matrix
perturbation theory [10, 31] and that of near optimal low
rank approximations [14, 2] translate effortlessly.

A natural motivation for usinĝL in place ofM̂ is found
in the results of Azar et al [6], who bound the perturbation
of a random matrix from its expectation by the largest vari-
ance of any of its entries. With this bound in hand, when-
ever the variances of̂M are not uniform one can imagine
scaling the low variance entries up until all variances are of

1 We use theb· notation on capitalized letters to refer to random matri-
ces. While this may appear cumbersome, we will make much use of
expected matrices, represented by the unadorned corresponding let-
ters.

similar size. While this will not affect the bound on the per-
turbation, it does inflate the expected matrix against which
the perturbation is measured. If one views the entries in a
row u as the result ofdu samples from an arbitrary distri-
bution, the variances of the{0, 1} entries in rowu are pro-
portional todu. Multiplying an entry by(dmax/du)1/2 mul-
tiplies its variance bydmax/du, and is therefore the correct
factor to apply to each row to unify the variances. An analo-
gous argument justifies applying(dmax/dv)1/2 to each col-
umnv. Modulo thed1/2

max factor, this is what our normaliza-
tion accomplishes.

1.2. Related Work

Theoretical analysis of spectral algorithms applied to
large random graphs is an active research area [26, 1, 6, 19].
An important issue is how to normalize the data before ap-
plying spectral techniques. Practitioners of information re-
trieval have addressed the issue of distribution of document
lengths and term frequencies by various heuristics [33, 18].
These heuristics have had varying experimental success but
there is a lack of provable bounds on their performance.

Ding et al [11] noted that the effect of term-frequencies
on singular values often survives current normaliza-
tion techniques. Mihail and Papadimitriou [22] observed
that in random graphs with power law degree distribu-
tions, the degree sequence essentially determines the large
eigenvalues, and the eigenvectors that result are of lit-
tle value.

Use of the normalized Laplacian has been promoted by
several practitioners of spectral analysis, [13, 12, 8]. The
works of [13, 12] examine the performance of the normal-
ized Laplacian in spectral algorithms for multi-partition.
In these, as in other work examining the performance of
spectral heuristics, the use of the normalized Laplacian
has largely been inspired by the idea of low conductance
graph bisection. Chung et al[8], studied the eigengap in the
normalized Laplacian for the Mihail/Papadimitriou random
graph model.

The SALSA algorithm of Lempel and Moran [27] for
ranking web pages is very closely related to our approach.
SALSA weights pages by conducting a backward-forward
random walk by alternately following random in-links and
out-links, ranking pages by their stationary probability. In
[27, 28] it is argued that SALSA is the first algorithm that
is stable on a certain class of authority based graphs (those
graphs for which their random walk is connected), whereas
HITS [20], for example, is not. As it turns out, their score
converges to the principal right singular vector ofL̂, scaled
by aD1/2 term, whereas HITS converges to the principal
right singular vectors of̂M . This appears to further support
the use of̂L.



1.3. The Model

We will briefly describe the random graph model of Mc-
Sherry [21], called the “Planted Partition Model”, as this
will be our starting point in establishing a graph model that
supports skewed degree distributions. We note that there is
a large community of researchers investigating models for
skewed degree random graphs, but we will focus on the
planted partition model as it lends itself to spectral analy-
sis expressly.

The underlying assumption in the planted partition
model is that each directed edge(u, v) is present inde-
pendently with probabilityGuv, and that the matrix of
probabilitiesG is a block matrix that hask row andk col-
umn blocks. The adjacency matrix̂G is then formed by
randomly rounding the entries ofG:

Ĝuv =
{

1 with probabilityGuv
0 otherwise

Thus, there are latent partitionsψr andψc of them rows
andn columns intok parts. The presence of each edge is
independent events, whose probability depend only on the
partsto which each of its indices belong.

It is worth noting that the degrees that we expect to see in
this model are fairly uniform. For each part, each node has
an identical distribution over edges, and since the minimum
degrees allowed by the model of [21] is at least(log n)6,
these distributions are concentrated.

