
THEORY AND IMPLEMENTATION OF AN EFFICIENT

TACTIC-BASED LOGICAL FRAMEWORK

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Aleksey Yuryevich Nogin

August 2002

c© 2002 Aleksey Yuryevich Nogin

ALL RIGHTS RESERVED

THEORY AND IMPLEMENTATION OF AN EFFICIENT TACTIC-BASED

LOGICAL FRAMEWORK

Aleksey Yuryevich Nogin, Ph.D.

Cornell University 2002

Formal methods are successfully used in a wide range of applications — from hard-

ware and software verification to formalizing mathematics and education. However

their impact is limited and is very far from realizing the full potential of formal

methods. Our investigation of these limitations shows that they can not be avoided

by simply fine-tuning existing tools and methods. We demonstrate the need to con-

centrate on improving and extending the underlying theory and methodology of

computer-aided formal reasoning.

This thesis explores both practical and theoretical aspects of achieving these

improvements; we present solutions for some of the outstanding problems and

substantial improvements for others. In particular, we improve axiomatizations

of the extant logics to make them more accessible to both users of the system

and proof automating procedures. We also present methods for very significant

speedup of the proof search process. Such additional speed means not only that

the theorem prover will work faster, but also users can now take advantage of

more advanced proof automation procedures that would have been prohibitively

slow otherwise.

This thesis also demonstrates how these wide ranging practical and theoretical

results can be brought together in a more efficient and more generic tactic-based

formal system. In particular, we present a generic derived rules mechanism and

explain how such a mechanism can facilitate practical modularization of a formal

system. We also present several approaches to establishing a generic layer of proof

automation procedures (tactics) that apply to a wide variety of logical theories.

Most of the ideas presented in this thesis were implemented in the MetaPRL logical

framework taking advantage of an existing modular flexible design and making it

even more modular and more flexible.

After implementing these ideas in the MetaPRL logical framework, we use that

system to improve a formalization of NuPRL intuitionistic type theory. In particu-

lar, we show how to modularize an axiomatization of a quotient type thus creating

a formalization capable of expressing important concepts that were impossible to

express in the original monolithic axiomatization. We also show how to add a

limited form of classical reasoning to an intuitionistic type theory in a way that

preserves many constructive aspects of the theory. Several theorems in this thesis

were formally proven in the MetaPRL system.

BIOGRAPHICAL SKETCH

Aleksey Nogin was born in 1976 in Moscow. In 1987 he started participating in

the Evening Mathematical School classes at Moscow State Fifty-Seventh School

and in 1989 he entered the mathematics class there.

In 1991 Aleksey won a diploma of the first degree (“gold medal”) in the all-

USSR High School Mathematical Olympiad. In 1992 Aleksey won a silver medal

in the 33rd International Mathematical Olympiad.

In 1992 Aleksey graduated from the Fifty-Seventh School and was accepted into

the Department of Mechanics and Mathematics in Moscow State University. There

in 1994 he chose the Mathematical Logics and Theory of Algorithms specialization

under professor Alexander Razborov.

In 1997 Aleksey received an Honors Diploma from Moscow State University and

joined the Cornell University department of Computer Science Ph.D. program.

iii

ACKNOWLEDGEMENTS

This thesis would not have been possible without my adviser Professor Robert

Constable whose enthusiasm and love of the research were the biggest influence

in my choosing Cornell graduate school and a great inspiration throughout my

studies at Cornell. The value of his guidance in making me a better researcher is

hard to overestimate.

This thesis would also not have been possible without my colleagues and friends

Jason Hickey, who laid all the groundwork for the MetaPRL system and have been

extremely helpful and supportive once I have joined the MetaPRL project; and

Alexei Kopylov, who is always eager to join me in figuring out even the most

intricate sides of type theory.

There is a special place in my heart for Sergei Artemov — a father, a colleague

and a friend. His guidance helped me find a research area I love; he is always

around when I need his advice.

I would also like to thank Mark Bickford, Stuart Allen, Lori Lorigo, Vladimir

Krupski, Yegor Bryukhov and many others for all the great discussions.

I am very grateful to my committee members Greg Morrisett who was great at

providing me with a new way of looking at my research and Ulric Neisser who was

great at giving me a chance to look outside of my research.

I would also like to thank my office-mates Jim Ezick, Kiri Wagstaff and Yaron

Minsky for bringing fun and diversity into my days in Upson Hall.

Finally, I would like to thank DARPA (grant F30602-98-2-0198), ARFL (grants

F30602-98-2-0198 and F49620-00-1-0209) and ONR (grant N00014-01-1-0765) for

sponsoring most of this research.

iv

TABLE OF CONTENTS

1 Introduction 1
1.1 Tactic-Based Interactive Theorem Provers 1
1.2 Modular Theorem Provers and Logical Frameworks 2
1.3 Structure of the Thesis and Overview of Contributions 5
1.4 MetaPRL . 7
1.5 Conclusion . 8

I Generic Formal Reasoning 9

2 Speeding up Tactic-Based Theorem Proving 10
2.1 Architectural Overview . 11
2.2 The Term Module . 16

2.2.1 Naive Term Implementation (Term std) 17
2.2.2 Delayed Substitution (Term ds) 19

2.3 The Rewriter module . 23
2.4 Performance . 27
2.5 Summary . 31
2.6 Related work . 32

3 Sequent Schemata for Derived Rules 33
3.1 Terms and Sequents . 36
3.2 Term Schemata . 38
3.3 Language of Sequent Schemata . 39
3.4 Semantics — Sequent Schemata . 41
3.5 Rule Specifications . 45
3.6 Conservativity . 48
3.7 Extending the Language of Sequent Schemata 52
3.8 Related Work . 54

4 Logical Meta-Language: From Derived Rules to Tactics 56
4.1 Syntax Simplifications . 57
4.2 MetaPRL Rule Specifications . 58
4.3 Rule Annotations . 61
4.4 Decision Procedures as Heuristics 63

4.4.1 JProver . 65
4.4.2 Arithmetic . 66

4.5 Generic tactic layer . 66

v

II Type Theory 68

5 Quotient Types — A Modular Approach 69
5.1 NuPRL Type Theory . 71

5.1.1 Propositions-as-Types . 71
5.1.2 Partial Equivalence Relations Semantics 72
5.1.3 Extensional and Intensional Approaches 73

5.2 Squash Operator . 74
5.2.1 Squash Operator: Introduction 74
5.2.2 Squash Operator: Axioms 75
5.2.3 Squash Operator: Derived Rules 76

5.3 Choosing the Rules . 77
5.4 Intensional Set Type . 79

5.4.1 Set Type: Introduction . 79
5.4.2 Set Type: Traditional Approach 79
5.4.3 Set Type: A New Approach 80

5.5 Extensional Squash Operator (Esquash) 81
5.5.1 Esquash Operator: Introduction 81
5.5.2 Esquash Operator: Axioms 82
5.5.3 Esquash Operator: Derived Rules 83

5.6 Explicit Nondeterminicity . 83
5.6.1 Explicit Nondeterminicity: Introduction 83
5.6.2 Explicit Nondeterminicity: Axioms 85
5.6.3 Explicit Nondeterminicity: Derived Rule 85

5.7 Intensional Quotient Type . 85
5.7.1 Quotient Type: Introduction 85
5.7.2 Intensional Quotient Type: Axioms 86
5.7.3 Intensional Quotient Type: Derived Rules 87

5.8 Indexed Collections . 88
5.8.1 Indexed and Predicated Collections 88
5.8.2 Collections: the Problem . 89
5.8.3 Collections: a Possible Solution 90

5.9 Related Work . 91

6 Functionality and Equality in Type Theory 93
6.1 Introduction to Equality Relations in Type Theory 93

6.1.1 Subtyping and Extensional Equality 93
6.1.2 Intersection Type . 95
6.1.3 Functionality Semantics of Sequents 96

6.2 The Gap . 97
6.3 Functionality Structures . 99
6.4 Non-standard Model . 100

6.4.1 A Non-standard Functionality Structure 100
6.4.2 A Potential Counterexample 103

vi

6.4.3 Completing the Model . 103
6.4.4 Other Interesting Non-standard Models 104

6.5 Uniquely Defining a Type by its Equality Relation 105

7 Propositional Markov’s Principle for Type Theory 107
7.1 Introduction . 107

7.1.1 Markov’s Constructivism . 108
7.1.2 Markov’s Principle . 110
7.1.3 Type Theory . 110

7.2 Constructive Recursive Mathematics in a Type Theory with a Mem-
bership Type . 113

7.3 Squashed Types and Squash-Stability 114
7.4 Classical Reasoning on Squashed Types 115
7.5 Semantical Consistency of Markov’s Principle 119
7.6 Squash Operator as a Modality . 120
7.7 Related Work . 122

A Appendix 124
A.1 Some Type Theory Rules . 124

A.1.1 Structural Rules . 124
A.1.2 Membership Rule . 124
A.1.3 Disjunction Rules . 125
A.1.4 Universal Quantifier Rules 125
A.1.5 Existential Quantifier Rules 125
A.1.6 Falsum Rules . 126
A.1.7 Computation Rules . 126
A.1.8 Arithmetical Rules . 126

A.2 NuPRL-4 Quotient Rules . 127
A.2.1 Comparison to the Proposed Rules 128

A.3 Concrete Syntax of Sequent Schemata 129

Bibliography 130

vii

LIST OF TABLES

2.1 Refiner Interface . 14
2.2 Term Syntax Examples . 16
2.3 Signature for the Term Module . 17
2.4 Free Variables Computation in Term ds 21
2.5 Substitution Expansion for Term ds 23
2.6 Term Expansion for Term ds . 23
2.7 Interface for the Rewriter Module 24
2.8 Virtual Machine Instructions . 26
2.9 Virtual Machine Example: (λx.bx) a −→ ba 27
2.10 Performance on the Factorial Examples 28
2.11 Performance on the Pigeon-Hole Examples 29

3.1 Language of Sequent Schemata . 40

4.1 Decomposition Tactic Examples 61

A.1 Concrete Syntax of Sequent Schemata 129

viii

LIST OF FIGURES

1.1 General Logical Framework Structure 3

2.1 General Tactic Prover Architecture 12
2.2 Layered Refiner Modules . 15
2.3 Rewriting Virtual Machine . 25

ix

Chapter 1

Introduction
Formal methods are successfully used in a wide range of applications — from hard-

ware and software verification to formalizing mathematics and education. However

their impact is often limited and is very far from realizing the full potential of for-

mal methods. Our investigation of these limitations shows that they can not be

avoided by simply fine-tuning existing tools and methods. Instead, we concentrate

on improving and extending the underlying theory and methodology of computer-

aided formal reasoning.

This thesis contributes in four areas. We present methods for very significant

speedup of the proof search process. We describe a generic derived rules mechanism

that can facilitate practical modularization of a formal system. We outline several

approaches to establishing a generic layer of proof automation procedures (tactics)

that apply to a wide variety of logical theories. We show how to modularize an

axiomatization of a quotient type, making it substantially more expressive.

1.1 Tactic-Based Interactive Theorem Provers

The research in the area of automated reasoning is mostly proceeding in the two

major directions. First, there are provers (such as ACL2 [KM97], EQP [McC97],

Gandalf [Tam97], Otter [McC94], SETHEO [LSBB92], SPASS [Wei97] and TPS

[ABI+96]) that typically work in relatively weak logics (first-order or even quan-

tifier-free) attempting to find a proof in a fully automated way in the smallest

amount of time. Second, there are provers (such as ALF [CNSvS94, MN94], Coq

[BBC+96], HOL [GM93], Isabelle [PN90, Pau94], MetaPRL [Hic97, Hic01, HNK+],

1

2

NuPRL [CAB+86, ACE+00] and PVS [ORS, SORSC99]) that use higher-order log-

ics and only attempt to do some tasks automatically while relying on interactive

user guidance for more complex tasks. Following LCF [GMW79], in these semiau-

tomated provers, proof automation is usually coded in a meta-language (often a

variant of ML) as tactics.

In general, the second class of provers is more flexible. The expressivity of

the higher-order logics permits concise problem descriptions, and meta-principles

that characterize entire classes of problems can be proved and re-used on multi-

ple problem instances. The semi-automated nature of these provers means being

able to work in application areas both where the automated search is expected

to solve the problem completely as well as where the automated search is only

meant to complement the human guidance. Such flexibility makes the higher-

order semi-automated provers the ideal framework for developing general method-

ology of formal reasoning. Consequently this thesis focuses almost exclusively on

semi-automated reasoning in higher-order logics (although some of the results are

applicable to other types of formal systems as well).

1.2 Modular Theorem Provers and Logical Frameworks

At a very high level, an architecture of a tactic-based theorem prover can be

described as shown in Figure 1.1.

The core of the system is its logical engine, or refiner [Bat79]. It is responsible

for performing the individual proof steps (such as applying a single inference rule).

Next, there is the lower “support” layer for the logical theories. It usually includes

basic meta-theory definitions and possibly some basic proof search mechanisms

(such as basic tactics). Finally, at the top of the structure there are the logical

3

®

ª
©

?

®

ª
©

?

®

ª
©

Logical Engine

Meta-Theory

Logical Theories

Figure 1.1: General Logical Framework Structure

theories themselves, each potentially equipped with theory-specific mechanisms

(such as theory-specific proof search strategies and theory-specific display mecha-

nisms). In a way, the structure of the prover mimics the structure of an operating

system with logical engine being the “kernel” of the system, meta-theory being its

“system library” and logical theories being its “user space”.

We intentionally did not include any user interface in Figure 1.1. The reason

for such omission is that often a user interface (such as, for example, NuPRL

Editor [MA94, ACE+00] or Proof General [Asp00]) would be a separate package

added on top of a formal system, rather then a part of the system itself.

There are two main approaches to building such a prover — one can build a

monolithic prover or one can build a modular one. There are several advantages in

a more modular architecture, especially in a research environment where we want

to work on general methodology.

In a modular system with a well-defined interfaces it is easier to try out new

ideas and new approaches. One can start improving a particular module, or even

write a completely new one without having to modify (or even understand!) other

parts of the system. This allows for a greater flexibility and also helps bringing

new people (including new students) to the project.

As we will see in Chapter 2, the modular architecture also allows one to have

4

several implementations of some critical module. For example, it is possible to have

a generic implementation and at the same time create an alternative implementa-

tions of some modules that are optimized towards a particular class of applications.

This approach is especially useful in the trusted core of the system — there we can

have a simple “reference” implementation that is extensively tested and checked

for correctness as well as one (or more 1) highly optimized implementations. Users

can develop proofs using the optimized modules and then later double-check them

by re-running (in off-line mode) using the reference implementation. This provides

the confidence of knowing that proofs were accepted by both implementation of

the module.

Similarly to the modularity of the logical engine of a formal system, the mod-

ularity of the logical theories supported by a system is also important. Some

provers only support reasoning in a single monolithic logical theory, while others

(often called logical frameworks [Pfe01b]) not only give their users a choice of what

logical theory to use, but also allow users to add their own logical theories to the

system.

Since this thesis aims at improving the general methodology that can be used in

a wide variety of applications, we want to concentrate our efforts on most flexible

and most general kind of theorem provers. As a result, this thesis primarily focuses

on modular tactic-based logical frameworks.

Throughout the thesis (and especially in Chapters 2 and 4) we will continue

discussing the structure of the system and we will provide a more detailed picture

of an efficient architecture for a generic tactic-based logical framework.

1In fact, in our MetaPRL system some of the most performance-sensitive mod-
ules have up to 6 different implementations.

5

1.3 Structure of the Thesis and Overview of Contributions

In this thesis we assume that we already have a formal system that implements

a modular architecture similar to the one presented above. We explore ways of

improving such a system, of making it more efficient and more usable. Going from

the most low-level functionality of the system to the most high-level, we consider

each of the modules one at a time, separately analyzing efficiency and usability

challenges in each of them. Consequently the structure of this thesis closely follows

the general structure of a theorem prover.

We start in Chapter 2 by focusing on the logical engine, primarily on the term

operations and the rewriting engine. There the biggest challenge is efficiently —

we want to make sure that the basic term operations and rewriting steps are as

fast as possible. We will show how we achieve a major speed-up of the logical

inference engine (over two orders of magnitude on most examples, when compared

to NuPRL-4 2). Such speed-up not only means that proof search take less time,

but also that more advanced proof search techniques that were prohibitively slow

in a slower system are now accessible to users.

In Chapter 3 we explore some theoretical aspects of the meta-theory used. We

present a language of sequent schemata that gives us a mechanism for adding de-

rived rules to the system in a way that is guaranteed to be conservative, no matter

what logical theory is going to be used. Such a mechanism significantly increases

the modularity and flexibility of the theorem prover. In addition, our sequent

schemata language is designed to be very intuitive and easy to use. In particular,

it eliminated the need for explicitly specifying which substitutions have to occur

2The reason for this level of speed is not yet fully understood. In particular,
it is not completely clear which part of the speed-up comes from our effort and
which comes from other factors.

6

when a rule is applied; this removed a very common source of user mistakes.

In Chapter 4 we discuss some challenges and advantages of implementing the

sequent schemata language in a theorem prover and discuss the establishment of a

layer of “generic” tactics that can be used across several different logical theories.

We also present two approaches to reducing the burden of maintaining complex

tactics.

While the first part of the thesis focuses on the general issues of formal rea-

soning, in the second part we switch to the logical theories layer of a theorem

prover. Some of the most powerful and challenging logical theories implemented

in theorem provers are various flavors of constructive type theory. In this thesis

we concentrate on type theories derived from the Martin-Löf type theory [ML82],

such as NuPRL type theory [CAB+86] (although many results are applicable to

other versions of type theory and possibly other constructive theories as well).

In Chapter 5 we discuss the challenges of coming up with the best formalization

for the quotient types in type theory. We provide a new highly modular axioma-

tization of the quotient type and explain the advantages of such modularization.

In particular, we show how the new axiomatization allows us to express many

important concepts that were impossible to express in the original monolithic ax-

iomatization. We also discuss how the choices we make in the axiomatization make

it more accessible and more usable, especially in the context of a theorem prover.

In Chapter 6 we discuss the types and their equality relations in type theory.

We show how two types may be different despite having the same members and

the same equality relation and how this leads to some intuitively very simple and

seemingly correct statements being virtually unprovable. We demonstrate how

to eliminate this problem by explicitly stating that any two types with the same

7

equality relation should be considered equal.

Finally, in Chapter 7 we show how a constructive type theory can be extended

by adding a useful limited classical reasoning without sacrificing the constructive

nature of the theory. We show that our extension is a generalization of Markov’s

principle and can be expressed in a purely propositional fragment of type theory.

1.4 MetaPRL

As a main testbed for the ideas presented in this thesis we chose MetaPRL— a

modern modular tactic-based formal system. Most of the ideas presented in this

thesis were implemented and successfully used in the system. In particular, all the

type theory derivations presented in Part II of the thesis were developed with the

help of MetaPRL and were formally checked by the system.

MetaPRL is the latest out of many formal tools developed over a period of more

than 20 years by the PRL group at Cornell. 3 MetaPRL is not only a tactic-based

interactive proof assistant, but it is also a logical framework that allows users to

specify their own logical theories to reason in rather than forcing them to use a

single theory. Additionally, MetaPRL is a logical programming environment that

incorporates many features to simplify reasoning about programs being developed.

In fact, MetaPRL is implemented as an extension of the OCaml compiler [WL99].

Finally, MetaPRL can be considered a logical toolkit that exports not only the

“high-level” logical interface, but all the intermediary ones as well. This allows

for rapid development of new logical applications without having to spend time on

re-coding the basic formal functionality.

3See also Cornell PRL Project home page at http://www.cs.cornell.edu/

Info/Projects/NuPrl/Nuprl.html.

http://www.cs.cornell.edu/Info/Projects/NuPrl/Nuprl.html
http://www.cs.cornell.edu/Info/Projects/NuPrl/Nuprl.html

8

MetaPRL’s predecessor NuPRL [CAB+86] was successfully used for verifica-

tion and automated optimization of the Ensemble group communication toolkit

[LKvR+99]. This toolkit [Hay98] is being used for both military and commer-

cial applications. Its users include BBN, Nortel Networks and NASA. MetaPRL

project was started by Jason Hickey [Hic97] as a part of Ensemble verification effort

to simplify formal reasoning about the program code and to address scalability and

modularity limitations of NuPRL. As more effort was put into the system (with the

work presented in this thesis being a big part of that effort) MetaPRL eventually

grew into a very general modern system whose modularity and logical framework

nature give it flexibility to support a very wide range of applications.

The logical theories formalized in MetaPRL include first-order logic, several

variations of the NuPRL type theory [CAB+86], and Aczel’s CZF set theory [Acz86].

1.5 Conclusion

In this thesis we did our best to extend the frontier on the formal methods in sev-

eral important directions — greatly improved logical speed, additional flexibility

of the derived rules mechanism, automated approaches to maintaining complex

tactics, richer and more accessible logical theories. Now this new frontier needs to

be explored. We hope that in the near future theses new ideas and their imple-

mentations will be extensively tested in applications. In turn, such exploration is

likely to discover new unforeseen challenges and we are looking forward to battling

them.

Part I

Generic Formal Reasoning

9

Chapter 2

Speeding up Tactic-Based Theorem

Proving
In a tactic-based prover, automation speed has a direct impact on the level of

reasoning. If proof search is slow, more interactive user guidance is needed to

prune the search space, leading to excessive detail in the tactic proofs.

In this chapter we present a proving architecture that addresses the problem of

speed and customization in tactic provers. We have implemented this architecture

in the MetaPRL logical framework, achieving on several examples more than two

orders of magnitude speed-up over the existing NuPRL-4 implementation. We

obtain the speedup in two parts: our architecture is modular, allowing components

to be replaced with domain-specific implementations, and we use efficient data

structures to implement the proving modules.

One might think that the comparison between MetaPRL and NuPRL-4 is not

very informative since NuPRL-4 uses interpreted ML and MetaPRL is implemented

in OCaml. But in fact only very high-level code uses interpreted ML in NuPRL-

4 while most of the time is spent performing low-level operations such as term

operations and primitive rule applications. And in NuPRL-4 all the low-level oper-

ations are implemented in Lisp and are compiled by a modern Lisp compiler. This

should make the comparisons relatively informative, especially when there is some

evidence that the speedup might be over two orders of magnitude.

It should also be noted that MetaPRL is a distributed prover [Hic99], leading to

additional speedups if multiple processors are used. Distribution is implemented

by inserting a scheduling and communication layer between the refiner and the

10

11

tactic interface. For this work, we describe operation and performance without

this additional scheduling layer.

The organization of the chapter is a follows. In Section 2.1, we revisit the

prover architecture presented in Section 1.2 and show that the logic engine can be

broken into three modules: a term module that implements the logical language, a

term rewriter that applies primitive inferences, and a proof module that manages

proofs and defines tactics.

In Sections 2.2 and 2.3 we explore the logical engine in more detail, and develop

its implementations. The computational behavior of proof search is dominated

by term rewriting and operations on terms. We present implementations of the

modules for domains with frequent applications of substitution (like type theory),

and for domains with frequent applications of unification (like first-order logic).

In Section 2.4, we compare the performance of the different implementations.

We include performance measurements that compare MetaPRL’s performance with

NuPRL-4 on the NuPRL type theory. In our measurements, we also show how

particular module implementations change the performance in different domains.

In Section 2.5 we summarize our results, and discuss the remaining issues. This

work builds on the efforts of many systems over the last decade, and in Section 2.6

we give an overview of related work.

Some of the work presented in this chapter is joint with Jason Hickey — see

also [HN00].

2.1 Architectural Overview

We consider a general architecture of a tactic prover consisting of three parts

presented in Section 1.2 (Figure 1.1). A refinement of that architecture is shown

12

6

®

ª
©

®

ª
©

6

®

ª
©

6

®

ª
©

®

ª
©

®

ª

©

®

ª

©

Meta-theory

Theorems

Tactics

Refiner

Tactic Interface

Logical Theories

Rewrite Definitions

Inference Rules

Syntax Definitions

Figure 2.1: General Tactic Prover Architecture

in Figure 2.1. At the center of the system we have logical theories (or simply logics)

that contain the following kinds of objects:

1. Syntax definitions define the language of a logic,

2. Inference rules define the primitive inferences of a logic. For instance, the

first-order logic contains rules like modus ponens in a sequent calculus.

Γ, A ` A
axiom Γ ` A ⇒ B Γ ` A

Γ ` B
modus ponens

3. Rewrites define computational equivalences. For example, the type theory

defines functions and application, with the equivalence (λx. b[x]) a ←→ b[a].

4. Theorems provide proofs for derived inference rules and axioms.

5. Tactics provide theory-specific proof search automation.

13

The core of the system is its logical engine or refiner [Bat79] that performs two

basic operations. First, it builds the basic proof procedures from the parts of a

logic.

1. Syntax definitions are compiled to functions for constructing logical formulas.

2. Rewrite primitives (and derived rewrite theorems) are compiled to conver-

sions that allow computational reductions to be applied during a proof.

3. Inference rules and theorems are compiled to primitive tactics for applying

the rule, or instantiating the theorem.

The second refiner operation is the application of conversions and tactics, produc-

ing justifications from the proofs. The major parts of the refiner interface are shown

in Table 2.1. 1 It defines abstract types for data structures that implement terms,

tactic and rewrite definitions, proofs, and logics. Proof search is performed in a

backward-chaining goal-directed style. The refine function takes a logic and a

tactic search procedure, and applies it to a goal term to produce a partial proof.

The goal and the resulting subgoals can be recovered with the sub/goal of proof

projection functions. Proofs can be composed with the compose proof subproofs

function, which requires that the goals of the subproofs correspond to the sub-

goals of the proof, and that both derivations occurred in the same logic. If an

error occurs in any of the refiner functions, the RefineError exception is raised.

The tactic of conv function creates a tactic from a rewrite definition. The final

two functions, called tacticals, are the primitives for implementing proof search.

Operationally, the andthen tac1 tac2 tactic applies tac1 to a goal and imme-

diately applies tac2 to all the subgoals, composing the result. The orelse tac1

1Throughout this chapter we will use a simplified OCaml syntax to give the
component descriptions.

14

Table 2.1: Refiner Interface

module type RefinerSig = sig

type term, tactic, conv, proof, logic

exception RefineError

val refine : logic → tactic → term → proof

val goal of proof : proof → term

val subgoals of proof : proof → term list

val compose : proof → proof list → proof

val tactic of conv : conv → tactic

val andthen : tactic → tactic → tactic

val orelse : tactic → tactic → tactic

end

tac2 is equal to tac1 on goals where tac1 does not produce an error, otherwise it

is equivalent to tac2.

