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ABSTRACT

Modern communication networks generate large amounts of operational data,
including traffic and utilization statistics and alarm/fault data at various levels
of detail. These massive collections of network-management data can grow in
the order of several Terabytes per year, and typically hide “knowledge” that is
crucial to some of the key tasks involved in effectively managing a communi-
cation network (e.g., capacity planning and traffic engineering). In this short
paper, we provide an overview of some of our recent and ongoing work in the
context of the NEMESTS project at Bell Laboratories that aims to develop
novel data warehousing and mining technology for the effective storage, explo-
ration, and analysis of massive network-management data sets. We first give
some highlights of our work on Model-Based Semantic Compression (MBSC),
anovel data-compression framework that takes advantage of attribute semantics
and data-mining models to perform lossy compression of massive network-data
tables. We discuss the architecture and some of the key algorithms underlying
SPARTAN, amodel-based semantic compression system that exploits pre-
dictive data correlations and prescribed error tolerances for individual attributes
to construct concise and accurate Classification and Regression Tree (CaRT)
models for entire columns of atable. We also summarize some of our ongoing
work on warehousing and analyzing network-fault data and discuss our vision
of how data-mining techniques can be employed to help automate and improve
fault-management in modern communication networks. More specifically, we
describe the two key components of modern fault-management architectures,
namely the event-correlation and the root-cause analysis engines, and propose
the use of mining ideas for the automated inference and maintenance of the
models that lie at the core of these components based on warehoused network
data.

1. INTRODUCTION

Besides providing easy access to people and data around the globe,
modern communication networks also generate massive amounts of
operationa data throughout their lifespan. As an example, Internet
Service Providers (1SPs) continuoudly collect traffic and utilization in-
formation over their network to enable key network-management ap-
plications. Thisinformation istypically collected through monitoring
tools that gather switch- and router-level data, such as SNMP/RMON
probes [21] and Cisco’'s NetFlow measurement tools [1]. Such tools
typicaly collect traffic data for each network element at fine granular-
ities (e.g., at the level of individual packets or packet flows between
source-destination pairs), giving rise to massive volumes of network-
management data over time [6, 10]. Packet traces collected for traffic
management in the Sprint 1P backbone amount to 600 Gigabytes of
data per day [10]! As another example, telecommunication providers
typically generate and store records of information, termed “ Call-Detail
Records’ (CDRs), for every phone call carried over their network. A
typical CDR isafixed-length record structure comprising several hun-
dred bytes of datathat capture information on various (categorical and
numerical) attributes of each call; thisincludes network-level informa-
tion (e.g., endpoint exchanges), time-stamp information (e.g., call start
and end times), and billing information (e.g., applied tariffs), among
others [5]. These CDRs are stored in tables that can grow to truly
massive sizes, in the order of several Terabytes per year.
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A key observation isthat these massive collections of network-traffic
and CDR datatypically hide invaluable “knowledge’ that enables sev-
eral key network-management tasks, including application and user
profiling, proactive and reactive resource management, traffic engi-
neering, and capacity planning. Nevertheless, techniques for effec-
tively managing these massive data sets and uncovering the know!-
edge that is so crucial to managing the underlying network are till in
their infancy. Contemporary network-management tools do little more
than elaborate report generation for all the data collected from the net-
work, leaving most of the task of inferring useful knowledge and/or
patterns to the human network administrator(s). As aresult, effective
network management is still viewed as more of an “art” known only
to afew highly skilled (and highly sought-after) individuals. It is our
thesisthat, in the years to come, network management will provide an
important application domain for very innovative, challenging and, at
the same time, practically-relevant research in data mining and data
warehousing.