Extended Planted Partition problem : We extend the
planted partition model by specifying scalarsdu ≥ 1 and
dv ≥ 1 for each rowu and columnv corresponding to their
intended degrees. We scale the probabilities inG by the val-
uesdu anddv and form the new matrix̂M distributed as:

M̂uv =
{

1 with probabilityduGuvdv
0 otherwise

LettingMuv = duGuvdv denote the probability that edge
M̂uv exists, we can writeM = DrGDc, whereDr andDc

are diagonal matrices of the{du} and{dv} values.
In this formulation the expected degree of a rowu is

du
∑
v Guvdv. The sum

∑
v Guvdv is the same for all rows

in the partψr(u), so while the expected degrees of the nodes
do not necessarily equaldu, the degrees of nodesu1 andu2

within a partare proportionaltodu1 anddu2 . It is to this ex-
tent that we represent arbitrary skewed degree distributions.

Notation: A word about notation is needed here. We refer
to columnu of a matrixX byXu and rowu of X byXT

u .
We letdmax anddmin be the greatest and leastdu, dv of any
row or column. We will letsu be the total degree of the part
to whichu belongs, andsmin equal the least total degree of
any part. For a set of columnsA, we let sAmin refer to the

minimum total degree of parts inA. In the case of symmet-
ric probability matrices, we refer to the partition of nodes as
ψ. We will also use the notationsdu andsu loosely, to re-
fer to either or a row or column scalar depending on the use
of u as a row or column index, which should be clear from
context.

1.4. Statement of Results

The main result of the paper states that we can extract the
partitionψr andψc from an observed matrix̂M , provided
the expected row and column vectors of different parts are
separated in a normalized sense. We start with a theorem
that addresses the case of symmetricM , and then follow
with a corollary stating the result for non-symmetricM .

For reasons of analysis, we must restrict our theorem to
those degree distributions{du}, {dv} with the property that
a uniformly random bipartitioning of the rows or columns
yields partsA,B for which sAu > su/4 andsBu > su/4 for
all u, with probability at least3/4.

Theorem 1 Let G,D,M come from an instance of the
planted partition problem whereM = MT , and letσ2 �
(log n)6/n be an upper bound on the entries inG. There
is a constantc such that for sufficiently largen, if when
ψ(u) 6= ψ(v)

|D1/2(Gu −Gv)|2 ≥ cσ2k log k
(

n

smin
+

log(n/δ)
dmin

)
then with probability1− δ − n−ω(1), we can efficiently re-
coverψ fromM̂ ,D, k, smin, andσ.

The special case of the uniform degree planted partition
problem handled in [21] can be obtained by instantiating
du = 1 for all u. Furthermore, as thedu increase from
1, the difference on the left hand side becomes more pro-
nounced and the required separation on the right hand side
becomes smaller, demonstrating that increaseddu can actu-
ally help recover latent structure.

The non-symmetric form of the result is similar, only
with more notation.

Corollary 2 LetG ∈ Rm×n, D,M come from an instance
of the planted partition problem, and assumen ≥ m. Let
σ2 � (log n)6/n be an upper bound on the entries inG.
There is a constantc such that for sufficiently largem,n, if
whenψr(u) 6= ψr(v)

|(GTu −GTv )D1/2
c |2 ≥ cσ2k log k

(
n

smin
+

log(n/δ)
dmin

)
and whenψc(u) 6= ψc(v)

|D1/2
r (Gu −Gv)|2 ≥ cσ2k log k

(
n

smin
+

log(n/δ)
dmin

)



then with probability1− δ − n−ω(1), we can efficiently re-
coverψr andψc fromM̂ ,Dr,Dc, k, smin, andσ.

While the scalarsdu may not be known, knowledge of
the expected degrees of the graph is sufficient. Lettingdu =∑n
v=1Muv be the expected degree of nodeu, definingdavg

as the average expected degree anddmin andsmin as above,
we have the following corollary.

