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The Automated Theorem Prover
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Matrix prover

= connection-driven path checking
+ intuitionistic string unification

Substitutions induce ordering

Otten & Kreitz ’96, Kreitz & Otten ’99

¼¼

Reduction Ordering ¢
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Proof Transformation

Search-free traversal of ¢
multiple → single-conclusion

Kreitz & Schmitt’00, Schmitt’00,

Egly & Schmitt’99
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Motivation

• Interactive Proof Assistants

– Large scale applications of automated reasoning

– Expressive logics vs. higher degree of automation

– Coq, HOL, Isabelle, Nuprl, OMEGA, PVS

• Improving Proof Automation

– Proof planning for induction / first-order logic (HOL+CLAM / OMEGA+OTTER)

– Decision procedures, e.g. for fragments of arithmetic (HOL, Nuprl, STeP)

– Automatic theorem provers for first-order logics (HOL, Nuprl)

• JProver: Constructive logics

– Complete theorem prover for first-order intuitionistic logic

– Modular interface for connecting to interactive proof assistants

– Integrated into Nuprl / MetaPRL
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Conclusion

•Progress

– Hybrid proofs: multiple provers with different formalisms

= expressive power of proof assistants for complex proofs / verifications

+ efficient proof techniques for first-order subproblems

– Dealing with type information: discard or encode as predicates

– JProver applicable to proof problems beyond first-order logic

•Future Work

– Improve JProver’s performance

– Combine JProver with Nuprl tactics and decision procedures

– Extend JProver to modal logics and inductive theorem proving
(Kreitz & Otten 1999, Kreitz & Pientka 2001)

•Demonstration

– Calling JProver from Nuprl: proof examples
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Example: The “Agatha Murder Puzzle”
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Integration into Nuprl / MetaPRL

•Connection to MetaPRL:
– JProver is a module in MetaPRL’s code base

– MetaPRL communicates with JProver making a function call

– MetaPRL formulas are passed directly to JProver

– JLogic module converts sequent proof into MetaPRL tactic

•Connection to Nuprl
– Preprocesses Nuprl sequent and semantical differences

– Sends terms in MathBus format over an INET socket

– JLogic module accesses semantical information from terms;

converts sequent proof into format Nuprl can interpret

– Postprocesses result into Nuprl proof tree for original sequent

•Proof Validation
– Nuprl and MetaPRL do not rely on correctness of JProver

– JProver’s output executed on original sequents in the systems

JProver: Integrating Connection-based Theorem Proving . . . 4 IJCAR 2001

Integration into Proof Assistants

•Logic Module: Required Components

– OCaml code communicating with proof assistant

– JLogic module representing the proof assistant’s logic

•The JLogic module

– Describes terms implementing logical connectives

– Provides operations to access subterms

– Decodes sequent received from communication code

– Encodes JProver’s sequent proof into format

for communication code

module Nuprl JLogic =

struct

let is all term = nuprl is all term

let dest all = nuprl dest all

let is exists term = nuprl is exists term

let dest exists = nuprl dest exists

let is and term = nuprl is and term

let dest and = nuprl dest and

let is or term = nuprl is or term

let dest or = nuprl dest or

let is implies term = nuprl is implies term

let dest implies = nuprl dest implies

let is not term = nuprl is not term

let dest not = nuprl dest not

type inference = ’(string*term*term) list

let empty inf = []

let append inf inf t1 t2 r =

((Jall.ruletable r), t1, t2) :: inf

end