This short abstract aims to provide an overview of our recent and
ongoing research efforts in the context of NEMESZS (NEtwork-
Management data warEhousing and analySIS) , a Bell Labs' research
project that targets the development of novel data warehousing and
mining technology for the effective storage, exploration, and analysis
of massive network-management data sets. Our research agenda for
NEMESIS encompasses several challenging research themes, in-
cluding data reduction and approximate query processing [2, 7, 8],
XML [12], effective network monitoring [4], mining techniques for
network-fault management, and managing and analyzing continuous
data streams. In this paper, we first give some highlights of our re-
cent work on Model-Based Semantic Compression (MBSC), a novel
data-compression framework that takes advantage of attribute seman-
tics and data-mining models to perform lossy compression of massive
network-data tables. We also describe the architecture and some of the
key agorithms underlying SPARTAN, a system built based on the
MBSC paradigm, that exploits predictive data correlations and pre-
scribed error tolerances for individual attributes to construct concise
and accurate Classification and Regression Tree (CaRT) models for
entire columns of atable [2]. We then turn to our ongoing work on
warehousing and analyzing network-fault data and discuss our vision
of how data-mining techniques can be employed to help automate and
improve fault-management in modern communication networks. More
specifically, we describe the two key components of modern fault-
management architectures, namely the event-correlation and the root-
cause analysis engines, and offer some (more speculative) proposals
on how mining ideas can be exploited for the automated inference and
maintenance of the models that lie at the core of these components
based on warehoused network data

2. MODEL-BASED SEMANTIC COMPRESSION
FOR NETWORK-DATA TABLES

Data compression issues arise naturally in applications dealing with
massive data sets, and effective solutions are crucia for optimizing
the usage of critical system resources like storage space and 1/0 band-



width, aswell as network bandwidth (for transferring the data) [5, 10].
Several statistical and dictionary-based compression methods have been
proposed for text corpora and multimedia data, some of which (e.g.,
Lempel-Ziv or Huffman) yield provably optimal asymptotic perfor-
mance in terms of certain ergodic properties of the data source. These
methods, however, fail to provide adequate solutions for compressing
massive data tables, such as the ones that house the operational data
collected from large ISP and telecom networks. The reason is that all
these methods view atable as alarge byte string and do not account for
the complex dependency patterns in the table. Compared to conven-
tional compression problems, effectively compressing massive tables
presents a host of novel challenges due to several distinct characteris-
tics of table data sets and their analysis.

¢ Semantic Compression. Existing compression techniques are “ syn-
tactic” in the sense that they operate at the level of consecutive bytes
of data. Such syntactic methods typically fail to provide adequate so-
Iutions for table-data compression, since they essentially view the data
as alarge byte string and do not exploit the complex dependency pat-
terns in the table. Effective table compression mandates techniques
that are semantic in nature, in the sense that they account for and ex-
ploit both (1) existing data dependencies and correlations among at-
tributes in the table; and, (2) the meanings and dynamic ranges of
individual attributes (e.g., by taking advantage of the specified error
tolerances).

e Approximate (Lossy) Compression. Due to the exploratory na-
ture of many data-analysis applications, there are several scenariosin
which an exact answer may not be required, and analysts may in fact
prefer afast, approximate answer, aslong as the system can guarantee
an upper bound on the error of the approximation. For example, during
a drill-down query sequence in ad-hoc data mining, initial queriesin
the sequence frequently have the sole purpose of determining the truly
interesting queries and regions of the data table. Thus, in contrast to
traditional lossless data compression, the compression of massive ta-
bles can often afford to be lossy, aslong as some (user- or application-
defined) upper bounds on the compression error are guaranteed by the
compression algorithm. Thisis obvioudly a crucial differentiation, as
even small error tolerances can help us achieve much better compres-
sion ratios.

