
Toward Expressive and Scalable
Sponsored Search Auctions

David J. Martin1, Johannes Gehrke2, Joseph Y. Halpern3

Department of Computer Science, Cornell University

Ithaca, NY, USA
1djm@cs.cornell.edu

2johannes@cs.cornell.edu
3halpern@cs.cornell.edu

Abstract—Internet search results are a growing and highly
profitable advertising platform. Search providers auction adver-
tising slots to advertisers on their search result pages. Due to
the high volume of searches and the users’ low tolerance for
search result latency, it is imperative to resolve these auctions
fast. Current approaches restrict the expressiveness of bids in
order to achieve fast winner determination, which is the problem
of allocating slots to advertisers so as to maximize the expected
revenue given the advertisers’ bids. The goal of our work is
to permit more expressive bidding, thus allowing advertisers to
achieve complex advertising goals, while still providing fast and
scalable techniques for winner determination.

I. INTRODUCTION

With the huge number of Internet searches performed every

day, search result pages have become a thriving advertising

platform. The results of a search query are presented to the

user as a web page that contains a limited number of slots,

typically between four and twenty, for advertisements. On

each search result page, major search engines, like Google and

Yahoo, sell these slots to advertisers via an auction mechanism

that charges an advertiser only if a user clicks on his ad. Most

of Google’s multi-billion dollar revenue, and more than half of

Yahoo’s revenue, comes from these so-called sponsored search

auctions [1]; and this market is growing quickly. By 2008,

spending by US firms on sponsored search is expected increase

by $3.2 billion from 2006 and will exceed $9.6 billion, the

amount spent on all of online advertising in 2004 [2]. With

the increasing market size in mind, it is natural to approach

sponsored search auctions from a database perspective in order

to tackle issues of scalability and expressiveness. Our paper is

a first step in this direction.

Sponsored search auctions currently work as follows:

1) Bid submission. Advertisers submit bids on clicks for

certain keywords offline.

2) User search. A user submits a search query.

3) Winner determination. Slots are assigned to advertisers

by the search provider based on the advertisers’ bids.

4) User action. The search result page is returned to the

user who may now click on one or more of the sponsored

links.

5) Pricing and payment. The search provider charges an

advertiser according to some pricing rule if the user

clicked on the advertiser’s sponsored link.

The speed of the winner determination in Step 3 is crucial

because it contributes to the user-experienced latency since the

winning ads are displayed on the search result page returned

to the user. In current sponsored search auctions, this winner

determination can be done quickly because advertisers are

limited to submitting a single bid on whether or not the user

clicks on their ad.

A. The Need for Expressive Auctions

Unfortunately, as we now point out, the limited bidding

in current sponsored search auctions is insufficient to meet

advertisers’ needs in two respects.

Bidding on Multiple Features. Once the advertisers’ ads

are displayed on the search results page, the user who sub-

mitted the query may click on the ad and may even make

a purchase as a result. Advertisers clearly value purchases

because they represent immediate revenue. They also value

clicks on their ads because they indicate potential customers.

However, even if the user does not click on or buy something,

advertisers might place value on having their ads displayed

simply because this increases their chance to make an impres-

sion on the customer. Advertisers who value brand awareness

may wish their ads to be placed in prominent positions. Such

advertisers may prefer their ads to be displayed near the top

or bottom of the list, but not in the middle. Other advertisers

whose goals are to be perceived as the leaders in their markets

may wish their ads to be displayed in the topmost slot or not

displayed at all. Thus it is clear that advertisers have valuations

on clicks, purchases, and slot positions.

Unfortunately, in current search advertising platforms, ad-

vertisers are restricted to bidding only on whether they receive

a click on their ad. We call this a single-feature auction since

the advertisers can express their valuations on only one feature,

namely, receiving a click. Our goal is to support multi-feature

auctions that would allow advertisers to express valuations on

multiple features, namely, clicks, purchases, and slot positions.

Extending bidding to multiple features is non-trivial; whereas

previously the advertiser submitted a single value as depicted

in Figure 1, now the advertiser can submit a whole table of

values for the different combinations of features, as depicted

in Figure 2. The fast algorithms for winner determination that

are currently used by Google and Yahoo! do not extend to

non-trivial multi-feature auctions. Moreover, even for single-

feature auctions, these algorithms can correctly deal with only

a restricted situation, namely, one where the expected number

of clicks on an ad is “separable” into the product of an

advertiser-specific factor and a slot-specific factor.

Dynamic Bidding Strategies. The language that search

providers, such as Google and Yahoo, currently use to let

advertisers express bidding preferences in is rather limited.

While the language does allow advertisers to specify a limited

number of parameters to constrain their bids (such as a

daily budget, and geographic targets), the language is often

insufficiently expressive for serious advertisers to express their

preferences and how they change over time. To deal with

this, advertisers employ the services of various third-party

search engine management companies (such as iProspect,

SureHits, Atlas, etc.) that monitor the outcomes of auctions

and periodically resubmit bids on behalf of the advertiser

in an attempt to approximate the advertisers’ preferences

as much as possible. The kinds of goals that they try to

achieve include maintaining a specified slot position during

certain hours of the day, maintaining a slot position above a

specified competitor, and equalizing the return on investment

(ROI) across multiple keywords.The success of such search

engine management companies demonstrates the desire among

advertisers for more complex expressive bidding in search

auctions. Again, advertisers want these, but can only pick from

a set of pre-defined strategies that these companies provide.

B. Our Framework

With the increasing market size in mind, our goal is to

design a framework that allows huge numbers of advertisers

to bid on a richer set of features using dynamic bidding

strategies while simultaneously allowing the search provider

to determine winners quickly so as not to detract from the user

experience [3].