The logic data type is the concrete representation of a logic. The MetaPRL

logical framework defines multiple logics in an inheritance hierarchy (partial order)

where if Lchild : logic inherits from Lparent : logic, all the theorems of Lparent are

valid (and provable) in Lchild . In contrast, the NuPRL-4 prover has a single global

logic containing the syntax and rules of the NuPRL type theory.

In a prover like NuPRL-4, the refiner can be characterized as monolithic. There

is no well-defined separation of the refiner into components, and there is no well-

defined interface like the RefinerSig we defined above—there is one built-in re-

finer. This has made it difficult to customize and maintain NuPRL-4, and our

choice in MetaPRL has been to partition the refiner into several small well-defined

parts.

As we have mentioned in the introduction, this modular structure has an addi-

tional benefit: if we partition the refiner into abstract parts, we can create domain-

specific implementations of its parts. While the whole refiner is a part of a trusted

15

code base, we are still protected from bugs in domain-specific optimization. When

we need to be extra sure that everything is correct, we can do proof development

using the domain-specific code and later double-check the proof using the reference

implementation. And for some parts of the system we even have a debugging mode

that runs two implementations side-by-side and notifies the user if they behave dif-

ferently. This not only protects us from bugs introduced by the domain-specific

code, but also helps us to debug the reference implementation as well.

The choice of partitioning we use is guided by the type definitions, producing

the layered architecture shown in Figure 2.2. The lowest layer, the Term module,

implements the basic logical language and basic syntactical operations (such as

substitution and alpha equality testing). The Rewriter module provides a mech-

anism for making complex syntactical transformations. The Rewriter does not

assign the logical meaning to transformation it makes, in fact it can be used to do

both formal transformation (such as applying a rule to a statement being proven)

and informal ones (such as converting a formal statement into a string to be dis-

played to the user). Finally, a Proof accounting module keeps track of what rules

were included in a particular logical theory being used, what was proven using

those rules and what is still left to prove.

?

?

®

ª
©

®

ª
©

®

ª
©

®

ª

©

Rewriter

Term

Refiner Types

proof,logic

tactic,conv

term

Proof

Figure 2.2: Layered Refiner Modules

16

Table 2.2: Term Syntax Examples

Displayed form Term
1 number[1]{}

λx.b lambda[]{x. b}
f(a) apply[]{f; a}

v variable["v"]{}
x + y sum[]{x; y}

2.2 The Term Module

All logical terms, including goals and subgoals, are expressed in the language of

terms, implemented by the term module. The general syntax of all terms has three

parts. Each term has:

1. An operator name (like “sum”), which is a unique name indicating the logic

and component of a term;

2. A list of parameters representing constant values; and

3. A set of subterms with possible variable bindings.

We use the following syntax to describe terms, based on the NuPRL definition

[ACHA90]:

opname︸ ︷︷ ︸
operator name

[p1; · · · ; pn]︸ ︷︷ ︸
parameters

{~v1.t1; · · · ; ~vm.tm}︸ ︷︷ ︸
subterms

A few examples are shown in Table 2.2. Variables are terms with a string

parameter for their name; numbers have an integer parameter. The lambda term

contains a binding occurrence: the variable x is bound in the subterm b.

The term module implements several basic term operations: substitution (b[a/x])

of a term (a) for a variable (x) in a term (b), free-variable calculations, α-equivalence,

17

Table 2.3: Signature for the Term Module

module type TermSig = sig

(* Types and constructors: *)

type opname, param, term, bound term

val mk opname : string list -> opname

val mk int param : int -> param

val mk string param : string -> param

val mk term : opname -> param list -> bound term list -> term

val mk bterm : string list -> term -> bound term

(* Destructors and other operations: *)

val dest term : term -> opname * param list * bound term list

val dest bterm : bound term -> string list * term

val subst : (string * term) list -> term -> term

val free vars : term -> string list

val alpha equal : term -> term -> bool

end

etc. When a logic defines a rule, the refiner compiles the rule pattern into a se-

quence of term operations. The term interface is shown in Table 2.3. The abstract

types opname, param, term, and bound term represent operator names, constant

parameters, terms, and bound terms (the subterms of a term). The major op-

erations include destructors to decompose terms and bound-terms, as well as a

substitution function subst, free variable calculations, and term equivalence.

2.2.1 Naive Term Implementation (Term std)

The most immediate implementation of terms is the naive “standard” implemen-

tation, which builds the term with tupling:

18

type opname = string list

and param = Int of int | String of string

and term = opname * param list * bound term list

and bound term = string list * term

While this structure is easy to implement, it suffers from the poor performance

of the substitution algorithm. The following pseudo-code gives an outline of that

algorithm.

let rec subst sub t =

if t is a variable then

if (t, t’) ∈ sub then t’ else t

else let (opname, params, bterms) = t in

(opname, params, List.map (subst bterm sub) bterms)

and subst bterm sub (vars, t) =

let sub’ = remove (v, t’) from sub if v ∈ vars in (2.1)

let vars’, sub’’ = rename binding variables to avoid capture in (2.2)

(vars’, subst sub’’ t)

The sub argument is a list of string/term pairs that are to be simultaneously

substituted into the term given by the second argument. The main part of the

substitution algorithm is in the part for substituting into bound terms. In step

(2.1), the substitution is modified by removing any string/term pairs that are

freshly bound by the binding list vars, and in step (2.2), the binding variables

are renamed if they intersect with any of the free variables in the terms being

substituted.

This algorithm takes time roughly linear in the size of the term on which

19

the substitution is performed. Furthermore, each substitution copies each term

fully. Substitution is a very common operation in MetaPRL— each application of

an inference rule involves at least one substitution. 2 The next implementation

performs lazy substitution, useful in domains like type theory.

2.2.2 Delayed Substitution (Term ds)

If substitution is frequently performed on the same terms over and over again, it is

often more efficient to save intermediate computations for use in future substitution

operations. We use three main optimizations: we save free-variable calculations,

we perform lazy substitution, and we provide special representations for commonly

occurring terms.

When a substitution is performed on a term for the first time, we compute the

set of free variables of that term, and save them for later use. When a substitution

is applied, the free-variables set is used to discard the parts of the substitution for

variables that do not occur free in the term. This saves time, and it also saves space

by reusing subterms where the substitution has no effect instead of unnecessarily

copying them. Memory savings, in turn, further improve performance by improving

the CPU cache efficiency and reducing the garbage collection time.

During proof search, most tactic applications fail, and only a part of the sub-

stitution result is usually examined in the proof search. In this common case, it

is more efficient to delay the application of a substitution until the substitution

2Testing for α-equivalence also takes linear time. One way to decrease the cost
would be to use a normalized representation (such as a DeBruijn representation).
However, term destruction on the normalized representation can be expensive be-
cause of the need to rename variables that become free (what are the subterms of
λx.λy.xy and λx.λy.yx?). These renamings can be delayed, as the next Section
shows, but the cost of equivalence testing will increase.

20

results are actually requested by the dest term function.

In Term ds we also optimize two commonly-occurring terms: variables and se-

quents. Rather than using the term encoding of variables, we provide a custom

representation using a string. The sequent optimization uses a custom data struc-

ture to give constant-time access to the hypotheses, instead of the usual linear-time

encoding. These “custom” terms are abstract optimizations—they do not change

the Term interface definition. For each custom term, we add special-case handlers

to each of the generic term functions in the module.

The following definition of terms uses all of these optimizations (the definitions

for the bound term, opname and param types are unchanged). The definition of

sequents, which we omit, uses arrays to represent the hypotheses and conclusions

of the sequent.

type term =

{ free vars : VarsDelayed

| Vars of string set;

core : Term of (opname * param list * bound term list)

| Subst of (subst * term)

| Var of string

| Sequent of sequent }
and subst = (string * term) list

and sequent = · · ·

The free vars field caches the free variables of the term, using VarsDelayed

as a placeholder until the variable set is computed. The core field stores the

term value, using the Term variant to represent values where a substitution has

been expanded, the Subst variant to represent delayed substitutions, and the Var

21

Table 2.4: Free Variables Computation in Term ds

let rec free vars = function

{ free vars = Vars fv } -> fv

| { core = core } as t ->

let fv = match core with

Term (, , bterms) -> Set.map list free vars bterm bterms

| Subst (sub, t) -> free vars subst sub (free vars t)

| Var v -> Set.singleton v

| Sequent seq -> free vars sequent seq

in (t.free vars ← Vars fv); fv

and free vars bterm (bvars, t) =

Set.subtract list (free vars t) bvars

and free vars subst sub fv =

Set.union

(Set.subtract list fv (List.map fst sub))

(Set.map list free vars (List.map snd sub))

and Sequent variants for custom terms. We maintain the following invariants on

Subst: substitution lists are never empty, and the domain of the substitution is

included in the free-variables of the term.

The free-variables computation is one of the more complex operations on this

data structure. As shown in Table 2.4, when the free variables are computed for a

term, there are three main cases: if the free variables have already been computed,

they are returned; if the core is a Term, the free variables are computed from the

subterms; and if the core is a delayed substitution, the substitution is used to

modify the free variables of the inner term.

If the free variables haven’t already been computed, the free vars function com-

putes them, and assigns the value to the free vars field of the term. In the Term

case, the free variables are the union of the free variables of the subterms, where

any new binding occurrences have been removed. In the Subst (sub, t) case, the

22

free variables are computed for the inner term t, then the variables being replaced

are removed from the resulting set, and then the free variables of the substituted

terms are added.

The subst function has a simple implementation: eliminate parts of the substi-

tution that have no effect (in order to maintain the invariant), and save the result

in a Subst pair if the resulting substitution is not empty.

let subst sub t =

let fv = free vars t in

match remove (v, t’) from sub if v 6∈ fv with (2.3)

[] -> t (* substitution has no effect *)

| sub’ ->

{ free vars = VarsDelayed; core = Subst (sub’, t) }

The set implementation determines the complexity of substitution. If the set

lookup takes O(1), then pruning (2.3) takes time linear in the number of variables

in sub.

The effect of the substitution is delayed until the term is destructed. The

dest term function is required to expand the substitution by one step. We use the

get core function, shown in Table 2.5, to expand the top-level substitutions in the

term. If the substitution was applied to a Term, get core will push it down to the

immediate subterms. After the substitution is expanded, get core will store the

result in the core field to save time on the next get core invocation. As usual,

we omit the code for sequents.

Note that the List.assoc in the Var case will never fail, due to our invariants.

As shown in Table 2.6, the dest term function first uses get core to expand

the top-level substitution (if any), and then it returns the parts of the term. To

23

Table 2.5: Substitution Expansion for Term ds

let rec get core = function

{ core = Subst (sub, t’) } as t ->

let core’ = match get core t’ with

Var v -> get core (List.assoc v sub) (* always succeeds *)

| Term (opname, params, bterms) ->

Term (opname, params,

List.map (do bterm subst sub) bterms)

| Sequent seq -> Sequent (sequent subst sub seq)

in (t.core ← core’); core’

| { core = simple core } -> simple core

and do bterm subst sub (vars, t) =

let sub’ = remove (v, t) from sub if v ∈ vars in

let vars’, sub’’ = rename binding variables to avoid capture in

(vars’, subst sub’’ t)

Table 2.6: Term Expansion for Term ds

let rec dest term t = match get core t with

Term (opname, params, bterms) -> (opname, params, bterms)

| Var v -> (mk opname ["variable"], [String v], [])

| Sequent s -> dest sequent s

preserve the external interface of the term module, it is also required to convert

the custom terms back to their original form.

2.3 The Rewriter module

The rewriter performs term manipulations for rule applications. Inference rules

and computational rewrites are both expressed using second-order patterns. 3 For

3The exact formal semantics of these patterns will be presented in Chapter 3.

24

Table 2.7: Interface for the Rewriter Module

module Rewrite (Term : TermSig) : sig

type redex prog, con prog, state

exception RewriteError

val compile redex : term -> redex prog

val apply redex : redex prog -> term -> state

val compile contractum : redex prog -> term -> con prog

val build contractum : con prog -> state -> term

end

example, the rewrite for beta-reduction is expressed with the following pattern:

(λx.bx) a → ba

In this rewrite, the variable a is a pattern variable, representing the “argument”

term. The variable bx is a second-order pattern variable, representing a term with

a free variable x. The pattern ba represents a substitution, with a substituted for

x in b. The (λx.bx) a is called the redex, and the substitution ba is called the

contractum.

In NuPRL-4 the computation and inference engines are implemented as separate

interpreters that are parametrized by the rewriting patterns. In MetaPRL we

combine these functions and improve performance by compiling to a rewriting

virtual machine. As shown in Table 2.7 the MetaPRL rewriter module provides four

major functions. The compile redex function takes a redex pattern, expressed as

a term, and it compiles it to a redex program. The apply redex function applies

a pre-compiled program to a specific term, raising the RewriteError exception

if the pattern match fails, or returning a state that summarizes the result. The

compile contractum compiles a contractum pattern against a particular redex

program, and the build contractum function takes the contractum program and

25

program term/bterm term/bterm number

string

t3

t2

t1

r0

r1

r2

t0

v0

v1

v2

inst1

inst2

inst3

inst4

instn

instn-1

pc

sp

...

...
...

...

registersstore stack registers

registers

Rewriting virtual machine

Figure 2.3: Rewriting Virtual Machine

the result of a redex application, and produces the final contractum term.

Currently, the rewrite module compiles redices to bytecode programs that per-

form pattern matching, storing the parts of the term being matched in several

register files. Contracta are also compiled to bytecode programs that construct

the contractum term using the contents of the register file. Applying a rewrite will

cause corresponding bytecode to be interpreted in a virtual machine. 4

The virtual machine has the four parts shown in Figure 2.3:

1. a program store and program counter for the rewrite program,

2. a term/bterm stack with a stack pointer to manage the current term being

rewritten,

3. a term/bterm register file,

4. a parameter register file for each type of parameter.

4It may be possible to achieve further speed-up by compiling rewrites instead
of using an interpreted bytecode. In [Rhi02, Section 5] and [Rhi01, pages 105–
106] Morten Rhiger describes his work on specializing MetaPRL rewriter code
for particular rewrites. In this thesis however we only present the interpreted
approach.

26

Table 2.8: Virtual Machine Instructions

Matching Constructors
dest term opname[p1; · · · ; pn].bc mk term opname[p0; · · · ; pn].bc
dest bterm v1, . . . , vn mk bterm v1, . . . , vn

so var r[v1; · · · ; vn] so subst r.bc
match term r[t1; · · · ; tn]
not free v1, . . . , vn

pi: parameter register
vi: string register
r: term register
ti: literal term
bc: arity of bterm

The instructions for the machine are shown in Table 2.8. The matching instruc-

tion dest term checks if the term at the top of the term stack has the operator

name opname, and if it has the right number of bound terms and parameters of the

given types. If it succeeds, the parameters are saved in the parameter registers,

the term is popped from the term stack, and the bound terms are pushed onto the

stack. The mk term instruction does the opposite: it retrieves the parameter values

from the register file, pops bc bound terms from the stack, adds the opname and

pushes the resulting term onto the stack. The dest bterm and mk bterm functions

are used to save and restore binding variables for the term at the top of the stack.

The so var instruction pops a term from the term stack and saves it in term

register r, along with the free variables in v1, . . . , vn. The corresponding constructor

so subst pops bc terms from the stack, substitutes them for the variables v1, . . . , vn

in term r, and pushes the result onto the stack. The match term instruction is

used during matching for redices like (x+x) → 2x that contain common subterms.

Finally, the not free instruction is used to ensure variables v1, . . . , vn do not occur

freely in the term on top of the term stack.

27

Table 2.9: Virtual Machine Example: (λx.bx) a −→ ba

Redex Contractum
dest term apply[].2 so subst r2.0
dest bterm so subst r1.1
dest term lambda[].1
dest bterm v1

so var r1[v1]
dest bterm

so var r2[]

The example in the Table 2.9 gives the code for a beta-reduction. The first

dest term instruction matches the outermost apply term and pushes the function

and argument onto the stack. The dest bterm operations remove the binding

variables of the subterms, and the so var instructions stores the results to the

register file. At the end of a match against the term (λx.b) a, register r1 contains

b, register r2 contains a, and register v1 contains x. When the contractum is con-

structed, the first instruction pushes a onto the stack; and the second instruction

pops a, substitutes it for x in b, and pushes the result.

2.4 Performance

All measurements were done on a Linux 400MHz Pentium machine, with 512MB

of main memory, and all times are in seconds. For MetaPRL performance we used

MetaPRL version from Spring 2000 with optimizations that are presented in this

work, but with neither multi-processor distribution of [Hic99] nor run-time code

specialization of [Rhi01, Rhi02]. 5

We group the performance measurements into two parts. For the first part,

5Those two techniques are likely to provide additional performance benefits,
but they are outside the scope of this work.

28

Table 2.10: Performance on the Factorial Examples

Argument value
Configuration 100 250 400 650
Term std 0.35 2.05 5.42 16.0
Term ds 0.42 2.41 6.32 18.4
NuPRL-4 55 330 >1800 >1800

we compare the speed of the MetaPRL prover (using the modular refiner) with the

NuPRL-4 prover. For the first example, we perform pure evaluation based on the

following definition of the factorial function:

rewrite fact{i} ←→ if i = 0 then 1 else i ∗ fact{i− 1}

We used the following evaluation algorithm: recursively traverse the term top-

down, performing beta-reduction, unfolding the fact definition (taking care to

evaluate the argument first), etc. This algorithm stresses search during rewriting.

Roughly speaking, evaluation should be quadratic in the factorial argument: each

term traversal is linear in the size of the term, and the size of the term grows

linearly with each traversal (rewriting does not use tail-recursion), until the final

base case is reached and the value is computed. Table 2.10 lists the performance

numbers.

On this example, the NuPRL-4 took between 125 and 160 times longer on the

problems where it finished within 30 minutes. On the two larger problems, we

terminated the computation after 30 minutes. 6 In MetaPRL, the largest problem

performs about 14 million attempted rewrites.

This table also shows a difference between the term module implementations.

The “naive” term module performs better on this example because the recursive

6NuPRL-4 can evaluate these terms. The built-in term evaluator, which by-
passes the refiner, evaluates the largest example in about 22 seconds.

29

Table 2.11: Performance on the Pigeon-Hole Examples

Problem size Memory
Configuration Tactic 2 3 4 (Max MB)8

Term std pigeonT <0.1 2.53 94.0 126
Term ds pigeonT <0.1 0.71 17.0 20.8
NuPRL-4 pigeonT 0.5 89 >1800
Term std propDecideT 0.3 238 >1800
Term ds propDecideT 0.13 55.0 >1800
NuPRL-4 propDecideT 21.9 >1800 >1800

traversals of the term expand most of the delayed substitutions.

The next example also compares MetaPRL with NuPRL-4, on the pigeonhole

problem stated in propositional logic. 7 The pigeonhole problem of size i proves

that i+1 “pigeons” do not fit into i “holes.” The pigeonT tactic performs a search

customized to this domain, and the propDecideT tactic is a generic decision proce-

dure for intuitionistic propositional logic (based on Dyckoff’s algorithm [Dyc92]).

Both search algorithms use only propositional reasoning and both explore an ex-

ponential number of cases in i.

As shown in Table 2.11, in this example Term ds works between 125 and 170

times faster than NuPRL-4. And the delayed-substitution implementation of terms

performs significantly better than the naive implementation, partly because of the

efficient substitution in the application of the rules for propositional logic, and also

because the Term ds module preserves a great deal of sharing of common subterms.

On the largest problem the pigeonT tactic performs about 1.57 million primitive

7This formalization of pigeon-hole principle and methods we are using to prove
it are obviously highly inefficient. However this formalization provided us with a
nice way of comparing the performance of simple propositional proof search in the
two systems.

8This does not include the space that the system occupied after the initial
loading — 19 MB with term std and 20.5MB with term ds

30

inference steps.

For the last examples, we give a few comparisons between the MetaPRL mod-

ules in two additional domains. The gen problems is a heredity problem in a

large first-order database. The nuprl problem is an automated rerun of all proof

transcripts in the NuPRL type theory. The transcripts contain a mix of low-level

proof steps, such as lemma application and application of inductive reasoning, to

higher-level steps that include verification-condition automation and proof search.

The transcripts contain about 2,500 interactive proof steps.

Problem

Configuration gen nuprl

Term std 20.4 39.3

Term ds 14.4 36.6

We don’t include performance measurements for NuPRL-4 on these examples,

because the system differences require a porting effort (for instance, NuPRL-4 does

not currently implement a generic first-order proof search procedure). In our ex-

perience with NuPRL-4, proofs with several hundred interactive steps tend to take

several minutes to replay.

Once again, the Term ds module performs better than the naive terms, due to

the frequent use of substitution in applications of the rules of these theories. The

times for proof replay include the time spent loading the proof transcripts and

building the tactic trees. This cost is similar for both term implementations, and

the performance numbers are comparable. The first-order problem, gen, performs

proof search by resolution, using the refiner to construct a primitive proof tree

only when a proof is found. This final step is expensive, because each resolution

31

step has to be justified by the refiner. The final successful proof in this problem

performs about 41 thousand primitive inference steps.

2.5 Summary

We have achieved significant speedups for tactic proving. As shown in Section 2.4,

our new prover design shows speedups of more than two orders of magnitude over

the NuPRL-4 system. More investigation is required to determine the exact source

of this speedup, however there is some evidence that most of it is due to efficient

implementations of the prover components, with an additional part due to the

modular design, which allows the prover to be customized with domain-specific

implementations. In addition, the MetaPRL system is programmed in OCaml, an

efficient modular language. In contrast, NuPRL-4 tactics are programmed in classic

ML, which is compiled to Common Lisp, and the NuPRL-4 refiner is implemented

in Common Lisp.

There are a few avenues left to explore. Since we compile rewrites to bytecode,

it is natural to wonder what the effect of compiling to native code would be. Also,

while we currently do not optimize the proof module, there is significant overhead

in composing and saving the primitive proof trees. In some domains, we may be

able to perform proof compression, or delay the composition of proofs. For the

domain of first-order logics, we might achieve additional speedup using specific

refiner modules: a first-order term module would contain custom representations

for terms in disjunctive normal form and sequents (sequents provide particularly

poor representations for large first-order problems), and the rewrite module would

optimize inference by resolution.

32

2.6 Related work

Harrison’s HOL-Light [Har96] shares some features with the MetaPRL implemen-

tation. Harrison’s system is implemented in Caml-Light, and both systems require

fewer computational resources than their predecessors. Howe [How98] has taken

another approach to enhancing speed in NuPRL-4. The programming language

defined by the NuPRL type theory is untyped, leading to frequent production of

well-formedness (verification) conditions. Using type annotations, Howe was able

to speed up rewriting in NuPRL-4 by a factor of 10. We haven’t attempted to apply

Howe’s ideas to MetaPRL implementation of NuPRL type theory, but we believe

that MetaPRL performance can be further improved using his approach.

Basin and Kaufmann [BK91] give a comparison between the NuPRL-3 system

and NQTHM [BM79] (the predecessor of the ACL2 [KM97] system). The NQTHM

prover uses a quantifier-free variant of Peano arithmetic. Basin and Kaufmann’s

measurements showed that NQTHM was roughly 15 times faster than NuPRL-3 for

different formalizations of Ramsey’s theorem.

Chapter 3

Sequent Schemata for Derived Rules
In an interactive theorem prover it is very useful to have a mechanism allowing

users to prove some statement in advance and then reuse the derivation in further

proofs. Often it is especially useful to be able to abstract away the particular

derivation. For example, suppose we wish to formalize a data structure for labeled

binary trees. If binary trees are not primitive to the system, we might implement

them in several ways, but the details are irrelevant. The more important feature is

the inference rule for induction. In a sequent logic, the induction principle would

be similar to the following:

Γ ` P (leaf) Γ, a : btree, P (a), b : btree, P (b) ` P (node(a, b))

Γ, x : btree ` P (x)

If this rule can be established, further proofs may use it to reason about binary

trees abstractly without having to unfold the btree definition. This leaves the user

free to replace or augment the implementation of binary trees as long as she can

still prove the same induction principle for the new implementation. Furthermore,

in predicative logics, or in cases where well-formedness is defined logically, the

inference rule is strictly more powerful than its propositional form.

If a mechanism for establishing a derived rule is not available, one alternative is

to construct a proof “script” or tactic that can be reapplied whenever a derivation

is needed. There are several problems with this. First, it is inefficient — instead

of applying the derived rule in a single step, the system has to run through the

whole proof each time. Second, the proof script would have to unfold the btree

definition, exposing implementation detail. Third, proof scripts tend to be fragile,

and must be reconstructed frequently as a system evolves. Finally, by looking at

33

34

a proof script or a tactic code, it may be hard to see what exactly it does, while a

derived rule is essentially self-documenting.

This suggests a need for a derived rules mechanism that would allow users to

derive new inference rules in a system and then use them as if they were primitive

rules (i.e. axioms) of the system. Ideally, such mechanism would be general

enough not to depend on a particular logical theory being used. Besides being

a great abstraction mechanism, derived rules facilitate the proof development by

making proofs and partial proofs easily reusable. Also, a derived rule contains some

information on how it is supposed to be used 1 and as we will see in Section 4.3

such information can be made available to the system itself. This can substantially

reduce the amount of information a user has to provide in order for the system to

know how to use such a new rule in the proof automation procedures.

In this chapter we describe a purely syntactical way of dealing with derived

rules. The key idea of our approach is in using a special higher-order language for

specifying rules; we call it a sequent schemata language. From a theoretical point

of view, we take some logical theory and express its rules using sequent schemata.

Next we add the same language of sequent schemata to the theory itself. After

that we allow extending our theory with a new rule
S1 · · · Sn

S
whenever we can

prove S from Si in the expanded theory (we will call such a rule a derived rule).

We show that no matter what theory we started with, such a double-extended

theory is always a conservative extension of the original one, so our maneuver is

always valid.

In case of a theorem prover (such as MetaPRL [Hic01, HNK+], which implements

1For example, an implication A ⇒ B can be stated and proved as an A elim-
ination rule or as a B introduction rule, depending on how we expect it to be
used.

35

this approach), the user has only to provide the axioms of the base theory in

a sequent schemata language and the rest happens automatically. The system

immediately allows the user to mix the object language of a theory with the sequent

schemata meta-language. Whenever a derived rule is proven in a system, it allows

using that rule in further proofs as if it were a basic axiom of the theory. 2 This

chapter shows that such a theorem prover would not allow one to derive anything

that is not derivable in a conservative extension of the original theory.