In our recent work [2], we have proposed Model-Based Seman-
tic Compression (MBSC), a novel data-compression framework that
takes advantage of attribute semantics and data-mining models to per-
form guaranteed-error, lossy compression of massive data tables. Ab-
stractly, MBSC is based on the novel idea of exploiting data correla-
tions and user-specified “loss’ /error tolerances for individual attributes
to construct concise data mining models and derive the best possible
compression scheme for the data based on the constructed models. To
make our discussion more concrete, we focus on the architecture and
some of the key algorithms underlying SPARTAN?, a system that
takes advantage of attribute correlations and error tolerances to build
concise and accurate Classification and Regression Tree (CaRT) mod-
els [3] for entire columns of atable. More precisely, SPARTAN
selects acertain subset of attributes (referred to as predicted attributes)
for which no values are explicitly stored in the compressed table; in-
stead, concise CaRTs that predict these values (within the prescribed
error bounds) are maintained. Thus, for a predicted attribute X that is
strongly correlated with other attributes in the table, SPARTAN is
typically able to obtain a very succinct CaRT predictor for the values
of X, which can then be used to completely eliminate the column for

1[From Webster] Spartan: /’spart-*n/ (1) of or relating to Sparta in ancient
Greece, (2) a marked by strict self-discipline and avoidance of comfort and
luxury, b: sparing of words: TERSE : LACONIC.
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Figure 1: Model-Based Semantic Compression.

X in the compressed table. Clearly, storing a compact CaRT model
in lieu of millions or billions of actual attribute values can result in
substantial savingsin storage.

ExXAMPLE 2.1. Consider the table with 4 attributes and 8 tuples
shown in Figure 1(a), where each tuple represents a data flow in an IP
network. The categorical attribute protocol records the application-
level protocol generating the flow; the numeric attribute duration isthe
time duration of the flow; and, the numeric attributes byte-count and
packets capture the total number of bytes and packets transferred. Let
the acceptable errors due to compression for the numeric attributes du-
ration, byte-count, and packets be 3, 1,000, and 1, respectively. Also,
assume that the protocol attribute has to be compressed without error
(i.e., zero tolerance). Figure 1(b) depicts a regression tree for predict-
ing the duration attribute (with packets as the predictor attribute) and
a classification tree for predicting the protocol attribute (with packets
and byte-count as the predictor attributes). Observe that in the regres-
sion tree, the predicted value of duration (label value at each leaf) is
almost always within 3, the specified error tolerance, of the actual tu-
ple value. For instance, the predicted value of duration for the tuple
with packets = 1 is 15 while the original value is 12. The only tuple
for which the predicted value violates thiserror bound isthe tuple with
packets = 11, which isan marked as an outlier value in the regression
tree. There are no outliersin the classification tree. By explicitly stor-
ing, in the compressed version of the table, each outlier value along
with the CaRT models and the projection of the table onto only the
predictor attributes (packets and byte-count), we can ensure that the
error due to compression does not exceed the user-specified bounds.
Further, storing the CaRT models (plus outliers) for duration and pro-
tocol instead of the attribute values themselves results in a reduction
from8to 4 values for duration (2 labelsfor leaves + 1 split value at in-
ternal node + 1 outlier) and a reduction from 8 to 5 values for protocol
(3 labels for leaves + 2 split values at internal nodes). il

To build an effective CaRT-based compression plan for the input
datatable, SPARTAN employsanumber of sophisticated techniques
from the areas of knowledge discovery and combinatorial optimiza-
tion. Below, we list some of SPARTAN s sdlient features.

e Useof Bayesian Network to Uncover Data Dependencies. A Bayesian
network is adirected acyclic graph (DAG) whose edges reflect strong
predictive correlations between nodes of the graph [20]. SPARTAN
uses a Bayesian network on thetable's attributesto dramatically reduce



the search space of potential CaRT models since, for any attribute, the
most promising CaRT predictors are the ones that involve attributesin
its“neighborhood” in the network.

¢ Novel CaRT-selection Algorithmsthat Minimize Storage Cost.
SPARTAN exploits the inferred Bayesian network structure by us-
ing it to intelligently guide the selection of CaRT models that mini-
mize the overall storage requirement, based on the prediction and ma-
terialization costs for each attribute. We demonstrate that this model-
selection problem is a strict generalization of the WWeighted Maximum
Independent Set (WMIS) problem [11], which is known to be N'P-
hard. However, by employing a novel algorithm that effectively ex-
ploits the discovered Bayesian structure in conjunction with efficient,
near-optimal WMIS heuristics, SPARTAN is able to obtain a good
set of CaRT models for compressing the table.

e Improved CaRT Construction Algorithms that Exploit Error
Tolerances. Since CaRT construction is computationally-intensive,

SPARTAN employsthefollowing three optimizationsto reduce CaRT-

building times: (1) CaRTs are built using random samples instead of
the entire data set; (2) leaves are not expanded if values of tuplesin
them can be predicted with acceptable accuracy; (3) pruning is inte-
grated into the tree growing phase using novel agorithms that exploit
the prescribed error tolerance for the predicted attribute. SPARTAN
then uses the CaRTs built to compress the full data set (within the
specified error bounds) in one pass.

An extensive experimental study of the SPARTAN system with
several real-life data tables has verified the effectiveness of our ap-
proach compared to existing syntactic (gzi p) and semantic (fascicle-
based [14]) compression techniques [2].

2.1 Overview of Approach

2.1.1 Definitions and Notation

The input to the SPARTAN system consists of a n-attribute ta-
ble T', and a (user- or application-specified) n-dimensional vector of
error tolerances e = ey, ... ,e,] that defines the per-attribute ac-
ceptable degree of information loss when compressing 7. Let X =
{X1,...,X,} denote the set of n attributes of 7" and dom(X;) rep-
resent the domain of attribute X;. Intuitively, e;, the ith entry of the
tolerance vector e specifies an upper bound on the error by which any
(approximate) value of X; in the compressed table T, can differ from
its original value in T'. For a numeric attribute X;, the tolerance e;
defines an upper bound on the absolute difference between the actual
value of X; in T and the corresponding (approximate) value in ;.
That is, if z, 2" denote the accurate and approximate value (respec-
tively) of attribute X; for any tuple of T', then our compressor guar-
anteesthat = € [z’ — e;, 2" + e;]. For acategorica attribute X;, the
tolerance e; defines an upper bound on the probability that the (ap-
proximate) value of X; in T is different from the actual value in 7.
More formally, if z, ' denote the accurate and approximate value (re-
spectively) of attribute X; for any tuple of 7', then our compressor
guaranteesthat P[z = z'] > 1 — e;. (Notethat our error-tolerance se-
mantics can also easily capture |ossless compression as a special case,
by setting e; = 0 for all 4.)

2.1.2 Model-Based Semantic Compression

Briefly, our proposed model-based methodology for semantic com-
pression of data tables involves two steps: (1) exploiting data corre-
lations and (user- or application-specified) error bounds on individual
attributes to construct data mining models, and (2) deriving a good
compression scheme using the constructed models. We define the
model-based, compressed version of theinput table T asapair . =<
T {My,... ,Mp} > suchthat T can be obtained from T; within the

specified error tolerance e. Here, (1) T’ is a small (possibly empty)
projection of the data values in T that are retained accurately in T;;
and, (2) {M.,..., My} isaset of data-mining models. A definition
of our general model-based semantic compression problem can now
be stated as follows.

[M odel-Based Semantic Compression (M BSC)]: Given amulti-attribute

table T and a vector of (per-attribute) error tolerances e, find a set of
models { M, ..., My} and a compression scheme for T' based on
these models T, =< T',{M,... , M,} > such that the specified
error bounds e are not exceeded and the storage requirements |Z:| of
the compressed table are minimized. il

Given the multitude of possible models that can be extracted from
the data, the general MBSC problem definition covers a huge design
space of possible alternatives for semantic compression. We now pro-
vide a more concrete statement of the problem addressed in our work
on the SPARTAN system.

[SPARTAN CaRT-Based Semantic Compression]: Given amulti-
attributetableT" with aset of attributes X', and avector of (per-attribute)
error tolerances ¢, find asubset {X;, ..., X, } of X and aset of cor-
responding CaRT models { M, ..., M} such that: (1) model M;

is a predictor for the values of attribute X; based solely on attributes
inX —{X1,...,Xp},foreachi =1,...,p; (2) the specified error
bounds € are not exceeded; and, (3) the storage requirements | ;| of

the compressed table T, =< T, {M1,... ,M,} > are minimized.

1

Abstractly, SPARTAN seeksto partition the set of input attributes
X into aset of predicted attributes { X1, ... , X} and aset of predic-
tor attributes X —{ X1, ... , X, } such that the values of each predicted
attribute can be obtained within the specified error bounds based on (a
subset of) the predictor attributes through a small classification or re-
gression tree (except perhaps for a small set of outlier values). Note
that we do not allow a predicted attribute X; to also be apredictor for a
different attribute. This restriction isimportant since predicted values
of X; can contain errors, and these errors can cascade further if the
erroneous predicted values are used as predictors, ultimately causing
error constraints to be violated. The final goal, of course, isto min-
imize the overall storage cost of the compressed table. This storage
cost |T.| isthe sum of two basic components:

1. Materialization cogt, i.e., the cost of storing the values for al
predictor attributes. X —{ X1, ... , X, }. Thiscost isrepresented
inthe T" component of the compressed table, which is basically
the projection of 7" onto the set of predictor attributes. The stor-

age cost of materializing attribute X; isdenoted by Mat er Cost (X;).

2. Prediction cogt, i.e., the cost of storing the CaRT models used
for prediction plus (possibly) asmall set of outlier values of the
predicted attribute for each model. (We use the notation A; —
X; to denote a CaRT predictor for attribute X; using the set of
predictor attributes X; C X —{Xi, ..., Xp}.) Thestorage cost
of predicting attribute X; using the CaRT predictor X; — X;
is denoted by Pr edCost (X; — X;); this does not include the
cost of materializing the predictor attributesin A;.

2.2 SPARTAN System Architecture

Asdepicted in Figure 2, the architecture of the SPARTAN system
comprises of four magjor components: the DEPENDENCY FINDER, the
CARTSELECTOR, the CARTBUILDER, and the ROWAGGREGATOR.
In the following, we provide a brief overview of each SPARTAN
component; for amore detailed description of each component and the
relevant algorithms, the interested reader is referred to [2].

e DEPENDENCYFINDER. The purpose of the DEPENDENCY FINDER
component is to produce an interaction model for the input table at-
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Figure2: SPARTAN System Architecure.

tributes, that is then used to guide the CaRT building algorithms of
SPARTAN . The main observation here is that, since there is an
exponential number of possibilities for building CaRT-based attribute
predictors, we need a concise model that identifies the strongest corre-
lations and “predictive” relationshipsin the input data.

Theapproach used in the DEPENDENCY FINDER component of SPA-
RTAN isto construct a Bayesian network [20] on the underlying set
of attributes X’. Abstractly, a Bayesian network imposes a Directed
Acyclic Graph (DAG) structure G on the set of nodes X', such that di-
rected edges capture direct statistical dependence between attributes.
(The exact dependence semantics of G are defined shortly.) Thus, in-
tuitively, a set of nodes in the “neighborhood” of X; in G (e.g., Xi’s
parents) captures the attributes that are strongly correlated to X; and,
therefore, show promise as possible predictor attributes for X;.

o CARTSELECTOR. The CART SELECTOR component constitutesthe
core of SPARTAN"smodel-based semantic compression engine. Given
the input table 7" and error tolerances e;, as well as the Bayesian
network on the attributes of 7" built by the DEPENDENCY FINDER,
the CARTSELECTOR is responsible for selecting a collection of pre-
dicted attributes and the corresponding CaRT-based predictors such
that the final overall storage cost is minimized (within the given error
bounds). As discussed above, SPARTAN's CARTSELECTOR em-
ploys the Bayesian network G built on X' to intelligently guide the
search through the huge space of possible attribute prediction strate-
gies. Clearly, thissearch involvesrepeated interactionswith the CART-
BuILDER component, which is responsible for actually building the
CaRT-models for the predictors (Figure 2).

We demonstrate that even in the simple case where the set of nodes
that is used to predict an attribute node in G is fixed, the problem of
selecting a set of predictors that minimizes the combination of materi-
alization and prediction cost naturally maps to the Weighted Maximum
Independent Set (WMIS) problem, which is known to be N'P-hard and
notoriously difficult to approximate [11]. Based on this observation,
we propose a CaRT-model selection strategy that starts out with an
initial solution obtained from a near-optimal heuristic for WMIS [13]
and tries to incrementally improve it by small perturbations based on
the unique characteristics of our problem. We also give an aternative
greedy model-selection algorithm that chooses its set of predictors us-
ing asimple local condition during a single “roots-to-leaves’ traversal
of the Bayesian network G.

e CARTBUILDER. Given a collection of predicted and (correspond-
ing) predictor attributes X; — X, the goal of the CARTBUILDER
component is to efficiently construct CaRT-based models for each X;
in terms of X; for the purposes of semantic compression. Induction of
CaRT-based models is typicaly a computation-intensive process that
requires multiple passes over the input data [3, 17]. As we demon-
strate, however, SPARTAN"sCaRT construction algorithms can take
advantage of the compression semantics and exploit the user-defined

error-tolerancesto effectively prune computation. In addition, by build-
ing CaRTs using data samples instead of the entire data set, SPA-
RTAN isableto further speed up model construction.

¢ ROWAGGREGATOR. Once SPARTAN's CART SELECTOR com-
ponent has finalized a “good” solution to the CaRT-based semantic
compression problem, it hands off its solution to the ROWAGGREGA-
TOR component which tries to further improve the compression ra-
tio through row-wise clustering. Briefly, the ROWAGGREGATOR uses
a fascicle-based algorithm [14] to compress the predictor attributes,
while ensuring (based on the CaRT models built) that errorsin the pre-
dictor attribute values are not propagated through the CaRTs in a way
that causes error tolerances (for predicted attributes) to be exceeded.

2.3 FutureDirectionsin MBSC

We strongly believe that our research on the SPARTAN system
has only scratched the surface of model-based semantic compression
and its potential applications in managing and exploring network man-
agement data. We are currently extending our work on MBSC in a
number of different directions.

e MBSC for Continuous Data Streams. The OnlineSPARTAN
System. Network-management systems collect and store continuous
streams of data. For example, |SPs continuously collect packet- and
flow-level traces of traffic in their network to enable sophisticated net-
work traffic management applications such as traffic demand compu-
tation, capacity planning and provisioning, and determining pricing
plans [6]. This data arrives at the network-management station as a
continuous stream and archived in massive and fast-growing data ta-
bles. The goa of the OnlineSPARTAN system is to build on the
MBSC ideas of SPARTAN to effectively compress such continu-
ous data streams. Applying MBSC over streaming data introduces a
number of novel technical challenges.

More specifically, the data characteristics (e.g., attribute correla-
tions) of streams can vary over time. SPARTAN"s methodology of
capturing the characteristics of the input table using data mining mod-
elsand deriving agood compression plan from the constructed models
would have to become online and adaptive for the data-stream sce-
nario. This meansthat the models have to be maintained online as new
tuples arrive over the data stream [9] and the compression plan should
adapt appropriately to changes in data characteristics. The goal, of
course, isto maintain the best possible compressed representation of
the data seen thus far.

e Distributed MBSC Plans. Many traffic management applications
(e.g., traffic demand computation, capacity planning [6]) for ISP net-
works need a global view of the network traffic, requiring data to be
collected from multiple monitoring points distributed over the net-
work [4]. Given the massive volume of collected data, it is highly
desirable to compress that data before it is transferred to data ware-
houses and repositories for processing and archival [10]. Suppose that
MBSC is the compression method of choice for the data collected at
each monitoring point. One approach would be to build data min-
ing models based solely on the locally-collected data. However, these
models are not guaranteed to capture the characteristics of the over-
all network traffic and might, therefore, result in compression schemes
that are suboptimal for the overall traffic data— more sophisticated ap-
proaches are needed. Note that this problem relates to problems stud-
ied in the context of distributed data mining, especially to the problem
of combining/consolidating mining models built using portions of a
distributed data collection [16].