Corollary 3 LetM ∈ Rn×n be defined as in the extended
planted partition problem, and letdu be the expected de-
gree of nodeu. If there is a constantc such that for suffi-
ciently largen, whenψ(u) 6= ψ(v)

|Mu/du −Mv/dv|1 ≥ c
√
kdavg

(
n

smin
+

log6 (n/δ)
dmin

)
then with probability1− δ − n−ω(1), we can efficiently re-
coverψ fromM̂ ,D, k, smin, andσ.

Notice thatMu/du is the probability distribution of the
edges for nodeu. If each part represents a substantially dif-
ferent distribution, we will be able to distinguish one part
from another and reconstructψ. In interpreting this result,
notice that if the right hand side is more than1, the condi-
tion is never satisfied. In order for the right hand side to be
less than 1, it must be the case thatdmin � log6 n. This
implies that our analysis does not apply to overly sparse
graphs. Even when the graph is dense, we must concern our-
selves with the relative sizes ofdmin, davg, andsmin. The
corollary derives from Theorem 1, and an analogous form
can be derived from Corollary 2.

1.5. Paper Outline

In Section 2 we motivate and present our algorithm for
extracting the column partition, followed by a proof of its
correctness in Section 2.2. In Section 3 we discuss some ex-
tensions, and propose future research.

2. Algorithm and Proof

We start with a review of some linear algebra tools. An
important notion in spectral analysis is that of an optimal
rankk approximation, which for any matrix̂X is the rankk
matrixX̂(k) minimizing‖X̂−X̂(k)‖F . This matrix can also
be described as theprojectionof X̂ onto thek-dimensional
subspace spanned by the firstk singular column vectors.
That is,

X̂(k) = P
(k)bX (X̂)

whereP (k)bX is the projection onto the the span of the firstk
singular column vectors. The reader can find more details
in [6], or in the text of [17].

Our work builds on a result of McSherry [21], who ob-
serves that the optimal rankk approximation to a random
matrix is a good approximation to the expected matrix, if
that matrix has rank at mostk. In [21] it is proven that

Theorem 4 LetX̂ be am×n matrix whose entries are in-
dependent random variables concentrated on a unit inter-
val. Letσ2 � log6(m+n)/(m+n) be an upper bound on
the variances of the entries of̂X. If X = E[X̂] has rank at
mostk, then with probability at least1− 2e−σ

2(m+n)/4,

‖X − X̂(k)‖2F ≤ 128σ2k(m+ n) .

This theorem bounds the difference between the com-
putable matrixX̂(k), and the matrix of expectationsX
that reveals the latent rankk structure. McSherry shows in
[21] that when the variances of̂G are small enough com-
pared to the row and column separation in the expected
matrixG, the partitionsψr, ψc can be recovered from̂G.

For the skewed degree model, note that forMuv � 1,

σ2(Ĝuv) ≈ Guv but σ2(M̂uv) ≈ duGuvdv .

The maximum variance of thêMuv, on which Theorem 4
is based, increases in proportion tod2

max, while the aver-
age of the entries,Muv = duGuvdv, only increase in pro-
portion tod2

avg. For highly skewed degree distributions, the
error can easily overwhelm the latent structure of the ex-
pected matrix, thereby causing the approach of [21] to fail.

With the bound of Theorem 4 in mind, we now motivate
the normalization by showing that it undoes the skewing of
variances brought on by the skeweddu, dv, and can actually
improve performance. Recalling thatL̂ = D

−1/2
r M̂D

−1/2
c ,

observe that its entrieŝLuv satisfy

σ2(L̂uv) ≤ σ2(Ĝuv) and E[L̂uv] ≥ E[Ĝuv] ,

with equality only whendu = dv = 1. ComparingL̂ with
Ĝ, the entries of̂L have favorable variance and expectation.
Moreover,L = E[L̂] is a rankk matrix exhibiting the same
latent structure asG, albeit scaled byD1/2

r andD1/2
c . Intu-

itively, it should be as easy or easier to recover latent struc-
ture from L̂ than fromĜ, and indeed we show this is the
case in the planted partition setting.

For clarity and future reference, we note down the fol-
lowing corollary of Theorem 4.