Bidding Language. In this paper, we propose a simple but

rich language for bidding that allows advertisers to express

their high-level strategies directly; we allow users to submit

their dynamic strategies as bidding programs that can bid on

multiple features of the auction outcome, such as purchases

and slot positions, in addition to clicks. Programs take as input

the search query and various statistics about auction history

and performance, and they output bids on clicks, purchases,

and slot positions. Using this language gives advertisers direct

and fine-grained control over their advertising strategies in-

stead of simply picking from a menu of pre-defined goals, as

is currently done. Thus, in our framework, the search auctions

work as follows:

1) Program submission. Advertisers submit a bidding

program to bid on their behalf.

2) User search.

3) Program evaluation. The programs are run and place

bids on clicks, purchases, and slot positions.

4) Winner determination.

5) User action.

6) Pricing and payment.

Scalable Algorithms. We provide an algorithm for winner

determination that takes as input bids made in our expressive

bidding language and runs quickly provided that the bids

satisfy a condition that can be viewed as a generalization of

separability; moreover, we prove that this requirement is in a

sense necessary to get fast performance.

We also provide techniques for reducing the amount of work

that needs to be done when evaluating dynamic strategies of

many advertisers. This results in a scalable infrastructure for

multi-feature auctions with dynamic strategies.

Summary of our contributions. We approach sponsored

search auctions from a database perspective, and tackle issues

of scalability and expressiveness. Our main contribution is an

efficient and scalable infrastructure that permits much more

expressive bidding than is currently available. In particular,

we provide

• a language to express dynamic bidding strategies for

multi-feature sponsored search auctions (Section II);

• an efficient, scalable, and parallelizable algorithm to solve

winner determination for bids in our language (Section

III);

• techniques to reduce the amount of work necessary for

evaluating dynamic strategies for multiple advertisers

(Section IV).

We evaluate our techniques experimentally in Section V, and

we conclude in Section VI.

II. BIDDING STRATEGIES AS PROGRAMS

In this section, we formalize the notion of bidding on

multiple features, and we propose a simple language for

dynamic strategies that bid on these features.

A. Multiple Features

Recall that traditionally an advertiser could only bid on

one property of the outcome, namely, whether his ad received

a click. Now we would like to allow advertisers to bid on

additional properties as well, namely whether a purchase was

made, and whether his ad was displayed within a desired set

of slots. To each advertiser, we make available the following

predicates that indicate whether or not the outcome has one

of these desired properties.

1) Slotj , indicating that the advertiser gets slot j, for j ∈
{1, . . . , k}, with k being the number of slots.

2) Click, indicating that the user clicked on the advertiser’s
ad.

3) Purchase, indicating that the user made a purchase via
a link from the advertiser’s ad.

Conceptually, the advertiser associates a value with each

truth assignment to these predicates, as depicted in Figure 2.

However, the size of such a representation is exponential in

the number of predicates. So we represent bids as OR-bids on

Boolean combinations of predicates instead. That is, we let

the advertiser fill in a Bids table where each row corresponds

to a Boolean formula of predicates and the amount that he

is willing to pay should that formula be true. If multiple

formulas are true, the advertiser can be charged the sum of the

Click value

Y 3

Fig. 1. Single-feature valuation

Purchase Click Slot1 Slot2 Slot3 value

Y Y Y N N 7

N Y Y N N 2
...

...
...

...
...

...

Y Y N N Y 5

N Y N N Y 0
...

...
...

...
...

...

Fig. 2. Multi-feature valuation

corresponding amounts. For example, the Bids table depicted

in Figure 3 indicates that the advertiser is willing to pay 5

cents if he gets a purchase; 2 cents if his ad is displayed in

either positions 1 or 2; and 7 cents if he gets a purchase and

his ad is displayed in positions 1 or 2.

B. Dynamic Strategies

As we said, we are interested in designing a programming

language that lets advertisers express more complex prefer-

ences, which may change over time. Instead of providing

advertisers with a pre-defined selection of advertising strate-

gies, we let the advertisers submit their bidding strategies as

programs for the search provider to run. Conceptually, each

time a user submits a search query to the search provider,

these programs are triggered. The main purpose of these

programs is to output bids on clicks, purchases, and slot

positions that may result from displaying their ad on the

search result page. In order to do so, each program creates

a Bids table as described in Section II-A each time there is

a sponsored search auction. These programs have access to

several variables pertinent to the current auction and to the

advertiser, such as the keywords in the search query, the time

of day, the advertiser’s remaining budget, the current return on

investment for the keywords that the advertiser is interested in,

and so on. These variables are stored in tables, some of which

are read-only shared between all advertisers (such as the time

and location of the search) and some of which are private

to each advertiser (such as information about the keywords

that the advertiser is interested in). The programs can then be

written using simple SQL updates without recursion and side-

effects. SQL triggers can be used to activate programs when an

auction begins and to notify programs if they received a slot,

click, or purchase. Programs can modify their private tables,

although commonly used variables, such as amount spent,

budget remaining, return on investment for various keywords,

etc. can be automatically maintained for each program by the

search provider. For example, the advertiser-specific variables

related to keywords are stored in a Keyword table, as depicted

in Figure 4 that is private to each advertiser. Each tuple

in the Keyword table corresponds to a bid for a keyword

formula value

Purchase 5

Slot1 ∨ Slot2 2

Fig. 3. Bids table

text formula maxbid roi bid relevance

boot Click ∧ Slot1 5 2 4 0.8

shoe Click 6 1 8 0.2

Fig. 4. Keywords table

that the advertiser is interested. The attributes of the tuple

contain, among other things, the formula for the bid, keyword’s

relevance score in the search query, the return on investment

that this keyword has provided the advertiser, the maximum

amount that the advertiser is willing to bid on a click by a user

who searched for this keyword, and the amount of money that

the advertiser is currently bidding for the keyword. The search

provider updates the return on investment for a keyword each

time a user searches for the keyword and then clicks on the

advertiser’s ad. The bidding program can be stored with its

private tables to improve locality. Since bidding programs use

private tables and read-only shared tables, they do not interact

with each other when they are triggered by a new search query.

Hence they can be distributed across several machines and run

in parallel if necessary.