As we explain in Section 3.2, a key idea of sequent schemata is that whenever a

binding occurrence of a variable is explicitly mentioned in a schema, all the bound

occurrences of the same variable have to be explicitly mentioned as well. This

gives us an ability to always specify all substitutions implicitly, which makes the

language much easier to use and eliminates a very common source of user errors.

Additionally, this makes it possible to automatically detect many common user

errors and typos.

This chapter is arranged as follows — first in Section 3.1 we give a brief de-

scription of the base language of plain terms and sequents that the schemata would

stand for. Next, in Section 3.2 we provide an informal overview of the term sche-

mata and discuss some basic ideas of the language. In Section 3.3 we introduce

the complete syntax of sequent schemata language in a rigorous way. Then in Sec-

tion 3.4 we explain what a sequent schema stands for, that is when a plain sequent

matches some sequent schema. In Section 3.5 we show how rules are specified

using sequent schemata, and we describe how a derived rules mechanism can be

2A system might also allow use in the reverse order — first state a derived rule,
use it, and later “come back” and prove the derived rule. Of course in such system
a proof would not be considered complete until all the derived rules used in it are
also proven. Such an approach allows one to “test-drive” a derived rule before
investing time into establishing its admissibility.

36

implemented using the sequent schemata language. In Section 3.6 we argue what

properties of the sequent schemata can guarantee admissibility of the rules derived

using sequent schemata.

For the sake of brevity and clarity we focus on a simple version of sequent

schemata (which is still sufficient for formalizing Martin-Löf style type theories,

including the NuPRL one [CAB+86]). In Section 3.7 we present several ways of

extending the sequent schemata language; in particular we explain how to represent

constants in the sequent schemata framework. After that, in Section 3.8 we discuss

related work and compare our derived rules approach to approaches taken by

several other theorem provers.

This chapter discussed the theoretical aspects of the sequent schemata lan-

guage. In Chapter 4 we will see how a variant of the sequent schemata language

is implemented in MetaPRL proof assistant [Hic01, HNK+] using its fast rewriting

engine (as described in Chapter 2).

Throughout the chapter we will ignore the issues of concrete syntax and will

assume we are only dealing with abstract syntax.

Parts of this chapter are joint work with Jason Hickey — see also [NH02].

3.1 Terms and Sequents

Before we describe the language of sequent schemata, we need to give a brief

description of the base language of plain terms and sequents that the schemata

would stand for. We assume that all syntactically well-formed sentences of the

theory we are extending have the form

x1 : A1; x2 : A2; · · · ; xn : An ` C (3.1)

37

where

1. Each Ai and C is a term. As described in Section 2.2, terms are constructed

from variables using a set of operators 3 (including 0-arity operators — con-

stants). Each operator may potentially introduce binding occurrences (for

example λ would be a unary operator that introduces one binding occur-

rence).

2. Each hypothesis Ai introduces a binding occurrence for variable xi. In other

words, each xi is bound in hypotheses Aj (j > i) and the conclusion C.

3. All sequents are closed. Each free variable of C must be one of xi (i =

1, . . . , n) and each free variable of Aj must be one of xi (i < j).

Example 3.1.1. x : Z ` x ≥ 0 and x : Z; y : Z ` x > y and ` 5 > 4 are syntac-

tically well-formed (but not necessarily true) sequents in a theory that includes a

0-ary operator (constant) Z and binary operators > and ≥.

Example 3.1.2. x : Z; y : Z ` x = y ∈ Z and x : Z ` ∃y : Z . (x = y ∈ Z) are

well-formed (but not necessarily true) sequents in a theory that includes a 0-ary

operator Z, a ternary operator · = · ∈ · and a binary operator ∃v ∈ · . · that

introduces a binding occurrence in its second argument.

Remark 3.1.3. We assume that the language of the theory under consideration

contains at least one closed term; 4 we will use • when we need to refer to an

arbitrary closed term.

3In this simple version of the language we ignore the internal structure of op-
erators (e.g. opnames and parameters).

4This is not normally a limitation because the λ operator or an arbitrary con-
stant can normally be used to construct a closed term.

38

As in LF [HHP93] we assume that object level variables are mapped to meta-

theory variables (denoted by x, y, z). We will call these meta-theory variables

first-order, but of course they may have a higher-order meaning in the object

theory. Similarly we assume that the object-level binding structure is mapped to

the meta-level binding structure and we will introduce a separate context binding

structure in the sequent schemata language. We also consider alpha-equal terms

(including sequents and sequent schemata) to be identical and we assume that

substitution avoids capture by renaming.

3.2 Term Schemata

The goal of the sequent schemata design is to produce a simple pattern-like lan-

guage that can account for the binding structure, free variables and sequents.

To accomplish this, we first add second-order variables in the style of Huet and

Lang [HL78] to the language.

Example 3.2.1. A term schema “λx. t[x]” (where t is a unary second-order variable)

matches any λ-term. A term schema “λx. t′” (where t′ is a second-order variable of

arity 0) matches any λ-term λy. · · · whose body does not have any free occurrences

of y.

The above example illustrates a key idea of the language — whenever a binding

occurrence of some variable is explicitly mentioned in a schema, all the bound

occurrences of the same variable must be mentioned as well. Note that in λx. t′,

t′ may match a term that has various binding and bound occurrences of some

variables. However since we have explicitly mentioned the binding occurrence of

x and did not include any bound occurrences of x, then there can not be any free

39

occurrences of x in the term that t′ would match.

3.3 Language of Sequent Schemata

The sequent schemata language resembles higher-order abstract syntax presented

in Pfenning and Elliott [PE88]. The idea of sequent schemata is to use higher-order

context variables to describe sequent and other contexts as well as to use second-

order variables to describe terms. In all rule specifications, these meta-variables

will be implicitly universally quantified.

We assume there exist an infinite supply of context variables C and second

order variables V , that are disjoint from each other and from ordinary object-level

variables. We will assume an arity function α : (C ∪ V) → N and a function

β : (C ∪ V) → {finite subsets of C} that determines the contexts that a variable

may depend on. We will assume that for each value of α and β there are infinitely

many variables in each of the two classes.

In this thesis we will use abstract syntax when discussing the language of se-

quent schemata. 5 We will denote context variables by C, H, J 6 and second-order

variables by A, B, C and V . For clarity we will write the value of β as a subscript

for all the variables (although it can usually be deduced from context and in the

MetaPRL system we rarely need to specify it explicitly — see Section 4.1).

The language of sequent schemata is outlined in Table 3.1.

Remark 3.3.1. The language of sequent schemata is essentially untyped, although

we could describe all the terms free of higher-order variables as having the type

term, the second-order variables as having the type termn → term and the context

5For concrete syntax used in MetaPRL system, see Appendix A.3.
6In other chapters of this thesis we will also use Γ and ∆ to for context variables.

40

Table 3.1: Language of Sequent Schemata

Syntax Intended meaning

S ::= ` T | Hs ; S.
In other words S ::=
Hs1; · · · ; Hsn ` T (n ≥ 0)

Sequent schema. Hs ’s specify the hypotheses of a
sequent and T specifies its conclusion.

Hs ::=
C{C1;··· ;Ck}[T1; · · · ; Tn] |
x : T where C,Ci ∈ C,
α(C) = n, T and Ti are
terms and x is an object-
level variable.

Hypotheses specification. The first variant is used
to specify a sequent context — a sequence (possibly
empty) of hypotheses. In general, a context may de-
pend on some arguments and Ti specify the values of
those arguments. Ci are the contexts that introduce
the variables that are allowed to occur free in C itself
(not in its arguments).
The second variant specifies a single hypothesis that
introduces a variable x. As in (3.1) this is a binding
occurrence and x becomes bound in all the hypothe-
ses specifications following this one, as well as in the
conclusion.

SOV ::=
V{C1;··· ;Ck}[T1; · · · ; Tn]
where V ∈ V , α(V) = n,
Ci ∈ C, T and Ti are terms.

Second-order variable occurrences. Second-
order variables in sequent schemata language are the
ordinary second-order variables as in [HL78] except
that we need β(V) to be able to specify the names
of contexts which introduced the variables that can
occur free in V .

T — a term built using op-
erators from variables and
second-order variables.

Term specification. Term specifications are or-
dinary terms except that they may contain second-
order variables.

41

variables as having the type (termm → term) → termn → term.

Remark 3.3.2. It is worth mentioning that a plain sequent (as described in (3.1))

is just a particular case of a sequent schema. Namely, a plain sequent is a sequent

schema that contains neither sequent contexts, nor second-order variables.

Example 3.3.3.

H{}[]; x : A{H}[]; J[x]{H} ` C{H;J}[x
2]

is a sequent schema in a language that contains the ·2 unary operator. In this

schema H and J are context variable, x is an ordinary (first-order) variable, A and

C are second-order variables. This schema matches many plain sequents, including

the following ones:

x : Z` (x2) ∈ Z
y : Z; x : Z; z : Z` (z + y) ∈ Z

Here is how the same schema would look in a simplified syntax of Section 4.1:

H; x : A; J[x] ` C[x2]

3.4 Semantics — Sequent Schemata

Informally speaking, the main idea of sequent schemata is that whenever a binding

occurrence of some variable is explicitly mentioned (either per se or as a context),

it can only occur freely in places where it is explicitly mentioned, but can not occur

freely where it is omitted. Second-order variables are meant to stand for contexts

that can not introduce new bindings and context variables are meant to stand for

contexts that may introduce an arbitrary number of new bindings (with β being

used to restrict where those new bound variables may potentially occur freely).

42

To make the above more formal, we first need to define what we mean by free

and bound variables in sequent schemata.

Definition 3.4.1 (free variables). The notions of free variables (or, more specif-

ically, free first-order variables) FOV and free context variables CV are defined

as follows:

• Free variables of plain terms (free of higher-order variables) are defined as

usual. Plain terms do not have free context variables.

• For Υ ∈ (C ∪ V), FOV(Υ{··· }[T1; · · · ; Tn]) =
⋃

1≤i≤n

FOV(Ti).

• CV(Υ{C1;··· ;Ck}[T1; · · · ; Tn]) = {C1; · · · ;Cn} ∪
⋃

1≤i≤n

CV(Ti).

• FOV(` T) = FOV(T) and CV(` T) = CV(T)

• In a sequent schema x : T ; S, the hypothesis specification x : T binds all free

occurrences of x in S. Hence,

FOV(x : T ; S) = (FOV(S)− {x}) ∪ FOV(T)

CV(x : T ; S) = CV(S) ∪CV(T).

• In a sequent schema C{C1;··· ;Ck}[T1; · · · ; Tn]; S the hypothesis specification

C{··· }[· · ·] binds the free occurrences of C in S. Hence,

CV(C{C1;··· ;Ck}[T1; · · · ; Tn]; S) = {C1; · · · ;Ck} ∪ (CV(S)− {C})∪
⋃

1≤i≤n

CV(T)

FOV(C{C1;··· ;Ck}[T1; · · · ; Tn]; S) = FOV(C) ∪ FOV(S) ∪
⋃

1≤i≤n

CV(T).

• For all objects ? such that FOV(?) and CV(?) are defined (see also Defini-

tions 3.4.3 and 3.4.4 below) we will denote FOV(?) ∪CV(?) as Vars(?).

43

Definition 3.4.2. We will call a sequent schema S closed when Vars(S) = ∅.

Definition 3.4.3. A substitution function is a pair of a term and a list of first-

order variables. For a substitution function σ = 〈T ; x1, · · · , xn〉 (n ≥ 0) we will

say that the arity of σ is n; the free occurrences of xi in T are bound in σ, so

FOV(σ) = FOV(T) − {x1; · · · ; xn} and CV(σ) = CV(T). By σ(T1, · · · , Tn)

we will denote [T1/x1, · · · , Tn/xn]T — the result of simultaneous substitution of Ti

for xi (1 ≤ i ≤ n) in T . As usual, we will consider two alpha-equal substitutions

to be identical.

We will say that the substitution function is trivial, when T is a closed term.

Definition 3.4.4. Similarly, a context substitution function is a pair of a list of

hypothesis specification and a list of first-order variables. For a context substitution

function

Σ = 〈Hs1, · · · ,Hsk; x1, · · · , xn〉 (k, n ≥ 0)

we will say that the arity of Σ is n, FOV(Σ) = FOV(Hs1; · · · ; Hsk ` •) −
{x1; · · · ; xn} and CV(Σ) = CV(Hs1; · · · ; Hsk ` •), where • is an arbitrary

closed term (see Remark 3.1.3). We will say that Σ introduces a set of bindings

BV(Σ) =
⋃

1≤i≤k

{x}, when Hs i is x : T

{C}, when Hs i is C{··· }[· · ·]

We will say that a context substitution function is trivial when k = 0.

Definition 3.4.5. A function R on C ∪ V is a schema refinement function if it

“respects” α and β. Namely, the following conditions must hold:

1. For all V ∈ V, R(V) is a substitution function of arity α(V).

2. For all C ∈ C, R(C) is context substitution function of arity α(C).

44

3. For all Υ ∈ (C ∪V), Vars(R(Υ)) ⊆ BV(R(β(Υ))) where BV(R(β(Υ))) is a

notation for
⋃

C∈β(Υ)

BV(R(C)).

Definition 3.4.6. If R is a refinement function, we will extend R to terms, hy-

pothesis specifications, sequent schemata and substitution functions as follows:

1. R(T) = T , when T is a plain term.

2. R(V{··· }[T1; · · · ; Tn]) = R(V)(R(T1), · · · , R(Tn)). From Definition 3.4.5 we

know that R(V) is a substitution function of an appropriate arity and from

Definition 3.4.3 we know how to apply it to a list of terms, so this definition

is valid.

3. R(x : T) = x : R(T) and R(C{··· }[T1; · · · ; Tn]) = R(C)(R(T1), · · · , R(Tn)).

4. R(` T) = ` R(T) and R(Hs ; S) = R(Hs); R(S).

5. R(〈T ; x1, · · · , xn〉) = 〈R(T); x1, · · · , xn〉 and

R(〈Hs1, · · · ,Hsk; x1, · · · , xn〉) = 〈R(Hs1), · · · , R(Hsk); x1, · · · , xn〉
(as usual, we assume that xi are automatically alpha-renamed to avoid cap-

ture).

Lemma 3.4.7. If S is a closed sequent schema and R is a refinement function,

then R(S) is also a closed sequent schema.

Proof. This property follows immediately from condition (3) in Definition 3.4.5 of

refinement functions.

Definition 3.4.8. We say that a sequent schema (possibly a plain sequent) S

matches a sequent schema S ′ iff S is R(S ′) for some refinement function R.

Example 3.4.9.

45

1. Schema ` λx.A{}[x] is matched by every well-formed ` λx.(· · ·) no matter

what · · · is.

2. Schema ` λx.A{} is matched by every well-formed ` λx.(· · ·) as long as

· · · has no free occurrences of x. But in case · · · does have free occurrences

of x, we would not be able to come up with a refinement function without

violating Lemma 3.4.7.

3. Schema H; x : A{H} ` C{H} essentially specifies that any matching sequent

must have at least one hypothesis and that the variable introduced by the

last hypothesis can not occur freely in the conclusion of the sequent. In

particular, it is matched by x : Z ` 5 ∈ Z using refinement function

H Ã 〈; 〉 A Ã Z C Ã 5 ∈ Z

It is also matched by H; x : Z; J{H}[x]; y : Z ` x ∈ Z using refinement

function

H Ã
〈
H , x : Z , J{H}[x] ;

〉
A Ã Z C Ã x ∈ Z

However it is not matched by neither x : Z ` x ∈ Z nor ` 5 ∈ Z.

4. Every sequent schema (including every plain sequent) matches the schema

H ` A{H}.

5. See Example 3.3.3.

3.5 Rule Specifications

Definition 3.5.1. If Si (0 ≤ i ≤ n, n ≥ 0) are closed sequent schemata, then

S1 · · · Sn

S0

is a rule schema (or just a rule).

46

Definition 3.5.2. We will say that a rule
S1 · · · Sn

S0

is an instance of
S ′1 · · · S ′n

S ′0
when for some refinement function R we have Si = R(S ′i) (0 ≤ i ≤ n). We will

call such an instance plain if all Si are plain sequents.

Example 3.5.3. The following is the rule specification for the weakening (thinning)

rule:

H{}[]; J{H}[] ` B{H;J}[]
H{}[]; x : A{H}[]; J{H}[] ` B{H;J}[]

Note that condition (3) of Definition 3.4.5 guarantees that x will not occur free in

whatever would correspond to J and B in instances of this rule.

Here is how this rule would look if we take all the syntax shortcuts described

in the Section 4.1:

H; J ` B

H; x : A; J ` B

This is exactly how this rule is written in the MetaPRL system.

Example 3.5.4. A Cut rule might be specified as

H{}[]; J{H}[] ` C{H}[] H{}[]; x : C{H}[]; J{H}[] ` B{H;J}[]
H{}[]; J{H}[] ` B{H;J}[]

Note that in the first assumption of this rule C is inside the context J, however

β(C) can not contain J since otherwise the second assumption would not be closed.

In fact, this particular example shows why we need to keep track of β and can not

just always deduce it from context — see also Remark 3.6.6.

With Section 4.1 syntax shortcuts Cut would look as

H; J ` C{H} H; x : C; J ` B

H; J ` B

Assume we have an arbitrary set V of plain sequents. We do not assume

anything at all about this V — it can be a set of all sequents derivable in a certain

proof system, a set of all sequents valid in certain semantics, or anything else.

47

Definition 3.5.5. We say that a rule
S1 · · · Sn

S0

(n ≥ 0) is admissible for V

when for every plain instance
S ′1 · · · S ′n

S ′0
, whenever S ′i ∈ V for 1 ≤ i ≤ n, then

S ′0 is also in V .

Remark 3.5.6. Informally speaking, Definitions 3.5.2 and 3.5.5 say that in rule

schemata all second-order and context variables are implicitly universally quanti-

fied.

Definition 3.5.7. We will say that a rule
S1 · · · Sm

S
(m ≥ 0) is derived from

a set of rules R if there exists a derivation sequence S1, · · · , Sm, · · · , Sn = S

where every schema after Sm is derived from the previous ones using a rule from

R. In other words, for every k > m there must exist some 1 < i1, · · · , il < k such

that
Si1 · · · Sil

Sk

is an instance of a rule from R.

Now we can give a complete description of the mental procedure (in case of an

automated system, the system will do most of the work) for adding derived rules

support to a logical theory. Suppose V is the set of all the plain sequents that

are valid in the theory. First, we formalize the theory using rule schemata that

are admissible for V . Second, we expand the language of the theory from plain

sequents to plain schemata and we allow the use of arbitrary instances of the rules

in the proofs, not just the plain instances. And whenever we can prove S0 from

Si (1 ≤ i ≤ n), we allow adding the rule
S1 · · · Sn

S0

to the list of rules and allow

using such derived rules in addition to the rules present in the initial formalization

of the theory.

In the next section we prove that this approach leads to a conservative extension

of the original theory.

From the point of view of a user of an automated system that implements

48

this approach, in order to start formal reasoning in some logical theory the user

only needs to describe the syntax of the theory (for example, give a list of the

operators and their corresponding arities) and then to provide the system with

the list of the primitive rules (e.g. axioms) of the theory in the sequent schemata

syntax. 7 After that the system would immediately allow the user to start using

the combined language of sequent schemata and of base theory in derivations and

whenever user would prove schemata S from assumptions Si (1 ≤ i ≤ n), the

system would allow using the rule
S1 · · · Sn

S0

in further derivations on an equal

footing with the primitive rules of the base theory 8. The main theorem of the

next sections guarantees that the derived rules would not allow proving anything

that is not derivable directly from the primitive rules.

3.6 Conservativity

Theorem 3.6.1. The matching relation is transitive. That is, if R1 and R2 are

refinement functions, then R = R2 ◦R1 is also a refinement function.

Proof. This property follows from the definitions of Section 3.4. Since application

of a refinement function does not change the arity of a substitution function (see

Definitions 3.4.3, 3.4.4 and 3.4.6 (5)) and since R1 is a refinement function, the

arity conditions of Definition 3.4.5 will hold for R. Hence we only need to prove

that the free variables condition (3) of Definition 3.4.5 holds for R.

Consider Υ ∈ (C∪V). The proofs of condition (3) for the cases Υ ∈ C and Υ ∈ V
7This does not imply that the set of rules have to be finite. MetaPRL, for

example, provides the facility to specify an infinite family of rules by providing the
code capable of recognizing valid instances.

8As we mentioned earlier, some systems might chose to allow user to “test-drive”
a derived rule before forcing the user to prove the rule.

49

are very similar, so we will only present the latter. We know that R1(Υ) is some

substitution function 〈T ; x1, · · · , xn〉. We also know that R(Υ) = R2(R1(Υ)) =

〈R2(T); x1, · · · , xn〉.
From Definitions 3.4.3 and 3.4.4 we know that Vars(R(Υ)) = Vars(R2(T))−

{x1; · · · ; xn}. From Definitions 3.4.1 and 3.4.6(1,2) we can deduce that

Vars(R2(T)) = FOV(T) ∪

 ⋃

{V ∈V|V occurs in T}
Vars(R2(V))

 . (3.2)

Let us consider FOV(T) first. Since R1 is a refinement function, from the

condition (3.4.5) (3) for it we know that FOV(T) (except for xi, but we do not

need to consider xi since they are not in Vars(R(Υ))) are all in BV(R1(β(Υ))) and

from the definition of BV and the Definition 3.4.6 (3) we know that an application

of a refinement function preserves all the first-order variables of BV, so FOV(T) ⊆
BV(R(β(Υ))).

Now to cover the rest of (3.2) consider some V ∈ V such that V occurs in T .

From Definition 3.4.1 we know that β(V) ⊆ CV(T) ⊆ Vars(R1(Υ)). And since

R1 is a refinement function, Vars(R1(Υ)) ⊆ BV(R1(β(Υ))), so

β(V) ⊆ BV(R1(β(Υ))) (3.3)

Now consider some C ∈ β(V). We know from (3.3) that C ∈ BV(R1(β(Υ)))

and from the Definitions 3.4.4 and 3.4.6 (3) that if C ∈ BV(R1(β(Υ))), then

BV(R2(C)) ⊆ BV(R2(R1(β(Υ)))). This means that ∀C ∈ β(V).BV(R2(C)) ⊆
BV(R2(R1(β(Υ)))) and if we take the union over all C ∈ β(Υ) and recall that

R = R2 ◦ R1, we will get BV(R2(β(Υ))) ⊆ BV(R(β(Υ))). Since R2 is a re-

finement function, condition (3) dictates that Vars(R2(V)) ⊆ BV(R2(β(V))), so

Vars(R2(V)) ⊆ BV(R(β(Υ))) which takes care of the remaining part of (3.2). ut

50

Note that there are two alternative ways of defining the value of R2 ◦ R1 on

terms, hypothesis specifications, sequent schemata and substitution functions. The

first is to define (R2 ◦R1)(Υ) = R2(R1(Υ)) and the second is to define (R2 ◦R1)

based on its value on C ∪ V using Definition 3.4.6.

Lemma 3.6.2. The two definitions above are equivalent.

Proof. This follows trivially from Definition 3.4.6 and the fact that

σ([T1/x1; · · · ; Tn/xn]T) = [σ(T1)/x1; · · · ; σ(Tn)/xn](σ(T))

(again, we rely on the assumption that xi’s are automatically alpha-renamed as

needed to avoid capture).

Theorem 3.6.3. For any V , every instance of an admissible rule is also an ad-

missible rule.

Proof. If R is an admissible rule schema and R′ is its instance, then from Theo-

rem 3.6.1 we know that every instance of R′ will also be an instance of R. Because

of that and by Definition 3.5.5, if R is admissible, R′ must be admissible too. ut

Lemma 3.6.4. Let us define Rtriv to be a function that always returns a trivial

substitution (see Definitions 3.4.3 and 3.4.4), namely

Rtriv(Υ) =

〈•; x1, · · · , xα(Υ)

〉
, when Υ ∈ V

〈
; x1, · · · , xα(Υ)

〉
, when Υ ∈ C

Such Rtriv would be a refinement function.

Proof. The conditions of Definition 3.4.5 are obviously true for Rtriv — by con-

struction it returns substitutions of the right arity and condition (3) is satisfied

since Vars(Rtriv(Υ)) will always be an empty set.

51

Theorem 3.6.5. For any V , if R =
S1 · · · Sm

S
and R′ =

S S ′1 · · · S ′n
S ′

(m,n ≥ 0) are admissible rules, then the rule
S1 · · · Sm S ′1 · · · S ′n

S ′
is also ad-

missible.

Proof. Suppose that R is a refinement function,

R(S1) · · · R(Sm) R(S ′1) · · · R(S ′n)

R(S ′)

is a plain instance of the rule in question and all R(Si) (1 ≤ i ≤ m) and R(S ′j)

(1 ≤ j ≤ n) are derivable. We need to establish that R(S ′) is also derivable.

Let R′ be Rtriv ◦R. We know that whenever R returns a plain sequent, R′ will

return the same plain sequent (since an application of a refinement function does

not change plain terms and plain sequents). Also, Rtriv and hence R′ will always

turn every schema into a plain sequent.

We know that R(Si) = R′(Si) are derivable plain sequents and we know that

R is an admissible rule, so by applying R′ to R we get that R′(S) is also derivable.

Similarly, we know that R(S ′j) = R′(S ′j) are derivable and by applying R′ to

admissible rule R′ we get that R′(S) = R(S) is derivable. ut

Remark 3.6.6. In Example 3.5.4 we saw that β can not always be deduced from

context. In fact it was the Cut example that illuminated the need for an explicit

β — without it we could construct a counterexample for Theorem 3.6.5 by taking

R′ to be the Cut.

Theorem 3.6.7 (Conservativity). For an arbitrary set of rule schemata, any

plain sequent that can be derived from it using the language of sequent schema

and the derived rules approach (as described at the end of Section 3.5), can also

be derived directly from the original set of rules using only plain sequents in the

derivation.

52

Proof. Suppose we have a set T of rule schemata. Let V (T) be all the plain

sequents that can be derived directly from T using only plain sequents in the

derivation. From the Definition 3.5.5 of admissibility, every rule in T is admissible

for V (T).

By induction on k in Definition 3.5.7 we can show using Theorems 3.6.3 and 3.6.5

that adding new derived rules preserves admissibility. Hence any rule that we could

derive using rules from T (and rules derived using rules in T , and rules derived

using those rule, etc.) will still be admissible for V (T).