Corollary 5 Let the matricesDr,Dc,G andM = DrGDc

be defined as in theextended planted partition problem,
and let σ2 � (log n)6/n bound the largest entry inG.
Defining

L̂ = D−1/2
r M̂D−1/2

c and L = D−1/2
r MD−1/2

c ,

with probability at least1− 2e−σ
2n/4,

‖L− L̂(k)‖2F ≤ 256σ2kn .



It is important to note that this corollary represents more
than just a slight tweaking of the parameter space for which
the spectral approach applies. Graphs with heavy tailed de-
gree distributions have maximum degreemuchlarger than
their average degree, a polynomial factor inn for power-law
distributions. As is argued in [22], this difference is signifi-
cant enough in many domains to render spectral techniques
useless when applied tôM .

2.1. Our Algorithm

In the following section we describe our algorithm and
present an analysis of it. The algorithm and its analysis
show how to extract the column partitionsψc, the case for
row partitions being completely analogous.

The basic spirit of our algorithm is fairly simple: Given
M̂ , Dr, Dc we form the matrixL̂ and compute a low rank
approximation to it. At this point, we can apply a greedy
clustering algorithm to the columns of the projected ma-
trix yieldingψc. For technical reasons, we will actually first
partition the data set into two pieces and cross-train to avoid
conditioning issues, arriving at the algorithm

Normalized Partition (M̂ ,Dr,Dc, τ ):

1. Let L̂ = D
−1/2
r M̂D

−1/2
c andN̂ = L̂D

−1/2
c .

2. Randomly partition the columns of̂L into L̂A, L̂B .

3. Compute

Q
(k)
A = Projection(D−1/2

r L̂
(k)
A , τ)

Q
(k)
B = Projection(D−1/2

r L̂
(k)
B , τ)

4. Compute a minimum spanning tree on the columns of

F = [Q(k)
B N̂A, Q

(k)
A N̂B ] .

Sever thek− 1 heaviest edges, and return the partition
of columns defined by the connected components.

The methodProjection(X̂, τ ), for reasons of analysis,
computes a column projection from a clustering therows
of X̂, in which the characteristic vector of each cluster
serves as a basis vector. The clustering of rows is performed
greedily, repeatedly selecting a row and extracting all of its
nearby neighbors into a cluster.

Projection(X̂, τ ):

1. Let all rows be initially unmarked.

2. For i from 1 to k:

(a) Let ui be a random unmarked row, choosing row
u with probability proportional todu.

(b) Mark each rowv for which |X̂T
v − X̂T

ui
| < τ .

3. Defineψ̂r by assigning each rowv to its closest center.
Specifically, set̂ψr(v) = argmini |X̂T

v − X̂T
ui
|.

4. Let ŷi be the characteristic vector ofith part ofψ̂r, and
let vi = D

1/2
r yi.

5. Return the projection onto the space spanned by thevi.

Notice that if the expected matrixL was available,Projec-
tion(D−1/2

r L, 0) would identify the actual clusters ofψr,
and returnP (k)

L , the projection on the column space of the
expected LaplacianL, so it is not completely unnatural. The
parameterτ is present to make the clustering by theProjec-
tion method tolerant of the error in the input.

Theorem 6 Under the assumptions of Theorem 2, letting

τ2 = cσ2k log k × n/64smin ,

with probability1−δ−n−ω(1) M̂ has the property that each
invocation ofNormalized Partition(M̂,Dr, Dc, τ) satisfies

max
ψc(u)=ψc(v)

|Fu − Fv| ≤ min
ψc(u) 6=ψc(v)

|Fu − Fv| (2)

with constant probability strictly greater than1/2.

An MST on columnsFu satisfying (2) will connect the
nodes within every part ofψc before connecting any two
parts. As the probability of success is strictly greater than
1/2, we can amplify the probability of success by repeat-
ing the process several times and taking the majority an-
swer. The proof of Theorem 6 appears at the end of the Sec-
tion 2.2.