C. An Example: Equalizing ROI

We now give a concrete example of a dynamic bidding

strategy that bids on multiple features. Our example combines

the dynamic ROI equalizing heuristic mentioned in Section

I with bidding on two features, clicks and the top slot; the

advertiser is interested in receiving clicks for two keywords,

“boot” and “shoe”, but also wants to be perceived as the

leading supplier of boots and so would be willing to pay extra

to be shown in the top slot if the search query is highly relevant

to boots. In order to control his spending, the advertiser has

a target spending rate that he wishes to maintain. The ROI

equalizing heuristic, as suggested in [4], tries to dynamically

allocate spending across the different keywords and bids so

as to maximize the advertiser’s “bang for the buck”. If the

advertiser is underspending (i.e., his current spending rate

is lower than his target spending rate), then the advertiser

increases the bids on keywords that have been most profitable

for him (i.e., those with the highest return on investment). If

the advertiser is overspending (i.e., his current spending rate

is higher than his target spending rate), then the advertiser

decreases the bids on keywords that have been least profitable

for him (i.e., those with the lowest return on investment).

Return on investment of a bid is the total value gained from

the keyword (e.g., number of clicks received in the top slot

times the amount the advertiser values a click in the top slot)

divided by the amount spent so far on it.

Figure 5 shows the program for this strategy. Line 1 creates

a trigger that waits for a new query to be inserted into the

Query table, indicating that a new auction is taking place. If the

1 CREATE TRIGGER bid AFTER INSERT ON Query

2 {

3 IF amtSpent / time < targetSpendRate THEN

4 UPDATE Keywords

5 SET bid = bid + 1

6 WHERE roi =

7 (SELECT MAX(K.roi)

8 FROM Keywords K)

9 AND relevance > 0

10 AND bid < maxbid;

11 ELSEIF amtSpent / time < targetSpendRate

12 THEN

13 UPDATE Keywords

14 SET bid = bid - 1

15 WHERE roi =

16 (SELECT MIN(K.roi)

17 FROM Keywords K)

18 AND relevance > 0

19 AND bid > 0;

20 ENDIF;

21

22 UPDATE Bids

23 SET value =

24 (SELECT SUM(K.bid)

25 FROM Keywords K

26 WHERE K.relevance > 0.7

27 AND K.formula = Bids.formula);

28 }

Fig. 5. Equalize ROI

formula value

Click ∧ Slot1 4

Click 0

Fig. 6. Bids table for Example Program

advertiser notices that he has been underspending (line 3), he

increases his tentative bids for all relevant keywords that have

provided him with the highest ROI, taking care not to increase

the bid past its maximum value (lines 4–10). Similarly, lines

13–19 decreases his bids for relevant keywords with the lowest

ROI if he is overspending (line 11), taking care not to decrease

his bid below zero. Next, he updates the values in the Bids

table with the sum of his tentative bids for the corresponding

formulas for all sufficiently relevant keywords, namely, those

with a relevance score higher than 0.7 in the user-submitted
search query (lines 22–27). For example, if the Keywords table

is as depicted in Figure 4 after running lines 1–20, then the

output Bids table will be as depicted in Figure 6.

III. WINNER DETERMINATION

Having empowered the advertisers with a language for

expressing dynamic bidding strategies to bid on a rich set of

features, we now seek efficient and scalable techniques for the

search provider to perform winner determination.

All sponsored search auction mechanisms currently in use

(see, for example, [5], [6], [1], [7]) first solve the winner-

determination problem, then assign slot positions according to

the winning allocation, and finally use some method of charg-

ing prices for the positions, such as charging each advertiser

their social opportunity cost (this is known as Vickrey pricing

[8], [9], [10]), or charging advertiser in the kth slot the amount

bid by the next-highest bidder (this is known as generalized

second-pricing [1]). Note that with most pricing schemes, a

provider’s revenue is not the revenue that is computed in the

winner-determination problem. Different pricing schemes lead

to different behavior of the auction in terms of revenue, sta-

bility, and other economic and game-theoretic properties. For

example, Vickrey pricing leads to theoretically stable truthful

auctions [10], while generalized second pricing leads to locally

envy-free equilibria [1]. Nevertheless, the first step in all these

auctions is to do winner determination. Furthermore, given

winner determination as a subroutine, the pricing schemes used

in these auctions (i.e., Vickrey pricing, generalized second-

pricing, etc.) can all be expressed as very simple computations.

In our work, therefore, we focus on optimizing the winner-

determination computation.

A. How Winner Determination Works

The winner-determination problem is to compute the al-

location of slots to advertisers that results in the highest

expected revenue for the search engine provider, under the

assumption that advertisers actually pay what they bid. In

keeping with Google and Yahoo policy, we restrict the slot

allocations to those in which no advertiser gets assigned more

than one slot. This prevents extremely wealthy advertisers

from monopolizing all the available slots.

In order to compute the expected revenue resulting from an

allocation, we need the advertisers’ bids on clicks, purchases,

and slot positions as specified in their Bids tables. For now, let

us assume, that we actually run all of the advertisers’ bidding

programs to get their resulting Bids tables. In Section 4, we

give techniques that require us to run only a small subset of

programs under certain conditions.

In order to compute the expected revenue resulting from an

allocation, we also need the probabilities that the formulas in

the Bids tables are true in the final outcome. We thus consider

the set of all possible outcomes that describe which slot was

allocated to which advertiser together with which advertisers

received clicks and purchases. The probabilities of clicks and

purchases depend on the search provider’s allocation of slots to

advertisers. For example, ads placed at the top are more likely

to be noticed and clicked on than those placed in the middle

of the page [11]. As a reasonable first-order approximation,

we assume that the probability that a given advertiser gets a

click depends only on the slot allocated to him, and that the

probability that he gets a purchase depends only on whether

he got a click and on the slot allocated to him. Furthermore,

we assume that the search provider has (or can estimate, using

data it has collected) these click and purchase probabilities for

each advertiser and each slot allocation to that advertiser.

