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ABSTRACT
Limiting disclosure in data publishing requires a careful balance
between privacy and utility. Information about individuals must
not be revealed, but a dataset should still be useful for studying
the characteristics of a population. Privacy requirements such as
k-anonymity and̀ -diversity are designed to thwart attacks that at-
tempt to identify individuals in the data and to discover their sensi-
tive information. On the other hand, the utility of such data has not
been well-studied.

In this paper we will discuss the shortcomings of current heuris-
tic approaches to measuring utility and we will introduce a formal
approach to measuring utility. Armed with this utility metric, we
will show how to inject additional information intok-anonymous
and `-diverse tables. This information has an intuitive semantic
meaning, it increases the utility beyond what is possible in the orig-
inal k-anonymity and̀ -diversity frameworks, and it maintains the
privacy guarantees ofk-anonymity and̀ -diversity.

1. INTRODUCTION
Mining data sets that contain information about individuals in a

population is a great way of learning about properties of that pop-
ulation. Applications include studying the effects of treatments on
disease, tracking disease outbreaks, and building economic models
(from census data). Aside from this “good” information, such data
sets also contain sensitive information: the disease of an individ-
ual, the salary, etc. Because of this, the goal of privacy-preserving
data publishing is to maximize the “good utility” while limiting
the ability of an adversary to identify specific individuals and learn
their sensitive information from the data set.

In terms of privacy,k-anonymity [33] and̀ -diversity [23] pro-
vide strong guarantees on the confidentiality of individuals in the
data. Both concepts rely ongeneralizationsto preserve privacy:
attributes are replaced with less specific information (for example,
“state” may be replaced with “region” and “age” may be replaced
with “age range”). However, the utility of these “anonymized” data
sets has received much less study. Many heuristics for measuring
utility have been proposed, but to the best of our knowledge there
are no formal measures of the utility of an anonymized dataset.
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To make matters worse, the curse of dimensionality that haunts
the statistics and machine learning communities [8] also has an ad-
verse effect on anonymized data [2]. Experimental evidence [2]
suggests that many attributes in the data need to be suppressed in
order to guarantee privacy. This effect was also present in the ex-
periments we conducted for this paper: while generating anony-
mized data from the Adult dataset in the UCI Machine Learning
Repository [29], attributes such as “ethnicity” had to be completely
suppressed. Clearly this is bad for utility no matter what measure
is used.

One way to ameliorate this curse of dimensionality is to publish
additional information, such as a table containing just the ethnic-
ities and their frequencies in the original table. Clearly we can
generalize this to publishing marginals (or, equivalently, duplicate-
preserving projections, or views) of the original table. The mar-
ginals themselves can be anonymized (i.e., generalization can be
performed on these marginals) and the generalizations used on the
marginals need not be the same. This is precisely the approach that
we are proposing.

Consider Figure 1: we begin with a base table, Figure 1(a), and
then use an anonymization algorithm to create the(2, 3)-diverse ta-
ble in Figure 1(b) (the precise definition of`-diversity will be given
in Section 2). The current approach in the literature is to stop at
this point and publish this table. Note that there is additional in-
formation we can publish in terms of anonymized marginals: more
detailed age information (Figure 1(c)), detailed zip-code/disease in-
formation (Figure 1(d)), more detailed joint information about age
and zip code (Figure 1(e)), etc. Given so many choices, which
anonymized marginals should we publish? Clearly we cannot pub-
lish them all, because if an attacker knows that a person who lives
in 14850 and is under 40 is in the original table (from Figure 1(e)
or from background knowledge), then the attacker can join Figures
1(b) and 1(d) to deduce that the person has measles.

In order to answer the question of which anonymized marginals
to publish, we first introduce in Section 3 a new way of quanti-
fying the amount of information (utility) contained in anonymized
data, and we discuss how this information should be combined to
approximate the original data. Using these ideas, we will take ac-
cepted single-table privacy definitions and extend them so that they
apply to collections of anonymized marginals in Section 4. The
technical challenges are that combining information from margi-
nals and computing the utility require slow iterative algorithms, and
checking for privacy is NP-hard. We will deal with those issues in
Sections 5, 6, and 7. In Section 5.1 we will review the notion of
decomposabilityfrom the graphical models literature. This will let
us impose a structure on anonymized marginals that will simplify
utility calculations and will let us develop tractable algorithms for
checking for privacy. As a result, a data publisher will have the abil-



Zip CodeCondition Age
14850 Measles 33
14853 Allergy 26
14853 Gout 22
14853 Cancer 32
14850 Flu 48
14850 Heart 47
14850 Flu 46
14853 Cancer 53
14853 Heart 51
13063 Flu 24
13063 Cancer 38
13068 Cancer 38
13068 Heart 30

(a) Original table

Zip CodeCondition Age
1485* Allergy ≤ 40

Gout ≤ 40
Measles ≤ 40
Cancer ≤ 40

1485* Heart > 40
Flu > 40
Heart > 40
Flu > 40
Cancer > 40

1306* Heart ≤ 40
Flu ≤ 40
Cancer ≤ 40
Cancer ≤ 40

(b) (2, 3)-diverse table

Age Count
[21− 25] 2
[26− 30] 2
[31− 35] 2
[36− 40] 2
[41− 45] 0
[46− 50] 3
[51− 55] 2
(c) Age Marginal

Zip CodeCondition Count
14850 Flu 2

Heart 1
Measles 1

14853 Cancer 2
Heart 1
Allergy 1
Gout 1

13063 Flu 1
Cancer 1

13068 Cancer 1
Heart 1

(d) Zip/Condition Marginal

Zip CodeAge Count
14850 [41-50] 3

[31-40] 1
14853 [51-60] 2

[21-30] 2
[31-40] 1

13063 [21-30] 1
[31-40] 1

13068 [31-40] 1
[21-30] 1

(e) Zip/Age Marginal

Figure 1: Anonymized Marginals

ity to examine many different collections of anonymized marginals
before deciding which collection to publish. In Section 5.2 we will
briefly review the theory of log-linear models and show that pub-
lishing marginals can be viewed in a different way: it can be viewed
as selecting the set of conditional independence relations that best
describe the original table. The theory in Section 5 is designed for
ordinary marginals. In Section 6 we will extend this theory to anon-
ymized marginals and discuss how to traverse the search space of
anonymized marginals. Then we will describe our algorithms for
checking for privacy in Section 7. In Section 8 we will present our
experiments that show that the strategy of publishing a collection
of anonymized marginals indeed provides a dramatic improvement
in utility over the strategy of publishing a single anonymized table.

In summary, our contributions include formalizing the notion of
utility for k-anonymous and̀-diverse tables, extending these defi-
nitions to anonymized marginals, extending results from graphical
and log-linear models to anonymized marginals (including results
on search-space traversal), and providing algorithms for checking
for privacy.

2. PRELIMINARIES
In this section we will introduce the notation and basic defini-

tions that will be used later on. First we will introduce basic nota-
tion and definitions related to privacy, and then we will introduce
notation for dealing with tabular data.

2.1 Privacy Basics
Let D = {t1, . . . , tm} be a database of tuples where each tuple

hasd = d1 + d2 attributes:ti = {ti.R1, . . . , ti.Rd1 , ti.S1, . . . ,
ti.Sd2}. We will slightly abuse notation and useRi to also refer
to the domain of attributet.Ri andSi to refer to the domain of at-
tributet.Si. The attributesR1, . . . , Rd1 are called thenonsensitive
attributes. This is because they are either public knowledge or be-
cause they are available from some external data set. For example,
date of birth, gender, and zip code are available from voter regis-
tration records and so are considered nonsensitive. The attributes
S1, . . . , Sd2 are thesensitiveattributes. For example, disease (in a
hospital data set) would be considered sensitive. Since the dataset
is given in tabular form, we will use the terms “dataset” and “table”
interchangeably.

The goal of privacy-preserving data publishing is to make it dif-
ficult for an attacker to determine that someone is in the dataset,
and to make it difficult to determine the values of the sensitive at-
tributes of individuals that are known to be in the table. One glaring
example of these goals not being met is described in [33]: a (sup-
posedly anonymized) medical dataset of Massachusetts state em-

ployees was joined to voter registration records using the attributes
birth date, gender, and zip code. Since the governor of Massa-
chusetts had a unique combination of those attributes, his medical
records were easily identified. Generally, a set of attributes (like
the set{birth date, gender, zip code} in the previous example) that
acts almost like a key and can be used to uniquely identify some
individuals is known as a quasi-identifier [33]:

DEFINITION 2.1 (QUASI-IDENTIFIER). A set of nonsensitive
attributes{R1, . . . , Rn} in a databaseD is called aquasi-identifier
if this set can be used to identify at least one individual from a given
population by linking those attributes to external data sets.

Without loss of generality, we assume that all the set of all non-
sensitive attributes forms the quasi-identifier. To prevent linking
attacks that use the quasi-identifier, it is common to usegeneraliza-
tions:

DEFINITION 2.2 (GENERALIZATION). Let V be the domain
of an attributet.V . A generalizationW of V is a new domain
formed by partitioningV into disjoint buckets and identifying all
the points in a bucket with one value inW . A generalization map
is a functionφ : V →W such thatφ(v) corresponds to the bucket
that containsv.

As an example, consider the integer-valued attribute Age. One
generalization of Age is the set of intervalsA′ = {[0 − 5], [6 −
10], [11 − 15], . . . }. The generalization map from Age toA′ re-
places each integer with an interval.A′ itself can also be gener-
alized. One such generalization ofA′ is A′′ = {[0 − 10], [11 −
20], . . . }. Note thatA′′ is also a generalization of Age (generaliza-
tions are transitive). Thus we can define a partial order on domains:
A≺B if and only if B is a generalization ofA (note thatA≺A
is always true). To generalize a table, we choose a generalization
for each attribute and apply the appropriate generalization maps
to the attributes of all tuplest. We can perform generalizations on
the nonsensitive attributes (quasi-identifier) to make linking attacks
difficult. This is the goal ofk-anonymity [33].

DEFINITION 2.3 (k-ANONYMITY ). A tableD satisfies
k-anonymity if for every tuplet ∈ D there exist at leastk−1 other
tuples that have the same values ast for every quasi-identifier.

Given the quasi-identifier{zip code, age}, the table in Figure
1(b) is 4-anonymous. Generalizations partition the tuples intoanon-
ymized groups:

DEFINITION 2.4 (ANONYMIZED GROUP). An anonymized
group is a (set-wise) maximal set of tuples that have the same (gen-
eralized) value for each nonsensitive attribute.



Note thatk-anonymity says nothing about the sensitive attributes.
In particular, it does not prevent all tuples in an anonymized group
from having the same value for some sensitive attribute (thus ben-
efiting an attacker who knows some of the individuals that are in
that anonymized group). The concept of`-diversity is designed to
guard against this. Machanavajjhala et al [23] give several alterna-
tive formulations of̀ -diversity. Any of them can be used here, but
for concreteness, we will use the following:

DEFINITION 2.5 ((c, `)−DIVERSITY). Let c > 0 be a con-
stant and letq be an anonymized group. LetS be a sensitive at-
tribute, lets1, . . . , sm be the values ofS that appear in the groupq
and letr1, r2, . . . , rm be the their corresponding frequency counts
in q. Letr(1), r(2), . . . , r(m) be those counts sorted in non-increasing
order. We say that the anonymized groupq satisfies(c, `)-diversity

with respect to a sensitive attributeS if r(1) ≤ c
mP

i=`

r(i). The set

{s(1)} is theheadand the set{s(`), . . . , s(m)} is called thetail.

Intuitively, `-diversity means that an adversary needs`−1 pieces
of background knowledge to eliminate` − 1 possible values of a
sensitive attribute in order to breach privacy. Likek-anonymity,
`-diversity can be achieved through generalizations. Throughout
the paper we will assume there is only one sensitive attribute. This
is only necessary for clarity. The extension to multiple sensitive
attributes is straightforward and is done in the same way as in [23].

Note that there are other ways of sanitizing data: tuple suppres-
sion [31], adding random noise [5, 16, 1], and swapping attributes
between tuples [12]. We will restrict our attention to generaliza-
tions because they are the mostfaithful to the data: any fact in
a generalized table is true of the original table. For example, if
the value for the Age attribute has been generalized to[25 − 30]
then we know for certain that the age is within that interval. Fur-
thermore, we could determine exactly how many individuals in the
original table were between 25 and 30 years old. Faithfulness is
an important concept because it may be used by future data mining
algorithms to give quality guarantees on their results.

2.2 Tabular Data
Recall that our databaseD = {t1, . . . , tm} is a set of tuples

where each tuple hasd = d1 + d2 attributes:ti = {ti.R1, . . . ,
ti.Rd1 , ti.S1, . . . , ti.Sd2}. The domain ofD, Domain(D), is the
crossproductR1 × · · · ×Rd1 × S1 × · · · × Sd2 . The nonsensitive
domain,NonSenDomain(D), is the domain of the nonsensitive
attributes:R1×· · ·×Rd1 ; the sensitive domain,SenDomain(D),
is the domain of the sensitive attributes:S1 × · · · × Sd2 . When
all the attributes are discrete (or have been bucketized), it is conve-
nient to think of the data set as a contingency tableT (D): for any
t ∈ Domain(D), T (D)(t) is the number of timest appears inD.
Whenever it is unambiguous, we will drop the explicit notational
dependency onD and refer to the corresponding contingency table
asT . Let C ⊆ Domain(D). T (C) is the number of tuples inD
that also belong to the subset of the domain represented byC (we
will use lower-case letters to denote tuples and upper-case letters to
denote sets). Thus we can think ofT as a function defined on the
powerset ofDomain(D).

We will also be concerned with marginals of the contingency
tableT (D). LetA be a set of attributes. ThenT (D)

A is the marginal
contingency table that we get by projecting out all attributes ofD
that are not inA (while preserving duplicates). For example, if
A = {R1, R2} and t = (r1, r2) thenT

(D)
A (t) is the number of

tuples inD whose value forR1 is r1 and whose value forR2 is r2.
Note that the original contingency tableT is itself a marginal, and
thatT∅ is the function that always return|D| (the number of tuples

in the database).
We will use the termanonymized tableto refer to a table that has

been altered through the use of generalizations. In particular, when
we apply generalizations to a marginal contingency table, the result
is ananonymized marginal.

3. UTILITY MEASURES
In this section we review current utility measures for anonymized

datasets (Section 3.1) and then discuss a more formal measure of
utility (Section 3.2) which has connections to maximum entropy
and conditional independence, and which will be suitable for anon-
ymized marginals.

3.1 Current Measures of Utility
One of the earliest utility metrics isgeneralization height[30].

Generalization height is the total number of generalization steps
that have been performed on the original data set. The intuition be-
hind it is that a generalization step represents a loss of information,
so one should use as few generalization steps as possible. As noted
in [23], the problem with this approach is that not all generalization
steps are created equal: a generalization step on one attribute may
put many more tuples into an anonymized group than a generaliza-
tion step on another attribute.

Two similar metrics that take anonymized group size into ac-
count are the average size of anonymized groups [23] anddiscerni-
bility [6]. Discernibility assigns a cost to each tuple based on how
many other tuples are indistinguishable from it. If a tuple is sup-
pressed, its cost is|D| (the number of tuples in the original data).
If a tuple is not suppressed, its cost is the number of tuples in its
anonymized group. Thus the discernibility is the sum of the squares
of the anonymized group sizes plus|D| times the number of sup-
pressed tuples. While appealing, neither of these two metrics takes
the data distribution into account. An anonymized group where
the original attributes were uniformly distributed represents less in-
formation loss than an anonymized group whose original attributes
were skewed. For example, suppose there are 10 people who have
the same value for every attribute except age, and their ages are
between 20 and 30. In a sense, our best guess (using maximum
entropy, or the principle of indifference) is that each age is equally
likely. Intuitively, had the original ages been21, 22, . . . , 30, this
would not have been as much an information loss as the case where
5 people were 21 years old and the other 5 were 29. Iyengar [17]
presents a related loss metric which considers how many elements
in the original domain have been grouped together. Since it also
ignores the tuple distribution, it has the same shortcoming.

Two utility metrics that take distribution into account are the
classification metric[17] and information-gain-privacy-loss ratio
[34]. The classification metric is appropriate when one wants to
train a classifier over the anonymized data. Thus one attribute is
treated as a class label. The classification metric assigns a penalty
of 1 to every tuple that is suppressed. If a tuplet is not suppressed,
we look at the majority class label in its anonymized group. If the
class label fort is different than the majority class label,t is as-
signed a penalty of 1. The classification metric is then the sum of
all penalties. The classification metric is an appealing measure of
utility because it considers a possible use for the data. However, it
is not clear what we should do if we want to build classifiers for
several different attributes. The information-gain-privacy-loss ra-
tio is also designed for the purposes of classification. It is a local
heuristic in the sense that it is used to determine the next gener-
alization step (it is similar to the way information gain is used to
choose the next split point in a decision tree). Here as well it is not
clear what we should do if we want to build classifiers for several



different attributes. Furthermore, because it is a local heuristic, it is
difficult to compare the utilities of two different anonymized tables.

3.2 A Formal Utility Measure
One of the main goals of data mining and statistics is to make

statements about the probability distribution that generated the data
– this is certainly true of classification, parameter estimation, hy-
pothesis testing, and regression. In this spirit, we view the data as
an iid (identically and independently distributed) sample generated
from some multidimensional distributionF . Here we shall assume
that all attributes are discrete. Note that if we have a continuous
domain, we can bucketize it and treat the collection of buckets as a
discrete domain; other ways of dealing with continuous attributes
are the subject of future work. With this simplification, the data fol-
lows a multinomial distribution. Suppose the tuples in our dataset
have discrete-valued attributesU1, . . . , Un. Then we can estimate
F with theempirical distributionF̂ . F̂ (u1, . . . , un) is an estimate
of the probabilityP (t.U1 = u1, . . . , t.Un = un) and is defined
as the fraction of tuples in the database that satisfy this constraint
(i.e.,t.U1 = u1, . . . , t.Un = un).

Now that we have given a probabilistic interpretation to the orig-
inal data, we will proceed to do the same for the anonymized data.
Suppose we are given a collection of anonymized marginals that
were derived from the same table. We can view these marginals as
constraints. Figure 1 shows a set of anonymized marginals that cor-
respond to the table in Figure 1(a) that has 13 tuples. These anon-
ymized marginals impose constraints such as:23% of the tuples
have age between 46 and 50 (Figure 1(c));38.5% of the tuples are
in zip code 14853 (Figure 1(d));15.4% of the tuples are in zip code
1306*, have cancer, and have age at most 40 (Figure 1(b)). Thus
given anonymized marginals, we can compute the maximum en-
tropy probability distribution that corresponds to these constraints.
We will see in Section 5.2 that this maximum entropy distribution
is exactly the same as the maximum likelihood distribution for a
multinomial model that satisfies certain intuitive conditional inde-
pendence requirements.

We now have a probability distribution̂F1 associated with the
original data, and a probability distribution̂F2 associated with the
released anonymized marginals. The next step is to compare them.
Let x1, . . . , xN be the elements of the multidimensional domain
for our data. Letp(1)

i be the probability ofxi according toF̂1 and
let p

(2)
i be the probability according tôF2. The Kullback-Leibler

divergence (KL-divergence) between̂F1 andF̂2 is defined as:

X
i

p
(1)
i log

p
(1)
i

p
(2)
i

The KL-divergence is minimized only when̂F1 = F̂2. In Section
5.2, we shall see that the KL-divergence is equal to the difference
in log-likelihood when we estimate the “true” distributionF with
the original data and when we estimate the “true” distributionF
with the anonymized marginals. Since our goal is to determine
which anonymized marginals to release, we will be changingF̂2

but not F̂1. Thus minimizing the KL-divergence will be mathe-
matically equivalent to maximizing

P
i p

(1)
i log p

(2)
i which is−1

times the cross-entropy between̂F1 andF̂2. We will use the stan-
dard convention that0 log 0 = 0 so that we only need to compute
probabilities for cells that appear in the original table.

Note that this approach is similar in spirit to [4] and [5]: we
are trying to reconstruct the original distribution as accurately as
possible given anonymized (but unperturbed) data while [4] and
[5] try to reconstruct the original distribution given a dataset with
additive noise.

4. EXTENDING PRIVACY DEFINITIONS
The next step is to extend the privacy definitions fork-anonymity

and`-diversity from single-table anonymized data to collections of
anonymized marginals. We can extendk-anonymity in two ways,
reflecting the motivation provided by Sweeney [33]. Following
[33], we can protect the anonymized marginals from being linked
to external data by requiring every anonymized marginal to bek-
anonymous.

DEFINITION 4.1 (k-LINK ANONYMITY ). A collection of anon-
ymized marginalsM1, . . . , Mr satisfiesk-link anonymityif for all
i = 1 . . . r and for allt ∈ NonSenDomain(Mi) eitherMi(t) = 0
or Mi(t) ≥ k.

We must also be sure that an adversary cannot use combinator-
ial techniques to determine that a tuple with a certain value for its
quasi-identifiers exists in the original table and that the number of
such tuples is less thank.

DEFINITION 4.2 (k-COMBINATORIAL ANONYMITY ). LetD
be the domain of the nonsensitive attributes. A collection of anony-
mized marginalsM1, . . . , Mr satisfiesk-combinatorial anonymity
if for all t ∈ D oneof the following holds:

1. For all tablesT consistent with the marginalsM1, . . . , Mr,
T (t) = 0

2. There exists a tableT consistent with the marginalsM1, . . . ,
Mr such thatT (t) ≥ k.

Our final privacy requirement is a straightforward generalization
of `-diversity. Using the anonymized marginals, the maximum en-
tropy principle, and techniques we will discuss later, we can fill
in (fractional) cell counts for the original table. Thus we directly
apply the definition of̀ -diversity [23] to the reconstructed table
(i.e., for each combination of nonsensitive attributes, the sensitive
attributes must havèwell-represented values).

DEFINITION 4.3 (MAXENT `-DIVERSITY). The anonymized
marginalsM1, . . . , Mr satisfy maxent̀-diversity if the maximum
entropy distribution that is consistent withM1, . . . , Mr satisfies
`-diversity.

5. STATISTICAL MODELS
In this section we will discuss how to combine information from

ordinary marginals to estimate the original data; in Section 6 we
will show how to apply this theory to anonymized marginals. The
estimator can be viewed as a maximum entropy distribution as well
as a maximum likelihood estimator for multinomial models. This
will give marginals interpretations as constraints and as statements
about conditional independence. In general, computing the maxi-
mum entropy distribution requires iterative algorithms [7, 24, 10].
However, with some additional restrictions on the allowable mar-
ginals, there is a closed-form solution [20]. This lets the data pub-
lisher examine many different collections of marginals before de-
ciding which ones to publish. We will discuss how to compute the
maximum entropy distribution in Section 5.1 and we will discuss
the connection to maximum likelihood in Section 5.2.

5.1 Decomposable Graphical Models
Given a set of marginalsM1, . . . , Mr, build an interaction graph

in the following way: the vertices of the graph are the attributes
that appear in any marginal. For any two verticesA andB, draw
an undirected edge betweenA andB if attributesA andB appear
together in some marginal. Figure 2(a) shows an interaction graph
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for the three marginals whose attributes areABC, BCD, andDE
Our first requirement is that the interaction graph must betriangu-
lated:

DEFINITION 5.1 (TRIANGULATED GRAPH). An undirected
graph is triangulated if for every cycle of length 4 or more, there
exists an edge not in the cycle that connects two vertices in the
cycle.

Intuitively this means that every cycle that has more than 3 nodes
has a “shortcut”. Undirected triangulated graphs are equivalent to
undirecteddecomposablegraphs [20]. To explain this concept, we
need the following definitions:

DEFINITION 5.2 (SEPARATOR [20]). Let G = (V, E) be an
undirected graph and letA,B ⊂ V be disjoint sets of vertices. The
setC ⊆ V \{A∪B} separates (is a separator of)A andB if every
path fromA toB contains a node ofC.

DEFINITION 5.3 (DECOMPOSITION[20]). Let G = (V, E)
be an undirected graph and letA,B, C ⊂ V be disjoint sets of ver-
tices such thatV = A∪B∪C. ThenA,B, C form a decomposition
of G if C separatesA andB, andC is complete (every two vertices
in C have an edge between them).

A decomposition(A,B, C) splits a graphG = (V, E) into two
components. The first component is the subgraph ofG that contains
the verticesA∪C and the second component contains the subgraph
induced by the verticesB ∪ C. If bothA andB are nonempty then
the decomposition isproper (each component is strictly smaller
that the original graphG).

DEFINITION 5.4 (DECOMPOSABLE). A graph is decompos-
able if it is complete or if it has a proper decomposition where each
component is decomposable.

THEOREM 5.1 (TRIANGULATED GRAPHS [20]). An
undirected graph is decomposable if and only if it is triangulated.

Figure 2(b) shows the components of the graph in Figure 2(a)
under the decomposition{A}, {E}, {B, C, D} (where{B, C, D}
is the separator). Because of the equivalence between decompos-
able and triangulated graphs, it is easy to check whether a graph is
decomposable. Figure 3 is the smallest non-decomposable graph
(if it had an edgeA andB or C andD then it would be triangu-
lated/decomposable).

DEFINITION 5.5 (GRAPHICAL MARGINALS). Let M1, . . . ,
Mr be a collection of marginals and letG be the corresponding
interaction graph. The collectionM1, . . . , Mr is graphical if the
marginals contain all of the maximal cliques of the corresponding
interaction graphG.

In other words, ifEi is a maximal clique of the interaction graph,
there is a marginalMj such that all of the attributes that correspond
to vertices inEi are the attributes ofMj .

DEFINITION 5.6 (DECOMPOSABLEMARGINALS). A set of
marginalsM1, . . . , Mr is decomposable if it is graphical and the
corresponding interaction graphG is decomposable.

The interaction graph in Figure 2(a) is generated by the margi-
nals with attributesABC, BCD, andDE. It is also generated by
ABC, BD, CD, andDE. While the interaction graph is decom-
posable, the maximal cliques correspond only toABC, BCD, and
DE. Thus the set of marginals{ABC, BCD, DE} is decompos-
able while{ABC, BD, CD, DE} is not.

Decomposability is important to us because the maximal cliques
can be ordered in aperfect sequence[20] which can be used to
compute the maximum entropy distribution:

DEFINITION 5.7 (PERFECTSEQUENCE[20]). LetG be a
graph and letE1, E2, . . . , Ep be a sequence of complete subgraphs
of G that includes all the maximal cliques ofG. The sequence
E1, E2, . . . , Ep is perfect if fori = 2 . . . p, the setSi = Ei ∩ (E1 ∪
· · · ∪ Ei−1) is complete and there exists aj < i such thatSi ⊆ Ej .

Returning to our example in Figure 2(a), we see that{A, B, C},
{B, C, D}, {D, E} is a perfect sequence. It is a fundamental fact
that every decomposable graph has a perfect sequence [20]. Also,
it is easy to see thatSi separates(E1 ∪ · · · ∪Ei−1) \Si andEi \Si.
The setsE1 . . . Ep and S2, . . . , Sp (note the separators are num-
bered starting from 2) can be used to compute the maximum en-
tropy (maxent) distribution. LetE1, . . . , Ep be sets of attributes
that correspond to a decomposable graphical model and that have
already been arranged in a perfect sequence. LetS2, . . . , Sp be the
corresponding separators as in Definition 5.7. For eachi, let TEi

be the marginal of the base tableT corresponding to attribute set
Ei andTSi be the marginal corresponding to the attribute setSi.
For eacht ∈ Domain(T ) let tEi be the projection oft onto the
attributes inEi and similarly fortSi . The maximum entropy prob-
ability associated witht (which is also the maximum likelihood
estimate associated with log-linear models, which will be briefly
discussed in Section 5.2) is [24]:

1

|T |

pQ
i=1

TEi(tEi)

pQ
j=2

TSj (tSj )

(1)

and, given a table of size|T |, the expected count of tuples in the
cell corresponding tot is therefore:

pQ
i=1

TEi(tEi)

pQ
j=2

TSj (tSj )

(2)

By definition, for anyj, there is ani such thatSj ⊆ Ei so
thatTSj can be computed fromTEi and so the maximum entropy
distribution can be computed from the marginals corresponding to
E1, . . . , Ep with little effort once they are ordered in a perfect se-
quence (an algorithm for such an ordering is provided in [20]).



5.2 Log-linear models: the connection to max-
imum likelihood

An interaction graph (e.g., Figure 2(a)) also has an interpreta-
tion in terms of conditional independence [10]. LetA, B, andC
be disjoint sets of attributes (vertices) in the interaction graph and
suppose that every path from a vertex inA to a vertex inB contains
a vertex inC. Intuitively, the effects ofA andB on each other are
blocked by the separatorC and thus we have the interpretation that
A andB are conditionally independent givenC. Using the notation
thattA, tB, tA∪B andtC are the projections oft onto the attributes
in A, B,A ∪ B, C, respectively, we can write the conditional inde-
pendence restriction mathematically. Fora ∈ A, b ∈ B, c ∈ C:

P (tA∪B∪C = (a, b, c))

= P (tA∪B = (a, b)|tC = c) · P (tC = c)

= P (tA = a|tC = c) · P (tB = b|tC = c) · P (tC = c)

=
P (tA∪C = (a, c)) · P (tB∪C = (b, c))

P (tC = c)
(3)

To see the relation to Equation 1, suppose we were given two mar-
ginalsTA∪C andTB∪C . We can computeTC from eitherTA∪C or
TB∪C . We can estimateP (tA∪C) using the count dataTA∪C(tA∪C)

|T |
(and similarly fortC andtB∪C). By substituting these estimates in
the right side of Equation 3 we get

P (tA∪B∪C = (a, b, c)) =
(TA∪C(tA∪C)/|T |) (TB∪C(tB∪C)/|T |)

TC(tC)/|T |

which is the same as the maximum entropy estimate (Equation 1).
To formally relate maximum entropy and maximum likelihood

in multinomial models, we must first discuss log-linear models –
popular statistical tools for analyzing contingency tables [10].

Let t be a cell in a contingency table, and letq(t) be the ex-
pected cell count under a multinomial model. The goal of statistical
analysis of contingency tables is to learn about some dependencies
between theq(t); in particular, the goal is to determine howq(t)
is affected by the various attribute dimensions of the contingency
table1. In this analysis, one builds a linear model for predicting
log q(t) (there are technical reasons for modelinglog q(t) rather
thanq(t)). To see how this works, suppose our table has 2 attributes
A andB. For a cellt ∈ A×B, let q(t) be the expected cell count
for t. For this scenario, thesaturatedlog-linear model is:

log q(a, b) = u + uA(a) + uB(b) + uAB(a, b) (4)

whereu represents a baseline cell occupancy based on no inter-
actions,uA represents the effect of attributeA on cell occupancy
(beyond the effects of the baseline),uB represents the effects of
attributeB on cell occupancy (beyond the effects of the baseline)
anduAB represents the effects of the interactions betweenA and
B (beyond the individual effects ofA, B, and the baseline). In the
general case, a saturated model has a term for each subset of the at-
tributes. The saturated model is not very interesting because it over-
fits the data: the maximum likelihood estimator forq(t) is just the
number of timest appears in the data. Thus the saturated model is
also called theunrestricted model. Because the unrestricted model
is too powerful (i.e., it overfits the data), a typical statistical analy-
sis would only look at a subset of the possible interaction terms.
For example, if our table had 3 attributesA, B, C, we could try to
model it with

log q(a, b, c) = u + uA(a) + uB(b) + uC(c) (5)

1In the statistical literature, the term “factor” is used instead of “at-
tributes” and “level” instead of “attribute value”

Since there is no interaction term (i.e.,uAB , uAC , uBC , uABC ),
this model seems to suggest that attributesA, B, andC are inde-
pendent. This is not a coincidence: we will see thatA, B, and
C are indeed independent in the maximum likelihood distribution
for that model. In general, the maximum likelihood estimates for a
restricted model will not be the same as the cell counts (unlike the
case for saturated models). Thus saturated models will always have
higher log-likelihoods. A common way of measuring how well a
restricted model fits the data, is to look at the difference between the
log-likelihood of the saturated model and the log-likelihood of the
restricted model [10]. Since these models estimate parameters for
a multinomial distribution (i.e., the cell counts or, equivalently, the
cell probabilities), the difference in log-likelihoods is exactly the
KL-divergence between the two respective maximum-likelihood
distributions.

Most log-linear models used in practice have the following prop-
erty: if an interaction term is included in the model, then its lower
order effects are also included. For example, if a log-linear model
has auABCD term, then there is a termuX for everyX ⊆{A, B,
C, D}. Log-linear models that have this property are calledhierar-
chical, and we shall restrict our attention to these types of models.

Just as with marginals, we can build an interaction graph for hier-
archical log-linear models: the vertices are the attributes and there
is an edge between two vertices if both are contained in some in-
teraction term (for example, if the model had auABC term, there
would be edges betweenA andB, B andC, andA andC). It is
common to describe hierarchical log-linear models using only the
highest order interaction terms [10]: if a model has a parameter
uABCD anduBC , we would omituBC because it is implied by the
uABCD term. It is also common to represent interaction terms as
[ABC] rather thanuABC . Thus the log-linear model in Equation
4 can be compactly represented as[AB] and the log-linear model
in Equation 5 can be compactly represented as[A][B][C]. This
compact representation is sufficient for constructing the interaction
graph.

The log-linear model isgraphical if the interaction terms are ex-
actly the maximal cliques of the corresponding interaction graph,
and it isdecomposableif it is graphical and if the interaction graph
is decomposable as well. Figure 2(a) shows the interaction graph
for the log-linear model[ABC][BCD][DE].

The similarity between the interaction terms of a decomposable
log-linear model and the marginals (of the base table) with the same
attributes is not superficial. The model can be built using only the
marginals whose attributes are specified by the interaction terms,
and the maximum likelihood estimates of cell probabilities and ex-
pected values for a graphical decomposable log-linear model are
given by Equations 1 and 2, respectively [20]. Furthermore, any
conditional independence relations that we can read off the interac-
tion graph are also true of the maximum likelihood estimator [10]:

THEOREM 5.2. Given a graphical, decomposable interaction
graph for a log-linear model, if the sets of variables/nodesA and
B are separated byC, then under the maximum likelihood distribu-
tion, P (A,B|C) = P (A|C)P (B|C).

Thus we have two complementary goals in releasing marginals:
to provide a set of constraints (marginals) that lead to a maximum
entropy distribution that is as close as possible to the real data sub-
ject to privacy restrictions; and to determine a set of conditional
independence relations that best approximates the data subject to
privacy restrictions.
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6. ANONYMIZED MARGINALS
In this section, we will provide a reduction from anonymized

marginals to ordinary marginals (Section 6.1) and we will use this
reduction to extend the theory of graphical models to anonymized
marginals (Section 6.2).

6.1 A Reduction
For each attributeRi, letGi be the set of possible generalizations

of Ri which are to be considered. For example, we may specify that
we are only interested in three generalizations for the Age attribute:
one that partitions Age into the intervals[0− 5], [6− 10], . . . ; one
that partitions Age into intervals[0 − 10], [11 − 20], . . . ; and one
that partitions Age into the intervals[0 − 30], [31 − 60], . . . . For
tractability, and for clarity, we will restrict our attention to the case
where, for eachRi, the generalizations inGi are totally ordered
according to≺ (Section 2.1). This restriction is common in the
literature ([30, 21]). Without loss of generality we can assume that
the most general generalization simply suppresses the attribute.

First, we require that a collection of anonymized marginalsM1,
M2, . . . , Mr only use the anonymizations we specify.

DEFINITION 6.1 (VALIDITY ). LetM1, M2, . . . , Mr be a set
of marginals and letR1, . . . , Rd be the attributes that appear in
those marginals. Fori = 1 . . . d, let Gi be a set of generaliza-
tions forRi such thatGi is totally ordered according to≺. Then
M1, . . . , Mr are valid with respect toG1, . . . ,Gd if for every mar-
ginal Mj and every attributeRq that appears inMj , Rq has been
generalized according to one of the generalizations inGq.

Note that attributes can be generalized differently in different mar-
ginals: if Age appears in marginalM1 and marginalM2, it could
have been generalized using the intervals{[0−5], [6−10], . . . } in
M1 and generalized using the intervals{[0 − 10], [11 − 20], . . . }
in M2. The reduction from anonymized to ordinary marginals re-
lies on the fact that a totally ordered set of generalizations induces
a natural hierarchy on the base domain. The reduction proceeds
as follows. LetRj be an attribute andGj be a set of possible
generalizations forRj . Let h be the number of generalizations
in Gj . The first step is to label the generalizations so that the
most general generalization is labeledG1, the second most gen-
eral generalization is labeledG2, etc. Figure 4 shows (part) of a
hierarchy over the age attribute. Here we have four generaliza-
tionsG4≺G3≺G2≺G1, whereG1 is equivalent to suppressing
the entire attribute. Each generalization represents one level of the
hierarchy, and each node in the hierarchy tree has a bounded num-
ber of children (since we have finitely many data points). For each
node, we order its children (arbitrarily) and number them accord-
ing to that order. We will use this numbering to create a new set of
attributes. Fori = 1, . . . , h− 1, let ci be the maximum number of
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Figure 5: Induced Attributes

children for any node in generalizationGi (in our example,c1 = 3,
c2 = 3, andc3 = 2).

We can now treat the attributeRj as an(h−1)-dimensional vec-

tor of induced attributesL
(Rj)

1 , . . . , L
(Rj)

h−1 where theithdimension
hasci points. A point(x1, . . . , xh−1) in this space represents the
path taken from the rootG1 to a leaf node. It is easy to see that
any generalizationGi ∈ Gj of Rj corresponds to the subspace

consisting of the firsti − 1 dimensions (L
(Rj)

1 , . . . , L
(Rj)

i−1 ). Fig-
ure 5 shows the induced attributes for two of the generalizations
in Figure 4. By applying this reduction to every attribute in every
anonymized marginalM1, . . . , Mr, we get a new set of marginals
M ′

1, M
′
2, . . . , M ′

r. The only restriction on these new marginals is

that if attributeL
(Rj)
m appears in some marginalM ′

i thenM ′
i must

also contain the attributesL
(Rj)

1 , L
(Rj)

2 , . . . , L
(Rj)

m−1. Thus we view

the set of induced attributes{L(Rj)

1 , L
(Rj)

2 , . . . , L
(Rj)

i } asRj at
resolution leveli. The higher the resolution, the more information
there is about attributeRj .

6.2 Extensions of the Theory
Given the reduction in Section 6.1, the notions of interaction

graph and decomposability carry over directly to anonymized mar-
ginals. In this section, we will discuss how this affects the max-
imum entropy distribution and the statements of conditional inde-
pendence. We will also discuss how to traverse the search space of
anonymized marginals.

For anonymized marginals, the probability computation (Equa-
tion 1) needs to be extended to deal with the case where some at-
tribute never appears at its highest level of resolution. Recall that
for any attributeB, the induced attributesL(B)

1 , . . . , L
(B)
i repre-

sents a path from the root to an interior node of the generalization
tree forB. Let child(t, L

(B)
i ) be the function that first projectst

onto the induced attributesL(B)
1 , . . . , L

(B)
i to get a node in the gen-

eralization tree and then returns the number of leaves in the subtree
rooted at that node. For example, let us consider the left-most table
in Figure 5. Ift is a tuple in the first row, thenchild(t, LAge

1 ) = 6

becauset projected ontoLAge
1 gives us the left-most child of the

root, and it has 6 leaf descendants.

THEOREM 6.1. LetE1, . . . , Ep be the maximal cliques of a de-
composable graphical modelG arranged in a perfect sequence,
and letS2, . . . , Sp be the separators (as defined in Definition 5.7).
Let B1, . . . , Bq be the original attributes. For each original at-

tributeBj , letL
(Bj)
max be the induced attribute ofBj that appears in

one of the marginals (that correspond to theEi) such thatL
(Bj)

max+1



does not appear. Then the maximum entropy probability of a tuple
t ∈ Domain(T ) is:

1

|T |

pQ
i=1

TEi(tEi)

pQ
j=2

TSj (tSj )

·
qY

j=1

1

child
�
t, L

(Bj)
max

� (6)

This says that the probability for a tuplet (that is not at the highest
level of resolution) is spread uniformly across all possible comple-
tions oft.

The interpretation of conditional independence can also be ex-
tended to anonymized marginals. LetL

(A)
1 , . . . , L

(A)
p be the in-

duced attributes for original attributeA. Recall thatL(A)
1 , . . . , L

(A)
p−1

representA at a lower level of resolution,L(A)
1 , . . . , L

(A)
p−2 rep-

resentsA at an even lower level of resolution, etc (note ifL
(A)
i

appears in a marginal then we have the requirement thatL
(A)
j ap-

pears in the same marginal for allj < i). Thus generalizing a
marginal involves suppressing (marginalizing) the induced attribute
L

(A)
i with the largest index (i.e., the marginal does not contain an

induced attributeL(A)
j with j > i). Equivalently, generalizing a

marginal can be seen as reducing the level resolution for (original)
attributeA. The conditional independence interpretation relies on
the following theorem:

THEOREM 6.2. Let X, Y , andC be disjoint sets of vertices of
an interaction graphG for graphical decomposable anonymized
marginalsM1, . . . , Mr. If X andY are complete subgraphs ofG
andC is a set-wise minimal (i.e., no subset ofC has this property)
separator ofX andY then the following is true

1. C is complete (and therefore the vertices corresponding toC
correspond to attributes that are contained in some marginal
Mj)

2. If L
(A)
i ∈ X then for allj, L

(A)
j /∈ Y .

3. If L
(A)
i ∈ X and L

(A)
j ∈ C then i > j (i.e., C has lower

resolution information about original attributeA than does
X).

Theorem 6.2 says that ifX is a set of attributes that appear in
some anonymized marginal, andY is a set of attributes that ap-
pear in some anonymized marginal, the minimal separatorC be-
tweenX and Y is also a set of attributes in some anonymized
marginal. Furthermore,X andY do not contain any of the same
original attributes (even at different levels of resolution) for it does
not make sense to talk about independence between the age ranges
{[0−2], [3−10], [11−20], [21−30][30,∞]} and{[0−10], [11−
20], [20,∞]}. Additionally, if X andC (or Y andC) have infor-
mation about the same original attributes, then the information in
X is an incremental gain in resolution overC. Thus in addition
to statements about conditional independence of attributes, we also
have statements about independence of resolution: “given some the
level of resolution inC, the extra precision inX andY is indepen-
dent.” For example, suppose we have a table of flu patients cate-
gorized by geographical region and age range ([0− 10], [11− 20],
etc). Given a marginal that consists of age ranges ([0−5], [6−10],
etc) and a marginal that consists of states (instead of just geographi-
cal regions), the maximum entropy distribution would be consistent
with the assumption that given the first table, increased resolution
in age is independent of the increased resolution in location. In
other words, once we know that a flu patient is in the Northeast and

is between 11 and 20 years old, knowing the exact state of a re-
gion would not help narrow the age range (assuming the maximum
entropy distribution is correct).

The previous example raises an important issue – how correct is
the maximum entropy distribution? Intuitively, adding additional
marginals or merging marginals together (releasingABCD instead
of AB andCD) gives us additional information and should help us
better approximate the original distribution. In fact, this is also true
mathematically.

THEOREM 6.3. Let G andH be the interaction graphs of two
decomposable graphical models. If the vertices ofH are a subset
of the vertices ofG and the edges ofH are a subset of the edges of
G, then the maximum entropy distribution forG approximates the
original table at least as well as the maximum entropy distribution
for H (in terms of the KL-divergence).

Note that the case where the vertices ofG and the vertices ofH are
the same is proved in [24]. Since generalization may completely
remove some induced attributes from all of the marginals, this re-
moval will result in a model with less nodes as well as edges. Thus
we need the result that adding edges and vertices toH (when the
vertices ofH are a subset of the vertices ofG) never hurts utility.

The only case where adding marginals or merging them would
not increase utility is when the tuple distribution of original table
is exactly the maximum entropy distribution for that set of margi-
nals. Since that is unlikely in practice, even the following simple
technique is almost certainly guaranteed to improve the utility of a
single anonymized tableT ′ that was derived from a base tableT :
take the marginalM of T that has all attributes but the sensitive
ones. Create ak-anonymous versionM ′ of M . Then releasingM ′

andT ′ gives more utility than releasingT ′ alone (as is the standard
practice in the literature). In Section 7 we will discuss how to make
sure that privacy guarantees still hold.

We conclude this section with a discussion of how to select a set
of anonymized marginals to publish. It is known that model se-
lection for decomposable graphical models requires an exhaustive
search [28] and that even finding an optimalk-anonymous table is
NP hard [25, 3]. Therefore a search algorithm such as a genetic
algorithm or a random walk on the space of models is needed. We
will briefly discuss how to extend results on stepwise edge/vertex
selection [35, 13] that will allow us to go from one graphical model
to another.

The following three conditions need to be simultaneously satis-
fied in order to remove an edge connectingL

(A)
i andL

(B)
j :

1. L
(A)
i andL

(B)
j cannot appear together in 2 or more marginals

(equivalently, they do not both appear in a minimal separator
between two nodes). This rule, due to Wermuth, ensures that
the resulting model is decomposable [35].

2. A 6= B.

3. There is no edge connectingL
(A)

i′ andL
(B)
j with i′ > i (and

similarly for j).

The last two conditions ensure that the induced attributes in every
marginal describe a path from the root to an interior node of the
generalization tree (instead of only a subset of a path) and there-
fore correspond to an actual generalization. A nodeL

(A)
i can be

removed if

• There is no nodeL(A)
j with j > i.

This also ensures that the induced attributes in every marginal de-
scribe a path from the root to an interior node of the generalization



tree. Note that removing a node from a decomposable graph results
in a graph that is decomposable [20]. A nodeL

(A)
i can be added to

a graph if one of the following is true

• i = 1 (in which case the node is added with no edges) OR

• L
(A)
j is already in the graph for everyj ≤ i−1. In this case,

L
(A)
i is added with an edge to everyL(A)

j .

And edge betweenL(A)
i andL

(B)
j can be added if the following

conditions hold:

1. There exists a minimal separatorS betweenL(A)
i andL

(B)
j

such that every node inS has an edge to bothL(A)
i andL

(B)
j .

This rule, due to Deshpande et al, ensures that the resulting
model is decomposable [13].

2. i = j = 1 or for all i′ < i there is an edge fromL(A)

i′ to

L
(B)
j (and similarly forj)

7. ALGORITHMS
In this section we discuss procedures for checking a set of anon-

ymized marginals for privacy. The first criterion, from Definition
4.1, is that an attempt to link any marginal to external data will give
either0 or at leastk tuples. Thus it is sufficient to check that each
marginal satisfiesk-anonymity by itself.

The next requirement,k-combinatorial anonymity, is more strin-
gent. An adversary should not be able to use combinatorial tools
(such as the inclusion-exclusion principle) to determine that for all
tables consistent with a set of given marginals, a particular cell must
have between1 andk − 1 tuples (for then this cell can be linked
back to external data). In general, checking for privacy by com-
puting upper and lower bounds for a cell is NP-hard [22]. How-
ever, when the marginals correspond to a decomposable graphical
model, exact bounds can be computed in closed form. Dobra’s
bounds [15] extend to anonymized marginals: the cell countT (t)
is bounded by

T (t) ≤ min(TE1(tE1), . . . , TEp(tEp)) (7)

(note the similarity to Equation 1) and this bound is tight in the
sense that for each upper bound, there exists a table that achieves
it. Checking fork-combinatorial anonymity relies on Equation 7
and a variant of the maxent`-diversity algorithm that is described
below. Details are omitted due to lack of space.

Checking maxent̀-diversity for all points inNonSenDomain(T )
is a harder task. First, there are several simplifications we can per-
form:

PROPOSITION 7.1. Let M1, . . . , Mp be a set of anonymized
marginals in a graphical model. LetV be the set of induced at-
tributes that appear in at least one of theMi. Then checking
for maxent̀ -diversity inDomain(T ) is equivalent to checking for
maxent̀ -diversity inDomain(TV ).

Proposition 7.1 tells us that the we do not need to worry about any
level of resolution that does not appear in the marginals. Thus we
can use Equation 1 instead of Equation 6 for our computations.

PROPOSITION 7.2. LetE1, . . . , Ep be sets of (induced) attributes
arranged in a perfect sequence (Definition 5.7) and letS2, . . . , Sp

be the corresponding separators. If any of these two conditions
hold, then the set of anonymized marginals{TE1 , . . . , TEp} does
not satisfy maxent̀-diversity:

1. The marginalTEi is not`-diverse (individually) for somei.

2. There exists aj such that the intermediate product

TE1(tE1)
pQ

j=2

TEj
(tEj

)

TSj
(tSj

)
corresponds to a probability distribu-

tion that is not̀ -diverse.

Proposition 7.2 tells us that sometimes intermediate results (rather
than the complete maximum entropy distribution) can be used to
determine if a set of marginals does not satisfy entropy`-diversity.

PROPOSITION 7.3. Let C be the sensitive attribute. LetTE1 ,
. . . , TEp be decomposable and graphical (anonymized) marginals,
let E1, . . . , Ep be sets of (induced) attributes arranged in a perfect
sequence (Definition 5.7), and letS2, . . . , Sp be the corresponding
separators. LetE ′1, . . . , E ′p1 be the subsequence of theEi consisting
of precisely theEi that containC. Let S′

2, . . . , S
′
p2 be the subse-

quence of theSi consisting of precisely theSi that containC. Then
the following is true:

1. TE′1 , . . . , TE′p1
are graphical and decomposable marginals.

2. E ′1, . . . , E ′p1 is a perfect sequence andS′
1, . . . , S

′
p2 are the

corresponding separators to the perfect sequence (and hence
p1 = p2).

3. CheckingTE′1 , . . . , TE′p1
for maxent̀ -diversity inC is equiv-

alent to checkingTE1 , . . . , TEp for maxent̀ -diversity inC.

Proposition 7.3 tells us two things. First, marginals that do not
contain the sensitive attribute do not affect maxent`-diversity at all.
Thus if we publish a table that is both`-diverse andk-anonymous,
we can approximate the original table better (while preserving pri-
vacy) just by releasing additionalk-anonymous marginals that do
not contain the sensitive attribute. This is already an improvement
over the standard technique of just releasing one table. Second,
by ignoring marginals without sensitive attributes, we get a smaller
decomposable graphical model to which we can apply Propositions
7.1 and 7.2. This lets us cut down on the size of the domain that
must be checked.

It is clear that checking for maxent`-diversity can be done in
time that is linear in the size of the join of all the marginals contain-
ing the sensitive attribute. In cases where the sensitive attribute has
a small domain, we can use the decomposable property of the inter-
action graph to reduce the complexity even further: we will prune
away tuples that do not need to be joined. We will also present a
variant of this pruning algorithm for the case where|C| = `. In this
case, the running time will beO(|C|2p|J |) wherep is the number
of marginals,|J | is the size of the largest join between 2 marginals
(not counting duplicates),C is the domain of the sensitive attribute
and |C| is its size. For other cases (when the overall join size is
too large and when|C| is large), we will present an algorithm that
relaxes thè -diversity conditions.

To discuss the algorithms, we need to introduce the following
definition:

DEFINITION 7.1 (JUNCTION TREE). LetV = {V1, . . . , Vp}
be a collection of sets. A junction tree is a graph(V, E) that is a
tree with the following property: for anyVi, Vj ∈ V and for any
V ′ ∈ V in the path betweenVi andVj , we haveVi ∩ Vj ⊆ V ′.

Figure 6 shows a junction tree for the interaction graph in Figure
2(a). If we let theVi be the maximal cliques of a connected decom-
posable graph, then there always exists a junction tree that contains
all of theVi [20]. Junction trees can be created from scratch in time
that is quadratic in the number of cliques [18] or maintained incre-
mentally as in [13]. Because of Proposition 7.3, we can assume
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Figure 6: Junction Tree for Figure 2(a)

Algorithm 1 : Diversity Check(node:v)
Require: Each nodev of a junction tree is a set of attributes
1: Iv ← Tv

2: for all x ∈ children(v) do
3: Diversity Check(x)
4: Tmp← Iv ./ Ix

5: for all t ∈Tmp do
6: Tmp(t)← Iv(tv) · Ix(tx)/Tv∩x(tv∩x)
7: end for
8: Prune(Tmp,v)
9: Iv ← Tmp

10: end for
11: if v =root then
12: Check ifIv satisfies(c, `)-diversity
13: else
14: Prune(Tmp,v ∩ parent(v))
15: Iv ← Tmp
16: end if

that all marginals contain the sensitive attributeC, that the decom-
posable graph is therefore connected, and therefore that a junction
tree exists. In our case, each node of the junction tree is a set of at-
tributes and corresponds to a marginal. It is not hard to see that any
topological sort of a junction tree results in a perfect sequence (De-
finition 5.7), and that the intersection between a parent and child
is the separator for the child in the perfect sequence. Thus we can
compute the expected cell counts (in Equation 2) by multiplying the
marginal countsTv(tv) corresponding to each nodev, and dividing
by the separatorsTv∩parent(v)(tv∩parent(v)).

We will perform all joins in the junction tree from the bottom
up. For a nodev, letAv be the set of attributes that appear in the
subtree rooted atv. Note that attributes inAv not involved in a join
betweenv andparent(v) will never be used later on because, by
definition of the junction tree, those attributes are separated from
the rest of the tree by the attributes that are involved in the join.
For example, in Figure 6,{ABC} can be joined with its parent
{BCD} using the attributesB andC. A is not involved in the join
and so does not appear anywhere except in the subtree rooted at
{ABC}. The attributes ofv that appear only in the subtree rooted
at v will be denoted byirrel(v) (because they areirrelevant for
the join betweenv and its parent and any other join that will be
performed afterwards) and the rest of the nonsensitive attributes of
v will be denoted byrel(v) (relevant). After each join, we will
group tuples intorelevant blockswhere all tuples with the same
values for the attributes inrel(v) are in the same relevant block.
Within each relevant block we will do the pruning.

To do pruning, first note that each relevant block is composed
of anonymized groups (recall that an anonymized group consists of
all tuples with the same values for the nonsensitive attributes; in
this case they are the attributes inrel(v) and irrel(v)). For prun-
ing, we will treat each anonymized group as a vector of length|C|
where the ith component is the frequency of sensitive valuesi in the
anonymized group. In the pruning step, we remove all anonymized
groups that are not in the convex hull in their respective relevant
blocks.

The pruning algorithm runs from the bottom up. For each node
v whose childrend1, . . . , dj are all leaves, it sequentially joins the
marginals corresponding tov and its children to get an intermediate
resultIv. For each tuplet ∈ Iv, the pruning algorithm computes
the expected count by multiplying the marginal counts and divid-
ing by the separators:Tv(tv)

Q
i(Tdi(tdi)/Tv∩di(tv∩di)). We can

think of Iv as a new marginal where the count of each cell is the
expected count that we computed.Iv will be treated as the “new”
marginal forv and soIv will itself be joined with the parent ofv
andv’s siblings. After each join, a pruning step is performed. The
pseudo-code is shown in Algorithm 1. Note that Algorithm 1 calls
a procedure called “Prune” which takes two arguments. The first
is a marginal and the second is the set of attributesrel(v). In the
basic pruning algorithm, “Prune” removes anonymized groups that
are not part of the convex hull of their relevant blocks.

THEOREM 7.1 (CORRECTNESS OFPRUNING). If there exists
any t ∈ NonSenDomain(T ) that is not maxent̀-diverse then at
least one sucht will belong to an unpruned anonymized group of
Iroot at the end of the algorithm.

In the case wherè = |C|, we can efficiently check for(c, `)-
diversity while avoiding the computation of convex hulls. To ac-
complish this, we only need to modify the “Prune” procedure. Let
s1, . . . , s` be the sensitive values of|C|. Within each relevant
block Bi we do the following. For each ordered pair(sj , sj′) of
sensitive values, we find and retain the anonymized group inBi

where the ratio of the frequencies ofsj to sj′ is maximal. The
anonymized groups that are not retained are discarded. Thus for
each combination of values that will participate in a join between
two marginals, we have at most|C|2 tuples. With this pruning pro-
cedure, once we get to the root, we look at the ratio of frequencies
of sj to sj′ (for all j, j′) in each anonymized group. If all of the
ratios are≤ c then the marginals satisfy maxent(c, `)-diversity.

In the case where the size of the join of all marginals contain-
ing the sensitive value is large (the worst case occurs when all
marginals contain the same sensitive attribute and one additional
attribute), and when|C| is large, there are several ways we can
speed up the checking for maxent`-diversity. The first approach
is to reduce the join size by imposing additional restrictions on the
structure of anonymized marginals. When searching through the
space of collections of anonymized marginals, we can restrict our
attention to collections where at mostm (a user-defined parameter)
anonymized marginals contain the same sensitive attribute. An-
other approach is to take a base table and to first apply any of the
existing algorithms that can be used to generate minimal`-diverse
tables (see [23, 21, 6]); aǹ-diverse tableT ′ is minimal if there
is no`-diverse table that can be transformed intoT ′ by using gen-
eralizations. Afterwards, when we search for collections of anony-
mized marginals, we only consider collections that include that par-
ticular `-diverse version of the base table as one of the marginals.
This type of search is equivalent to starting out with an`-diverse ta-
ble and searching for which additional anonymized marginals can
be published as well (thus these marginals areinjectingutility into
the original anonymized table). The inclusion of such an`-diverse
table naturally limits the join size, and our experiments indicate
empirically that this approach also yields good utility.

The other approach is to relax the`-diversity requirements. Given
a relaxation parameterε, we can guarantee that for eacht ∈
NonSenDomain(T ), there are at least̀ sensitive values that are
at least(1 − ε)p times as frequent as the most frequent sensi-
tive value for t. First we have a preprocessing step where for
each non-root nodev and each tuplet ∈ Tv, we setT ∗

v (t) =
Tv(t)/Tv∩parent(v)(t) (i.e., we perform the division by the sepa-
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Figure 7: Anonymized Tables
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Figure 8: Anonymized Marginals

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

OptC+C4C3C2C1C0

K
L

−
di

ve
rg

en
ce




Figure 9: Incremental Utility

rators in advance). Whenv is the root, we setT ∗
v = Tv. We then

form the marginalsIv as follows. For eacht ∈ T ∗
v , we examine

the anonymized group to whicht belongs. Lettmax be the tu-
ple in t’s anonymized group such thatT ∗

v (tmax) is maximized. If
T ∗

v (t) ≥ (1−ε)T ∗
v (tmax) thenIv(t) = 1 and otherwiseIv(t) = 0.