2.2. Analysis

Our approach to proving Theorem 6 is to argue that the
computed columnsFu are each very close toNu, and ob-
serve thatNu = Nv if and only if ψc(u) = ψc(v). If
Fu ≈ Nu for all u, then given a sufficient separation be-
tween differingNu andNv, the distance betweenFu and
Fv will reflect the distance betweenNu andNv.

Our main tool in equatingFu andNu is the triangle in-
equality, bounding

|Nu − Fu| ≤ |Nu −Q
(k)
B Nu|+ |Q(k)

B (Nu − N̂u)|
|Nu − Fu| ≤ |Nu −Q

(k)
A Nu|+ |Q(k)

A (Nu − N̂u)|

The first term is the error that the projectionQ(k)
A or Q(k)

B

applies to the common expected vectorsNu, which we will
call the systematic error. The second error is the result
of projecting the perturbation associated with the random
rounding of each column onto thek-dimensional space,
which we will call therandom error. Lemma 8 bounds the
systematic error, and Lemma 9 bounds the random error.
After seeing these lemmas, we will combine them into the
formal statement of Theorem 6.



Before proceeding to the heart of the analysis, we reit-
erate the list of conditions in Theorem 1. Entries ofG are
bounded byσ2 � (log n)6/n and whenψc(u) 6= ψc(v),

|Nu −Nv|2 ≥ cσ2k log k
(

n

smin
+

log(n/δ)
dmin

)
(3)

As an immediate consequence, wheneverψc(u) 6= ψc(v)

|Nu −Nv| ≥ 8τ

Remark: Our analysis is conducted for the columns ofNA.
The bounds applymutatis mutandisfor the columns ofNB .

2.2.1. Systematic Error We start our analysis of the sys-
tematic error by proving that the partition̂ψr that Projec-
tion computes is a good approximation toψr, in the sense
that each of the parts of̂ψr are built around a core of nodes
that are only slightly perturbed.

We recall that inProjection, X̂ = D
−1/2
r L̂

(k)
A , and in-

troduce the corresponding notationX = D
−1/2
r LA.

Lemma 7 Under the assumptions of Theorem 2, for any
fixed probabilityε, we can choosec such that with prob-
ability at least1− ε each of thek nodesui selected in step
2a ofProjectionwill satisfy

|XT
ui
− X̂T

ui
| ≤ τ/2 (4)

Proof: The proof is essentially a counting argument, argu-
ing that there is at most‖L− L̂(k)‖2F error to share amongst
theX̂T

u and the probability of selecting a node that violates
(4) is therefore small. The complete details are in the ap-
pendix. 2

If each nodeui selected satisfies (4), then by marking all
v within τ we mark all other rows fromψr(ui) that satisfy
(4). Therefore, eachui is from a different part ofψr, and
each of thek parts ofψ̂r can be associated with a part ofψr.
For notation’s sake, we arrangêψr so thatψ̂r(ui) = ψr(ui).

With this useful lemma in place, we now bound the sys-
tematic error associated with each node.

Lemma 8 Let sAu be the sum ofdv of those columns inA
for whichψc(u) = ψc(v), and assume thatsAu > su/4. Un-
der the assumptions above, with probability at least3/4, for
all u

|Nu −Q
(k)
A Nu|2 < 16 ‖LA − L̂

(k)
A ‖2F /sAu

Proof: We start with the observation thatNv = Nu when
ψc(v) = ψc(u), allowing us to write

|Nu −Q
(k)
A Nu|2 =

∑
v∈ψc(u)

|Nu −Q
(k)
A Nu|2dv/sAu (5)

=
∑

v∈ψc(u)

|(LA)v −Q
(k)
A (LA)v|2/sAu (6)

≤ ‖LA −Q
(k)
A LA‖2F /sAu (7)

We now define a useful matrixEA, of corresponding di-
mension toLA, whose entries are

(EA)uv = d1/2
u G bψr(u)ψc(v)

d1/2
v

We can viewEA as whatLA would look like if its columns
obeyed the partitionψc but its rows obeyed the partition̂ψr.
Notice thatQ(k)

A EA = EA, as the columns ofEA lie in the
space spanned by thevi, the basis vectors of the projection
Q

(k)
A . On the other hand, The difference‖LA−Q(k)

A Y ‖F is
minimized atY = LA, and so

‖LA −Q
(k)
A LA‖F ≤ ‖LA − EA‖F (8)

which can be inserted into (7),
To make the transition to‖LA − L̂

(k)
A ‖2F in the numer-

ator we consider‖LA − EA‖2F as the sum of squaredrow
lengths.