Note that a complete representation of the probabilities of

all possible formulas for each advertiser is exponential in the

number of features. Although this is not too large in our

setting, the complete set of probabilities should be stored in

a database separate from the run-time system, which itself

should store only probabilities for the formulas mentioned in

the bidding programs and Keyword tables, since these are the

only probabilities that are used. Furthermore, the probabilities

can be partitioned by advertiser and should be stored with

the advertiser’s bidding program and private tables to improve

locality.

B. Complexity

Given the assumptions on slot allocations and distributions

above, we look at the complexity of solving the winner-

determination problem given bids in our language. Recall

that a bidding program’s output is an OR-bid represented

by a Bids table whose rows contain bids of the form “Pay

$d1 for E1”, . . . , “Pay $dm for Em”, where E1, . . . , Em

are Boolean combinations of the Slotj , Click, and Purchase
predicates. Recall that, in addition, we assume that for any

allocation, we have a distribution on outcomes, conditional

on that allocation. Each formula Ei can be identified with

an event on the set of possible outcomes, namely, the set

of outcomes in which Ei is true. Thus bidding on formulas

can be interpreted as bidding on events. Toward proving that

winner determination is tractable for bids in our language, we

introduce the following definition.

Definition 1 (m-dependent event): An event is m-

dependent if there are at most m advertisers such that

probability of the event given any allocation depends only on

the placement of those m advertisers.

That is, an event is m-dependent if it is independent of the

slots assigned to all but m advertisers. For example, the event

that a given advertiser gets a click is 1-dependent since we
assumed that the probability of an advertiser getting a click

depends only on the slot position of that advertiser. Similarly,

the event that a given advertiser is in either the top slot or the

bottom slot is 1-dependent since it depends only on the slot
assigned to that advertiser. However, given two advertisers, the

event that one gets the top position and the second gets the

bottom is 2-dependent since it depends on the slots assigned
to both those advertisers.

We assume that the representation of each m-dependent

event includes the labels of the m advertisers on whose slot

assignment the event depends. The following theorem says that

winner determination is tractable for 1-dependent events.1

Theorem 2: For OR-bids on collections of 1-dependent
events, the winner determination problem is in polynomial

time.

It follows that winner determination for bids represented

by a Bids table can be solved in polynomial time, since

our assumptions in Section III-A guarantee that any Boolean

combination of predicates for an advertiser (i.e., of the form

Slot1, . . . ,Slotk,Click,Purchase) is 1-dependent.
A natural question to ask is whether we can extend our

tractability results to a language that allows advertisers to bid

on m-dependent events, for m ≥ 2. The next result says
that winner determination is APX-hard if we allow bids to

1See the Appendix for proofs.

be placed on 2-dependent events, such as the event that one
advertiser is displayed above another. APX is the class of

NP optimization problems that have polynomial-time constant-

factor approximation algorithms [12].

Theorem 3: For OR-bids on collections of 2-dependent
events, the winner-determination problem is APX-hard.

In the remainder of this section, we take the reader on

a quest for an efficient and scalable winner-determination

algorithm for our bidding language.

C. Existing Allocation Algorithms

The allocation algorithms used by Google and Yahoo, as

well as those studied in the literature [6], [5], [1], [7], deal

with the issue of scalability by assuming that the probability

of a click resulting from assigning a slot to an advertiser

is separable, that is, it can be written as the product of an

advertiser-specific factor and a slot-specific factor. To illustrate

this notion of separability, we provide examples of non-

separable and separable click probabilities in Figures 7 and 8

respectively. The matrix in Figure 8 is separable because the

entries in the matrix can be split into the product of advertiser-

specific factors (namely, 4 for Nike and 3 for Adidas) and slot

specific-factors (namely, 0.2 for slot 1, and 0.1 for slot 2).

Slot1 Slot2
Nike 0.7 0.4

Adidas 0.6 0.3

Fig. 7. Non-separable click probabilities

Slot1 Slot2
Nike 0.8 0.4

Adidas 0.6 0.3

Fig. 8. Separable click probabilities

When the click probabilities are separable, it is easy to see

that winner determination can be performed by assigning the

advertisers with jth highest advertiser-specific factor to the

slot with the jth highest slot-specific factor. This can be done

in time O(n log k).
Note that the assumption of separability implicitly assumes

that the event that an advertiser gets a click is 1-dependent.
Indeed, it assumes the event that an advertiser gets a click

depends on only that advertiser’s slot assignment. But separa-

bility requires much more 1-dependence: it requires that the

ratio of the expected number of clicks on one advertiser in a

slot and the expected number of clicks on another advertiser

in the same slot is the same for all slots.

Not only is separability a much stronger requirement than

1-dependence, but the techniques for fast winner determination

that use this assumption do not suffice to deal with our bidding

language. In particular, they cannot deal with the situations

described in Section I where one advertiser wants to be

displayed in the top slot or not displayed at all, while another

wants to be displayed in either the top or bottom slots but not

in the middle slots. (Bids representing these preferences can

be easily expressed in our language.)

D. Maximum-Weight Bipartite Matching

We proved Theorem 2 by showing that winner determina-

tion in this case is equivalent to maximum-weight bipartite

matching between advertisers and slots, where the edge-weight

between an advertiser and a slot is the expected revenue

obtained by assigning that slot to that advertiser. The fastest

known (non-parallel) algorithm to solve this is the Hungarian

algorithm, invented by Kuhn [13] (also known as the Kuhn-

Munkres algorithm after being revised by Munkres [14]); it

finds the best matching in time O(nk(n + k)) where n is the

number of advertisers and k is the number of slots. Since this

is quadratic in n, this will not scale well. We want to deal

with situations where n can be quite large (possibly in tens

to hundreds of thousands). To make the problem scalable, we

need it to be linear in n, the number of advertisers. There are

parallel algorithms for maximum-weight matching [15], but

these require prohibitively large numbers (typically Ω(n2)) of
processing units in order to achieve linear running time.

