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Abstract

We present a method to reconstruct an ellipsoid
from its occluding contours observed in three images.
We derive o linear relationship between an ellipsoid
and its perspective projection. From this relationship,
we show that, if cameras are calibrated, an ellipsoid
can be reconstructed from its three views and the solu-
tion 1s, i general, unique; if the cameras are weakly
calibrated, then the reconstruction is also unique but
up to projectivity. Our method has been successfully
tested on synthetic data and on real image data.

1 Introduction

One of the important tasks for a computer vision
system is to reconstruct 3D objects in the scene from
their images. Many methods proposed are edge based
in which we first detect the edge points on image con-
tours. Image contours are the projection of the surface
bounding contours. There are two distint types of con-
tours that bound a surface, which are called extremal
and discontinuity. A discontinuity contour marks the
abrupt termination of a smooth surface (e.g., when it
intersects another surface), while at an extremal con-
tour, the surface normal turns away smoothly from
the viewer.

It is well-known that extremal contours are a rich
source of information. (To distinguish between the
extremal contour on an object in 3D space and its im-
age, the extremal contour will be referred to as the
rim, and its image will be called the occluding con-
tour in this paper). Any rim on an object is a spe-
cial curve, defined by the fact that the optical ray
is tangent to the surface of the object at each rim
point(see figure 1). The rim is viewpoint dependent,
which means that rims observed from different view-
points do not correspond to the same curve on the
object. The rim and its image have been studied by
many researchers. They presented the methods to re-
construct the surface from its occluding contours. The
standard technique of stereo vision fails because the
occluding contours in two images do not correspond
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to the same rim on the surface in 3D space. Kriegman
and Ponce [7] present a method to recover the pose
of a 3D object from a single image. Assuming the
object model is available in a CAD-based vision sys-
tem, they used the occluding contours to recover the
pose of an object. The equations they should solve
are, in general, highly non-linear. Giblin and Weiss
[3] present an algorithm for computing a depth map
for a smooth surface from a sequence of images by
modeling the object as the envelop of its tangents.
The algorithm requires that the viewing directions be
coplanar. Vaillant and Faugeras [15] present an algo-
rithm to reconstruct the local shape of a surface along
the rim from three views. They parameterize the lo-
cal surface patches with respect to the Euler angles of
the normal to the surface. Using this algorithm, they
can compute the depth and the second fundamental
forms of the surface along the rim. They also discuss
the important issue of identifying occluding contours
in the 1mage using their differential features.

In this paper we deal with a special case in which we
assume that the 3D object to be reconstructed is an
ellipsoid. This work is related to our previous work
[9] and to the work of Karl[6], who showed that an
ellipsoid can be reconstructed from its three orthogo-
nal projections and the relationship between the ellip-
soid and 1ts orthogonal projections is linear. In our
previous work[9], we presented a method to recover
the quadric surface from its perspective views but the
computation is non-linear. In this paper, we derive
the linear relationship between the representation of
an ellipsoid and its perspective views. It is shown that,
if cameras are calibrated, an ellipsoid can be recon-
structed from its occluding contours observed from at
least three views and the computation is linear. Pro-
jective reconstruction is a recent topic of investigation.
It has been shown that without camera calibration, or
more exactly, with cameras that are weakly calibrated
[2], [11], (4], the 3D scene can be reconstructed up to
a projective transformation. Since the reconstruction
of an ellipsoid needs three views, the weak calibration
in this paper is in the sense of Hartley [5] and Shashua
[12]. It was shown in their papers that, as in the role
played by fundamental matrix in two-view case, a 3 x
3 x 3 tensor can be estimated from point or line cor-
respondences in three views. A similar relation was
obtained by Aloimonos [13]. The estimation of this
trifocal tensor can be considered as the weak calibra-



tion of three cameras. From this trifocal tensor, the
projective matrices of three cameras can be computed
and then the 3D scene can be reconstructed up to a
projectivity.