‖LA − EA‖2F =
∑
u

|(LA)Tu − (EA)Tu |2

If ψr(u) = ψ̂r(u), then(LA)Tu = (ETA)u, and their differ-
ence is zero. Alternately, consider two cluster centersui and
uj chosen in Step 2a ofProjection, and a nodeu for which
ψr(u) = ψr(ui), but ψ̂r(u) = ψ̂r(uj). For such a node, re-

calling thatX̂ = D−1/2L̂
(k)
A andX = D−1/2LA,

(LA)Tu = d1/2
u XT

ui
and (EA)Tu = d1/2

u XT
uj

As u was associated withuj instead ofui, it must be that

|X̂T
u − X̂T

uj
| ≤ |X̂T

u − X̂T
ui
|. (9)

We now start a series of inequalities with the triangle in-
equality (11), from which Lemma 7 yields (12). We then
apply (9) to yield (13), and Lemma 7 again to yield (14).

|XT
ui
−XT

uj
| (10)

≤ |XT
uj
− X̂T

u |+ |X̂T
u −XT

ui
| (11)

≤ |X̂T
uj
− X̂T

u |+ |X̂T
u −XT

ui
|+ τ/2 (12)

≤ |X̂T
ui
− X̂T

u |+ |X̂T
u −XT

ui
|+ τ/2 (13)

≤ |XT
ui
− X̂T

u |+ |X̂T
u −XT

ui
|+ τ (14)

Reorganizing and restating (14),

|XT
ui
−XT

uj
| ≤ 2|X̂T

u −XT
ui
|+ τ (15)

Using our assumption thatsAu > su/4, it is the case that

|XT
ui
−XT

uj
| > |(GTuj

−GTui
)D1/2|/4 > 2τ

Inserted into (15),

|XT
ui
−XT

uj
| ≤ 4|X̂T

u −XT
ui
| (16)



Recalling our definitions of̂X,X, and multiplying byd1/2
u ,

|(LA)Tu − (EA)Tu | ≤ 4|(L̂(k)
A )Tu − (LA)Tu | (17)

Finally, squaring and summing over allu,

‖LA − EA‖2F ≤ 16‖L̂(k)
A − LA‖2F (18)

which, when substituted in (8), concludes the proof. 2

2.2.2. Random Error We now move on to address the
random error

Q
(k)
A (Nu − N̂u) and Q

(k)
B (Nu − N̂u)

The argument is at heart a Chernoff bound, although a little
care must be taken to get it into this form.

Lemma 9 (Random Error) Let σ2 be an upper bound on
the entries ofG, and letQ(k)

A be a projection computed by
Projection. With probability1− δ,

|Q(k)
A (Nu − N̂u)|2 ≤ 4kσ2 log(nk/δ)/du +

8k log2(nk/δ)/sAmind
2
u

for all columnsu ∈ B

Proof: The vectorsvi that defineQ(k)
u are disjoint,

and therefore orthogonal. As such, we can decompose
|Q(k)

A (Nu− N̂u)|2 into a sum ofk parts, defined by the vec-
tor’s projection onto each of thevi/|vi|.

|Q(k)
A (N̂u −Nu)|2 =

∑
i≤k

(vTi (N̂u −Nu))2/|vi|2

We consider each of thek terms separately, observing that
each is a sum of independent random variables with mean
zero. In particular, note that

vTi (N̂u −Nu) = yTi (M̂u −Mu)/du

The entries of̂M are independent0/1 random variables. We
will apply one form of the Chernoff bound [23], which says
that for a sum of0/1 random variables,X,