E. Our Algorithm

We now give a scalable winner-determination algorithm that

takes advantage of the fact that k, the number of slots, is

quite small (say less than 20) compared to n, the number of

advertisers. Indeed, n is growing rapidly every year while k

remains the same. We can modify the Hungarian algorithm to

get a O(nk log k + k5) algorithm by considering only those
advertisers whose values are in the top k highest for some

slot. That is, for each slot, we consider the k advertisers

who would produce the top k expected revenue if placed in

that slot. We take the union of these advertisers over all the

k slots, and consider the bipartite subgraph containing only

these advertisers along with all the k slots. We then solve

maximum-weight bipartite matching problem for this reduced

bipartite graph. As an example, consider the expected revenue

matrix as depicted in Figure 9. There are two slot positions

available and four advertisers. The top two expected revenues

for the first slot come from Nike and Adidas, while the top

two expected revenues for the second slot come from Adidas

and Reebok. The corresponding edges in the original bipartite

graph between advertisers and slots have been depicted in bold

in Figure 10. This bipartite graph is then reduced to contain

only those advertisers with an adjacent bold edge as depicted

in Figure 11. We observe that the maximum matching for the

original problem must occur for this smaller problem since if

an maximum matching in the original problem assigned a slot

to an advertiser who was not in the top k highest bidders for

that slot, we can simply reassign that slot to one of these top

k bidders who is not assigned any slot. Note that since there

are only k − 1 other slots, at least one advertiser in the top k

is guaranteed to remain unassigned.

Finding the relevant advertisers takes time O(nk log k)
because, for each slot, we can find the top k bidders for that

slot in time O(k + n log k) by maintaining a priority heap of

size at most k. There are at most k2 such advertisers since in

the worst case we will have a distinct set of k advertisers for

each of the k slots. Hence running the Hungarian algorithm on

the reduced graph takes time O(k5) for a total running time
of O(nk log k + k5) for our algorithm.
Parallelization. Our technique lends itself very well to

parallelization. Note that in our setting there is typically

already a high amount of parallelized infrastructure present

since the bids are collected from advertisers in a distributed

way. We construct k networks of computers each in the form

of a binary tree of height O(log n) with n leaves. We can

compute a maximum matching in time O(k log n + k5) as
follows. For each slot j, we consider the jth binary tree

network, which will ultimately compute the top k bidders for

that slot at the root:

1) The ith leaf node in the jth network starts out with the

expected revenue from assigning slot j to advertiser i.

2) Each internal node gathers the top k bidders (along

with their corresponding bids) from its two children, and

combines them into a single list of top k bidders. This

takes time O(k) for each of the O(log n) levels of the
tree since each level of the tree works in parallel.

3) The root nodes in each of the j-networks take the union

of their lists of bidders and compute the maximum-

weight matching of these bidders with the k slots using

the Hungarian algorithm. This takes time O(k5) since
there are k slots and at most k2 bidders considered.

Note that we can mix sequential processing with parallel

processing by running more than one program sequentially on

each machine, computing the top k bids, and then aggregating

using a tree network as before. If we have a binary tree

network with p nodes, then the total running time becomes

O(n
p
k log k + k log p + k5).

Finally the O(k5) part of the algorithm (i.e., the part
resulting from running the Hungarian algorithm on the reduced

bipartite graph) can be reduced to O(k2) using a parallel
algorithm, such as in [15]. The number of parallel processing

units required is O(k5), which is independent of n.

F. Beyond 1-dependence

So far, our results have assumed that the probability that an

advertiser receives a click or a purchase depends only on the

slot to which that advertiser was assigned. However, it is easy

to think of situations where this assumption might not be true.

For example, if the slot assigned to an advertiser for a small

company is just below a very large and popular competitor,

then it is likely that the competitor will receive a substantial

portion of user clicks that might otherwise have gone to the

smaller advertiser had the competitor not been present. Thus

the probability of receiving a click (or a purchase) would

depend on who else displays an ad and in what position. In

the worst case, the probability would depend on the entire slot

assignment. The representation of such a general probability

distribution would be quite large (O(knk)), and, conceptually,
winners can be determined by a brute force algorithm that

considers each of the possible
(

n

k

)

k! assignments.

Slot1 Slot2
Nike 9 5

Adidas 8 7

Reebok 7 6

Sketchers 7 4

Fig. 9. Revenue matrix Fig. 10. Bipartite graph Fig. 11. Reduced graph

This would also lead to advertisers to value two assignments

differently even if both assignments may give the advertiser

the same slot. For example, consider two assignments, both

of which assign an advertiser slot 2. However, in the first

assignment, slot 1 is given to a very famous company, while in

the second assignment, slot 1 is given to a relatively unknown

company. Then the advertiser in slot 2 would naturally prefer

the second assignment to the first, since the famous company

poses a serious threat to the advertiser in terms of diverting

away clicks. Representing such general valuations would also

require large space (O(knk−1)) in general.
Motivated by these concerns, but keeping in mind that we

cannot store such huge distributions and valuations (since n

can be very large), we propose the following model. For a

given search auction, suppose that the advertisers are classified

into either heavyweights (famous advertisers) or lightweights

(relatively unknown advertisers).2 We now allow the prob-

ability that a given advertiser gets a click (or a purchase)

to depend on his slot position as well as on which slots

have heavyweight advertisers and which slots have lightweight

advertisers. We also allow advertisers to place bids on which

slots get heavyweights and which slots get lightweights, in

addition to placing bids on click, purchases, and slot positions

as before. Thus an advertiser might bid 3 cents if he gets slot

2 and if there is a lightweight advertiser in slot 1. Advertisers

could even place more complex bids, such as bidding on

having no heavyweights within 3 slot positions above or below

his slot in addition to having no more than 2 heavyweights

appear anywhere else. The representation of the probability

distributions and valuations now become O(k2k−1) which
does not depend on n anymore.