Now suppose we have derived a plain sequent S from T using the derived rules

mechanism. Since all the rules we could use in the process were admissible for

V (T) then by the definition of admissibility, S ∈ V (T). Hence by construction of

V (T), S can be derived directly from rules in T using only plain sequents in the

derivation. ut

Corollary 3.6.8. Our procedure of extending a logical theory with derived rules

(as described at the end of Section 3.5) will produce a conservative extension of the

original theory.

3.7 Extending the Language of Sequent Schemata

For simplicity in this chapter we presented a minimal calculus necessary for adding

a derived rule mechanism to a type theory. However, by appropriately extending

the language of sequent schemata we can apply our technique to other logical

theories (including more complicated versions of type theories). Of course, for

each of these extensions we need to make sure that the matching relation is still

transitive and that refinements can not turn a closed schema into a non-closed one.

However these proofs are usually very similar to the ones presented in this chapter.

53

One obvious extension is an addition of meta-variables that would range over

some specific kind of constants. In particular, in MetaPRL formalization of NuPRL

type theory [Hic01] we use meta-variables that range over integer constants, meta-

variables that range over string constants, etc. As usual, we consider all these

meta-variables to be universally quantified in every rule schema.

Before we can present other extensions of the language of sequent schemata, we

first need to better understand the way we are using sequent contexts to describe

sequents. If we introduce special “sequent” operators hyp and concl, a sequent

described in (3.1) can be rewritten as

hyp

(
A1; x1.hyp

(
A2; x2. · · ·hyp

(
An; xn. concl

(
C

)) · · ·
))

(3.4)

Notice that hyp is a binary operator that introduces a binding occurrence in its

second argument, so (3.4) has the same binding structure as (3.1). Now if we

rewrite C{··· }[T1; · · · ; Tn]; S in the same style, we get C{··· }[S ′; T1; · · · ; Tn] where

S ′ is a rewrite of S. In this notation, we can say that C acts like an ordinary second-

order variable on its 2-nd through n-th arguments, but on its first argument it acts

in a following way:

1. C is bound in its first argument, but not in others. In other words, while a

second-order variable can not bind free variables of its arguments, a context

instance can bind free variables of its first argument.

2. The substitution function R(C) has to use its first argument exactly once.

In other words, each instance of C{··· }[S ′; T1; · · · ; Tn] would have exactly one

occurrence of S ′ (while it may have arbitrary number of occurrences of each

Ti including 0 occurrences of it).

54

3. C stands for a chain of hyp operators with the S ′ at the end of the chain. In

some instances of C{··· }[S ′; T1; · · · ; Tn] parts of that chain may be represented

by other context variables, but in a plain instance it will always be a chain.

It can be easily shown that the language of sequent schemata would still have

all necessary properties if we add some (or all) of the following:

• “General” contexts that do not have restriction (3) or even restriction (2).

• Contexts for operators that have the same binding structure as hyp (note

that we do not have to add a new kind of contexts for each operator — we

can just make the operator name be a parameter). In particular, in type

theory it might be useful to have contexts tied to the dependent product

operator and to the dependent intersection operator [Kop00].

3.8 Related Work

Most modern proof assistants allow their users to prove some statement in advance

and then reuse it in further proofs. However, most of those mechanisms have

substantial limitations.

NuPRL [CAB+86] allows its users to prove and reuse theorems (which must be

closed sentences). Unfortunately, many elimination and induction principles can

not be stated as theorems.

In addition to a NuPRL-like theorems mechanism, HOL [GM93] also has a

derived rules mechanism, but in reality HOL’s “derived rules” are essentially tactics

that apply an appropriate sequence of primitive axioms. While this approach

guarantees safety, it is extremely inefficient. According to [NSM01], in a recent

version of HOL many of the basic derived rules were replaced with the primitive

55

versions (presumably to boost the efficiency of the system), and currently there is

nothing in the system that attempts to check whether these rules are still truly

derivable. In fact, the commented out tactic code that would “properly” implement

those derived rules is no longer compatible with the current version of the HOL

system.

Logical frameworks (such as Isabelle [Pau94] and LF [HHP93] based systems,

including Elf [Pfe89]) use a rather complex meta-theory that can be used to al-

low its users to prove and reuse derived rules. Still, we believe that by directly

supporting sequents-based reasoning and directly supporting derived rules, the se-

quent schemata language can provide a greater ease of use (by being able to make

more things implicit) and can be implemented more efficiently (by optimizing the

logical engine for the refinement functions as defined in 3.4.5 and 3.4.6 as we have

described in Chapter 2). Additionally, sequent schemata allow us to prove the

conservativity result once and for all the logical theories, while in a more general

approach we might have to make these kinds of arguments every time as a part of

proving an adequacy theorem for each logical theory being formalized.

Chapter 4

Logical Meta-Language: From Derived

Rules to Tactics
There are three main reasons for using a well-defined logical meta-language in a

logical framework. First, in a logical framework we want users to be able to specify

new and modify existing rules of a theory, so we need some language for specifying

rules. Second, as we saw in Chapter 3, an appropriate logical meta-language

can be used to implement a derived rules mechanism. Finally, as we will see in

Section 4.3 when the rules are specified in a well-defined logical meta-language,

we can add some reflective properties to the system by giving some parts of the

system access to the text of the rules present in it.

In the MetaPRL system [Hic01, HNK+] we use a variant of the sequent schemata

language described in Chapter 3 as such a logical meta-language. In Section 4.1 we

will present some language simplifications used in MetaPRL. Next, in Section 4.2

we will describe the way MetaPRL sequent schemata are used to specify the rules

and how those rule specifications get processed by the rewriting engine presented

in Section 2.3. In Section 4.3 we will show how the development and maintenance

of a certain class of generic tactics can be greatly facilitated by giving these tactics

access to the text of the rules. Next, in Section 4.4 we will present another approach

to building generic tactics thus establishing a whole layer of generic tactics, as

described in Section 4.5.

56

57

4.1 Syntax Simplifications

In Chapter 3 we have presented a very verbose syntax of sequent schemata lan-

guage. That verbosity was useful when presenting the theory of the language.

However for implementation in the MetaPRL system we tried to come up with a

simpler syntax that would allow omitting some redundant information while still

preserving those redundancies that are helpful in detecting bugs and typos.

The biggest (and probably the most obvious) redundancy in the sequent sche-

mata language is the need for specifying the value of β for all the second-order

and context variables. Since a sequent schema must be closed, for every instance

of a context or a second-order variable Υβ(Υ)[· · ·] we know that all the variables

of β(Υ) must be bound in that schema. This gives us an upper limit on β(Υ). In

cases when the actual β(Υ) is equal to that upper limit, we may omit the β(Υ)

subscript and deduce the value of β from the rest of the schema. Our experience

shows that we can take this shortcut in almost all of the cases, but as we have seen

in Example 3.5.4, sometimes the value of β still has to be explicitly specified.

Additionally, when a context or a second-order variable has an arity of zero,

then according to Section 3.3 we have to write Υβ(Υ)[], but in this case it is natural

to omit the argument part [].

Remark 4.1.1. When both of the omissions mentioned above are performed for

a second-order variable V of arity 0, it becomes possible to confuse it with a

first-order variable V . However, we can still distinguish them in a context of a

rule schema — if a particular occurrence of V is bound, it must be a first-order

variable (since second-order variables can not be bound) and if it is free, it must

be a second-order variable (since by Definition 3.5.1 sequent schemata in a rule

58

can not have free first-order variables).

Example 4.1.2. The thinning rule of Example 3.5.3

H{}[]; J{H}[] ` B{H;J}[]
H{}[]; x : A{H}[]; J{H}[] ` B{H;J}[]

would become

H; J ` B

H; x : A; J ` B

when all syntax simplifications are applied. This is exactly how this rule is written

in the MetaPRL system (using the concrete syntax presented in Appendix A.3).

Remark 4.1.3. While these simplifications reduce redundancies of the language we

use, our experience suggests that the simplified language still contains enough

redundancy to be able to successfully detect most common typographical errors

and other common mistakes. In particular, by using the second-order variables to

specify the substitutions indirectly and by requiring sequent schemata to be closed,

we make it much harder to forget to specify that a certain substitution needs to

be performed or a certain variable needs to be renamed — a mistake that might

be easy to make in a system where rule specification language contains an explicit

substitution operator.

4.2 MetaPRL Rule Specifications

In the MetaPRL system rule specifications have a dual purpose. First, they provide

a rule schema (as described in Section 3.5) which specifies valid instances of that

rule (see Definitions 3.5.1 and 3.5.2). Second, they specify a way to point at a

particular instance of that rule when applying the rule to a particular proof goal.

59

Remark 4.2.1. We should emphasize that MetaPRL refiner expects the rule in-

stance to always be uniquely specified. Of course, this does not prohibit writing

advanced tactics that would use, for example, a higher-order unification (or type

inference, or heuristics, or something else) to find out the right rule instance and

than instruct the system to apply the appropriate instance. However such a tactic

would be outside of the kernel of the system. This approach provides users with

the freedom of choosing whatever algorithms they want to come up with the best

rule instance. It also allows reducing the trusted core of the system by only requir-

ing that it could check whether a particular instance is applicable, and delegating

the job of finding an appropriate instance to user space.

In MetaPRL a rule specification contains a rule schema
S1 · · · Sn

S
together

with a list of argument specifications As1, · · · , Asm (m ≥ 0) where each Asi is

either a closed term schema or a context variable name. 1 Each rule specification

is passed to the rewriter (cf. Section 2.3) for compilation, with As1, · · · , Asm, S

as a redex and S1, · · · , Sn as a contractum.

Before admitting a rule specification MetaPRL rewriter checks that each context

variable occurring in one of the Si or S is also listed as one of the arguments. It

also makes sure that any second-order or context variable occurring anywhere in

the rule specification (i.e. in one of the Si, S or Asi) has a single 2 “reference”

occurrence in the redex (i.e. in one of the Asi or S) such that:

1. The reference occurrence can not be inside the argument of another context

or second-order variable occurrence.

1This is a simplification. There are other kinds of arguments that are used to
specify the refinement of the parameter meta-variables described in Section 3.7.

2If the same variable has several occurrences that qualify for the “reference
status”, the first one will be used as a “reference” one.

60

2. All arguments of the reference occurrence of our variable must be distinct

bound first-order variables.

When the rule is applied the reference occurrences will be used by the rewriter

to determine the value of the substitution function on that variable. For second-

order variables this is accomplished by compiling reference occurrences to so var

instruction, while all the other occurrences will be compiled to match term instruc-

tions.

MetaPRL compiles each rules specification to a primitive tactic capable of ap-

plying the specified rule. In order to apply the rule to a goal sequent schema

G, this tactic will be passed (by the user or by a higher-level tactic) arguments

A1, . . . , Am. Because of the conditions (1)–(2) above, there may only be at most

one list of subgoals G1, . . . , Gn such that A1, . . . , Am, G, G1, . . . , Gn is a valid in-

stance of As1, · · · , Asm, S, S1, · · · , Sn. Invoking the tactic would cause the system

to make sure that

• For each 1 ≤ i ≤ m, if Asi is a context variable, Ai is an address that

specifies which hypothesis specifications of G should be matched to that

context variable; and

• If Asi is a term schema, then Ai is a closed term. 3

The system would then pass A1, . . . , Am, G to the rewriter as a potential match for

the redex As1, · · · , Asm, S and the rewriter will output the corresponding subgoals

G1, . . . , Gn, if they exist.

From the user’s perspective the argument schemata provide a way for passing

into the rewriter all the information that it would not be able to deduce by match-

3As in Section 4.1 this requirement will be used to distinguish second-order 0
arity variables from first-order ones.

61

Table 4.1: Decomposition Tactic Examples

Goal sequent =⇒ Desired subgoals
Conclusion decomposition · · · ` A ∧B =⇒ · · · ` A and · · · ` B
Hypothesis decomposition · · · ; A ∧B; · · · ` · · · =⇒ · · · ; A; B; · · · ` · · ·

ing G with S. For example, if S does not contain reference occurrences of some of

the variables used in the rule, the user has to add extra arguments that contain

such occurrences.

4.3 Rule Annotations

Some basic tactics are often designed to behave very differently in different con-

texts. One of the best examples of such tactic in a decomposition tactic [Jac95,

Section 3.3] present both in NuPRL (where it is called “D”) and in MetaPRL (where

it is called “dT”). When applied to the conclusion of a goal sequent, it will try to

decompose the conclusion into simpler ones, normally by applying 4 an appropriate

introduction rule. When applied to a hypothesis, the decomposition tactic would

try to break the hypothesis into simpler ones, usually by applying an appropriate

elimination rule.

Example 4.3.1. The desired behavior for the decomposition tactic on ∧-terms is

shown in Table 4.1.

Whenever a theory is extended with a new operator, decomposition tactic needs

to be updated in order for it to know how to decompose this new operator. More

generally, whenever a new rule (including a new axiom, a new derived rule or a

4Since proof search is done from the conclusion to premises, it may be more
accurate to say that the tactic will back-chain through the rule.

62

new theorem) is added to a system it is often desirable to update some tactic (or

possibly several tactics) so that it makes use of the newly added rule. In order to

facilitate such updates authors of most commonly used “updatable” tactics would

often provide “hooks” allowing one to specify how the new rule should be used

without having to go back and modify the code of the tactic.

Normally, such a “hook” would require users to specify which rule or tactic

should be added as well as when to make use of this new rule (or tactic). For

example, after a ∧ introduction rule is added to the system, the decomposition

tactic would be updated with the information that if the conclusion is a ∧-term,

then the new introduction rule should be used.

It turns out that writing such tactic updates takes some expertize and is time

consuming, even in the presence of “hooks”. This often prevents users from making

full use of the tactic update functionality. On the other hand it also turns out that

most of the needed information is already present in the system when the new rule

is added — if the rules are expressed using a well-defined logical meta-language

(such as the sequent schemata language), then we can use the text of the rules

itself as a source of information.

Consider a situation when a new rule is added to the system and the system

is notified that the decomposition tactic need to be updated. If the system would

be given access both to the text of the rule and the primitive tactic for applying

the rule, it will have most (if not all) of the information on how to update the

decomposition tactic! It is clear what tactic should be added to the decomposition

strategy — the primitive tactic that would apply the newly added rule. And by

examining the text of the rule, the conditions for applying it can be usually deduced

directly. For example, if the new rule is an xyz introduction rule for some operator

63

xyz, then we know that it should be applied whenever the decomposition tactic is

used to decompose an xyz conclusion.

In a way this approach makes a system reflexive — it becomes capable of using

not only the meaning of the rules in its proof search, but their syntax as well.

In MetaPRL this approach is implemented via a mechanism of resource anno-

tations on the rules. An annotation would cause a special kind of “hook” function

to be invoked, which would receive the rule text and the primitive tactic as inputs.

When necessary, the user can supply an extra argument to serve as an additional

hint for the “hook” function.

Example 4.3.2. The resource annotation for the ∧ introduction rule in MetaPRL

would be written simply as

{| intro [] |}

which specifies that the conclusion decomposition tactic needs to be notified of the

new rule.

The resource annotation for the ∧ elimination rule in MetaPRL would be written

as

{| elim [ThinOption thinT] |}

which specifies that the conclusion decomposition tactic needs to be notified of

the new rule and that by default it should thin out the original ∧ hypothesis after

applying the elimination rule.

4.4 Decision Procedures as Heuristics

Another very interesting category of proof automation procedures in a theorem

prover is automated decision procedures. A traditional approach to implementing

64

a decision procedure in a theorem prover is to implement it as a part of the trusted

code base — whenever the decision procedures says “Yes” the prover would im-

mediately consider the current goal to be proven. Unfortunately, there are many

disadvantages to this approach. In particular, this increases the size of the trusted

code. It usually requires a significant effort to prove that the chosen decision

procedure is valid and is compatible with the logical theory being used.

However the biggest price of “trusted” decision procedures is the loss of flexi-

bility. Changing or extending the logical theory will now require having to invest

additional time into making sure that the modified theory is still compatible with

all the assumption all the trusted decision procedures make. Improving trusted

decision procedures becomes equally hard. In a way, trusted decision procedures

and the logical theory become “locked in” together with either one becoming much

harder (and much more “expensive”) to modify.

As it turns out, proving that the decision procedure was correct in a particular

instance is much easier then proving that it will always be correct and can often be

established automatically. This gives us an alternative when integrating a decision

procedure into an interactive theorem prover, provided it can be enhanced to

output some evidence along with the “yes” answer. Such decision procedure can

be implemented as a tactic rather than being a trusted code. The new tactic would

check (using the decision procedure) whether the current goal is valid and if the

answer is “yes”, it would try interpreting the evidence outputted by the decision

procedure and use it to re-prove the goal.

In a way such tactic becomes a heuristic that can be still used even when the

theory is not known to be completely compatible with the decision procedure (or

even when it is known to be incompatible). The worse that could happen is that

65

in certain cases the tactic would fail or will produce an incomplete proof (e.g.

produce some subgoals that will still be left to prove).

4.4.1 JProver

This approach was used by Stephan Schmitt for implementing the JProver decision

procedure in MetaPRL. JProver is an automated prover for first-order intuitionistic

and classical logic based on the connection method [Bib87, KO99], with a tool for

generating proof objects in the style of sequent proofs [KS00].

JProver is implemented on top of MetaPRL core in a very generic way, using

MetaPRL as a theorem proving toolkit. JProver takes as its input a small JLogic

module that represents the logic of the proof assistant with which JProver will

cooperate. The JLogic module describes which terms implement logical connec-

tives, how to access subterms from those connectives, and how to convert JProver’s

generic representation of a sequent proof into the internal data structures of the

proof assistant.

In order to be able to call JProver from some proof assistant, one would need

to write a logic module that consists of two components: a piece of OCaml code for

communicating with that proof assistant (using whatever communication protocol

developers would choose) and a JLogic module capable of decoding the sequent

received from that communication code and of encoding JProver’s response into a

form the communication code expects.

As described in [SLKN01], JProver was integrated into the MetaPRL imple-

mentation of the NuPRL type theory and into the NuPRL-4 system. Later, Huang

Guan-Shieng have integrated JProver into Coq proof assistant. 5

5See http://coqcvs.inria.fr/cgi-bin/cvswebcoq.cgi/~checkout~/V7/

http://coqcvs.inria.fr/cgi-bin/cvswebcoq.cgi/~checkout~/V7/contrib/jprover/README

66

4.4.2 Arithmetic

In his work on formalizing arithmetic in MetaPRL Yegor Bryukov also takes ad-

vantage of this approach. Using techniques developed by Tobias Mayr [May97] he

implements arithmetical decision procedures as tactics with explicitly formulating

all the arithmetical axioms.

4.5 Generic tactic layer

Sections 4.3 and 4.4 show two complimentary approaches to building a rich layer

of generic tactics. The great advantage of such generic tactics is that they can

be implemented once and then reused in a wide range of logical theories with

no or a little additional effort. And in the JProver case Huang Guan-Shieng was

able to integrate the existing JProver code into Coq assistant without having any

previous familiarity with the source MetaPRL system and without ever asking any

member of MetaPRL group for advice. This example shows that our generic tactics

approach is very viable not only for sharing across various logical theory is a single

logical framework, but also for sharing across a variety of different theorem provers.

Both approaches to generic tactics are essentially trading in a human-intensive

approach for a computer-intensive one. In case of updatable tactic we have the

system itself extracting the relevant information from the text of the rules, instead

of requiring users to provide it. In case of decision procedures we eliminate the need

for manually establishing the validity of a procedure, replacing it with a computer

system for post-processing proofs that come out of the procedure. In [Arm00] Bill

Arms investigates a similar trend in the area of digital libraries. He notes that

“computing power is much cheaper than human expertise, more so every year”

contrib/jprover/README for more information on Coq JProver integration.

http://coqcvs.inria.fr/cgi-bin/cvswebcoq.cgi/~checkout~/V7/contrib/jprover/README
http://coqcvs.inria.fr/cgi-bin/cvswebcoq.cgi/~checkout~/V7/contrib/jprover/README
http://coqcvs.inria.fr/cgi-bin/cvswebcoq.cgi/~checkout~/V7/contrib/jprover/README
http://coqcvs.inria.fr/cgi-bin/cvswebcoq.cgi/~checkout~/V7/contrib/jprover/README

67

and he argues that as computers become more powerful, the switch to computer-

intensive approaches will keep gaining attractiveness.

Part II

Type Theory

68

Chapter 5

Quotient Types — A Modular Approach
The NuPRL type theory differs from most other type theories used in theorem

provers in its treatment of equality. In Coq’s Calculus of Constructions, for ex-

ample, there is a single global equality relation which is not the desired one for

many types (e.g. function types). The desired equalities have to be handled explic-

itly, which is quite burdensome. As in Martin-Löf type theory [ML82] (of which

the NuPRL type theory is an extension), in NuPRL each type comes with its own

equality relation (the extensional one in the case of functions), and the typing rules

guarantee that well-typed terms respect these equalities. Semantically, a quotient

of a given NuPRL type is trivial to define: it is just the same type equipped with

a new equality relation.

Such quotient types have proved to be an extremely useful mechanism for

natural formalization of various notions in type theory. For example, rational

numbers can be naturally formalized as a quotient type of the type of pairs of

integer numbers (which would represent the numerator and the denominator of a

fraction) with the appropriate equality predicate.

Somewhat surprisingly, it turns out that formulating rules for these quotient

types is far from being trivial and numerous applications of NuPRL [BCH+00,

LKvR+99] have run into difficulties. Often a definition involving a quotient looks

plausible, but after some (sometimes substantial) work it turns out that some key

property is unprovable, or false.

A common source of problems is that in the NuPRL type theory all true equality

predicates are uniformly witnessed by a single canonical constant. This means that

69

70

even when we know that two elements are equal in a quotient type, we can not

in general recover the witness of the equality predicate. In other words, a = b ∈
(A//E) (where “A//E” is a quotient of type A with equivalence relation E) does

not always imply E[a; b] (however it does imply ¬¬E[a; b]).

Another common class of problems occurs when we consider some predicate P

on type A such that we can show that P [a] ⇔ P [b] for any a, b ∈ A such that

E[a; b]. Since P [a] ⇔ P [b] does not necessary imply that P [a] = P [b], P may still

turn out not to be a well-formed predicate on the quotient type A//E. 1

These problems suggest that there is more in the concept of quotient types,

than just the idea of changing the equality relation of a type. In this chapter

we show how we can decompose the concept of quotient type into several simpler

concepts and to formalize quotient types based on formalization of those simpler

concepts.

We claim that such a “decomposed” theory makes operating with quotient

types significantly easier. In particular we show how the new type constructors

can be used to formalize the notion of indexed collections of objects. We also claim

that the “decomposition” process makes the theory more modular. In particular,

we show how to reuse one of the new type constructors to improve and simplify

the rules for the set type.

For each of the new (or modified) type constructors, we present a set of deriva-

tion rules for this type — both the axioms to be added to the type theory and the

rules that can be derived from these axioms. As we will explain in Section 5.3,

the particular axioms we use were carefully chosen to make the theory as modular

as possible and to make them as usable as possible in a tactic-based interactive

1P will be a function from A//E to Prop// ⇔, rather than a predicate (a
function from A//E to Prop), where Prop is a type (universe) of propositions.

71

prover. All the new rules were checked and found valid in S. Allen’s semantics of

type theory [All87a, All87b]; these proofs are rather straightforward, so we omit

them here. Proofs of all the derived rules were developed and checked in the

MetaPRL system [Hic01, HNK+, HAB+].

Although we focus on the NuPRL type theory, we believe that many ideas

presented here are relevant to managing witnessing and functionality information

in a constructive setting in general.

This chapter is organized as follows. First, in Section 5.1 we describe some

features of the NuPRL type theory that are necessary for understanding this work.

Sections 5.2, 5.5, 5.6 and 5.7 each describe a module introducing its own primi-

tive constructor that together form the new axiomatization of the quotient type

constructor. In Section 5.4 we demonstrate the modularity advantages of the new

axiomatization by reusing some of the previously presented modules to simplify

and enhance the formalization of set types. Section 5.3 explains our approach

and motivations in choosing particular axioms. Finally, Section 5.8 shows how

the new axiomatization allows us to formalize the notion of collections that seems

impossible to formalize in the original axiomatization.

Previous revisions of this work were published as [Nog02a, Nog02b].

5.1 NuPRL Type Theory

5.1.1 Propositions-as-Types

The NuPRL type theory adheres to the propositions-as-types principle. This prin-

ciple means that a proposition is identified with the type of all its witnesses. A

proposition is considered true if the corresponding type is inhabited and is consid-

72

ered false otherwise. In this chapter we will use words “type” and “proposition”

interchangeably; same with “witness” and “member”.

5.1.2 Partial Equivalence Relations Semantics

The key to understanding the idea of quotient types is understanding the most com-

monly used semantics of the NuPRL type theory (and some other type theories as

well) — the PER (partial equivalence relations) semantics [Tro73, All87a, All87b].

In PER semantics each type is identified with a set of objects and an equivalence

relation on that set that serves as an equality relation for objects of that type.

This causes the equality predicate to be three-place: “a = b ∈ C” stands for “a

and b are equal elements of type C”, or, semantically, “a and b are related by the

equality relation of type C”.

Remark 5.1.1. Note that in this approach an object is an element of a type iff it

is equal to itself in that type. This allows us to identify a ∈ A with a = a ∈ A.

According to PER approach, whenever something ranges over a certain type,

it not only has to span the whole type, it also has to respect the equality of that

type.

Example 5.1.2. In order for a function f to be considered a function from type A

to type B, not only for every a ∈ A, f(a) has to be B, but also whenever a and a′

are equal in the type A, f(a) should be equal to f(a′) in the type B. Note that

in this example the second condition is sufficient since it actually implies the first

one. However it is often useful to consider the first condition separately.

Example 5.1.3. Now consider a set type T := {x : A | B[x]} (cf. Section 5.4).

Similarly to Example 5.1.2 above, in order for T to be a well-formed type, not only

73

B[a] has to be a well-formed type for any a ∈ A, but also for any a = a′ ∈ A it

should be the case that B[a] and B[a′] are equal.

5.1.3 Extensional and Intensional Approaches

In this chapter we devote significant amount of attention to discussion of choices

between what we call intensional and extensional approaches to certain type op-

erators. The difference between these approaches is in deciding when two objects

should be considered equal. In general, in the intensional approach two objects

would be considered equal if their internal structure is the same, while in the ex-

tensional approach two objects would be considered equal if they exhibit the same

external behavior.