Our paper is organized as follows: In the next sec-
tion, we describe the perspective transformation be-
tween an object in 3D space and its image. It is
shown that the projective matrices can be assumed to
be known by camera calibration or weak calibration
respectively for metric space reconstruction or projec-
tive reconstruction. In section 3, we provide the linear
relationship between an ellipsoid and its perspective
views. The reconstruction algorithm is provided in
section 4. We show that an ellipsoid can be recovered
from at least three views by solving a system of lin-
ear equations. We provide four geometric invariants
which can be used to establish the correspondence of
the occluding contours in the images. Experiments us-
ing simulated data and real image data are presented
in section 5. The conclusion is given in the last section.

2 Perspective Transformation and

Camera Calibration

The perspective transformation between any 3D
point and its projection in the i** image (see figure
1) can be represented as

w; ~ M;x i=1~n

(1)

where ~ indicates the equality up to a scale factor,
x = (z,y,2,1)" are the homogeneous coordinates of
any point in object space, u; = (u;,v;, 1) are the coor-
dinates of the projection in #** image, and M; is a 3x4
matrix, which is called the camera matrix or projec-
tive matrix. Our method presented in this paper can
be used for metric reconstruction as well as for pro-
jective reconstruction. In both cases, we assume the
projective matrices M; (i = 1 ~ n) are available from
either weak (projective) or strong (Euclidian metric)
camera calibration.

1. For the reconstruction in metric space, it is well-
known that the projective matrices M; (i = 1 ~
n) can be obtained by camera calibration [14] [1]
[16]. By certain definition of the coordinate sys-
tem, the projective matrix of the first camera M,
is equal to (I|0), where Iis a 3 x 3 indentity matrix
and 0 is a 3D null vector.

2. In the case of projective reconstruction, it has
been shown that without camera calibration, or
more exactly, with weak camera calibration (2],
{11], 4], the 3D scene can be reconstructed up
to a projectivity. Since the reconstruction of an
ellipsoid needs three views, the weak calibration
in this paper is in the sense of Hartley [5] and
Shashua[l2]. It was shown in their papers that,
as in the role played by fundamental matrix in
the two-view case, a 3 x 3 x 3 tensor can be esti-
mated from point or line correspondences in three
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views. The estimation of this trifocal tensor can
be considered as the weak calibration of the three
cameras. From this trifocal tensor, the projective
matrices M;, (¢ = 1 ~ 3) of three cameras can be
computed. Then we can use these projective ma-
trices to reconstruct the scene up to projectivity.
In this case, the image or the object coordinate
system can be respectively any 2D or 3D projec-
tive coordinate system. Since we reconstruct the
3D scene only up to projectivity, we can always
assume the first projective matrix is equal to (I|0)
as pointed out by Hartley [5].

We assume in the following sections that all the
projective matrices are available by the camera cal-
ibration or weak calibration, and for simplicity, the
projective matrix of the first camera is equal to (I|0).
The method described in the following sections is valid
both for metric and projective reconstruction, pro-
vided we keep in mind that the projective matrices
are given respectively by strong or weak camera cali-
bration.

3 Linear Relationship Between an El-
lipsoid and its Occluding Contour

3.1 Geometric Constraints

In this subsection, we give the geometric constraint
between an ellipsoid and its image in the first camera,
assuming the projective matrix 1s equal to (I]0).

An ellipsoid in the scene can be represented as

x'Ax =0 (2)

where x is any point on the surface of the ellipsoid and
A is a 4 x 4 symmetric matrix.
For later convenience, we denote

(%)

where Agg is the 3 x 3 upper left submatrix of A
and Ay = (a41,042,a43)" is a three dimensional vector.

From the fact that any line joining the optical cen-
ter of the camera and any point on the rim of an ellip-
soid is tangent to the ellipsoid(see figure 1}, it can be
proved [9] that the extremal contour of an ellipsoid is
a planar conic, and in turn its perspective projection
(called the occluding contour) in the image is also a
conic. We represent this occluding contour by

Az
A}

Ay
Q44

®3)

u'Qu=0 4)
where u = (u,v,1)! is any point on the occluding con-
tour in the image of the first camera, and Q is a3 x3
symmetric matrix. We have proved, in our previous
paper (8], the following equation relating the represen-
tation of the ellipsoid in 3D space and its occluding
contour.



1
EQ = Azz — —A4A} (5)
Q44

where A3 and A4 are defined by the matrix A (see
Eq. (3)), and Q is a known matrix estimated from
the image. k is an unknown scale factor. Since A
is a symmetric 4 x 4 matrix and since A and tA (t
1s any non-zero scale factor) represent the same ellip-
soid, A is defined by 9 parameters. Considering the
unknown scale factor k, we have 10 unknown param-
eters in Eq. (5).

Eq. (5) is a basic constraint relating the surface
A and 1its image contour. It is interesting to notice
that the occluding contour contains not only the in-
formation of its corresponding rim but also the global
information of the ellipsoid.

It can be seen from Eq. (5) that

1. The matrices in both sides of Eq. (5) are 3 x 3
symmetric, and thus it contain at most 6 inde-
pendent equations. Since we have 10 unknowns,
it is not possible to recover the ellipsoid from a
single image.

2. All the equations contained in Eq. 5 are non-
linear.

In the next subsection, we will show that the non-
linear relation can become linear.

3.2 Linear
Views

Relationship and Multiple

It is proved that Eq. (5) can be rewritten as

Q™! = (A7 Y33 (6)

where (A~ 1)33 indicates the upper left 3x 3 submatrix
of A=,

For the reason of limited space of this paper, we
neglect the proof of above relation, which can be found
in [10]. The equivalence of Eq. (5) and Eq. (6) is
very interesting, because it can be seen that although
the relationship between Q and A is non-linear, but
between Q™! and A~! are linearly related!

We must generalize Eq. (6) to the case of multiple
views. As mentioned in section (3.1), Eq. (6) holds
only for the first camera when assuming its projective
matrix M; 1s equal to (I|0). In general we have the
following Proposition.

Proposition 1 If an ellipsoid in 3D space is
represented by x'Ax = 0, if M 1s the projective ma-
trix, and if the occluding contour of the ellipsoid in
the image is represented by Q then we have

kQ- @)

For the reason of limited space of this paper, we
neglect the proof of above proposition, which can be
found in [10].

It is interesting to notice that, given Q and M, by
considering the entries of A~! as variables, Eq. (7)

= MA~!M!

346

is linear. Since the matrices on both sides are 3 x 3
symmetric. Eq. (7) consists of six linear equations
of the variables k and 9 entries of A~ (One of its
entries can be assumed to be one). We have a total of
10 variables. In the next section, we will prove that
three views are necessary in order to solve for A.

4 Ellipsoid Reconstruction from Mul-
tiple Views

4.1 Multiple views constraints

Suppose we have n cameras. Then Eq. (7) can be
rewritten as

kQ ! = M;BM;! (8)

where B = A1, Q; (: = 1 ~ n) is the occluding
contour estimated from 7** image, and M; (i = 1 ~

n) is the projective matrix of the i** camera. Our
purpose is to solve for B given Q; and M; (i = 1 ~ n).
We denote

where B3z is the 3 x 3 upper left submatrix and By is
a 3D vector. Note we can assume the last element of
B is equal to I because B can only be determined up
to a scale factor.

By denoting

i=1~n

B3z by

A’1:B:<b3‘ ] 9)

Mi = (Milm,’) i=1l~n (10)
Qi =M;'Q (M) (11)
= M; 'm; (12)

where M; is the left 3 x 3 submatrix of M, and by
substituting Eq. (9) into Eq. (8) we obtain

k;Q: = Bas + Bym; + m; B} + m;m;] (13)
4.2 Two views are not enough to recover
an ellipsoid

We assume the first camera matrix M, is equal to
(1]0). Then from Eqgs. (11) (12), we have Q =Q;t
and m; = m; = 0. So when ¢ = 1, Eq. (13) becomes

kQi = B (14)

From Eq. (14) and an equation obtained from
Eq. (13) for a second camera (i = 2), we have 2 X 6
linear equations and 11 unknowns (k1, k2 and 9 entries
of B). But we will show that these equations are not
all independent.



By subtracting Eq. (14) from Eq. (13) (i=2) to elim-
inate B3z, we obtain

k2Qz — k1 Q1 = By}, + my B + myim} (15)

Or equivalently

~ ~ 1 1
k2Qo — k1Qy — (Ba+ §ﬁ12)ﬁ1§ —my(Bs+ '2'ﬁlz)t =0
(16)
We see that Eq. (16) consists of six homogeneous
linear equations with 5 unknowns (k1,2 and three
elements of By). Since these unknown variables are
not all equal to zero (k1 and k; are not equal to zero
from Eq. (5)), the number of independent equations
included in Eq. (16) is 4 (more details can be found in
(10)), or in other words, the number of solutions of k;
and By, is infinite. .