In order to solve the winner-determination problem, we

must find an assignment of slots to advertisers to maximize

expected revenue (assuming advertisers pay what they bid)

given these new valuations and distributions. Suppose we

knew exactly which slots get heavyweight advertisers in

such a revenue maximizing assignment. We call these slots

heavyweight slots, and we call the remaining slots lightweight

slots. Then we can solve the winner-determination problem

by simply solving two disjoint maximum-weighted bipartite

bipartite matching problems: one matching the heavyweight

2One way for the search provider to decide which advertisers are heavy-
weights is to select those advertisers with the most clicks so far.

advertisers to the heavyweight slots, and the other matching

the lightweight advertisers to lightweight slots. And if we do

this for each possible way to choose heavyweight slots, we can

find the assignment that maximizes expected revenue over all

possible assignments. Moreover, the maximum-weight bipar-

tite matching problems for different choices of heavyweight

slots can be solved independently and in parallel. Therefore,

since there are 2k ways to choose heavyweight slots, we

can solve winner determination in time O(2k(n log k + k5))
in series, or in time O(n log k + k5) in parallel using 2k

processing units. Note that the number of parallel processing

units is independent of the number of advertisers n.

IV. REDUCING PROGRAM EVALUATION

We have shown how to solve the winner-determination

program given the bids output by programs. However, getting

these bids for a given search query requires, in the worst case,

running each advertiser’s program for that query. This itself

can be quite expensive. An obvious step toward alleviating this

problem is for search providers to use their proprietary key-

word matching algorithms to prune away advertisers who are

not interested in the search keywords for the current auction.

However, this is not enough if the search query contains a very

popular keyword, such as “music” or “book”, where the set

of interested advertisers can still be large. In this section, we

show that we can further reduce the amount of work by taking

advantage of knowledge of the structure of the advertiser’s

programs. To simplify exposition, we assume that advertisers’

programs output bids on only Click∧Slot1, . . . ,Click∧Slotk.

It is easy to incorporate bids on other formulas since both

Click and Purchase are assumed to be 1-dependent events.

A. Threshold Algorithm

We start by considering a situation where the only difference

between the programs used by different advertisers is in the

values of certain advertiser-specific parameters. More pre-

cisely, for each slot j ∈ [k], suppose that each advertiser’s bids
depends on a set of (numeric) parameters Xj in a monotonic

way. That is, there is a monotonic function fj : Xj → R
+

that takes as input a value for each parameter in Xj and

outputs a bid for a click in slot j. We allow some subset

of the parameters Yj to be advertiser-specific: these can vary

from advertiser to advertiser (e.g., the amount that they value

a particular keyword, the amount of budget remaining, etc.).

Suppose further that these parameters Yj are updated only

by programs that win the auction.In Section IV-B, we consider

the case where all programs can update their state; nonetheless,

restricting updates to winning programs is not unreasonable

since most useful advertiser-specific quantities (such as num-

ber of auctions won, amount spent so far, return on investment

for a given keyword, etc.) only change when the advertiser

wins an auction.

The rest of the parameters Zj = Xj\Yj can be thought of as

public global parameters and are the same for all advertisers

(e.g., the keyword scores associated with the user’s search

query, the time and date, the number of times the keywords

in search query have appeared today). A simple example of

such a situation is where advertisers all use the same general

strategy of starting each day by bidding low and then grad-

ually increasing their bids as the end of the day approaches.

However, they might each start with a different amount and

might increase their bids at different rates. Then the starting

amounts and the rate of increase would be advertiser-specific

parameters in Yj , and the time of day would be a global

parameter in Zj .

For each advertiser i and each slot j, we let the edge weight

between advertiser i and slot j be wi,j×fj(yi,j , zj) where wi,j

is the probability of advertiser i getting a click in slot j, and

yi,j ∈ Yj are the values of the advertiser-specific parameters

and zj ∈ Zj are the values of the global parameters. We

previously showed that we can solve the maximum-weight

matching in time O(nk log k + k5). Under the assumptions
above, we can further reduce the O(nk log k) portion that
finds the top k bidders for each slot as follows. For a given

slot j, we also store a list of bidders sorted by wi,j and we

incrementally maintain |Yj | lists of bidders, each sorted by
one of the parameters in Yj . We can then run the threshold

algorithm [16] with these lists as input to find the top k

advertisers with the highest values of wi,j × fj(yi,j , zj). Note
that we do not need to maintain lists for the parameters in Zj

since all advertisers have the same value for these parameters.

Since fj was monotonic, the threshold algorithm is instance

optimal for the class of algorithms that find the advertisers with

the top k values of fj(xi,j) without making “wild guesses”
(i.e., the algorithms must not access an advertiser until that

advertiser is encountered via a sequential scan of one of

the lists). Instance optimality means that, for any input, the

threshold algorithm finds the top k values within a constant

factor of the time it takes the fastest algorithm that avoids

wild guess on that input. Given these top k advertisers for

each slot, we take O(k5) further time to compute the winners
as described in Section III-E. To maintain the sorted lists,

once the k winners have been computed, we update their Yj

parameters and accordingly update their positions in the sorted

lists, which takes O(|Yj |k log n) time.

B. Logical Updates

We now consider the case where all program update their

state, not just the winners. In certain situations, it is possible

to reduce the amount of work done in this case as well.

Consider a situation where many programs update their state

using an operation that maintains their relative bid ordering.

For example, suppose that many bidders are using the ROI

heuristic described in Section II-C, each with possibly dif-

ferent target spending rates and maximum bids. As long as

certain conditions hold (namely, the bid is above zero and the

spending rate is above the target spending rate), the heuristic

will decrement its bid for a given keyword. Thus, if we

can maintain a decrement list—that is, a list of programs,

sorted by their bid, that are currently decrementing their bid

for a given keyword—we can avoid explicitly decrementing

each program’s bid, by instead performing a single logical

decrement in constant time. That is, the decrement list is

associated with a single adjustment variable, initially zero. A

program’s bid is then the sum of the adjustment variable and

the program’s stored bid. So, in order to decrement the bids of

all programs in the list, we simply decrement the adjustment

variable. The sorted order is maintained because all programs

in the list adjust their bids by the same amount.