Example 5.1.4. In the NuPRL type theory the function equality is extensional.

Namely, we say that f = f ′ ∈ (A → B) iff they both are in A → B and for all

a ∈ A, f(a) = f ′(a) ∈ B. 2

Example 5.1.5. It is easy to define an extensional equality on types: A =e B iff A

and B have the same membership and equality relations. 3 However, in the NuPRL

type theory the main equality relation on types is intensional. For example, if A

and B are two non-empty types, then (A → ⊥) = (B → ⊥) only when A = B,

even though we have (A → ⊥) =e (B → ⊥) since they are both empty types. 4

2It is interesting to note that this causes the type ⊥ → ⊥ (where ⊥ is an empty
type) to be a type that all functions belong to and are all equal in.

3We will discuss extensional equality in more detail in Section 6.1.1.
4Strictly speaking, the NuPRL type theory does not contain Martin-Löf’s “A =

B” judgment form. Instead, NuPRL uses proposition of the form A = B ∈ Ui

where Ui is the i-th universe of types. However in this chapter we will often omit
“∈ Ui” for simplicity.

74

Example 5.1.6. Some type constructors, such as a set (cf. Section 5.4) or a quotient

(cf. Section 5.7) one, include a predicate. When introducing such a constructor

into the NuPRL type theory, there are often two choices for handling the predicate

in the equality definition:

Completely intensional. For two types to be equal, their corresponding pred-

icates have to be equal as well. For example {x : A | B[x]} = {x : A′ | B′[x]} iff

A = A′ and for all a = a′ ∈ A, B[a]=B′[a′].

Somewhat extensional. The predicates have to imply one another, for example

{x : A | B[x]} = {x : A′ | B′[x]} iff A = A′ and for all a = a′ ∈ A, B[a]⇔B′[a′].

Essentially, in the intensional case the map x Ã B[x] has to respect A’s equality

relation in order for {x : A | B[x]} to be well-formed and in the extensional case

B[x] only needs to respect it up to ⇔ (logical iff).

We will continue the discussion of the differences between these two choices in

Sections 5.2.3 and 5.7.1.

5.2 Squash Operator

5.2.1 Squash Operator: Introduction

The first concept that is needed for our formalization of quotient types is that

of hiding the witnessing information of a certain true proposition thus only re-

taining the information that the proposition is known to be true while hiding the

information on why it is true.

To formalize such notion, for each type A we define a type [A] (“squashed A”)

which is empty if and only if A is empty and contains a single canonical element

75

• 5 when A is inhabited. Informally one can think of [A] as a proposition that says

that A is a non-empty type, but “squashes down to a point” all the information

on why A is non-empty. The squash operator is intensional, e.g. [A] = [B] iff

A = B (see also Remark 5.2.2).

Remark 5.2.1. In [Jac95, Section 3.7.3] Paul Jackson defined the squash operator

as [A] := {x : Unit | A}. However here our goal is to formalize the set type

using the squash operator and not the other way around, so we do not use this

definition.

The squash operator (sometimes also called hide) was introduced in [CAB+86].

It is also used in [Cal98, Jac95, Hic01, HAB+] 6.

In the next section we will present the axiomatization we chose for the squash

operator and we will explain our choices in Section 5.3.

5.2.2 Squash Operator: Axioms

First, whenever A is non-empty, [A] must be non-empty as well:

Γ ` A

Γ ` [A]
(SquashIntro)

Second, if we know [A] and we are trying to prove an equality (or a membership)

statement, we can allow “unhiding” contents of A and continue with the proof:

Γ; x : A; ∆ ` t1 = t2 ∈ C

Γ; x : [A]; ∆ ` t1 = t2 ∈ C
(SquashElim)

5MetaPRL system uses the unit element () or “it” as a •, NuPRL uses Ax and
[Tho91] uses Triv.

6In MetaPRL squash was first introduced by J.Hickey as a replacement for
NuPRL’s hidden hypotheses mechanism, but eventually it became clear that it
gives a mechanism substantially widely useful than NuPRL’s hidden hypotheses.

76

(assuming x does not occur free in ∆, ti and C — we use the sequent schemata

syntax of Chapter 3 for specifying rules.) This rule is valid because in Martin-Löf

type theory equality has no computational context and is always witnessed by •,
so knowing the witness of A does not add any “additional power”.

Finally, the only possible element of a squash type is •:

Γ; x : [A]; ∆[•] ` C[•]
Γ; x : [A]; ∆[x] ` C[x]

(SquashMemElim)

As mentioned in the introduction, all these new axioms can be proved sound

in Allen’s semantics of type theory [All87a, All87b]. All soundness proofs are very

straightforward, and we omit them in this chapter. We also omit some purely tech-

nical axioms (such as well-formedness ones) that are unnecessary for understanding

this work. 7

5.2.3 Squash Operator: Derived Rules

Here are the rules that can be derived from the axioms we have introduced above.

First, whenever [A] is non-empty, • must be in it:

Γ ` [A]
Γ ` • ∈ [A]

(SquashMemIntro)

Second, using (SquashMemElim) we can prove a stronger version of (SquashElim):

Γ; x : A; ∆[•] ` t1[•] = t2[•] ∈ B[•]
Γ; x : [A]; ∆[x] ` t1[x] = t2[x] ∈ B[x]

(SquashElim2)

Third, we can prove that squashed equality implies equality:

Γ ` [t1 = t2 ∈ A]
Γ ` t1 = t2 ∈ A

(SquashEqual)

7The full listing of the MetaPRL rules should be available online [HAB+]. An
earlier version of MetaPRL implementation of type theory is presented in [Hic01,
Section 14].

77

Remark 5.2.2. Note that if we would have tried to make the squash operator exten-

sional, we would have needed an extra well-typedness assumption in the (SquashE-

lim) rule (as we had to do in (EsquashElim) rule in Section 5.7.2) which would

have made it useless for proving well-typedness and membership statements. In

particular, the (SquashEqual) rule (as well as any reasonable modification of it)

would not have been valid.

Next, we can prove that if we can deduce a witness of a type A just by know-

ing that some unknown x is in A (we call such A a squash-stable type — see

Section 7.3), then [A] implies A:

Γ ` [A] Γ; x : A ` t ∈ A

Γ ` A
(SquashStable)

Finally, we can prove that we can always eliminate the squashes in hypotheses

not only when the conclusion is an equality (as in (SquashElim) and (SquashE-

lim2)), but also when it is a squash 8:

Γ; x : A; ∆[•] ` [C[•]]
Γ; x : [A]; ∆[x] ` [C[x]]

(Unsquash)

5.3 Choosing the Rules

For each of the concepts and type operators we discuss in this chapter there might

be numerous different ways of axiomatizing it. When choosing a particular set of

axioms we were using several general guidelines.

First, in a context of an interactive tactic-based theorem prover it is very impor-

tant to ensure that each rule is formulated in a reversible way whenever possible.

By reversible rule we mean a rule where conclusion is valid if and only if the

8In general, it is true whenever the conclusion is squash-stable.

78

premises are valid. This means that it is always “safe” to apply such a rule when

(backward) searching for a proof of some sequent — there is no “danger” that

back-chaining through the rule would turn a provable statement into a statement

that is no longer true. This property allows us to add such rules to proof tactics

more freely without having to worry about a possibility that applying such tactic

can bring the proof into a “dead end”. 9 For example, among the squash axioms of

Section 5.2.2 only (SquashIntro) is irreversible and the other axioms are reversible.

Second, we wanted to make sure that each rule makes the smallest “step” possi-

ble. For example, the (SquashElim) rule only eliminates the squash operator, but

does not attempt to eliminate the witness of the squash type while the (Squash-

MemElim) only eliminates the witness of the squash type and does not attempt

to eliminates the squash operator. This gives users a flexibility to “steer” proofs

exactly where they want them to go. Of course, we often do want to make sev-

eral connected steps at once, but that can be accomplished by providing derived

rules 10 while still retaining the flexibility of the basic axioms. For example, the

(SquashElim2) allows one to both eliminate the squash operator and its witness

in a single step, while still using (SquashElim) or (SquashMemElim) when only

one and not the other is needed. As we will see in Section 5.4 this “small step”

requirement is especially important for the irreversible rules.

Finally, it is important for elimination rules to match corresponding intro-

9Of course if a tactic is designed to fall back when it fails to find a complete
derivation for the statement being proved, it would not become dangerous when
we allow it to use an irreversible rule (although it might become more likely to
fail). But if a tactic is only meant to propel the proof further without necessarily
completing it (such as for example NuPRL’s Auto and MetaPRL’s autoT), then
allowing such tactic to use irreversible rules can make things substantially less
pleasant to the user.

10See Chapter 3 for a description of MetaPRL’s derived rules mechanism.

79

duction rules in their “power”. 11 Such balance helps insure that most rules are

reversible not only with respect to validity, but also with respect to provability

(which is obviously needed to make applying such rules truly “safe” in a theorem

prover).

5.4 Intensional Set Type

5.4.1 Set Type: Introduction

The decomposition of the axiomatization of quotient types into smaller pieces has

an additional advantage (besides making quotient types easier to reason about) of

making the theory more modular. The type operators that we use for formalizing

quotient types can be now reused when formalizing other types as well. To illus-

trate this, we will show how the traditional formalization of the set types can be

greatly improved and simplifies using the squash operator.

Informally, {x : A | B[x]} is a type containing all elements x ∈ A such that

B[x] is a true proposition. The key property of set type is that when we have

a witness w ∈ {x : A | B[x]}, we know that w ∈ A and we know that B[w] is

non-empty; but in general we have no way of reconstructing a witness for B[w].

5.4.2 Set Type: Traditional Approach

Set types were first introduced in [Con83] and were also formalized in [Bac84,

CAB+86, Hic01, NP83, NPS90]. In those traditional implementations of type

11More specifically, elimination rules should be locally complete and locally sound
with respect to the introduction rules, as described in [PD01]. But since we believe
that this third guideline is not as crucial as the first two, we chose not provide a
detailed discussion of it.

80

theory the rules for set types are somewhat asymmetric. When proving something

like

Γ; y : A ` y ∈ A′ Γ; y : A; z : B[y] ` B′[y]

Γ; y : {x : A | B[x]} ` y ∈ {x : A′ | B′[x]}
one was forced to apply the set elimination rule before the set introduction rule.

As we will see in a moment, the problem was that the traditional set introduction

rule is irreversible and would go “too far” if one applies it right away. It would

yield a subgoal Γ; y : {x : A | B[x]} ` B′[y] that would only be valid if one could

reconstruct a proof witness of B′[y] without having access to the witness of B[y].

5.4.3 Set Type: A New Approach

Using the squash operator we only need 12 the following two simple axioms to

formalize the set type:

Γ; y : A; z : [B[y]]; ∆[y] ` C[y]

Γ; y : {x : A | B[x]}; ∆[y] ` C[y]
(SetElim)

Γ ` t ∈ A Γ ` [B[t]] Γ ` {x : A | B[x]}Type

Γ ` t ∈ {x : A | B[x]} (SetIntro)

Now we can explain the problem with the traditional approach [Con98, CAB+86,

NP83, NPS90, Tho91] — there the set introduction rule is somewhat analogous to

applying (SetIntro) and then as much (Unsquash) as possible and then (SquashIn-

tro). Such rule does too many things at once and one of those things (SquashIntro)

is irreversible. With such rule we can only deconstruct the set operator in the

conclusion when the irreversible part of this rule would not render the resulting

subgoals unprovable.

The reason this traditional formalization required a rule that does so much at

once was the lack of a way to express the intermediate results. In a sense, in that

12As in Section 5.2.2 we omit some unessential axioms.

81

implementation, set (and quotient) types had at least two separate “jobs” — one

was to change the type membership (equality) and another — to hide the proof

of the membership (equality) predicate. And there was only a single collection of

rules for both of the “jobs”, which made the rules hard to use.

The squash operator now takes over the second “job” which allows us to express

the properties of each of the two jobs in a separate set of rules. Our rules (SetElim)

and (SetIntro) are now both reversible, both perform only a singly small step of

the set type and they exactly match each other. The set introduction rule now

does only that — introduces the set type into the conclusion of the sequent and

leaves it to the squash rules (such as (Unsquash) and (SquashIntro)) to manage the

“hiding/unhiding the proof predicate” aspect. We believe this makes the theory

more modular and easier to use.

5.5 Extensional Squash Operator (Esquash)

5.5.1 Esquash Operator: Introduction

The second concept that is needed for our formalization of quotient types is that of

“hiding” the intensional structure of a certain proposition; essentially we need the

concept of “being extensional” — as we will see in Section 5.7, even the intensional

quotient type has some extensionality in it. In order to make the theory modular,

we want to express the concept of the extensionality directly, not through some

complex operator for which the extensionality is just a “side-effect”. As we men-

tioned in Remark 5.2.2, the squash operator needs to be intensional, so we will

need to define a new operation.

The operation we will use, called esquash, acts very similar to squash except

82

for “esquashed” types being equal whenever they are simultaneously non-empty or

simultaneously empty. This way esquash completely “hides” both the witnesses

of a type and its intensional structure, leaving only the information on whether a

type is non-empty or not.

5.5.2 Esquash Operator: Axioms

First, equality — two esquash types are equal iff they are simultaneously true or

simultaneously false:

Γ ` [[A]]⇔ [[B]]
Γ ` [[A]] = [[B]]

(EsquashEquality)

Second, esquash of an intensional type is equivalent to squash 13:

Γ ` [[A]] Γ ` A Type

Γ ` [A]
(EsquashElim)

Γ ` [A]
Γ ` [[A]]

(EsquashIntro)

Finally, the only member of a non-empty esquash type is •:

Γ; x : [[A]]; ∆[•] ` C[•]
Γ; x : [[A]]; ∆[x] ` C[x]

(EsquashMemElim)

Remark 5.5.1. We could define the esquash operator as

[[A]]
i

:= A = True ∈ (
x, y : Ui//(x ⇔ y)

)
.

Unfortunately, this definition increases the universe level. With this definition if

A ∈ Ui, then [[A]]
i

is in Ui+1. This can create many difficulties, especially when

we want to be able to iterate the esquash operator. And in any case we want to

formalize quotient types using the esquash operator, not the other way around.

13x : T ` [[A[x]]] only requires A[x] to be non-empty when x ∈ T . However since
squash is intensional, x : T ` [A[x]] also requires A[x] = A[x′] when x = x′ ∈ T .
Because of this we need the well-typedness condition in (EsquashElim).

83

Remark 5.5.2. In MetaPRL J. Hickey had initially defined an esquash operator

using the extensional quotient 14:

[[A]] := tt = ff ∈ (x, y : B
e
//(x = y ∈ B ∨ A)) . 15

This definition does not increase the universe level like the previous one, but on

the other hand it requires an extensional quotient type while the previous one

works with both intensional and extensional quotients. Another problem with this

definition is that almost all NuPRL-4 rules on quotient types require one to prove

that the equality predicate is actually intensional, so it would be impossible to

prove the properties of esquash from this definition using NuPRL-4 rules.

5.5.3 Esquash Operator: Derived Rules

First, using (EsquashMemElim) we can prove that any non-empty esquash type

has an • in it:

Γ ` [[A]]
Γ ` • ∈ [[A]]

(EsquashMemIntro)

Second, we can derive a more general and complex version of (EsquashElim):

Γ; x : [A]; ∆[x] ` B[x] Γ; x : [[A]]; ∆[x] ` A Type

Γ; x : [[A]]; ∆[x] ` B[x]
(EsquashElim2)

5.6 Explicit Nondeterminicity

5.6.1 Explicit Nondeterminicity: Introduction

The third piece of the quotient puzzle is the explicit nondeterminicity type. At

first, this type was introduced just as a technical trick allowing us to express

14See Section 5.7.1 for more on extensional and intensional quotient types.
15Where B is the type of booleans and tt (“true”) and ff (“false”) are its two

members.

84

stronger elimination rules for quotient types. However it seems that this notion is

also a useful tool to have on its own.

At first, we considered adding the nd operation similar to amb in [McC63] and to

the approach used in [How96]. The idea was to have nd{t1; t2} which can be either

t1 or t2 nondeterministically. Then we were going to say that the expression that

contains nd operators is well-formed iff its meaning does not depend on choosing

which of nd’s arguments to use. The problem with such an approach is that we

need some way of specifying that several occurrences of the same nd{t1; t2} have

to be considered together — either all of them would go to t1 or all of them would

go to t2. For example, we can say that nd{1;−1}2 = 1 ∈ Z (which is true), but

if we expand the 2 operator, we will get nd{1;−1} ∗ nd{1;−1} = 1 ∈ Z which is

only true if we require both nd’s in it to expand to the same thing.

The example above suggests using some index on nd operator, which would keep

track of what occurrences of nd should go together. In such a case it is natural for

that index to be of the type (B//True) and as it turns out, this type represents a

key idea that is worth formalizing on its own. As “usual”, since we want to express

the properties of the quotient types using the ND == (B//True) type, it can not

be defined using the quotient operator and needs to be introduced as a primitive.

The basic idea behind this ND type is that it contains two elements, say tt

and ff and tt = ff ∈ ND. In addition to these two constants we also need the

if . . . then . . . else . . . fi operator such that if tt then t1 else t2 fi is

computationally equivalent to t1 and if ff then t1 else t2 fi is computationally

equivalent to t2. For simplicity, we “borrow” these constants and this operator

from B 16, but we could have created new ones, it does not really matter here. We

16Which means that ND is just B//True.

85

will write “ndx{t1; t2}” as an abbreviation for “if x then t1 else t2 fi”.

5.6.2 Explicit Nondeterminicity: Axioms

Γ; u : A[tt] = A[ff]; y : A[tt]; x : ND; ∆[x; y] ` C[x; y]

Γ; x : ND; y : A[x]; ∆[x; y] ` C[x; y]
(ND-elim)

Γ ` C[tt] = C[ff] Γ ` C[tt]

Γ; x : ND ` C[x]
(ND-elim2)

Notice that (ND-elim) does not completely eliminate the ND hypothesis, but only

“moves” it one hypothesis to the right, so to completely eliminate the ND hypoth-

esis, we will need to apply (ND-elim) repeatedly and then apply (ND-elim2) in the

end.

For the purpose of formalizing the quotient operators we only need the two

rules above. A complete formalization of ND would also include the axiom

` tt = ff ∈ ND
(ND-intro)

5.6.3 Explicit Nondeterminicity: Derived Rule

Γ ` t[tt] = t[ff] ∈ A

Γ; x : ND ` t[x] ∈ A
(ND-memb)

5.7 Intensional Quotient Type

5.7.1 Quotient Type: Introduction

The quotient types were originally introduced in [CZ84]. They are also presented

in [CAB+86, Tho91].

While extensional quotient type can be useful sometimes, usually the inten-

sional quotient type is sufficient and the extensionality just unnecessary compli-

cates proofs by requiring us to prove extra well-typedness statements. In addition

86

to that NuPRL formalization of quotient types (see Appendix A.2 and [CAB+86])

does not allow one to take full advantage of extensionality since most of the rules

for the quotient type have an assumption that the equality predicate is in fact

intensional. While early versions of the NuPRL type theory considered extensional

set and quotient types, these problems forced the change of set constructor (which

is used substantially more often than the quotient) into an intensional one.

In order to avoid the problems outlined above, in this chapter we introduce

the intensional quotient type as primitive, and we concentrate our discussion of

quotient types on intensional quotient types. But since we have the esquash

operator in our theory, an extensional quotient type can be naturally defined if

needed, using A
e
//E := A

i
//[[E]] and an extensional set type can be defined the

same way: {x : A |e P [x]} := {x : A |i [[P [x]]]}.

5.7.2 Intensional Quotient Type: Axioms

Two intensional quotient types are equal when both the quotiented types are equal,

and the equality relations are equal:

Γ ` A = A′ Γ; x : A; y : A ` E[x; y] = E ′[x; y] “E is an ER over A”

Γ ` (A//E) = (A′//E ′)

(IquotEqualIntro)

where “E is an ER over A” is just an abbreviation for conditions that force E to

be an equivalence relation over A.

Next, when two elements are equal in a quotient type, the equality predicate

must be true on those elements. However, we know neither the witnesses of this

predicate nor its intensional structure, therefore the equality in a quotient type

87

only implies the esquash of the equality predicate:

Γ; u : x = y ∈ (A//E); v : [[E[x; y]]]; ∆[u] ` C[u]

Γ; u : x = y ∈ (A//E); ∆[u] ` C[u]
(IquotEqualElim)

The opposite is also true — we only need to prove the esquash of the equality

predicate to be able to conclude that corresponding elements are equal in the

quotient type:

Γ ` [[E[x; y]]] Γ ` x ∈ (A//E) Γ ` y ∈ (A//E)

Γ ` x = y ∈ (A//E)
(IquotMemEqual)

Note that this rule has equality 17 in the quotient type in both the conclusion and

the assumptions, so we still need a “base case” — an element of a base type will

also be an element of any well-typed quotient of that type:

Γ ` x ∈ A Γ ` (A//E) Type

Γ ` x ∈ (A//E)
(IquotMemIntro)

Finally, we need to provide an elimination rule for quotient types. It turns out

that being functional over some equivalence class of a quotient type is the same as

being functional over an ND of any two elements of such class, so we can formulate

the elimination rule as follows:

Γ; u1 : A; u2 : A; v : E[u1; u2]; x : ND; ∆[ndx{u1; u2}] ` [C[ndx{u1; u2}]]
Γ; u : A//E; ∆[u] ` [C[u]]

(IquotElim)

5.7.3 Intensional Quotient Type: Derived Rules

From (IquotElim) and (SquashEqual) we can derive

Γ; u1 : A; u2 : A; v : E[u1; u2]; x : ND; ∆[ndx{u1; u2}] ` t[u1] = t[u2] ∈ C

Γ; u : A//E; ∆[u] ` t[u] ∈ C

(IquotElim2)

17As we explained in Remark 5.1.1, in Martin-Löf type theory membership is
just a particular case of the equality.

88

From (IquotEqualElim) and (EsquashElim2), we can derive

Γ; u : x = y ∈ (A//E); v : [E[x; y]]; ∆[u] ` C[u]

Γ; u : x = y ∈ (A//E); ∆[u] ` E[x; y] Type

Γ; u : x = y ∈ (A//E); ∆[u] ` C[u]
(IquotEqualElim2)

which is equivalent to NuPRL’s (quotient-equalityElimination) (see Appendix A.2.

However, (IquotEqualElim) is more general than (quotient-equalityElimination).

Example 5.7.1. We now can prove things like x : ND; y : ND ` ndx{2; 4} =

ndy{4; 6} ∈ Z2 where Z2 is Z quotiented over a “mod 2” equivalence relation.

5.8 Indexed Collections

5.8.1 Indexed and Predicated Collections

Consider an arbitrary type T in universe U. We want to define the type of col-

lections of elements of T . Such a type turned out to be very useful for various

verification tasks as a natural way of representing sets of objects of a certain type

(states, transitions, etc). We also want to formalize collections in the most general

way possible, without assuming anything about T . In particular, we do not want

to assume that T is enumerable or that equality on T is decidable. And in fact,

the constant problems we were facing when trying to formalize collections properly

were the main reason for the research that lead to this work on quotient types.

There are at least two different approaches we can take to start formalizing

such collections.

1. We can start formalizing collections as pairs consisting of an index set I : U

and an index function f : (I → T). In other words, we can start with the

type I : U× (I → T).

89

2. We can start formalizing collections by concentrating on membership predi-

cates of collections. In other words, we can start with the type T → Prop,

where Prop is a type (universe) of propositions.

It is easy to see that these two approaches are equivalent. Indeed, if we have

a pair 〈I, f〉, we can get a predicate λt. ∃i ∈ I. f(i) = t ∈ T and if we have a

predicate P , we can take a pair 〈{t : T | P (t)}, λt. t〉. Because of this isomorphism,

everywhere below we will allow ourselves to use T → Prop as a base for the

collection type even though I : U× (I → T) is a little closer to our intuition about

collections.

Clearly, the type T → Prop is not quite what we want yet since two different

predicates from that type can represent the same collection. An obvious way of

addressing this problem is to use a quotient type. In other words, we want to

define the type of collections as

Coli{T} := c1, c2 : (T → U)//(∀t ∈ T. c1(t) ⇔ c2(t)). (5.1)

5.8.2 Collections: the Problem

Once we have defined the type of collections, the next natural step is to start

defining various basic operations on that type. In particular, we want to have the

following operations:

• A predicate telling us whether some element is a member of some collection:

∀c ∈ Coli{T}.∀t ∈ T. mem(c; t) ∈ Prop

• An operator that would produce a union of a family of collections:

∀I ∈ U. ∀C ∈ (I → Coli{T}).
⋃
i∈I

C(i) ∈ Coli{T}

90

And we want our operators to have the following natural properties:

• ∀c ∈ T → U.∀t ∈ T. c(t) ⇒ mem(c; t)

• ∀c ∈ T → U.∀t ∈ T.¬c(t) ⇒ ¬mem(c; t)

• ∀c1, c2 ∈ Coli{T}.
((
∀t : T.

(
mem(c1; t) ⇔ mem(c2; t)

)) ⇔ c1 = c2 ∈ Coli{T}
)

(note that the ⇐ direction follows from the typing requirement for mem).

• ∀I ∈ U.∀C : I → Coli{T}.∀t ∈ T.
(∃i : I. mem(C(i); t) ⇒ mem(

⋃
i∈I

C(i); t)
)

Note that we do not require an implication in the opposite direction since

that would mean that we will have to be able to reconstruct i constructively

just from some indirect knowledge that it exists. Instead we only require

• ∀I ∈ U, C ∈ I → Coli{T}, t ∈ T.

(
¬

(
∃i : I. mem

(
C(i); t

))⇒¬
(
mem

(⋃
i∈I

C(i); t
)))

It turned out that formulating these operations with these properties is very

difficult 18 in NuPRL-4 type theory with its monolithic approach to quotient types.

The problems we were constantly experiencing when trying to come up with a

solution included mem erroneously returning an element of Prop// ⇔ instead of

Prop, union being able to accept only arguments of type

C1, C2 :
(
I → (T → Prop)

)
//

(∀i ∈ I. ∀t ∈ T C1(i; t) ⇔ C2(i; t)
)

(which is a subtype of the I → Coli{T} type that we are interested in), etc.

5.8.3 Collections: a Possible Solution

Now that we have [] and [[]] operators, it is relatively easy to give the proper def-

initions. If we take mem(c; t) := [[c(t)]] and
⋃
i∈I

C(i) := λt.∃i ∈ I.mem(C(i); t), we

18Several members of NuPRL community made numerous attempts to come up
with a satisfactory formalization. The formalization presented in this chapter was
the only one that worked.

91

can prove all the properties listed in Section 5.8.2. These proofs were successfully

carried out in the MetaPRL proof development system [Hic01, HNK+, HAB+].

5.9 Related Work

Semantically speaking, in this chapter we formalize exactly the same quotient types

as NuPRL does. However the formalization presented here strictly subsumes the

NuPRL’s one. All the NuPRL rules can be derived from the rules presented in this

chapter. Consequently, in a system that supports a derived rules mechanism, any

proof that uses the original NuPRL axiomatization for quotient types would still

be valid under our modular axiomatization. For a more detailed comparison of the

two axiomatizations see Appendix A.2.1.

In [Cou01] Pierre Courtieu attempts to add to Coq’s Calculus of Constructions a

notion very similar to quotient type. Instead of aiming at “general” quotient type,

[Cou01] considers types that have a “normalization” function that, essentially,

maps all the members of each equivalence class to a canonical member of the

class. Courtieu shows how by equipping a quotient type with such normalization

function, one can substantially simplify handling of such a quotient type. In a

sense, esquash works the same way — it acts as a normalization function for the

Prop//⇔. The main difference here is that instead of considering a normalization

function that returns an existing element of each equivalence class, with esquash

we utilize the open-ended nature of the type theory to equip each equivalence class

with a new normal element.

In [Hof95a, Hof95b] Martin Hofmann have studied the intensional models for

quotient types in great detail. This work is in a way complimentary to such studies

— here we assume that we already have some appropriate semantical foundation

92

that allows quotient types and try to come up with an axiomatization that would

be most useful in an automated proof assistant.

Chapter 6

Functionality and Equality in Type

Theory
In Chapter 5 we saw how the axiomatization of the quotient types can be improved

by making it more modular. Still, even with these enhancements the axiomatiza-

tion appears to be insufficient in certain cases. In Section 6.2 we will explore some

statements that are clearly true in the PER semantics (cf. Section 5.1.2), but are

believed unprovable in the current axiomatization of the type theory.

It turns out that the limitation lies not in the axiomatization of the quotient

type, but in the general treatment of equality. As we will explain in Section 6.4,

it appears that the common formalization of type theory does not prohibit an

existence of two types that are unequal despite having the same members and

the same equality relation. In Section 6.5 we will show how to overcome this

limitation by adding a natural general rule stating the uniqueness of a type with a

given members and equality relation. Such a rule makes the theory substantially

more complete and closer to our intuition and to the PER semantics.

6.1 Introduction to Equality Relations in Type Theory

First, we need to explain several type theory constructions and concepts.

6.1.1 Subtyping and Extensional Equality

Very informally speaking, A can be considered a subtype of B (denoted A ⊆ B) iff

any function that takes elements of B as input will also work if given an element

93

94

of A as input. In other words, A can be considered a subtype of B when for any

f and C, whenever f ∈ B → C, then also f ∈ A → C.

In PER semantics (cf. Section 5.1.2) this means that A ⊆ B iff every element

of A is also an element of B and whenever two elements are equal in A, they

are also equal in B. In other words, A is a subtype of B if A’s equality relation

(considered as a set of pairs) is a subset of B’s equality relation.

Example 6.1.1. If T is a type and P1, P2 are predicates on T such that ∀t :

T.P1(t) ⇒ P2(t), then {t : T | P1(t)} ⊆ {t : T | P2(t)}.

Example 6.1.2. Z4 ⊆ Z2 (where Zn is Z//(mod n) — the type of integers quotiented

over the “mod n” relation) since whenever two integers are equal mod 4 they will

also be equal mod 2.

Remark 6.1.3. Note that in Example 6.1.2 above, the subtype actually has more

distinct elements than the supertype. This may seem counterintuitive at first, but

it does follow the informal explanation we gave at the beginning of this section.

Indeed, as we explained in Example 5.1.2, if f is in Z2 → C, then it must take

equal elements of Z2 to equal elements of C. But if f respects the mod 2, then it

would definitely respect a weaker mod 4 equality relation and f will be in Z4 → C.

The rules for subtype are the following: 1

Γ; x : A ` x ∈ B Γ ` A Type

Γ ` A ⊆ B
(SubtypeIntro)

Γ ` A ⊆ B Γ ` t1 = t2 ∈ A

Γ ` t1 = t2 ∈ B
(SubtypeElim)

Remark 6.1.4. It is pretty easy to see that A ⊆ B iff λx.x ∈ (A → B) (provided

both A and B are well-formed types).

1As in previous chapter, we omit “technical” rules that are not necessary for
understanding the work presented here.

95

We have briefly mentioned extensional equality on types in Example 5.1.5. In

PER semantics, two types are considered extensionally equal when they have the

same elements and equality. In other words, A =e B iff A ⊆ B and B ⊆ A.

6.1.2 Intersection Type

As we will see in Section 6.2 there is a substantial gap between the PER under-

standing of the extensional equality and what follows from the existing axiomatiza-

tions. In order to demonstrate this gap we will use the quotient type (as presented

in Section 5.7) and the intersection type [CDC80, Pot80, Pie91].

Informally speaking, A
⋂

B is the largest (with respect to the subtyping re-

lation) type that is a subtype of both A and B. In PER semantics, A
⋂

B is a

type whose equality relation is the intersection of equality relations of A and B.

In other words, something is a member of A
⋂

B iff it is a member of both A and

B; and two elements are equal in A
⋂

B iff they are equal in both A and B.

Example 6.1.5. If T is a type and P1, P2 are predicates on T , then

(
{t : T | P1(t)}

⋂
{t : T | P2(t)}

)
=e {t : T | P1(t) ∧ P2(t)}

Here the equality on common members is the same and to take the intersection of

members we only need to combine the set membership predicates.

Example 6.1.6. Suppose we have some type T and two equivalence relations E1, E2

on T . Then according to the PER model the following must be true:

(T//E1)
⋂

(T//E2) =e T//(E1 ∧ E2) (6.1)

Indeed, both types have the same members (same as in T), and similarly to Ex-

ample 6.1.5 above, to take the intersection of equality relations we just need to

conjoin the quotient equality predicates.

96

The rules for the intersection type are the following: 2

Γ ` t1 = t2 ∈ A Γ ` t1 = t2 ∈ B

Γ ` t1 = t2 ∈ (A
⋂

B)
(IsectEq)

Γ; x : (A
⋂

B); ∆[x]; a : A; b : B ` C[a; b]

Γ; x : (A
⋂

B); ∆[x] ` C[a; b]
(IsectElim)

6.1.3 Functionality Semantics of Sequents

One might think that the (IsectElim) rule above is unnecessarily complicated. To

see why it can not be replaced with something as simple as, for example

Γ; x : A; x ∈ B; ∆[x] ` C[x]

Γ; x : (A
⋂

B); ∆[x] ` C[x]
(IsectElimWrong)

we have to take into account the PER semantics of sequents. The key to under-

standing the PER semantics of sequents is the rule

x : A ` t[x] ∈ B

` λx.t[x] ∈ (A → B)
(FunMemIntro)

(which is an extremely natural rule that we would expect to be true in any “rea-

sonable” semantics). We know (see Example 5.1.2) that in order for “λx.t[x] ∈
(A → B)” to be true, t has to respect A’s equality relation. Hence in order for the

sequent x : A ` t[x] ∈ B to be considered true, it is insufficient for t[x] to be in B

for all x ∈ A and it is necessary for t to also map equal elements of A into equal

elements of B.

As shown in [All87a] the way to extend the above to the case of multiple

hypotheses in a sequent is to specify that Γ ` t ∈ C is valid when

∀~x.

(
~x ∈ Γ[~x] & ∀~y. (~x = ~y ∈ Γ[~x] ⇒ Γ[~x] = Γ[~y])

) ⇒
∀~y.(~x = ~y ∈ Γ[~x] ⇒ t[~x] = t[~y] ∈ C[~x] = C[~y])

 (6.2)

2Here we present Alexei Kopylov’s formulation of the rules (as they are currently
implemented in the MetaPRL system [HAB+]) which is a simplification of the
formulation presented in [Hic01, Section 14.22].

97

where Γ is x1 : A1; x2 : A2[x1]; . . . ; xn : An[x1; . . . ; xn−1], both t and C potentially

have free occurrences of xi, “~x ∈ Γ[~y]” is an abbreviation for “for all i = 1..n,

xi ∈ Ai[y1; . . . ; yi−1]”, “~x = ~y ∈ Γ[~z]” is an abbreviation for “for all i = 1..n,

xi = yi ∈ Ai[z1; . . . ; zi−1]”, “Γ[~x] = Γ[~y]” is an abbreviation for “for all i = 1..n,

Ai[x1; . . . ; xi−1] = Ai[y1; . . . ; yi−1], and “u = v ∈ A = B” is an abbreviation for

“A = B and u = v ∈ A”

Informally, (6.2) states that for all the xi such that each Ai is well-formed and

respects the equality relation of Aj (for all j < i), then t has to be a well-formed

member of C and both t and C have to respect the equality relations of all the Ai.

Now we can explain what is wrong with the (IsectElimWrong) “rule”. There,

unless A is a subtype of B, x ∈ B is not functional over x : A. That makes it

possible for the assumption of the rule to be trivially true, while the conclusion

can still easily be false.

Remark 6.1.7. The arrangement of quantifiers in (6.2) is somewhat arbitrary. There

are two other meaningful ways of formulating the sequents validity. However

one of them makes the natural induction rule invalid in certain cases and the

other [Men88, Section 4.3] makes the ND and quotient elimination rules invalid.

6.2 The Gap

For most type constructors their axiomatization gives an exact description of what

members and what equality relation a constructed type must have. For example,

from (IquotMemEqual) and (IquotEqualElim) (see Section 5.7) we know that the

quotient type has the equality relation specified by its equality predicate. Similarly,

we know that A
⋂

B type has the equality relation that is the intersection of

equality relations of A and B. However, what we do not know is whether type’s

98

equality relation uniquely (with respect to extensional equality) determines that

type.

It turns out that although (6.1) of Example 6.1.6 is trivially true in PER

semantics, it appears to be unprovable in our type theory. It is easy to prove that

two types have the same equality relation, 3 but it does not seem possible to prove

that those types are actually extensionally equal.

Remark 6.2.1. Note that only the ⊇ direction is hard, the ⊆ direction has a very

straightforward proof.

As we will see in Section 6.4 it is possible to come up with a semantics (similar

to that of [All87a]) that assigns each type not only a partial equality relation on

terms, but some other information as well (for example, a second equality-like

relation). In such semantics, most of the rules we have discussed so far will be

valid, however the sequent

x :
(
(A//E1)

⋂
(A//E2)

) ` x ∈ (
A//(E1 ∧ E2)

)

would not be valid there (for some A and Ei), even despite the two types having the

same equality relation. Moreover, there are several variations of such non-standard

semantics, with different (and often very small) sets of rules being invalid in each

one.

It is still possible (although unlikely) that there exists some esoteric proof

of (6.1) (which, clearly, would have to use at least one rule from each set of rules

that contradict a particular non-standard semantics). However there definitely

3By establishing

∀x, y ∈ T. x = y ∈ (
(T//E1)

⋂
(T//E2)

) ⇒ x = y ∈ (
T//(E1 ∧ E2)

)

99

does not exist any straightforward derivation that would correspond to the intuition

of the PER approach to understanding type theory. This reveals a significant gap

between the existing type theory axiomatization and the PER models. It also

shows that a number of very simple statements (and more importantly — a number

of statements that we would like to be able to prove in our type theory) fall into

this gap. Just consider the following instance of (6.1):

Example 6.2.2. It is trivial to see that in PER semantics Z2

⋂
Z3 =e Z6 (where

Zn is Z quotiented over a “mod n” equivalence relation) since both sides have the

same members (all natural numbers, same as Z) and the same equality relation

(since being equal both mod 2 and mod 3 is equivalent to being equal mod 6).

It appears that there is no way to formalize the above reasoning in the current

version of type theory. And while the equality can still be proved, the proof has to

use a lot of facts about the integer type, far beyond just simple arithmetical facts

about mods.

6.3 Functionality Structures

As we have mentioned in Remark 6.1.4, A ⊆ B iff λx.x ∈ (A → B). In order

for some function to be a member of A → B, it has to be functional over A,

in oder words it has to respect functionality structures (such as membership and

equalities) of A. Similarly, in order for A to be a subtype of B it should be the

case that B contains all functionality structures that A contains.

Now let us put aside the PER notion that the only functionality structures are

membership and equality and explore type theory rules from a point of view of

arbitrary functionality structures. For example, for the intersection type we can

prove (A
⋂

B) ⊆ A and (A
⋂

B) ⊆ B, which means that A
⋂

B can only have

100

functionality structures that are present in both A and B. We can also derive

x : C ` x ∈ A x : C ` x ∈ B

x : C ` x ∈ (A
⋂

B)

which means that A
⋂

B is the largest type containing all functionality structures

that both A and B contain.

Similarly, for the quotient constructor we can derive

x : A; y : A; u : E[x; y] ` x = y ∈ B

x : (A//E) ` x ∈ B

which means that A//E is the smallest type containing all functionality structures

of A and equivalence relation E.

As we will see in the next section, most of the rules are compatible with some

functionality structures that go beyond just an equality relation. And in a model

with such additional functionality structures it may be possible for two types to

have different functionality structures (and hence not be extensionally equal) while

having the same equality relation. In other words, with existing rules it might

possible to have a model where a type is not uniquely determined by its equality

relation. In particular, it might be possible to have a model where the intersection

type of (6.1) more functionality structures, then the quotient and equality (6.1)

no longer holds.

6.4 Non-standard Model

6.4.1 A Non-standard Functionality Structure

In this section we will sketch a model of the NuPRL type theory where types have

some “functionality structure” (as described in Section 6.3) beyond just an equality

relation. Namely, in this model each type is going to be associated with both an

101

equality relation (as in the usual PER model) and a special relation ≺. We will

require that ≺ respects equality (e.g. =⊆≺).

To provide a formal description of this model, we will follow the recursive

approach of [All87a]. In [All87a, Section 4.2] Stuart Allen shows how to define

recursively a two-place relation τ that assigns equality relations to terms repre-

senting types. The same way we can define a three-place τ ′ such that τ ′(T, α, β)

would mean that T is a type with equality relation α and the ≺-relation β. We can

make sure that ∀T, α, β. τ ′(T, α, β) implies (α ⊆ β). Following [All87a] we will de-

note “∃α, β. τ ′(T, α, β) & α(a, b)” as “a = b ∈ T” and “∃α, β. τ ′(T, α, β) & β(a, b)”

as “a ≺ b ∈ T”.

Most of the steps defining τ ′ for complex types from more simple ones are the

same as for τ in [All87a]. In particular, the equality in a complex type is defined

based on equality in simpler ones. The ≺ relation in a complex type is defined in

a similar manner based on ≺ in simpler types.

Example 6.4.1. The equality and ≺ for a product type are defined the usual way:

〈a, b〉 = 〈a′, b′〉 ∈ A×B iff a = a′ ∈ A and b = b′ ∈ B

〈a, b〉 ≺ 〈a′, b′〉 ∈ A×B iff a ≺ a′ ∈ A and b ≺ b′ ∈ B

Similarly, for the types themselves:

(A×B) = (A′ ×B′) iff (A = A′ and B = B′)

(A×B) ≺ (A′ ×B′) iff (A ≺ A′ and B ≺ B′)

There are a few exceptions, mainly where the functionality requirements or an

equality type is concerned. In order for something to be functional in this model,

102

it has to respect both the equality and the ≺. In particular, for functions we define

f ∈ (A → B) iff ∀a, a′ ∈ A.

(
(a = a′ ∈ A) implies (f(a) = f(a′) ∈ B

)

and

(
(a ≺ a′ ∈ A) implies (f(a) ≺ f(a′) ∈ B

)

while equality and ≺ for functions are still defined the same way as in ordinary

PER models:

f = f ′ ∈ (A → B) iff ∀a ∈ A. (f(a) = f ′(a) ∈ B

f ≺ f ′ ∈ (A → B) iff ∀a ∈ A. (f(a) ≺ f ′(a) ∈ B

Remark 6.4.2. Still, the ≺ on function types is defined the usual way:

(A → B) ≺ (A′ → B′) iff
(
(A ≺ A′) and (B ≺ B′)

)

There is no contravariance in the function domain (as it happens, for example,

with subtyping relation). This follows from the fact that the → operator itself

needs to be functional (as a two-place function from a type universe to itself),

which means that it has to respect ≺ on each of its arguments.

As we mentioned in Section 6.3 A ⊆ B informally means that B contains all

the functionality structures of A and A =e B means that A and B have identical

functionality structures. In the ≺model this translates into requiring (=A) ⊆ (=B)

and (≺A) ⊆ (≺B) for A ⊆ B and requiring that (=A) = (=B) and (≺A) = (≺B)

for A =e B.

Similarly, A
⋂

B is a type whose functionality structures are intersections of

functionality structures on A and B:

a = b ∈ (A
⋂

B) iff
(
a = b ∈ A and a = b ∈ B

)

a ≺ b ∈ (A
⋂

B) iff
(
a ≺ b ∈ A and a ≺ b ∈ B

)

103

From Section 6.3 we know that A//E must be the smallest type such that

A ⊆ (A//E) which includes E as equality. In the ≺ model this means that ≺A//E

must be the transitive closure of (≺A) ∪ (=A//E) and =A//E must be E limited to

members of A.

6.4.2 A Potential Counterexample

While we will continue defining our ≺ model of type theory in Section 6.4.3, we

have already given enough details to be able to explain what happens to (6.1) in

this model.

Consider some type T that has four elements — a, b, c and d that are all

non-equal (in other words, T ’s equality relation is trivial). The only non-trivial ≺
relations in T are a ≺ b ∈ T and c ≺ d ∈ T . Now consider E1 that makes a and c

equal and E2 that makes b and d equal. 4

For this T , T//(E1 ∧E2) will be the same as T since E1(x, y) and E2(x, y) will

only be simultaneously true when x = y ∈ T . However we would have a ≺ d ∈
(T//E1) and a ≺ d ∈ (T//E2) (since ≺ has to respect the equality relation), so

we’ll have a ≺ d ∈ (
(T//E1)

⋂
(T//E2)

)
, therefore the two types T//(E1 ∧ E2) and

(T//E1)
⋂

(T//E2) of (6.1) will have different ≺ relations and will be unequal.

6.4.3 Completing the Model

There seems to be many alternative ways of formulating the remaining definitions

in the model. We will briefly describe one of them.

4It is easy to make sure such E1 and E2 are well-formed and functional over T
— for example by enumerating all the possible equalities: E1[x; y] := (x = a ∈
T ∧ y = a ∈ T) ∨ (x = a ∈ T ∧ y = c ∈ T) ∨

104

The functionality requirement for sequents may be defined in the following way:

∀~x.

~x ∈ Γ[~x] & ∀~y.

(~x = ~y ∈ Γ[~x] ⇒ Γ[~x] = Γ[~y]) &

(~x ≺ ~y ∈ Γ[~x] ⇒ Γ[~x] ≺ Γ[~y])

implies

∀~y.

(~x = ~y ∈ Γ[~x] ⇒ t[~x] = t[~y] ∈ C[~x] = C[~y]) &

(~x ≺ ~y ∈ Γ[~x] ⇒ t[~x] ≺ t[~y] ∈ C[~x] ≺ C[~y])

Note that in general we do not require two types in a ≺ relation to be in any

way “compatible” with each other. We even allow situations when A ≺ B is true

despite one type being empty while the other is not. This requires us to be very

careful when defining the meaning of sequents in this model. This is also the reason

the definition is asymmetric.

The ≺ on equality types would also be somewhat asymmetric:

(a = b ∈ T) ≺ (a′ = b′ ∈ T ′) iff
(
(a ≺ a′ ∈ T) and (b ≺ b′ ∈ T) and (T ≺ T ′)

)

The same asymmetry would exist for the dependent product too:

(〈a, b〉 ≺ 〈a′, b′〉 ∈ (x : A×B[x]) iff a ≺ a′ ∈ A and b ≺ b′ ∈ B[a]

6.4.4 Other Interesting Non-standard Models

One can try to create a non-standard model by adding an extra equivalence relation

to each type (in addition to the usual equality relation, similar to how we have

added an extra relation in our model above). If we add an extra equivalence

relation F such that F ⊆ E (where E is the usual equality relation), then we

would get a reasonable model, but it would not be a counterexample — (6.1) will

still be true in such a model.

105

We could also try to add an extra equivalence relation ≈ such that E ⊆≈.

In order for the equality predicate to be well-formed in such model, we’ll have to

define (a = b ∈ T) ≈ (a′ = b′ ∈ T) as (a ≈′ a ∈ T) ∧ (b ≈ b′ ∈ T). Since ≈
does not imply equality, we can have (a = b ∈ T) ≈ (a′ = b′ ∈ T) and a = b ∈ T

without a′ = b′ ∈ T . This means that we might have A ≈ B where A and B

have different membership relations, even have one empty while other is not. It is

unclear whether there exists a reasonable definition of (a = b ∈ T) ≈ (a′ = b′ ∈ T ′)

that would make this a valid model (just consider a case when a is not a member

of T ′ and a′ is not a member of T).

6.5 Uniquely Defining a Type by its Equality Relation

In the previous section we have demonstrated that the type theory can have some

pretty unexpected models. We can eliminate these undesired models by adding a

new rule stating that a type is uniquely determined by its equality relation. There

are many alternative ways of formulating such a rule. One of them is the following:

Γ ` X ⊆ A ⊆ (X
i
//True)

Γ ` X ⊆ B ⊆ (X
i
//True)

Γ; x1 : X; x2 : X ` (x1 = x2 ∈ A) ⇔ (x1 = x2 ∈ B)

Γ ` A =e B
(EqEq)

The (EqEq) essentially says that whenever two subtypes A and B of a type

X have the same members as X and the same equality relations, then the two

types must be equal. This rule can be used to prove that (A
i
//E1)

⋂
(A

i
//E2) and

A
i
//(E1 ∧ E2) are always extensionally equal (provided both are types).

The (EqEq) is a relatively straightforward formalization of our intuition, but

at the expense of being unnecessarily complex. An equivalent simpler formulation

106

is
Γ ` A ⊆ B Γ ` B ⊆ (A

i
//True)

Γ ` B ⊆ (
u, v : A

i
//(u = v ∈ B)

) (Antiquotient)

This rule essentially says that if A and B have the same members, with A having

a more refined equality, then once A’s equality is adjusted to match B’s, then the

two types will be equal. And since the existing rules for quotient already state that

the quotient must be “small”, we only need to state that the quotient is sufficiently

“big” in the conclusion of this rule.

It is possible to simplify it further to a stronger more general rule: 5

Γ; x1 : X; x2 : X ` (x1 = x2 ∈ A) ⇒ (x1 = x2 ∈ B)

Γ; x : A; [[x ∈ X]] ` x ∈ B
(EqMemEq)

This rule mentions neither quotients nor intersection, it only talks about equal-

ity. However from this rule we can easily derive (6.1). This shows that (EqMemEq)

indeed captures a fundamental property of PER approach to the type theory.

5A large part of this simplification step was discovered by Alexei Kopylov.

Chapter 7

Propositional Markov’s Principle for

Type Theory

7.1 Introduction

In this chapter we will show that the squash operator we have presented in Sec-

tion 5.2 provides a way of formulating constructive recursive mathematics in a type

theory. This allows creating a theory where many significant aspects of classical

and constructive reasoning can coexist.

The squash operator can also be considered a modality. The propositional logic

equipped with this modality can express a principle that allows turning classical

proofs of squash-stable propositions into constructive ones. This principle is valid

in the standard type theory semantics if we consider it in the classical meta-theory.

Therefore this principle does not destroy the computational nature of type theory

in a sense that we can always extract a witness term from a derivation.

It turns out that the principle we introduce implies Markov’s principle providing

us a propositional analog of Markov’s principle. It is rather surprising that such

analog exists because normally one needs quantifiers in order to formulate Markov’s

principle.

We also show an equivalent way of defining the same principle using a mem-

bership type instead of the squash operator.

The main goal of this work is to get a better understanding of the type theory.

In practice, the NuPRL group continues to use purely intuitionistic reasoning for

most purposes. In the MetaPRL system the Markov’s principle is implemented in

107

108

a separate module which leaves the choice between the purely intuitionistic theory

and the extended theory to individual users.

Parts of this chapter is a joint work with Alexei Kopylov — see also [KN01].

7.1.1 Markov’s Constructivism

Among the many existing approaches to constructivism (see [Bee85, BR88, TvD88]

for an overview) we are especially interested in the constructive recursive mathe-

matics (CRM) approach developed by Markov [Mar54, Mar62] and in constructive

type theories (especially those that are based on Martin-Löf type theory [ML82]).

In this chapter we demonstrate how to apply the ideas of CRM to a constructive

type theory thus creating an interesting hybrid type theory that combines many

strengths of both approaches to constructive mathematics.

According to Markov’s CRM approach, constructive objects are algorithms,

where algorithms are understood as finite strings in a finite alphabet. All logical

connectives are understood computationally. That is, a statement is true if and

only if there exists an algorithm that produces a witness of this statement. For

example, a witness for ∀x.A(x)∨¬A(x) is an algorithm that for a given x tells us

either that A(x) is true (and provides a witness for A(x)) or that ¬A(x) is true

(and provides a witness for ¬A(x)). That means that ∀x.A(x)∨¬A(x) is true only

for decidable predicates A. Since not all predicates are decidable, Markov’s school

has to reject the rule of excluded middle.

Remark 7.1.1. Note that a witness of a proposition does not necessarily “prove”

that proposition. For example, ∀x.A(x) ∨ ¬A(x) is true when there is a decision

algorithm for A, but it does not necessarily mean that there exists a proof 1 that

1In this chapter we use terms proof and derivation interchangeably.

109

this algorithm works properly (i.e. always terminates and gives the correct answer).

In this respect the constructive recursive mathematics differs from the Brouwer-

Heyting-Kolmogorov’s intuitionism. There a statement is considered to be true

when there exists a proof of it. The disjunction A ∨ B is true when there is a

proof of A or there is a proof of B. Since according to Gödel, there is a statement

that can be neither proven nor falsified, we have that A ∨ ¬A is not always true.

Therefore intuitionists also reject the law of excluded middle, but for a different

reason.

The question arisen in the CRM is which means is one allowed to use in order to

establish that a particular algorithm is indeed a witness for the given proposition?