Pr[|X − E[X]| ≥ t] ≤ max{exp(−t2/4µ), exp(−t/2)}

If we apply this to our sum, we see that

Pr[|vTi (N̂u −Nu)|2 > t]
≤ Pr[yTi (M̂u −Mu) > dut

1/2]
≤ max{exp(−d2

ut/4µ), exp(−dut1/2/2)}

whereµ = E[yTi M̂u] is bounded by

E[yTi M̂u] ≤
∑

bψr(v)=i

dudv max
ij

Gij

≤ duŝiσ
2

Letting ŝmin to refer to the least total degree of the rows in
any part ofψ̂r, notice that|vi|2 = ŝi. After instantiating

t = 4σ2 log(k/δ)/du + 4 log2(k/δ)/ŝmind
2
u

we apply a union bound, concluding that all of thek terms
are bounded byt with probability at least1−δ. In the proof
of Lemma 7 we see that̂su is at leastsu/2, which we use to
remove thêsu terms. 2

2.2.3. Proof of Theorem 6We now combine our bounds
on the systematic and random error to prove Theorem 6.

Proof: We first recall that the probability that the random
split of columns intoA andB satisfiessAu ≥ su/4 and
sBu ≥ su/4 with probability1/2+ε. We conduct the rest of
the proof under the assumption that this condition occurs.

Recall the triangle inequality,

|Nu − Fu| ≤ |Nu −Q
(k)
B Nu|+ |Q(k)

B (Nu − N̂u)|
|Nu − Fu| ≤ |Nu −Q

(k)
A Nu|+ |Q(k)

A (Nu − N̂u)|

The systematic errors are bounded by Lemma 8 as

|Nu −Q
(k)
A Nu| ≤ 16‖LA − L̂

(k)
A ‖2F /sAmin

|Nu −Q
(k)
B Nu| ≤ 16‖LB − L̂

(k)
B ‖2F /sBmin

Both ‖LA − L̂
(k)
A ‖2F and‖LB − L̂

(k)
B ‖2F are bounded by

Corollary 5 as

‖LA − L̂
(k)
A ‖2F ≤ 256σ2kn

‖LB − L̂
(k)
B ‖2F ≤ 256σ2kn

with probability 1 − 4e−σ
2n. Combining this with the as-

sumption thatsAmin > smin/4 andsBmin > smin/4, and tak-
ing c sufficiently large bounds

|Nu −Q
(k)
A Nu| ≤ cσ2kn/32smin

|Nu −Q
(k)
B Nu| ≤ cσ2kn/32smin

with probability1− 4e−σ
2n.

We now integrate the random error bound. This argu-
ment is a bit less direct, complicated by the involvement of
randomness from botĥM and the algorithm. Given a fixed
L̂A satisfyingsAu > su/4, we can viewQ(k)

A as a random
variable. The probability that any column of̂NB violates
the bound of Lemma 9 for anε fraction of theQ(k)

A is at
mostδ/ε, by the Markov inequality. Formally,

Pr bNB
[Pr

Q
(k)
A

[violation] > ε] ≤ δ/ε

Pr bNA
[Pr

Q
(k)
B

[violation] > ε] ≤ δ/ε

For a1 − 2δ/ε fraction of theM̂ , the bound of Lemma 9
holds for a1 − ε fraction of the projectionsQ(k)

A , Q
(k)
B . By



increasing the leading constant on the bound of Lemma 9,
we can decrease the value ofε to an arbitrary constant, say
1/16.

Combining the two bounds, notice that if we insert the
assumptionσ2 � (log n)6/n, the systematic error exceeds
the second term in the bound of Lemma 9. Each execution
of Normalized Partition therefore satisfies, for a largec

|Nu − Fu|2 ≤ cσ2(nk/smin + k log(n/δ)/du)/16 (19)

for all u, when

1. The split of degrees is balanced, (probability3/4)

2. Lemma 7 holds forN̂A andN̂B , (prob.(15/16)2)

3. Lemma 9 holds forQ(k)
A andQ(k)

B . (prob.14/16)

The probability all occur is

3/4− 3/4(1− (15/16)2)− 3/4(1− 14/16) > 1/2 .