Of course, the ROI heuristic eventually stops decrementing

the bid and starts to increment it (if the spending rate drops

below the target) or keep it constant (if the bid is zero) instead.

At this point we must move the program to an increment list

or a constant list as appropriate (similar to a decrement list,

except that the adjustment variable respectively increments or

remains constant). At first glance, this would seem to involve

checking checking the conditions for each program at every

auction. However, we observe that such conditions can often

be reduced to waiting for a shared monotonic variable (such as

time, or the number of times a given keyword has occurred) to

reach a critical value. For example, in the ROI heuristic, the

spending rates of losing programs decreases with time since

their amount spent remains constant. We can thus compute

the next “critical” time that a program would have to stop

decrementing and start incrementing assuming it continued to

lose. Similarly, we can compute the number of auctions for

given keyword necessary before its bid would be decremented

to zero and it would have to remain constant at zero. We

maintain a list of triggers for the relevant shared monotonic

variables, sorted by critical value, that when activated move

a bidding program to the appropriate increment, decrement,

or constant list, and insert the appropriate new triggers. This

way, we only do work for programs that win an auction and

for triggers whose critical values have been reached.

V. EXPERIMENTS

To evaluate our fast winner-determination algorithm, we

compare the performance of four methods for solving the

winner-determination problem. The first method (LP) solves

the linear program formulation of the winner-determination

problem. We can prove that this linear program is guaranteed

to have an integer optimum using a theorem of Chvátal [17],

by showing that the rows of the constraint matrix represent

the maximal cliques of a perfect graph. The second method

(H) uses the Hungarian algorithm in a straightforward way

to compute the maximum-weight bipartite matching in the

bipartite graph with advertisers on the left and slots on the

right, where the weight of an edge from an advertiser to a

slot is the expected revenue from assigning that slot to that

advertiser. The third method (RH) is our winner-determination

technique from Section III-E, which first reduces the bipartite

graph. The fourth method (RHTALU) augments RH with the

techniques for reducing program evaluation from Section IV

using the threshold algorithm together with logical updates

with triggers.

We used 15 slots in all cases. For simplicity, search queries
were generated at a constant rate, each containing one key-

words chosen uniformly at random out of 10 keywords. That

chosen keyword was given a relevance score of 1 for that
query, while other keywords had a relevance score of 0. All
bidders used the ROI heuristic described in Section II-B. For

each keyword, the bidders’ value for a click was generated

uniformly at random between 0 and 50 (subject to each

bidder having at least one non-zero click value). The target

spending rates were chosen uniformly at random between

1 and the bidder’s maximum value over all keywords. The

interval [0.1, 0.9] was partitioned into 15 disjoint intervals,
with the (j + 1)-highest interval associated with slot j. The

probability of a given advertiser getting a click in a given slot

was generated uniformly at random within that slot’s interval.

We used a slight generalization of generalized second-pricing

to charge the advertisers who received clicks.

The entire auction system, including the ROI heuristic, was

implemented in C++. We used the GNU Linear Programming

Kit to solve the linear program via the simplex method.3 We

ran the experiments on an AMD Athlon 64 3800+ processor

with 1GB of RAM.

Figure 12 shows, for each of the four methods, the average

time taken per auction (over 100 auctions) as we increase

the number of bidders. We observed roughly an order of

magnitude improvement of the Hungarian method over naive

linear programming solution, and further order of magnitude

improvement using our reduced bipartite graph technique.

Figure 13 compares the performance of methods RH and

RHTALU in more detail. It plots the average time taken

per auction (over 1000 auctions) as we increase the number

of bidders. We observe that our techniques for reducing

program evaluation from Section IV give a significant further

improvement in performance.

VI. CONCLUSIONS

Our paper is a first step toward applying database principles

to the exciting and important problems arising in advertis-

ing auctions. In this paper, we highlight the need for more

expressive bidding in sponsored search auctions. To address

this, we propose a framework that empowers advertisers with

an expressive bidding language, and we provide efficient,

scalable, and parallelizable techniques for performing winner

determination given bids expressed in our language.

3We found that the library’s interior point method was much slower than
the simplex method for our workloads.

 0.1

 1

 10

 100

 1000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
im

e
 p

e
r

a
u
c
ti
o
n
 (

m
s
)

Number of advertisers

LP
H

RH
RHTALU

Fig. 12. Winner Determination Performance

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

T
im

e
 p

e
r

a
u
c
ti
o
n
 (

m
s
)

Number of advertisers

RH
RHTALU

Fig. 13. Reducing Program Evaluation

We believe that the database community has much to offer

this area given its vast experience with the trade-offs between

expressiveness and scalability; and providing advertisers with

more expressive bidding while retaining the scalability of these

sponsored search auctions is crucial to the continued growth

of this multi-billion dollar industry.

ACKNOWLEDGMENT

The authors would like to thank the National Science Foun-

dation (NSF) and the Air Force Office of Scientific Research

(AFOSR) for their generous support.

• Martin is supported in part by NSF under Grants IIS-

0534064 and IIS-0534404.

• Gehrke is in part supported in part by NSF under Grants

IIS-0725260 and IIS-0534404, and by AFOSR under

Grant FA9550-07-1-0437.

• Halpern is in part supported by NSF under Grants ITR-

0325453 and IIS-0534064, and by AFOSR under Grant

FA9550-05-1-0055.

Any opinions, findings, conclusions or recommendations ex-

pressed in this material are those of the authors and do not

necessarily reflect the views of the sponsors.

REFERENCES

[1] B. G. Edelman, M. Ostrovsky, and M. Schwarz, “Internet advertising
and the generalized second price auction: Selling billions of dollars
worth of keywords,” NBER Working Paper No. W11765, November
2005. [Online]. Available: http://ssrn.com/abstract=847037

[2] eMarketer, “The unstoppable surge of search advertising,”
http://www.emarketer.com/Article.aspx?1004811, April 2007.