e New Techniquesfor MBSC. The basic thesis of MBSC is that the
model, or combination of models, which compresses a data table op-
timally, is dependent on the data table. The current implementation



of SPARTAN, which uses CaRT-based column-wise compression,
followed by fascicles-based row-wise compression, is a specific in-
stantiation of the general MBSC philosophy. More sophisticated com-
binations of row-wise and column-wise models are possible. As an
example, SPARTAN"s fascicles-based ROWAGGREGATOR compo-
nent can be replaced by a column-wise differential -coding-based com-
ponent [18, 5]. In the long run, we envision SPARTAN as a self-
tuning semantic compression system that derives the best compression
scheme from the input data table, without being restricted to a specific
family of models.

Currently SPARTAN exploits data semantics in two ways: (1)
by capturing data correlations; and, (2) by using user- or application-
specified per-attribute error tolerances which specify the acceptable
degree of information loss. Developing other interfaces to specify data
semantics in ageneral fashion, and also MBSC techniques for exploit-
ing these interfaces is an interesting open problem. It is desirable to
keep the interface general and independent of specific nature of the
data so that the underlying MBSC tools and techniques are widely ap-
plicable.

3. DATAMINING TECHNIQUESFORNETWORK-
FAULT MANAGEMENT

Modern communication networks have evolved into highly complex
systems, typicaly comprising large numbers of interconnected ele-
ments (e.g., routers, switches, bridges) that work together to provide
end-users with various data and/or voice services. Thisincreasein sys-
tem scale and the number of elements obviously implies an increased
probability of faults occurring somewhere in the network. Further, the
complex inter-dependencies that exist among the various elements in
the network cooperating to provide some service imply that afault can
propagate widely, causing floods of alarm signals from very different
parts of the network. Asan example, a switch failure in an |P network
can cause the network to be partitioned resulting in alarms emanating
from multiple elements in different network partitions and subnets, as
they detect that some of their peers are no longer reachable. To deal
with these situations, modern network-management platforms provide
certain fault-management utilities that try to help administrators make
sense of alarm floods, and allow them to quickly and effectively zero
in on the root cause of the problem.

Typically, the architecture of a fault-management subsystem com-
prises two key components: the Event Correlator (EC) and the Root-
Cause Analyzer (RCA), as depicted in Figure 3. The goal of the Event
Correlator is improve the information content of the observed events
by filtering out uninteresting, “ secondary” alarmsfrom the alarm flood
arriving at the network-management station [15, 22]. (Secondary alarms
or symptoms are observable events that are directly caused by other
events observed in the network.) This filtering is implemented with
the help of a set of fault-propagation rules that the Event Correlator
uses to model the propagation of alarm signals in the underlying net-
work. The output of the Event Correlator, i.e., the “primary” alarm
signalsin the observed set of alarms, are then fed into the Root-Cause
Analyzer whose goal is to produce a set of possible root causes for
the observed problem along with associated degrees of confidence for
each “guess’ (Figure 3).

The fault-propagation rules that model the propagation of alarms
throughout the underlying network form the basic core of the Event
Correlation engine. In general, these rules try to capture the proba-
bilistic causal relationships that exist between the various alarm sig-
nals in the network. As an example, Figure 4 depicts a small subset
of such fault-propagation rules; based on the figure, alarm signal 4;
causes the occurrence of alarm signal As with probability p,3 and that
of alarm signal A4 with probability pi4. Thus, the fault-propagation

"PRIMARY"

ALARMS { (RCL, conf1),
(RC2, conf2) ,
} o

Figure 3: Fault-M anagement System Architecture.

rulesthat lie at the heart of the Event Correlator are essentially equiv-
alent to a causal Bayesian model [19, 20] for network alarm signals.
Given such a causal model for network alarms, the problem of filter-
ing out secondary events in the Event Correlator can be formulated as
an optimization problem in a variety of interesting ways. For exam-
ple, a possible formulation would be as follows: Given a confidence
threshold # € (0, 1) and the set of all observed alarm signals A, find
aminimal subset P of A such that P[A|P] > 6 (i.e, the probability
that A was actually “caused” by P exceeds the desired confidence 6).