4.3 Reconstruction from three views

If we have three images, the reconstruction algo-
rithm can be described as follows:

1. Given three occluding contours Q; respectively in
three images and three projective matrices M;,
we obtain three matrix equations from Eq. (13)
by taking the index 1 =1, 2, 3.

. As described in the previous subsection, we can
eliminate Bas to obtain Eq. (15) and the equation

k3Qs — k1 Q; = Bym} + maB) + mam)  (17)
Then we have 8 linear equations included in
Egs. (15) (17). We use the linear least-square
method to solve for By, ki, ke, k3 from these lin-
ear equations. It can be easily shown theoretically
and experimentally that the solution is unique if
the three cameras are located in different posi-
tions.

. By substituting B4 and k; into Eq. (13) (taking
index i=2) we can solve for Bgg

. Using Eq. (9) we obtain A, which is the represen-
tation of the ellipsoid.

4.4 Establishing the correspondence

As we mentioned in the above section, Eq. (15) (or
Eq. (17)) contains six linear equations but only 4 are
independent, which means there exists intrinsic rela-
tionship between the parameters in these equation. It
is shown that, by eliminating k; (i = 1,2,3) and By
from Egs. (16) (17), we can obtain (more details can
be found in [10]) 4 quantities which remain invariant if
the occluding contours in different images correspond
to the same ellipsoid:
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A1pQ; N13Qi .
A = - Ay = ——— 1=1,2
T ARQ 2T A
(18)
NLQ; NS Q; .
ja=ZRE = ZRE o1y
13 Qi 23 Qi
(19)

where AUQk and Angk are defined by the projec-
tive matrices. Thus we can use these invariants to es-
tablish the correspondence of the occluding contours.

5 Experiments

We have successfully verified our method using both
synthetic and real image data. In simulation, we gen-
erate images of two ellipsoids using computer graphics
techniques. The ellipsoids are located at a distance of
about 1.5m from the cameras. We generated 3 images
to simulate three cameras in 3 different viewpoints.
The three cameras are positioned such that the base-
line lengths of each pair of cameras are all identical. It
is shown that the parameters of both the sizes and the
poses of the reconstructed ellipsoid are very close to
the actual data. For the reason of the limited space,
we can not show these results in this paper.In the real
image experiment, we take three images of two spheres
at three viewpoints by moving a CCD camera. The
distance between the camera and the spheres is about
Im. Since we can not know the actual position and
orientation of the spheres with respect to the cameras,
we show in table 1 only the actual size of the spheres
and that of the sphere reconstructed. Table 2 and 3
shows the invariants estimated respectively from the
first-second and first-third image pair.

Ball T T Ball 2
Actual Radius 110 90
Computed Radius [ 107.35 | 90.8

Table 1. Reconstruction results of the two balls

First Image Second Tmage

Invariants | Ball T Ball 2 Ball' T Ball 2
X 2.27 15.05 2.33 15.03

Az 0.0019 { 0.00039 | 0.0019 | 0.00039

Table 2. Invariants A; and A, for the two balls

First Image Third Tmage
Invariants Ball T Ball 2 Ball 1 Ball 2
A3 7.08 13.93 1.20 13.92
A4 0.00058 | 0.00042 | 0.00058 | 0.00042

Table 3. InvariantsAz and A4 for the two balls



6 Conclusion

We have presented a method to reconstruct an el-
lipsoid from its three perspective views. All the com-
putations in the algorithm are linear. The occluding
contour of an ellipsoid is a conic. It is well known that
a conic in the image can be extracted from at least
5 points. Thus even when it is partially occluded,
a conic can be extracted from the image. As a re-
sult, using our method we can globally reconstruct the
ellipsoid even when its surface is partially occluded.
Establishing the correspondence of the primitives in
different images is a serious fundamental problem for
the point or line based reconstruction techniques from
multiple views. We have shown that conics contain
more information than points and lines and their cor-
respondence is implicitly determined by their param-
eters.
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Fig 1 Rims on an ellipsoid and its images