This is not an obvious question since the termination problem is undecidable.

Even if algorithm terminates for every input, we can not test it explicitly, because

there are infinitely many possible inputs. But to establish that an algorithm is

applicable to an object a, the algorithm does not have to be executed explicitly

from the beginning to the end. According to Markov [Mar62] we can prove this by

contradiction. That is, we are allowed use some classical reasoning to prove that

a particular algorithm has some particular properties.

Markov school of constructive mathematics accepts the following principle: “If

it is not a case that a program does not terminate, then it does terminate.” [Mar54,

Mar62]. The following informal reasoning justifies this principle. If we have a proof

that a program terminates using classical reasoning, then to obtain a constructive

proof of the termination, we should run the program until it stops. We know that

it must eventually stop (since we believe in classical logic). And when it stops we

will have a constructive proof of its termination.

110

7.1.2 Markov’s Principle

The Markov school uses the intuitionistic predicate arithmetic with an additional

principle (known as Markov’s principle):

∀x.(A(x) ∨ ¬A(x)) → ¬¬∃x.A(x) → ∃x.A(x) (7.1)

where variables range over natural numbers. Note that this principle does not hold

for Brouwer-Heyting-Kolmogorov’s intuitionism.

Here is the justification of this principle in the CRM framework. Assume

∀x.(A(x) ∨ ¬A(x)). Then there exists an effective procedure which for every x

decides whether A(x) or ¬A(x). To establish (7.1), we need to write a program

which would produce a witness of ∃x.A(x). We can achieve that by writing a

program which will try every natural number x and check A(x) until it finds such

an x that A(x) is true. From ¬¬∃x.A(x) we know that it can not be the case that

such x would not be found. Therefore it is impossible that this algorithm does not

terminate. Hence according to recursive constructivism it eventually stops.

Markov’s principle is an important technical tool for proving termination of

computations. Adding Markov’s principle to a traditional constructive type theory

could considerably extend the power of the latter in a pivotal class of verification

problems.

7.1.3 Type Theory

We assume the type theory under consideration adheres to the propositions-as-

types principle. As we have explained in Section 5.1.1 this principle means that a

proposition is identified with the type of all its witnesses. A proposition is consid-

ered true if the corresponding type is inhabited and is considered false otherwise.

111

This makes terms an element of a type and a witness of a proposition synonyms.

The elements of a type are actually λ–terms, i.e. programs that evaluates to a

“canonical” element of this type.

We also assume that the type theory is extensional. That is, to prove that

a term f is a function from A to B, it should be sufficient to show that for any

a ∈ A the application fa eventually evaluates to an element of the type B. This

allows us to deal with recursive functions that we can prove will always terminate.

We will use the fix operator to define recursive functions, where fix(f.p[f]) is

defined as (λx.p[xx])(λx.p[xx]), i.e. fix is the operator with the following property

fix(f.p[f]) 7→ p[fix(f.p[f])]. Although the general typing rule for fix

f : A → A ` p[f] ∈ A → A

` fixf.p[f] ∈ A → A

is unsound, but for some particular p we can prove that fix(f.p[x]) is a well-typed

function.

Note that in an extensional type theory a witness of a proposition T is not the

same as a derivation of a proposition T . In general, a witness (i.e. an element) of

the type T may potentially range from full encoding of some derivation of T to a

trivial constant.

Example 7.1.2. If V is an empty type, then every function has type V → W , e.g.

a function λx.foo is an element of (A∧¬A) → ⊥ (although λx.foo does not encode

any derivations of proposition (A ∧ ¬A) → ⊥).

Remark 7.1.3. Note that the question of whether a particular term is a witness of

a particular proposition is in general undecidable.

We assume that the type theory has a membership type — “t ∈ T” which

stands for the proposition “t is an element of type T”. The only witness of a

112

membership proposition is a special constant •.2

We assume that t ∈ A implies A. The inverse should also be true:

Property 7.1.4. If we can prove Γ ` A then there is a term t such that Γ ` t ∈ A.

Remark 7.1.5. The reason we want judgments of the form Γ ` T and not just

Γ ` t ∈ T is that we are interested in type theories that can be used as a foundation

for theorem provers. In a theorem prover situation we want user to be able to state

and prove a judgment of the for Γ ` T and have the system “extract” t from the

resulting derivation instead of being required to figure out and provide t upfront.

In this chapter we present several formal derivations. These derivations were

machine-checked in the MetaPRL system [HNK+, Hic01]. The rules used in those

derivations are summarized in Section A.1. The results of Sections 7.2, 7.3 and 7.4

are valid for any type theory containing this set of rules and satisfying Prop-

erty 7.1.4. The results of the sections Sections 7.5 and 7.6 also require an inten-

tional semantics. NuPRL is an example of a type theory that satisfies all these

constraints.

However, most of our ideas can be easily applied to an even wider class of type

theories. For example, typing rules are not really essential. Additionally, we do

not need a membership type to express Markov’s principle, we can use the squash

operator instead (Section 7.4). Markov’s principle can be used even in a purely

propositional fragment of type theory without arithmetic and quantifiers.

2MetaPRL system [Hic01, HNK+] uses the unit element () or “it” as a •, NuPRL
uses Ax and [Tho91] uses Triv.

113

7.2 Constructive Recursive Mathematics in a Type Theory

with a Membership Type

Suppose one has proved that A implies t ∈ T and ¬A also implies the same t ∈ T .

Then classically we can conclude that T is inhabited. Moreover the philosophy

of recursive constructivism allows us to conclude that T is true constructively,

because we can explicitly provide a constructive object t as an element of T . In

other words, since the witness of T (which is just t) does not depend on the proof of

t ∈ T , then T has a uniform witness regardless whether A is true or not (although

the proof that t is a witness of T may depend on A).

This argument establishes that the following type theory rule is valid according

to recursive constructivism:

Γ; x : A ` t ∈ T Γ; y : ¬A ` t ∈ T Γ ` A Type

Γ ` t ∈ T (7.2)

This rule formalizes exactly the philosophy of the recursive constructivism. In

fact, as we are going to prove in Theorem 7.4.2, the above rule implies Markov’s

principle.

Remark 7.2.1. Note that in NuPRL-like type theories t ∈ T is well-formed only

when t is in fact an element of T . Therefore the rule stating that ¬¬(t ∈ T)

implies t ∈ T would be useless. On the other hand, in NuPRL type theory (7.2) is

equivalent to

Γ ` (s ∈ T) Γ ` (t ∈ T) Γ ` ¬¬(s = t ∈ T)

Γ ` s = t ∈ T (7.3)

but the proof of (7.3) ⇒ (7.2) is very NuPRL-specific.

114

7.3 Squashed Types and Squash-Stability

Now assume that our type theory contains a “squash” operator described in Sec-

tion 5.2. In other words, for each type A we have a type [A] (“squashed A”)

which is empty if and only if A is empty and contains a single element • when A

is inhabited. Informally one can think of [A] as a proposition that says that A is

a non-empty type.

The (SquashIntro) rule of Section 5.2.2 allows us to prove that A ` [A].

However since [A] does not provide a witness for A, [A] does not always imply A;

we can only derive [A] ` ¬¬A. While [A] does not provide a witness for A in

general, in some cases we know what that witness would be when A is non-empty.

For example, we know that if t ∈ T is true, then • is the witness for the type t ∈ T .

We will call such types squash-stable.

Definition 7.3.1. A type T is squash-stable (in context Γ) when Γ; x : T ` t ∈ T

is provable for some t that does not have free occurrences of x.

The above definition is equivalent to the one given in [Jac95, Section 3.7.3]

using the squash operator:

Lemma 7.3.2. T is squash-stable in a context Γ iff Γ; v : [T] ` T is derivable.

Proof. Suppose T is squash-stable. Then we have the following derivation of Γ; v :

[T] ` T :
Γ; x : T ` t ∈ T

Γ; v : [T] ` t ∈ T

(SquashElim)

Γ; v : [T] ` T

Now assume that Γ; v : [T] ` T . Then for some term t we have Γ; v : [T] `
t ∈ T . Note that term t may depend on v, i.e. t = t[v]. We can derive the

115

following:

Γ; v : T ` T

Γ; v : T ` • ∈ [T]

(SquashMemIntro)

Γ; v : [T] ` t[v] ∈ T

Γ; v : T ` t[•] ∈ T

(Let)

Therefore T is squash-stable. ut

We have already seen that t ∈ T is a squash-stable type. The squash type

itself is also squash-stable since • ∈ [A] whenever [A] is true. Other examples of

squash-stable types include the empty type (⊥), negations of arbitrary types (¬A)

as well as conjunctions of squash-stable types.

Remark 7.3.3. Note however that a disjunction of two squash-stable types is not

necessarily squash-stable. For example, ¬A ∨ ¬¬A would not be squash-stable

unless A is decidable. Indeed, if A is undecidable, then there is no way to figure

out which of the disjuncts is true even when we know that one of them must be

true.

7.4 Classical Reasoning on Squashed Types

Squash operator gives us an alternative way of formulating constructive recursive

mathematics in a type theory. Let us consider a problem similar to the one we

have considered in Section 7.2.

Suppose we have constructively proved that A → B and (¬A) → B. It means

that there is an algorithm that produces an element of B when A is true, and

another algorithm that produces an element of B when A is false. Classically

we know that B is true, because in each case we can produce an element of B.

116

But when A is undecidable, we might not have a uniform algorithm for producing

an element of B, so B will not necessary be constructively true. In intuitionistic

setting only ¬¬B would be provable in this case.

However if B is squash-stable, then there exists an element b, such that b ∈ B

whenever B is non-empty. In this case we know that B is not an empty type

regardless of whether A is true. The constant algorithm that returns b does not

depend on the truth of A. Therefore in constructive recursive mathematics we can

conclude that B is constructively true, since we have an element b such that b ∈ B.

This reasoning establishes the following rule:

Γ; x : A ` B Γ; y : ¬A ` B Γ; v : [B] ` B Γ ` A Type

Γ ` B
(7.4)

This rule allows us to turn classical proofs of squash-stable statements into

constructive ones. It is clear that rule (7.2) from Section 7.2 is a particular instance

of (7.4). We will show that these two rules are in fact equivalent. We can also

write a simpler version of the same rule:

Γ ` ¬¬A Γ ` A Type

Γ ` [A]
(7.5)

This rules states that [A]⇔ ¬¬A or informally, A is a non-empty type if and only

if it is not an empty type.

Another way to formulate the same principle is to allow classical reasoning

inside squash operator:

Γ ` A Type

Γ ` [A ∨ ¬A]
(7.6)

The following two theorems state that all the above rules are equivalent and

that they imply Markov’s principle. This shows that we can formulate Markov’s

117

principle in a very simple language — we only need propositional language with

the modal operator “squash”.

Theorem 7.4.1. The rules (7.2), (7.4), (7.5) and (7.6) are equivalent.

Proof. (7.4) ⇒ (7.2). Take B = (t ∈ T). We know that t ∈ T is squash stable,

therefore we can apply rule (7.4) to derive (7.2).

(7.2) ⇒ (7.5).

Γ; x : A ` A

Γ; x : A ` • ∈ [A]

Γ ` ¬¬A y : ¬A; z : ¬¬A ` ⊥

Γ; y : ¬A ` ⊥
(Cut)

Γ; y : ¬A ` • ∈ [A]

(E⊥), (Cut)

Γ ` A Type

Γ ` • ∈ [A]

(7.2)

Γ ` [A]

(E∈)

(7.5) ⇒ (7.6).

It is easy to establish that ¬¬(A∨¬A) is an intuitionistic tautology. Therefore

we have the following derivation:

Γ ` A Type

Γ ` ¬¬(A ∨ ¬A) Γ ` A Type

Γ ` [A ∨ ¬A]

(7.5)

118

(7.6) ⇒ (7.4).

Γ ` A Type

Γ ` [A ∨ ¬A]

(7.6)

Γ; x : A ` B Γ; y : ¬A ` B

Γ; z : A ∨ ¬A ` B

(E∨)

Γ; z : A ∨ ¬A ` [B]

(SquashIntro)

Γ; v : [A ∨ ¬A] ` [B]

(Unsquash)

Γ; [B] ` B

Γ ` B

(Cut)

ut

Theorem 7.4.2. The rule (7.5) implies Markov’s principle in a type theory:

∀x : N.(A(x) ∨ ¬A(x)) → ¬¬∃x : N.A(x) → ∃x : N.A(x)

Proof. We need to show that the following sequent is derivable:

d : ∀x : N.(A(x) ∨ ¬A(x)); v : ¬¬∃x : N.A(x) ` ∃x : N.A(x)

The proof is a straightforward formalization of Markov’s reasoning [Mar62]. We

are given the element d of the type ∀x : N.(A(x)∨¬A(x)). Hence d is an algorithm

which decides whether A(x) holds when given a natural number x. We need to

construct a function fd which would find an x such that A(x). Let fd be the

function

fix
(
f.λx.decide

(
d(x); a. 〈x, a〉 ; b.f(x + 1)

))

that is a function such that

fd(x) =

〈x, a〉 , if A(x) is true and a ∈ A(x)

fd(x + 1), if A(x) is false

Whenever A(n) holds for some n, that n becomes an upper bound for computing

any f(n− k) (for any 0 ≤ k ≤ n). That is, one can prove that ∀k ≤ n.fd(n− k) ∈

119

∃x : N.A(x) by induction on k. Therefore fd(0) ∈ ∃x : N.A(x). Then we have the

following derivation:

d : ∀x : N.(A(x) ∨ ¬A(x)); n : N; u : A(n) ` fd(0) ∈ ∃x : N.A(x)

d : ∀x : N.(A(x) ∨ ¬A(x)); ∃x : N.A(x) ` fd(0) ∈ ∃x : N.A(x)

(E∃)

d : ∀x : N.(A(x) ∨ ¬A(x)); [∃x : N.A(x)] ` fd(0) ∈ ∃x : N.A(x)

(SquashElim2)

Now we are left to show that ¬¬∃x : N.A(x) implies [∃x : N.A(x)]. This is true

because of the rule (7.5). ut

7.5 Semantical Consistency of Markov’s Principle

Theorem 7.5.1. The rule (7.6) (as well as its equivalents — (7.2), (7.4) and (7.5))

is valid in S. Allen’s semantics [All87a, All87b] if we consider it in a classical meta-

theory.

Proof. We need to show that in every model Γ ` [A ∨ ¬A] is true when A is a

type. It is clear that whenever A is a well-formed type, [A ∨ ¬A] will also be a

well-formed type. To prove that it is a true proposition we have to find a term in

this type. Let us prove that in every model • is the witness of [A ∨ ¬A]. Since we

are in a classical meta-theory, in every model (where A is a type) and for every

instantiation of variables introduced by Γ, A is either empty or not. If A is non-

empty, then A∨¬A is non-empty and so • ∈ [A ∨ ¬A]. If A is an empty type, then

¬A is non-empty type and so, • is again in [A ∨ ¬A]. Therefore • ∈ [A ∨ ¬A]

always holds. ut

Remark 7.5.2. Note that even using a classical meta-theory we would not be able

to establish validity of Γ ` A∨¬A. Indeed, as we saw in Remark 7.3.3 disjunctions

are not necessarily squash-stable and there is no uniform witness for A ∨ ¬A.

120

Corollary 7.5.3. The rule (7.6) (and its equivalents) is consistent with the NuPRL

type theory containing the theory of partial functions [CC01].

On the other hand, the rule of excluded middle Γ ` A ∨ ¬A is known to be

inconsistent with the theory of [CC01]. In particular, in that theory we can prove

that there exists an undecidable proposition. That is, for some P the following is

provable:

¬(∀n : N.P (n) ∨ ¬P (n)) (7.7)

Therefore even using rule (7.6) we can not prove that

[∀n : N.P (n) ∨ ¬P (n)]

(which would contradict (7.7)). But we can prove a weaker statement

∀n : N.[P (n) ∨ ¬P (n)]

which does not contradict (7.7).

7.6 Squash Operator as a Modality

The squash operator can be regarded as an intuitionistic modality. It turns out

that it behaves like the lax modality (denoted by ©) in the Propositional Lax

Logic (PLL) which was developed for several different purposes independently

(see [FM97] for an overview).

PLL is an extension of intuitionistic logic with the following rules (in Gentzen

style):

Γ ` A

Γ ` [A]
Γ; A ` [B]

Γ; [A] ` [B]

PLL+ is PLL+(¬[⊥]), i.e. PLL+ has an additional rule:

Γ; A ` ⊥
Γ; [A] ` ⊥

121

PLL∗ is PLL++([A] ↔ ¬¬A). We can write this axiom as the rule in Gentzen

style:

Γ; ¬A ` ⊥
Γ ` [A]

PLL+ and PLL∗ are decidable and have natural categorical and Kripke mod-

els [FM97, AMdPR01]. They meet cut elimination property. PLL+ has the sub-

formula property. PLL∗ also has the subformula property if we define ¬A to be a

subformula of [A].

Theorem 7.6.1. Let A be a propositional formula with the squash modality. Let

Γ be a set of hypothesis of the form x : (pType) for all propositional variables p in

A. Then

(i) PLL+ ` A iff Γ ` A is derivable in the type theory without 7.6

(ii) PLL∗ ` A iff Γ ` A is derivable in the type theory with 7.6

Proof. From left to right this theorem can be proved by induction on derivation in

PLL+ (PLL∗). The right to left direction needs a semantical reasoning. We will

only outline the proof for PLL∗.

Let A′ be the formula A where all subformulas of the form [B] are replaced

by ¬¬B. If Γ ` A is derivable in the type theory with 7.6 then this sequent is

valid in the standard semantics in classical meta-theory (Theorem 7.5.1). Since

[B] ↔ ¬¬B is true in this semantics then Γ ` A′ is also true. A′ is a modal-free

formula. Therefore A′ is a valid intuitionistic formula. Hence A′ is derivable in

the intuitionistic propositional logic. Since we have [B] ↔ ¬¬B in PLL∗, we can

derive A in PLL∗. ut

Remark 7.6.2. It is possible to consider the lax modality in PLL+ as the diamond

modality in the natural intuitionistic analog of S4 (in the style of [Wij90]) with an

122

additional rule ¤A ↔ A. Note that since in intuitionistic logics ¤ and ♦ are not

interdefinable, ¤A ↔ A does not imply ♦A ↔ A.

Example 7.6.3. We can prove some basic properties of squash in PLL+:

[A]→ ¬¬A

[A]↔ [[A]]

[A ∧B]↔ ([A] ∧ [B])

[A → B]→ ([A]→ [B]), but ([A]→ [B]) → [A → B] is true only in PLL∗

[¬A]↔ ¬[A]

([A] ∨ [B]) → [A ∨B], however [A ∨B] 6→ [A] ∨ [B] even in PLL∗

We can express the notion of squash-stability in this logic as sqst(A) = [A]→
A.

Example 7.6.4. The following properties of squash-stability are derivable in PLL+:

sqst(⊥)

sqst(¬A)

sqst([A])

sqst(A) ∧ sqst(B) → sqst(A ∧B), but sqst(A) ∨ sqst(B) 6→ sqst(A ∨B)

sqst(B) → sqst(A → B)

In PLL∗ we can also prove

sqst(A) → (¬¬A → A)

7.7 Related Work

The notion of squash-stability we use is very similar to the squash-stability defined

in [Hic01, Section 14.2] and to the notion of computational redundancy [BCMS89,

Section 3.4].

123

The squash operator we use is similar to the notion of proof irrelevance [Hof95a,

Pfe01a]. Each object in a proof irrelevance type is considered to be equal to any

other object of this type. In [Pfe01a] proof irrelevance was expressed in terms of

a certain modality 4. If A is a type then 4A is a type containing all elements of

A considered equal. Using NuPRL notation we can write 4A = A//True, where

A//P is a quotient of a type A over relation P . We can prove the following chain:

A →4A → [A]→ ¬¬A

The main difference between [A] and 4A is that there is no uniform element for

4A. Therefore 4A is not squash-stable and [A] does not imply 4A. However it

seems that modal logic of 4 modality is the same as logic of squash (i.e. PLL+).

In [Jac95, Section 3.7] Paul Jackson discusses the issue of classical reasoning

in the NuPRL type theory. He uses the [∀P ∈ Prop. (P ∨ ¬P)] axiom which is

much stronger than our ∀P ∈ Prop. [P ∨ ¬P] one and is inconsistent with Allen’s

semantics and with the theory of [CC01].

As far as we know Markov’s principle in type theory was considered only by

Erik Palmgren in [Pal95]. He proved that a fragment of intensional Martin-Löf

type theory is closed under Markov’s rule:

Γ ` ¬¬∃x : A.P [x]

Γ ` ∃x : A.P [x]

where P [x] is an equality type (i.e. P [x] is t[x] = s[x] ∈ T . It is easy to see that

this formulation of Markov’s rule is not valid for type theories with undecidable

equality and, in particular, in extensional type theories.

Appendix A

A.1 Some Type Theory Rules

The judgments of the type theory are the sequents of the following form

x1 : A1; x2 : A2[x1]; . . . ; xn : An[x1, . . . , xn−1] ` C[x1, . . . , xn]

This sequent is true if we have a uniform witness t[x1, . . . , xn] such that for every

x1, . . . , xn if xi ∈ Ai[x1, . . . , xi−1] then t[x1, . . . , xn] is a member of C[x1, . . . , xn].

The inference rules are presented below1. For every type constructor we have

a well-formedness rule (W), an introduction rule (I), an elimination rule (E) and

a membership introduction rule (M).

A.1.1 Structural Rules

Γ; x : A; ∆[x] ` A
(ax)

Γ; ∆ ` A Γ; x : A; ∆ ` C

Γ; ∆ ` C
(Cut)

Γ ` a ∈ A Γ; x : A ` C[x]

Γ ` C[a]
(Let)

A.1.2 Membership Rule

Γ ` t ∈ A

Γ ` (t ∈ A) Type
(W∈)

Γ ` t ∈ A

Γ ` • ∈ (t ∈ A)
(M∈)

Γ ` A Type

Γ ` • ∈ (A Type)
(MType)

1Some of this rules are redundant. For example most of introduction rules
are derivable from their membership introduction counterparts. The (Let) rule is
derivable from the (Cut) rule using function type.

124

125

Γ; x : A; ∆[x] ` x ∈ A
(I∈)

Γ ` t ∈ A

Γ ` A
(E∈)

A.1.3 Disjunction Rules

Γ ` A Type Γ ` B Type

Γ ` A ∨B Type
(W∨)

Γ ` a ∈ A

Γ ` inl a ∈ A ∨B
(M1

∨)

Γ ` b ∈ B

Γ ` inr b ∈ A ∨B
(M2

∨)

Γ ` A

Γ ` A ∨B
(I1∨)

Γ ` B

Γ ` A1 ∨ A2

(I2∨)

Γ; x : A; ∆[inlx] ` C[inlx] Γ; y : B; ∆[inr y] ` C[inr y]

Γ; z : A; ∆[z] ∨B ` C[z]

(E∨)

A.1.4 Universal Quantifier Rules

Γ; x : A ` B[x] Type

Γ ` ∀x : A.B[x] Type
(W∀)

Γ; x : A ` fx ∈ B[x]

Γ ` f ∈ ∀x : A.B[x]
(M∀)

Γ; x : A ` B[x]

Γ ` ∀x : A.B[x]
(I∀)

Γ; f : ∀x : A.B[x]; ∆[f] ` a ∈ A

Γ; f : ∀x : A.B[x]; ∆[f] ` fa ∈ B[a]
(E∀)

A.1.5 Existential Quantifier Rules

Γ; x : A ` B[x] Type

Γ ` ∃x : A.B[x] Type
(W∃)

Γ; x : A ` a ∈ A Γ; x : A ` b ∈ B[a]

Γ ` 〈a, b〉 ∈ ∃x : A.B[x]
(M∃)

126

Γ; x : A ` a ∈ A Γ; x : A ` B[a]

Γ ` ∃x : A.B[x]
(I∃)

Γ; x : A; y : B[x]; ∆[〈x, y〉] ` C[〈x, y〉]
Γ; z : ∃x : A.B[x]; ∆[z] ` C[z]

(E∃)

A.1.6 Falsum Rules

Γ ` ⊥Type
(W⊥)

Γ; x : ⊥; ∆[x] ` C
(E⊥)

A.1.7 Computation Rules

Γ ` b ∈ T “a 7→ b”

Γ ` a ∈ T
(Reduce)

Usual reduction rules: λx.a[x] b −→ a[b], etc

A.1.8 Arithmetical Rules

Induction, etc

We assume the following definitions:

A → B = ∀x : A.B A ∧B = ∃x : A.B, where x is not free in B

¬A = A → ⊥ fix(f.p[f]) = (λx.p[xx])(λx.p[xx])

We can establish the property 7.1.4 in this fragment by a straightforward in-

duction on the derivation.

127

A.2 NuPRL-4 Quotient Rules

NuPRL-4 [CAB+86] has the following rules for the quotient type:

H ` A1 = A2 ∈ U
H; x : A1; y : A1 ` E1[u1; v1] = E2[u2; v2] ∈ U
H ` “E is an ER on A”

H ` (u1, v1 : A1//E1) = (u2, v2 : A2//E2) ∈ U
(quotientWeakEquality)

H ` (x, y : A//E) = (x, y : A//E) ∈ U
H ` a ∈ A

H ` a ∈ x, y : A//E
(quotient-memberFormation)

H ` (x, y : A//E) = (x, y : A//E) ∈ U
H ` a1 = a2 ∈ A

H ` a1 = a2 ∈ (x, y : A//E)
(quotient-memberWeakEquality)

H; u : (x, y : A//E); J ; v : A; w : A ` E[x; y] = E[x; y] ∈ U
H; u : (x, y : A//E); J ` T = T ∈ U
H; u : (x, y : A//E); J ; v : A; w : A; z : E[x; y] ` s[u] = t[u] ∈ T [u]

H; u : (x, y : A//E); J ` s = t ∈ T

(quotientElimination)

H; u : (x, y : A//E); J ; v : A; w : A ` E[x; y] = E[x; y] ∈ U
H; u : (x, y : A//E); J ` T = T ∈ U
H; u : (x, y : A//E); v : A; w : A; z : E[x; y]; J [u] ` s[u] = t[u] ∈ T [u]

H; u : (x, y : A//E); J ` s = t ∈ T

(quotientElimination-2)

128

H; u : (a = b ∈ (x, y : S//E)); [v : E[x; y]]; J ` t ∈ T

H; u : (a = b ∈ (x, y : S//E)); J ` E[x; y] = E[x; y] ∈ U{j}
H; u : (a = b ∈ (x, y : S//E)); J ` t ∈ T

(quotient-equalityElimination)

H ` x, y : A//E ∈ U H ` u, v : B//F ∈ U
H ` A = B ∈ U H; w : (A = B ∈ U); r : A; s : A ` E[x; y] ⇔ F [u; v]

H ` (x, y : A//E) = (u, v : B//F) ∈ U
(quotientEquality)

H ` (x, y : A//E) = (x, y : A//E) ∈ U
H ` s = s ∈ A H ` t = t ∈ A H ` E[x; y]

H ` s = t ∈ (x, y : A//E)

(quotient-memberEquality)

A.2.1 Comparison to the Proposed Rules

The (IquotMemEqual) rule (see Section 5.7) is similar to NuPRL-4 (quotient-

memberEquality) rule. However, in the (IquotMemEqual) rule, the first assump-

tion has the equality predicate esquashed. Also, the next two assumptions only

require x and y to be in A//E, not necessarily in A, as NuPRL-4 does (which also al-

lowed to get rid of well-typeness assumption and only leave it in (IquotMemIntro)).