[3] M. S. Borella, A. Sears, and J. A. Jacko, “The effects of Internet
latency on user perception of informationcontent,” in GLOBECOM
’97: Proceedings of 40th annual IEEE Global Telecommunications

Conference. IEEE Computer Society, November 1997, vol. 3, pp. 1932–
1936.

[4] C. Borgs, J. Chayes, O. Etesami, N. Immorlica, K. Jain, and M. Mahdian,
“Dynamics of bid optimization in online advertisement auctions,” in
WWW ’07: Proceedings of the 16th International World Wide Web

Conference, 2007.
[5] G. Aggarwal, A. Goel, and R. Motwani, “Truthful auctions for pricing
search keywords,” in EC ’06: Proceedings of the 7th ACM Conference
on Electronic Commerce. ACM Press, 2006, pp. 1–7.

[6] G. Aggarwal, S. Muthukrishnan, and J. Feldman, “Bidding to the top:
VCG and equilibria of position-based auctions,” in WGOA ’06: Pro-
ceedings of the 4th Workshop on Approximation and Online Algorithms,
September 2006.

[7] H. R. Varian, “Position auctions,” UC Berkeley Working Paper, 2006.
[8] E. H. Clarke, “Multipart pricing of public goods,” Public Choice, vol. 11,
pp. 17–33, 1971.

[9] T. Groves, “Incentive in teams,” Econometrica, vol. 41, pp. 617–631,
1973.

[10] W. Vickrey, “Counterspeculation, auctions, and competitive sealed ten-
ders,” Journal of Finance, vol. 16, pp. 8–37, 1961.

[11] Nielsen//NetRatings, “Interactive advertising bureau (IAB) search brand-
ing study,” Commissioned by the IAB Search Engine Committee, August
2004, available at http://www.iab.net/resources/iab searchbrand.asp.

[12] V. Kann, “On the approximability of np-complete optimization prob-
lems,” Ph.D. dissertation, Royal Institute of Technology, Stockholm,
1992.

[13] H. W. Kuhn, “The Hungarian method for the assignment problem,”
Naval Research Logistics, vol. 2, pp. 83–97, 1955.

[14] J. Munkres, “Algorithms for the assignment and transportation prob-
lems,” Journal of the Society of Industrial and Applied Mathematics,
vol. 5, no. 1, pp. 32–38, March 1957.

[15] M. Fayyazi, D. Kaeli, and W. Meleis, “An adjustable linear time
parallel algorithm for maximum weight bipartite matching,” Information
Processing Letters, vol. 97, no. 5, pp. 186–190, 2006.

[16] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for
middleware,” in PODS ’01: Proceedings of the 20th ACM Symposium
on Principles of Database Systems. New York, NY, USA: ACM Press,
2001, pp. 102–113.

[17] V. Chvátal, “On certain polytopes associated with graphs,” Journal on
Combinatorial Theory Series B, vol. 13, pp. 138–154, 1975.

[18] A. Newman, “The maximum acyclic subgraph problem and degree-
3 graphs,” in APPROX ’01/RANDOM ’01: Proceedings of the 4th
International Workshop on Approximation Algorithms for Combinatorial

Optimization Problems and 5th International Workshop on Randomiza-

tion and Approximation Techniques in Computer Science. Springer-
Verlag, 2001, pp. 147–158.

[19] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of Computer Computations, R. E. Miller and J. W. Thatcher, Eds.
New York: Plenum Press, 1972, pp. 85–103.

APPENDIX

Proof of Theorem 2: Consider any bid of $d on event E

where E is a 1-dependent event which depends on the slot
assigned to only one advertiser, say i. If advertisers pay what

they bid, then in all outcomes this bid contributes exactly

the same amount to the revenue as the OR-bid of $d on

E ∧ Sloti
1, $d on E ∧ Sloti

2, . . . , $d on E ∧ Sloti
k, and $d on

E∧(∧j¬Sloti
j), where Sloti

j is the event that advertiser i gets

slot j. This is because Sloti
1, . . . ,Sloti

k are mutually exclusive

events since the allocations are restricted to at most one slot

per advertiser. We can thus fill out a table of advertisers

versus slots where the entry for the ith advertiser and the jth

slot is the sum of the total expected revenue from bids on

events of form E ∧ Sloti
j assuming advertisers pay what they

bid. If we interpret this table as the edge-weight matrix of a

bipartite graph between advertisers and slots, then the winner-

determination problem is the problem of finding a maximum-

weight bipartite matching for this graph, which can be done

in polynomial time [13]. �

Proof of Theorem 3: We reduce the winner-determination

problem to the maximum-weighted feedback arc set problem

by using bids on 2-dependent events to encode the edges
in a given weighted directed graphs on advertisers. Consider

any weighted directed graph on n advertisers. Let wi,i′ be

the weight of the edge from advertiser i to advertiser i′.

Let Sloti
j be the event that advertiser i gets assigned slot

j. For two advertisers i and i′, let Ei>i′ be shorthand for

∨j(Sloti
j ∧ ((∨j′>jSloti′

j′)∨ (∧j′¬Sloti′

j′)), which is the event
that advertiser i gets a slot and is placed above advertiser i′

who may or may not get a slot. Then Ei>i′ is a 2-dependent
event since it depends on the slots assigned to advertisers

i and i′. Let each advertiser i place the following bids: for

each i′ 6= i, bid wi,i′ on Ei>i′ . Then, assuming advertisers

pay what they bid, revenue of wi,i′ will be generated if and

only if advertiser i is placed above advertiser i′. Then winner

determination is equivalent to the problem of finding the

maximum-weighted feedback arc set over all size-k subgraphs,

which is APX-hard in n and k [12]. In fact, even when the

directed graphs are restricted to degree-3, the feedback arc set

problem is still NP-hard [18], [19]. This means that winner

determination is NP-hard even when each bid is restricted

to the events mentioning at most three advertisers. So it is

infeasible to allow advertisers to bid on being placed above

even two or more competitors. �

