
JProver: Integrating Connection-based Theorem Proving . . . 3 IJCAR 2001

JProver Integration Architecture

JP
rover

Nuprl
for Nuprl

M
athB

us

Logic module

Sequent

Sequent Proof
Nuprl

Sequent Rules
List of

Preprocess

Postprocess

Sequent
Formulas

Sequent Proof
First-Order

List of

Matrix Proof

Prover

Converter

Formula Trees

List of Subgoal

JProver: Integrating Connection-based Theorem Proving . . . 2 IJCAR 2001

The Automated Theorem Prover

Formula

¬A ∨¬B ⇒ ¬B ∨¬A --

⇒
0
α

a0

∨
1
β

a1

¬
1
α

a2

A0

a3

¬
1
α

a4

B0

a5

∨
0
α

a6

¬
0
α

a7

B1

a8

¬
0
α

a9

A1

a10

¼ ¼

Matrix prover

= connection-driven path checking
+ intuitionistic string unification

Substitutions induce ordering

Otten & Kreitz ’96, Kreitz & Otten ’99

¼¼

Reduction Ordering ¢

⇒
0
α

a0

∨
1
β

a1

¬
1
α

a2

A0

a3

¬
1
α

a4

B0

a5

∨
0
α

a6

¬
0
α

a7

B1

a8

¬
0
α

a9

A1

a10

--

Proof Transformation

Search-free traversal of ¢
multiple → single-conclusion

Kreitz & Schmitt’00, Schmitt’00,

Egly & Schmitt’99

--Sequent Proof

A ` A
ax .

¬A,A `
¬l

¬A ` ¬B,¬A
¬r

B ` B
ax .

¬B,B `
¬l

¬B ` ¬B,¬A
¬r

¬A ∨¬B ` ¬B,¬A
∨ l

¬A ∨¬B ` ¬B ∨¬A
∨r

` ¬A ∨¬B⇒¬B ∨¬A
⇒ r

JProver: Integrating Connection-based Theorem Proving . . . 1 IJCAR 2001

Motivation

• Interactive Proof Assistants

– Large scale applications of automated reasoning

– Expressive logics vs. higher degree of automation

– Coq, HOL, Isabelle, Nuprl, OMEGA, PVS

• Improving Proof Automation

– Proof planning for induction / first-order logic (HOL+CLAM / OMEGA+OTTER)

– Decision procedures, e.g. for fragments of arithmetic (HOL, Nuprl, STeP)

– Automatic theorem provers for first-order logics (HOL, Nuprl)

• JProver: Constructive logics

– Complete theorem prover for first-order intuitionistic logic

– Modular interface for connecting to interactive proof assistants

– Integrated into Nuprl / MetaPRL

JProver: Integrating Connection-based Theorem Proving

into Interactive Proof Assistants

Stephan Schmitt1, Lori Lorigo2, Christoph Kreitz2, Aleksey Nogin2

1Dept. of Sciences and Engineering 2Dept. of Computer Science
Saint Louis University (Madrid Campus) Cornell University

Madrid, Spain Ithaca, NY 14853

JProver: Integrating Connection-based Theorem Proving . . . 7 IJCAR 2001

Conclusion

•Progress

– Hybrid proofs: multiple provers with different formalisms

= expressive power of proof assistants for complex proofs / verifications

+ efficient proof techniques for first-order subproblems

– Dealing with type information: discard or encode as predicates

– JProver applicable to proof problems beyond first-order logic

•Future Work

– Improve JProver’s performance

– Combine JProver with Nuprl tactics and decision procedures

– Extend JProver to modal logics and inductive theorem proving
(Kreitz & Otten 1999, Kreitz & Pientka 2001)

•Demonstration

– Calling JProver from Nuprl: proof examples

JProver: Integrating Connection-based Theorem Proving . . . 6 IJCAR 2001

Example: The “Agatha Murder Puzzle”

JProver: Integrating Connection-based Theorem Proving . . . 5 IJCAR 2001

Integration into Nuprl / MetaPRL

•Connection to MetaPRL:
– JProver is a module in MetaPRL’s code base

– MetaPRL communicates with JProver making a function call

– MetaPRL formulas are passed directly to JProver

– JLogic module converts sequent proof into MetaPRL tactic

•Connection to Nuprl
– Preprocesses Nuprl sequent and semantical differences

– Sends terms in MathBus format over an INET socket

– JLogic module accesses semantical information from terms;

converts sequent proof into format Nuprl can interpret

– Postprocesses result into Nuprl proof tree for original sequent

•Proof Validation
– Nuprl and MetaPRL do not rely on correctness of JProver

– JProver’s output executed on original sequents in the systems

JProver: Integrating Connection-based Theorem Proving . . . 4 IJCAR 2001

Integration into Proof Assistants

•Logic Module: Required Components

– OCaml code communicating with proof assistant

– JLogic module representing the proof assistant’s logic

•The JLogic module

– Describes terms implementing logical connectives

– Provides operations to access subterms

– Decodes sequent received from communication code

– Encodes JProver’s sequent proof into format

for communication code

module Nuprl JLogic =

struct

let is all term = nuprl is all term

let dest all = nuprl dest all

let is exists term = nuprl is exists term

let dest exists = nuprl dest exists

let is and term = nuprl is and term

let dest and = nuprl dest and

let is or term = nuprl is or term

let dest or = nuprl dest or

let is implies term = nuprl is implies term

let dest implies = nuprl dest implies

let is not term = nuprl is not term

let dest not = nuprl dest not

type inference = ’(string*term*term) list

let empty inf = []

let append inf inf t1 t2 r =

((Jall.ruletable r), t1, t2) :: inf

end