These two changes make the rule much stronger than it was in NuPRL-4.

The (IquotElim) rule may look unusual, but it is just a generalization (and sim-

plification) of NuPRL-4 (quotientElimination) and (quotientElimination-2) rules.

It does not need the well-typeness assumption for E since we are using the in-

tensional quotient type. It is important to mention that while NuPRL-4 quotient

129

Table A.1: Concrete Syntax of Sequent Schemata

Description Abstract syntax Concrete syntax
Sequent turnstyle ` >-

First-order variable a ’a

Second-order variable A{H;J}[x; y] ’A<H;J>[’x;’y]

Sequent context J{H}[x] ’J<H>[’x]

Sequent example H; x : A; J[x] ` C[x] ’H; x:’A; ’J[’x] >- ’C[’x]

Rule
S1 · · · Sn

S
S1 --> · · · --> Sn --> S

elimination rules are irreversible, the (IquotElim) rule is reversible. In fact, all the

rules of Section 5.7.2 are reversible, except for the (IquotMemIntro).

The (IquotEqualElim) rule is similar to NuPRL-4 (quotient-equalityElimination)

rule, but it does not have an extra well-typeness assumption for E that is only

necessary for extensional quotient type. The (IquotEqualIntro) and (IquotMem-

Intro) rules are the same as NuPRL-4 rules (quotientWeakEquality) and (quotient-

memberFormation) and are only presented here for completeness.

A.3 Concrete Syntax of Sequent Schemata

Table A.1 describes the concrete syntax used by the MetaPRL system.

BIBLIOGRAPHY

[ABI+96] Peter B. Andrews, Matthew Bishop, Sunil Issar, Dan Nesmith, Frank
Pfenning, and Hongwei Xi. TPS: A theorem proving system for clas-
sical type theory. Journal of Automated Reasoning, 16(3):321–353,
June 1996.

[ACE+00] Stuart Allen, Robert Constable, Richard Eaton, Christoph Kre-
itz, and Lori Lorigo. The NuPRL open logical environment. In
D. McAllester, editor, Automated deduction – CADE-17 : 17th Inter-
national Conference on Automated Deduction, volume 1831 of Lecture
Notes on Artificial Intelligence, pages 170–176. Springer Verlag, 2000.

[ACHA90] Stuart F. Allen, Robert L. Constable, Douglas J. Howe, and William
Aitken. The semantics of reflected proof. In Proceedings of the Fifth
Symposium on Logic in Computer Science, pages 95–197. IEEE, June
1990.

[Acz86] Peter Aczel. The type theoretic interpretation of constructive set
theory: Inductive definition. In Logic, Methodology and Philosophy
of Science VII, pages 17–49. Elsevier Science Publishers, 1986.

[All87a] Stuart F. Allen. A Non-Type-Theoretic Semantics for Type-Theoretic
Language. PhD thesis, Cornell University, 1987.

[All87b] Stuart F. Allen. A Non-type-theoretic Definition of Martin-Löf’s
Types. In Proceedings of the Second Symposium on Logic in Computer
Science, pages 215–224. IEEE, June 1987.

[AMdPR01] Natasha Alechina, Michael Mendler, Valeria de Paiva, and Eike Rit-
ter. Categorical and Kripke semantics for constructive S4 modal logic.
In Fribourg [Fri01], pages 292–307.

[Arm00] William Y. Arms. Automated digital libraries. How effectively can
computers be used for the skilled tasks of professional librarianship?
D-Lib Magazine, 6(7/8), July/August 2000. http://www.dlib.org/
dlib/july00/arms/07arms.html.

[Asp00] David Aspinall. Proof General — A generic tool for proof develop-
ment. In Proceedings of TACAS, volume 1785 of Lecture Notes in
Computer Science, 2000. http://zermelo.dcs.ed.ac.uk/home/da/
papers/pgoutline/.

[Bac84] Roland Backhouse. A note on subtypes in Martin Löf’s theory of
types. Technical Report CSM-70, University of Essex, November
1984.

130

http://www.dlib.org/dlib/july00/arms/07arms.html
http://www.dlib.org/dlib/july00/arms/07arms.html
http://zermelo.dcs.ed.ac.uk/home/da/papers/pgoutline/
http://zermelo.dcs.ed.ac.uk/home/da/papers/pgoutline/

131

[Bat79] J. L. Bates. A Logic for Correct Program Development. PhD thesis,
Cornell University, 1979.

[BBC+96] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant,
Jean-Christophe Filliâtre, Eduardo Giménez, Hugo Herbelin, Gérard-
Mohring, Amokrane Säibi, and Benjamin Werner. The Coq Proof
Assistant Reference Manual. INRIA-Rocquencourt, CNRS and ENS
Lyon, 1996.

[BCH+00] Ken Birman, Robert Constable, Mark Hayden, Jason J. Hickey,
Christoph Kreitz, Robbert van Renesse, Ohad Rodeh, and Werner
Vogels. The Horus and Ensemble projects: Accomplishments and
limitations. In DARPA Information Survivability Conference and Ex-
position (DISCEX 2000), pages 149–161. IEEE, 2000.

[BCMS89] Roland C. Backhouse, Paul Chisholm, Grant Malcolm, and Erik Saa-
man. Do-it-yourself type theory. Formal Aspects of Computing, 1:19–
84, 1989.

[Bee85] Michael J. Beeson. Foundations of Constructive Mathematics.
Springer-Verlag, 1985.

[Bib87] W. Bibel. Automated Theorem Proving. Vieweg Verlag, Braun-
schweig, 2nd edition, 1987.

[BK91] David A. Basin and Matt Kaufmann. The Boyer-Moore prover and
NuPRL: An experimental comparison. In Gérard Huet and Gordon
Plotkin, editors, Logical Frameworks, pages 89–119. Cambridge Uni-
versity Press, 1991.

[BM79] R. S. Boyer and J. S. Moore. A Computational Logic. Academic
Press, New York, 1979.

[BR88] Douglas Bridges and Fred Richman. Varieties of Constructive Math-
ematics. Cambridge University Press, Cambridge, 1988.

[CAB+86] Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R. Cleave-
land, J. F. Cremer, R. W. Harper, Douglas J. Howe, T. B. Knoblock,
N. P. Mendler, P. Panangaden, James T. Sasaki, and Scott F. Smith.
Implementing Mathematics with the NuPRL Development System.
Prentice-Hall, NJ, 1986.

[Cal98] James Caldwell. Decidability Extracted: Synthesizing ”Correct-by-
Construction” Decision Procedures from Constructive Proofs. PhD
thesis, Cornell University, 1998. Cornell TR98-1722.

132

[CC01] Robert L. Constable and Karl Crary. Computational complexity and
induction for partial computable functions in type theory. In Wilfried
Sieg, Richard Sommer, and Carolyn Talcott, editors, Reflections on
the Foundations of Mathematics: Essays in Honor of Solomon Fefer-
man, Lecture Notes in Logic, pages 166–183. Association for Symbolic
Logic, 2001.

[CDC80] M. Coppo and M. Dezani-Ciancaglini. An extension of the basic
functionality theory for the λ-calculus. Notre Dame Journal of Formal
Logic, 21(4):685–693, 1980.

[CMT02] Victor A. Carreño, Cézar A. Muñoz, and Sophiène Tahar, editors.
Proceedings of the 15th International Conference on Theorem Prov-
ing in Higher Order Logics (TPHOLs 2002), volume 2410 of Lecture
Notes in Computer Science. Springer-Verlag, 2002.

[CNSvS94] Thierry Coquand, Bengt Nordström, Jan M. Smith, and Björn von
Sydow. Type theory and programming. Bulletin of the European
Association for Theoretical Computer Science, 52:203–228, February
1994.

[Con83] Robert L. Constable. Mathematics as programming. In Proceedings
of the Workshop on Programming and Logics, Lectures Notes in Com-
puter Science 164, pages 116–128. Springer-Verlag, 1983.

[Con98] Robert L. Constable. Types in logic, mathematics and programming.
In S. R. Buss, editor, Handbook of Proof Theory, chapter X, pages
683–786. Elsevier Science B.V., 1998.

[Cou01] Pierre Courtieu. Normalized types. In Fribourg [Fri01], pages 554–
569.

[CZ84] Robert L. Constable and D. R. Zlatin. The type theory of PL/CV3.
ACM Transactions on Programming Languages and Systems, 6(1):94–
117, January 1984.

[Dyc92] R. Dyckhoff. Contraction-free sequent calculi for intuitionistic logic.
In The Journal of Symbolic Logic, volume 57(3), September 1992.

[FM97] Matt Fairtlough and Michael Mendler. Propositional lax logic. Infor-
mation and Computation, 137(1):1–33, 1997.

[Fri01] L. Fribourg, editor. Computer Science Logic, Proceedings of the
10th Annual Conference of the EACSL, volume 2142 of Lecture
Notes in Computer Science. Springer-Verlag, 2001. http://link.

springer-ny.com/link/service/series/0558/tocs/t2142.htm.

http://link.springer-ny.com/link/service/series/0558/tocs/t2142.htm
http://link.springer-ny.com/link/service/series/0558/tocs/t2142.htm

133

[GM93] Michael Gordon and Tom Melham. Introduction to HOL: A Theorem
Proving Environment for Higher-Oder Logic. Cambridge University
Press, Cambridge, 1993.

[GMW79] Michael Gordon, Robin Milner, and Christopher Wadsworth. Edin-
burgh LCF: a mechanized logic of computation, volume 78 of Lecture
Notes in Computer Science. Springer-Verlag, NY, 1979.

[HAB+] Jason J. Hickey, Brian Aydemir, Yegor Bryukhov, Alexei Kopylov,
Aleksey Nogin, and Xin Yu. A listing of MetaPRL theories. http:

//metaprl.org/theories.pdf.

[Har96] John Harrison. HOL Light: A tutorial introduction. In Formal Meth-
ods in Computer-Aided Design (FMCAD’96), volume 1166 of Lecture
Notes in Computer Science, pages 265–269. Springer, 1996.

[Hay98] Mark Hayden. The Ensemble System. PhD thesis, Department of
Computer Science, Cornell University, Ithaca, NY, 1998.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. Journal of the Association for Computing Machinery,
40(1):143–184, January 1993. A revised and expanded verion of ’87
paper.

[Hic97] Jason J. Hickey. NuPRL-Light: An implementation framework for
higer-order logics. In William McCune, editor, Proceedings of the
14th International Conference on Automated Deduction, volume 1249
of Lecture Notes on Artificial Intelligence, pages 395–399, Berlin,
July 13–17 1997. Springer. CADE ’97. An extended version of the
paper can be found at http://www.cs.caltech.edu/~jyh/papers/
cade14_nl/default.html.

[Hic99] Jason J. Hickey. Fault-tolerant distributed theorem proving. In Har-
ald Ganzinger, editor, Proceedings of the 16th International Confer-
ence on Automated Deduction, volume 1632 of Lecture Notes in Ar-
tificial Intelligence, pages 227–231, Berlin, July 7–10 1999. Springer.
CADE ’99.

[Hic01] Jason J. Hickey. The MetaPRL Logical Programming Environment.
PhD thesis, Cornell University, Ithaca, NY, January 2001.

[HL78] Gérard P. Huet and Bernard Lang. Proving and applying program
transformations expressed with second-order patterns. Acta Infor-
matica, 11:31–55, 1978.

[HN00] Jason J. Hickey and Aleksey Nogin. Fast tactic-based theorem prov-
ing. In J. Harrison and M. Aagaard, editors, Theorem Proving in

http://metaprl.org/theories.pdf
http://metaprl.org/theories.pdf
http://www.cs.caltech.edu/~jyh/papers/cade14_nl/default.html
http://www.cs.caltech.edu/~jyh/papers/cade14_nl/default.html

134

Higher Order Logics: 13th International Conference, TPHOLs 2000,
volume 1869 of Lecture Notes in Computer Science, pages 252–266.
Springer-Verlag, 2000.

[HNK+] Jason J. Hickey, Aleksey Nogin, Alexei Kopylov, et al. MetaPRL home
page. http://metaprl.org/.

[Hof95a] Martin Hofmann. Extensional concepts in intensional Type theory.
PhD thesis, University of Edinburgh, Laboratory for Foundations of
Computer Science, July 1995.

[Hof95b] Martin Hofmann. A simple model for quotient types. In Typed Lambda
Calculus and Applications, volume 902 of Lecture Notes in Computer
Science, pages 216–234, 1995.

[How96] Douglas J. Howe. Semantic foundations for embedding HOL in
NuPRL. In Martin Wirsing and Maurice Nivat, editors, Algebraic
Methodology and Software Technology, volume 1101 of Lecture Notes
in Computer Science, pages 85–101. Springer-Verlag, Berlin, 1996.

[How98] Douglas J. Howe. A type annotation scheme for NuPRL. In Theorem
Proving in Higher-Order Logics. Springer, 1998.

[Jac95] Paul B. Jackson. Enhancing the NuPRL Proof Development System
and Applying it to Computational Abstract Algebra. PhD thesis, Cor-
nell University, Ithaca, NY, January 1995.

[KM97] Matt Kaufmann and J. Moore. An industrial strength theorem prover
for a logic based on common lisp. IEEE Transactions on Software
Engineering, 23(4):203–213, April 1997.

[KN01] Alexei Kopylov and Aleksey Nogin. Markov’s principle for proposi-
tional type theory. In Fribourg [Fri01], pages 570–584.

[KO99] Christoph Kreitz and Jens Otten. Connection-based theorem proving
in classical and non-classical logics. Journal for Universal Computer
Science, Special Issue on Integration of Deductive Systems, 5(3):88–
112, 1999.

[Kop00] Alexei Kopylov. Dependent intersection: A new way of defining
records in type theory. Department of Computer Science TR2000-
1809, Cornell University, 2000.

[KS00] Christoph Kreitz and Stephan Schmitt. A uniform procedure for
converting matrix proofs into sequent-style systems. Journal of In-
formation and Computation, 162(1–2):226–254, 2000.

http://metaprl.org/

135

[LKvR+99] Xiaoming Liu, Christoph Kreitz, Robbert van Renesse, Jason J.
Hickey, Mark Hayden, Kenneth Birman, and Robert Constable.
Building reliable, high-performance communication systems from
components. In 17th ACM Symposium on Operating Systems Princi-
ples, December 1999.

[LSBB92] R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A high-
performance theorem prover. Journal of Automated Reasoning, 8:183–
212, 1992.

[MA94] Conal L. Mannion and Stuart F. Allen. A notation for computer aided
mathematics. Department of Computer Science TR94-1465, Cornell
University, Ithaca, NY, November 1994.

[Mar54] A.A. Markov. On the continuity of constructive functions. Uspekhi
Matematicheskikh Nauk, 9/3(61):226–230, 1954. In Russian.

[Mar62] A.A. Markov. On constructive mathematics. Trudy Matematich-
eskogo Instituta imeni V.A. Steklova, 67:8–14, 1962. In Russian. En-
glish Translation: A.M.S. Translations, series 2, vol.98, pp. 1-9. MR
27#3528.

[May97] S. Tobias Mayr. Generating primitive proofs from SupInf. Commu-
nicated to the NuPRL group at Cornell University, 1997.

[McC63] J. McCarthy. A basis for a mathematical theory of computation. In
P. Braffort and D. Hirschberg, editors, Computer Programming and
Formal Systems, pages 33–70. Amsterdam:North-Holland, 1963.

[McC94] William W. McCune. Otter 3.0 reference manual and guide. Technical
Report ANL-94/6, Argonne National Laboratory, January 1994. See
also http://www-unix.mcs.anl.gov/AR/otter/.

[McC97] William W. McCune. 33 basic test problems: A practical evaluation
of some paramodulation strategies. In Robert Veroff, editor, Au-
tomated Reasoning and its Applications: Essays in Honor of Larry
Wos, chapter 5, pages 71–114. MIT Press, 1997. http://www-unix.
mcs.anl.gov/~mccune/papers/33-basic-test-problems/.

[Men88] P.F. Mendler. Inductive Definition in Type Theory. PhD thesis, Cor-
nell University, Ithaca, NY, 1988.

[ML82] Per Martin-Löf. Constructive mathematics and computer program-
ming. In Proceedings of the Sixth International Congress for Logic,
Methodology, and Philosophy of Science, pages 153–175, Amsterdam,
1982. North Holland.

http://www-unix.mcs.anl.gov/AR/otter/
http://www-unix.mcs.anl.gov/~mccune/papers/33-basic-test-problems/
http://www-unix.mcs.anl.gov/~mccune/papers/33-basic-test-problems/

136

[MN94] L. Magnusson and B. Nordström. The ALF proof editor and its proof
engine. In Henk Barendregt and Tobias Nipkow, editors, Types for
Proofs and Programs. International Workshop TYPES’93, volume
806 of Lecture Notes in Computer Science, pages 213–237. Springer-
Verlag, 1994.

[NH02] Aleksey Nogin and Jason Hickey. Sequent schema for derived rules.
In Carreño et al. [CMT02], pages 281–297. See also http://nogin.

org/papers/derived_rules.html.

[Nog02a] Aleksey Nogin. Quotient types — a modular approach. Department
of Computer Science TR2002-1869, Cornell University, April 2002.
See also http://nogin.org/papers/quotients.html.

[Nog02b] Aleksey Nogin. Quotient types: A modular approach. In Carreño
et al. [CMT02], pages 263–280. See also http://nogin.org/papers/

quotients.html.

[NP83] Bengt Nordström and Kent Petersson. Types and specifications. In
IFIP’93. Elsvier, 1983.

[NPS90] Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming
in Martin-Löf ’s Type Theory. Oxford Sciences Publication, Oxford,
1990.

[NSM01] Pavel Naumov, Mark-Olivar Stehr, and José Meseguer. The
HOL/NuPRL proof translator: A practical approach to formal inter-
operability. In The 14th International Conference on Theorem Prov-
ing in Higher Order Logics, Edinburgh, Scotland, Lecture Notes in
Computer Science, pages 329–345. Springer-Verlag, September 2001.

[ORS] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification
system. pages 748–752.

[Pal95] Erik Palmgren. The Friedman translation for Martin-Löf’s type the-
ory. Mathematical Logic Quarterly, 41:314–326, 1995.

[Pau94] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume
828 of Lecture Notes in Computer Science. Springer-Verlag, New
York, 1994.

[PD01] Frank Pfenning and Rowan Davies. Judgmental reconstruction of
modal logic. Mathematical Structures in Computer Science, 11(4),
August 2001.

[PE88] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In
Proceedings of the ACM SIGPLAN ’88 Conference on Programming

http://nogin.org/papers/derived_rules.html
http://nogin.org/papers/derived_rules.html
http://cs-tr.cs.cornell.edu/Dienst/UI/1.0/Display/ncstrl.cornell/TR2002-1869
http://nogin.org/papers/quotients.html
http://nogin.org/papers/quotients.html
http://nogin.org/papers/quotients.html

137

Language Design and Implementation (PLDI), pages 199–208, At-
lanta, Georgia, June 1988. ACM Press.

[Pfe89] Frank Pfenning. Elf: a language for logic definition and verified
metaprogramming. In Proceedings of Fourth Annual Symposium on
Logic in Computer Science, pages 313–322, Pacific Grove, California,
June 1989. IEEE Computer Society Press.

[Pfe01a] Frank Pfenning. Intensionality, extensionality, and proof irrelevance
in modal type theory. In Proceedings of the 16th Annual Symposium
on Logic in Computer Science (LICS-2001), Boston, Massachusetts,
June 2001.

[Pfe01b] Frank Pfenning. Logical frameworks. In Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning, volume 2. El-
sevier Science Publishers, 2001.

[Pie91] Benjamin C. Pierce. Programming with intersection types, union
types, and polymorphism. Technical Report CMU-CS-91-106,
Carnegie Mellon University, February 1991.

[PN90] L. Paulson and T. Nipkow. Isabelle tutorial and user’s manual. Tech-
nical report, University of Cambridge Computing Laboratory, 1990.

[Pot80] G. Pottinger. A type assignment for the strongly normalizable λ-
terms. In Jonathan P. Seldin and J. Roger Hindley, editors, To H. B.
Curry: Essays in Combinatory Logic, Lambda Calculus and Formal-
ism, pages 561–577. Academic Press, 1980.

[Rhi01] Morten Rhiger. Higher-Order Program Generation. PhD thesis,
BRICS PhD School, University of Aarhus, Aarhus, Denmark, Au-
gust 2001. http://www.brics.dk/DS/01/4/.

[Rhi02] Morten Rhiger. Compiling embedded programs to byte code. In Shri-
ram Krishnamurthi and C.R. Ramakrishnan, editors, Proceedings of
the Fourth International Symposium on Practical Aspects of Declara-
tive Languages, number 2257 in Lecture Notes in Computer Science,
pages 120–136, Portland, Oregon, January 2002. Springer-Verlag.

[SLKN01] Stephan Schmitt, Lori Lorigo, Christoph Kreitz, and Aleksey Nogin.
JProver: Integrating connection-based theorem proving into interac-
tive proof assistants. In International Joint Conference on Automated
Reasoning, volume 2083 of Lecture Notes in Artificial Intelligence,
pages 421–426. Springer-Verlag, 2001.

[SORSC99] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert.
PVS Prover Guide. Computer Science Laboratory, SRI International,
Menlo Park, CA, September 1999.

http://www.brics.dk/DS/01/4/

138

[Tam97] Tanel Tammet. Gandalf. Journal of Automated Reasoning, 18(2):199–
204, April 1997.

[Tho91] Simon Thompson. Type Theory and Functional Programming.
Addison-Wesley, 1991.

[Tro73] Anne Sjerp Troelstra. Metamathematical Investigation of Intuition-
istic Mathematics, volume 344 of Lecture Notes in Mathematics.
Springer-Verlag, 1973.

[TvD88] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics, An
Introduction, Vol. I,II. North-Holland, Amsterdam, 1988.

[Wei97] Christoph Weidenbach. SPASS — version 0.49. Journal of Automated
Reasoning, 18(2):247–252, April 1997.

[Wij90] Duminda Wijesekera. Constructive modal logics I. Annals of Pure
and Applied Logic, 50:271–301, 1990.

[WL99] Pierre Weis and Xavier Leroy. Le langage Caml. Dunod, Paris, 2nd
edition, 1999. In French.

	TABLE OF CONTENTS
	Introduction
	Tactic-Based Interactive Theorem Provers
	Modular Theorem Provers and Logical Frameworks
	Structure of the Thesis and Overview of Contributions
	MetaPRL
	Conclusion

	I Generic Formal Reasoning
	Speeding up Tactic-Based Theorem Proving
	Architectural Overview
	The Term Module
	Naive Term Implementation (Term_std)
	Delayed Substitution (Term_ds)

	The Rewriter module
	Performance
	Summary
	Related work

	Sequent Schemata for Derived Rules
	Terms and Sequents
	Term Schemata
	Language of Sequent Schemata
	Semantics --- Sequent Schemata
	Rule Specifications
	Conservativity
	Extending the Language of Sequent Schemata
	Related Work

	Logical Meta-Language: From Derived Rules to Tactics
	Syntax Simplifications
	MetaPRL Rule Specifications
	Rule Annotations
	Decision Procedures as Heuristics
	JProver
	Arithmetic

	Generic tactic layer

	II Type Theory
	Quotient Types --- A Modular Approach
	NuPRL Type Theory
	Propositions-as-Types
	Partial Equivalence Relations Semantics
	Extensional and Intensional Approaches

	Squash Operator
	Squash Operator: Introduction
	Squash Operator: Axioms
	Squash Operator: Derived Rules

	Choosing the Rules
	Intensional Set Type
	Set Type: Introduction
	Set Type: Traditional Approach
	Set Type: A New Approach

	Extensional Squash Operator (Esquash)
	Esquash Operator: Introduction
	Esquash Operator: Axioms
	Esquash Operator: Derived Rules

	Explicit Nondeterminicity
	Explicit Nondeterminicity: Introduction
	Explicit Nondeterminicity: Axioms
	Explicit Nondeterminicity: Derived Rule

	Intensional Quotient Type
	Quotient Type: Introduction
	Intensional Quotient Type: Axioms
	Intensional Quotient Type: Derived Rules

	Indexed Collections
	Indexed and Predicated Collections
	Collections: the Problem
	Collections: a Possible Solution

	Related Work

	Functionality and Equality in Type Theory
	Introduction to Equality Relations in Type Theory
	Subtyping and Extensional Equality
	Intersection Type
	Functionality Semantics of Sequents

	The Gap
	Functionality Structures
	Non-standard Model
	A Non-standard Functionality Structure
	A Potential Counterexample
	Completing the Model
	Other Interesting Non-standard Models

	Uniquely Defining a Type by its Equality Relation

	Propositional Markov's Principle for Type Theory
	Introduction
	Markov's Constructivism
	Markov's Principle
	Type Theory

	Constructive Recursive Mathematics in a Type Theory with a Membership Type
	Squashed Types and Squash-Stability
	Classical Reasoning on Squashed Types
	Semantical Consistency of Markov's Principle
	Squash Operator as a Modality
	Related Work

	Appendix
	Some Type Theory Rules
	Structural Rules
	Membership Rule
	Disjunction Rules
	Universal Quantifier Rules
	Existential Quantifier Rules
	Falsum Rules
	Computation Rules
	Arithmetical Rules

	NuPRL-4 Quotient Rules
	Comparison to the Proposed Rules

	Concrete Syntax of Sequent Schemata

	Bibliography