These are now the marginals that would appear in Line 1 of Algo-
rithm 1. Line 6 is now replaced byTmp(t) ← Iv(tv) ∗ Ix(tx).
Each anonymized group can now be treated as a vector of length
|C| where theith component is 1 if and only ifIv(ti) = 1 (where
ti is the tuple in the anonymized group such thatt.C = si). The
the pruning step removes redundant anonymized groups in each rel-
evant block. It also removes anonymized groups whichdominate
another anonymized group: if~g1 and ~g2 are vectors correspond-
ing to anonymized groupsg1 andg2, respectively, then we sayg1

dominatesg2 if every component of~g1 is greater than or equal to
every component of~g2. At the root, we say that there is maxent`-
diversity withε relaxation if each anonymized group, when treated
as a vector, has at least` components equal to 1.

8. EXPERIMENTS
We performed our experiments on the Adult dataset in the UCI

Machine Learning Repository [29]. We removed all tuples with
missing values and were left with a table containing 45222 tuples.
We used the attributesrace, gender, age, andmarital statusas the
nonsensitive attributes, andoccupationas the sensitive attribute.
Using the same generalization hierarchies as in [21] and [23], we
generated three tables that were simultaneously 6-diverse and 6-
anonymous. These tables were minimal in the sense that any other
6-diverse, 6-anonymous table can be generated from one of these
three by using generalizations.

We measured utility in terms of KL-divergence; the smaller the
number, the better it approximates the original un-anonymized ta-
ble. Figure 7 shows the utilities of the three minimal 6-diverse,
6-anonymous tables. The bar labeled0 corresponds to the KL-
divergence to the table where all nonsensitive attributes were com-
pletely suppressed (i.e., they were generalized to a single value).
The bar labeledopt corresponds to the KL-divergence to the best
set of anonymized marginals that satisfy 6-anonymity and maxent
6-diversity. The three 6-diverse, 6-anonymous tables were labeled
A, B, andC. As we can see, the anonymized tables do not approxi-
mate the original table particularly well.

One way to speed up the search for a good collection of anon-
ymized marginals, and to make checking for`-diversity more effi-
cient, is to start with an anonymized table and to only consider col-
lections of anonymized marginals such that the given anonymized
table is one of them (i.e., start with an anonymized table andinject

utility by adding additional anonymized marginals). For each of
the anonymized tablesA, B, andC, we found the best sets of anon-
ymized marginals that contained each table. The results are shown
in in Figure 8. Here the bar labeledA+ is the KL-divergence to
the best collection of marginals that contain the anonymized table
A (similarly for B+, andC+). In our experiments it turned out that
the best collection of anonymized marginals containingB was also
the overall best collection of anonymized marginals (whose utility
is labeledopt in Figures 7 and 8).

Finally, in Figure 9 we show that even a very simple search for
anonymized marginals can yield dramatic results when compared
to the utility of just a single anonymized table. To illustrate this ef-
fect, we used tableC, although our results were qualitatively similar
for tablesA andB as well. We measured how the KL-divergence
decreased as we added marginals that contained only one attribute
each. The marginals were added in order of greatest improvement
in utility. Starting out with tableC, we first added a marginal on
race (bar labeledC1), to this we then added a marginal onmarital
status(bar C2), thengender(bar C3), and finally we also added
marginal on age (barC4). The marginal on age was bucketized
into ranges of size 5 ([0 − 4], [5 − 9], . . . ) in order to meet the
k-anonymity requirements. Note that there is still a noticeable dif-
ference in utility between this collection of anonymized marginals
and the best collection that contains tableC (as well as the over-
all best collection of anonymized marginals); however, this simple
collection of marginals still created an enormous improvement in
utility over a single anonymized table.

9. RELATED WORK
The utility of data that has been altered to preserve privacy has

often been studied in contexts where the future use of the data is
known. For example, [16] studies how to reconstruct association
rules after noise has been added; [5] and [4] study how to recon-
struct the distribution of a continuous variable after noise with a
known distribution has been added; [9] studies how to perturb the
values of continuous numeric attributes so that data clusters can
be reconstructed (note that [9] also proposes publishing perturbed
data in addition to a histogram, but this method does not handle
non-numeric attributes and the privacy guarantees use the assump-
tion that the data is generated from a uniform distribution); and [17]
and [34] anonymize data while trying to maximize decision tree ac-
curacy. There have also been some negative results for utility. In
addition to the curse of dimensionality fork-anonymity [2], there
is work showing that an ideal privacy criterion places extremely
strong restrictions on the types of queries that can be answered
[26] (in particular, aggregate statistics cannot be computed).k-



Anonymity [33] and̀ -diversity [23] are weaker privacy definitions
(they do not protect against adversaries with arbitrary amounts of
background knowledge) but they provide considerably more utility.

There are several approaches to sanitizing a dataset to ensure
privacy. These include generalizations [31], tuple suppression [11,
31], adding noise [1, 5, 16, 9], publishing marginals that satisfy
a safety range [15], and data swapping [12] – a technique where
attributes are swapped between tuples in such a way that certain
marginal totals are preserved. Queries can also be posed online and
the answers audited [19] or perturbed [14].

Log-linear models [10, 20] and logistic regression are popular
techniques for analyzing tabular data, and graphical models [20,
28, 27] provide a compact and interpretable representation of high-
dimensional probability distributions.

The maximum entropy distribution that satisfies given constraints
has also been studied in the database literature. For example, this
has been applied to the exploration of OLAP data cubes [32].

10. CONCLUSIONS AND FUTURE WORK
Anonymized marginals can be thought of as statements about the

original data set that are guaranteed to be true. The maximum en-
tropy distribution is then our best guess about the rest of the data.
Another way to think of this is that anonymized marginals are a
compact representation of a statistical model (a density estimate of
the original table). A promising direction of future work is releas-
ing a set of models in addition to the data, studying the utility of
such an ensemble, providing guarantees about the resulting privacy
of information, and constructing data mining algorithms that use
all of this information as the input.

11. REFERENCES
[1] N. R. Adam and J. C. Wortmann. Security-control methods

for statistical databases: A comparative study.ACM Comput.
Surv., 21(4):515–556, 1989.

[2] Charu C. Aggarwal. On k-anonymity and the curse of
dimensionality. InVLDB, pages 901–909, 2005.

[3] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani,
R. Panigrahy, D. Thomas, and A. Zhu. Approximation
algorithms for k-anonymity.Journal of Privacy Technology
(JOPT), 2005.

[4] D. Agrawal and C. C. Aggarwal. On the design and
quantifiaction of privacy preserving data mining algorithms.
In PODS, May 2001.

[5] R. Agrawal and R. Srikant. Privacy preserving data mining.
In SIGMOD, May 2000.

[6] R. J. Bayardo and R. Agrawal. Data privacy through optimal
k-anonymization. InICDE, 2005.

[7] Adam L. Berger, Vincent J. Della Pietra, and Stephen
A. Della Pietra. A maximum entropy approach to natural
language processing.Comput. Linguist., 22(1):39–71, 1996.

[8] Kevin S. Beyer, Jonathan Goldstein, Raghu Ramakrishnan,
and Uri Shaft. When is ”nearest neighbor” meaningful? In
ICDT, pages 217–235, 1999.

[9] S. Chawla, C. Dwork, F. McSherry, A. Smith, and H. Wee.
Toward privacy in public databases. InTheory of
Cryptography Conference, 2005.

[10] Ronald Christensen.Log-Linear Models and Logistic
Regression. Springer-Verlag, 1997.

[11] L. H. Cox. Suppression, methodology and statistical
disclosure control.Journal of the American Statistical
Association, 75, 1980.

[12] T. Dalenius and S. Reiss. Data swapping: A technique for
disclosure control.Journal of Statistical Planning and
Inference, 6:73–85, 1982.

[13] Amol Deshpande, Minos N. Garofalakis, and Michael I.
Jordan. Efficient stepwise selection in decomposable models.
In UAI, pages 128–135, 2001.

[14] I. Dinur and K. Nissim. Revealing information while
preserving privacy. InPODS, pages 202–210, 2003.

[15] A. Dobra.Statistical Tools for Disclosure Limitation in
Multiway Contingency Tables. PhD thesis, CMU, 2002.

[16] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy
breaches in privacy preserving data mining. InPODS, 2003.

[17] Vijay S. Iyengar. Transforming data to satisfy privacy
constraints. InKDD, pages 279–288, 2002.

[18] Finn Verner Jensen and Frank Jensen. Optimal junction trees.
In UAI, pages 360–366, 1994.

[19] K. Kenthapadi, N. Mishra, and K. Nissim. Simulatable
auditing. InPODS, 2005.

[20] S. L. Lauritzen.Graphical Models. Oxford Science
Publications, 1996.

[21] K. LeFevre, D. DeWitt, and R. Ramakrishnan. Incognito:
Efficient fulldomain k-anonymity. InSIGMOD, 2005.
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