As whenψ(u)c 6= ψc(v) the separation|Nu − Nv|2 is at
least sixteen times the right hand side of (19),

|Nu − Fu| ≤ min
ψc(u) 6=ψc(v)

|Nu −Nv|/4 . (20)

Using the triangle inequality,

max
ψc(u)=ψc(v)

|Fu − Fv| ≤ |Nu − Fu|+ |Nv + Fv|

≤ min
ψc(u) 6=ψc(v)

|Nu −Nv|/2

≤ min
ψc(u) 6=ψc(v)

|Fu − Fv|

and we conclude the proof. 2

3. Extensions

This paper proposes a natural transformation to deal with
skewed degree distributions in spectral analysis. In order
to provide rigorous proofs, we resorted to a synthetic pro-
jection inspired by [21]. An interesting question is to ex-
plore whether we can prove that the eigenvector projection
performs well. Also, the assumptions in this paper imply a
lower bound oflog6 n on the minimum degree of the graph.
Analyzing sparser graphs seems to require stronger matrix
bounds than are available now.

Another important direction to explore involves the de-
conditioning of the algorithm. The partitioning of the graph
in Step 1 of the algorithm was prompted by the need to de-
condition the computed projection from the random vectors
themselves. Unfortunately, the partitioning itself is sensitive
to the “smoothness” of the degree distribution. When there
are very few nodes of very high degree, with some prob-
ability all of them will be placed in only one of the parti-
tions, and hence the partitions are likely to be unbalanced. A

different approach to avoid conditioning is to remove each
node from the vertex set before analyzing it. In effect, for
computing the projection for columnu, we removeu from
the vertex set and then runProjection on the remaining
data. Though this approach has the potential of being ro-
bust against the aforementioned degree distributions, prov-
ing the analogue of Lemma 7 for this method seems hard.

Finally, it would be interesting to apply this normaliza-
tion technique and analysis to other, less synthetic domains.
For example, collaborative filtering experiences a tremen-
dous skew in the popularity of items that users rate. At the
same time, the utility of such systems is to discover less
common items of interest, as common interesting items are
usually easily discovered. This particular application seems
like it could benefit substantially from normalization, both
in theory and in practice.
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Appendix : Proof of Lemma 7

Proof: Recall that we wanted to prove that each node se-
lected as cluster center satisfies

|XT
ui
− X̂T

ui
| ≤ τ/2

with probability at least15/16.
Let us call any node that satisfies this bound “good”;

other rows will be called “bad”. Notice that if at each step

we do choose a good node, then by using radiusτ we will
mark all the good rows from the same part asu, and no good
rows from any other part (as the centers are assumed to be
separated by2τ ). If we were to chose good rows only, the
proof would be complete.

So, let us look at the probability of choosing a bad node
at a particular step. Recall that we choose rows proportional
to their degree. By our definition, the total degree of bad
rows is bounded as∑

u∈BAD
du ≤

∑
u∈BAD

4du|XT
u − X̂T

u |2/τ2

=
∑

u∈BAD
4|(LA)Tu − (L̂A)Tu )|2/τ2

≤ 4‖LA − L̂
(k)
A ‖2F /τ2

Combining our assumption on the size ofτ with the bound
of Corollary 5, we see that

τ ≥ c/214 × ‖LA − L̂
(k)
A ‖2F log k/smin

We can choosec such that∑
u∈BAD

du ≤ smin/16 log k

However, notice that in the first step we have at leastksmin

total row degree, and so the probability of choosing a bad
row is at most(16k log k)−1. Indeed, at any stepi at which
we have not chosen a bad row, there is still(k−i+1)smin to-
tal degree, as we have only marked rows fromi − 1 parts.
The probability of selecting a bad row at theith step is there-
fore at most

Pr[select badui] ≤ (16(k − i+ 1) log k)−1

If we now take a union bound, we see that

Pr[any bad] ≤
∑
i≤k(k − i+ 1)−1

16 log k
≈ ε

As we choose only good rows, and at each step mark all
good rows associated with a particular part, each selection
must be from a different part. 2