Figure 4: Example Fault-Propagation M odel for EC.

Current State-of-the-Art. There are several commercially-available
products that offer event-correlation services for data-communication
networks. Examples include SMARTS InCharge [22], the Event-Cor-
relation Services (ECS) component of the HP OpenView network-
management platform, CISCO’sInfoCenter, GTE's Impact, and so on.
A common characteristic of all these Event Correlatorsisthat they es-
sentially force the network administrator(s) to “hand-code” the fault-
propagation rules for the underlying network using either a language-
based or a graphics-based specification tool. Thisis clearly avery te-
dious and error-prone process for any large-scale |P network compris-
ing hundreds or thousands of heterogeneous, multi-vendor elements.
Furthermore, it is non-incremental since a large part of the specifica-
tion may need to be changed when the topology of the network changes
or new network elements are introduced. We believe that such solu-
tions are simply inadequate for tomorrow’s large-scal e, heterogeneous,
and highly-dynamic | P networking environments.

Our Proposed Approach. Rather than relying on human operators
to “hand-code” the core of the Event-Correlation engine, we propose
the use of data-mining techniques to help automate the task of in-
ferring and incrementally maintaining the causal model of network
alarm signals (Figure 5). For the inference task (typically performed
off-line), our data-mining tool can exploit the database of aarm sig-
nals collected and stored over the lifespan of the network along with
important “domain-specific knowledge” (e.g., network topology and
routing-protocol information) to automatically construct the correct
causal model of fault-propagation rules. For the maintenance task (typ-
ically performed on-lin€), our data-mining tool can again exploit such
“domain-specific knowledge” along with information on network up-
dates (e.g., topology changes or new additions to the network) and the
incoming stream of network alarm signals to automatically effect the
appropriate updates to the fault-propagation model.

We should note here that, even though the problem of inferring
causal Bayesian models from data has been studied for some time
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in the data-mining and machine-learning communities [19, 20], the
automatic extraction of event-correlation models for communication
networks presents a host of new challenges due to several unique char-
acteristics of the problem domain. First, the issue of how to effectively
incorporate and exploit important “domain-specific knowledge” (like
the network topology or routing-protocol information) in the model-
learning algorithm is certainly very challenging and non-trivial. Sec-
ond, it is important to incorporate the temporal aspects of network
alarm signals in the data-mining process; for example, alarms that oc-
cur within a small time window are more likely to be correlated than
alarms separated by larger amounts of time. Finally, the learning al-
gorithm needs to be robust to lost or spurious alarm signals, both of
which are common phenomena in modern communication networks.

For the Root-Cause Analyzer, data-mining techniques can again be
exploited; for example, our tools can usefailure data collected from the
field to automatically learn failure “signatures’ and map them to an as-
sociated root cause. Once again, itis crucia to effectively incorporate
important “domain-specific knowledge” (like the network topology) in
the data-mining process.

4. CONCLUSIONS

Operational data collected from modern communication networks
is massive and hides “knowledge” that is invaluable to several key
network-management tasks. In this short abstract, we have provided an
overview of some of our recent and ongoing work in the context of the
NEMESTS project at Bell Laboratories that aims to develop novel
data warehousing and mining technology for the effective storage, ex-
ploration, and analysis of massive network-management data sets. We
have given some key highlights of our recent work on Model-Based
Semantic Compression (MBSC), anovel data-compression framework
that takes advantage of attribute semantics and data-mining models to
perform lossy compression of massive network-data tables. We have
also summarized our vision of how data-mining techniques can be em-
ployed to help automate and improve fault-management in modern
communication networks. Wefirmly believe that, in the yearsto come,
network management will provide an important application domain for
very innovative, challenging and, at the same time, practically-relevant
research in data mining and data warehousing.

Acknowledgements: Many thanks to Shivnath Babu (our coauthor
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