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ABSTRACT

Limiting disclosure in data publishing requires a careful balance
between privacy and utility. Information about individuals must
not be revealed, but a dataset should still be useful for studying
the characteristics of a population. Privacy requirements such as
k-anonymity and/-diversity are designed to thwart attacks that at-
tempt to identify individuals in the data and to discover their sensi-
tive information. On the other hand, the utility of such data has not
been well-studied.

In this paper we will discuss the shortcomings of current heuris-
tic approaches to measuring utility and we will introduce a formal
approach to measuring utility. Armed with this utility metric, we
will show how to inject additional information inté-anonymous
and ¢-diverse tables. This information has an intuitive semantic
meaning, itincreases the utility beyond what is possible in the orig-
inal k-anonymity and/-diversity frameworks, and it maintains the
privacy guarantees d@f-anonymity and’-diversity.

1. INTRODUCTION

Mining data sets that contain information about individuals in a
population is a great way of learning about properties of that pop-
ulation. Applications include studying the effects of treatments on
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To make matters worse, the curse of dimensionality that haunts
the statistics and machine learning communities [8] also has an ad-
verse effect on anonymized data [2]. Experimental evidence [2]
suggests that many attributes in the data need to be suppressed in
order to guarantee privacy. This effect was also present in the ex-
periments we conducted for this paper: while generating anony-
mized data from the Adult dataset in the UCI Machine Learning
Repository [29], attributes such as “ethnicity” had to be completely
suppressed. Clearly this is bad for utility no matter what measure
is used.

One way to ameliorate this curse of dimensionality is to publish
additional information, such as a table containing just the ethnic-
ities and their frequencies in the original table. Clearly we can
generalize this to publishing marginals (or, equivalently, duplicate-
preserving projections, or views) of the original table. The mar-
ginals themselves can be anonymized (i.e., generalization can be
performed on these marginals) and the generalizations used on the
marginals need not be the same. This is precisely the approach that
we are proposing.

Consider Figure 1: we begin with a base table, Figure 1(a), and
then use an anonymization algorithm to create(th8)-diverse ta-
ble in Figure 1(b) (the precise definition 6fiversity will be given
in Section 2). The current approach in the literature is to stop at

disease, tracking disease outbreaks, and building economic modelghis point and publish this table. Note that there is additional in-
(from census data). Aside from this “good” information, such data formation we can publish in terms of anonymized marginals: more
sets also contain sensitive information: the disease of an individ- detailed age information (Figure 1(c)), detailed zip-code/disease in-
ual, the salary, etc. Because of this, the goal of privacy-preserving formation (Figure 1(d)), more detailed joint information about age
data publishing is to maximize the “good utility” while limiting ~ and zip code (Figure 1(e)), etc. Given so many choices, which
the ability of an adversary to identify specific individuals and learn anonymized marginals should we publish? Clearly we cannot pub-
their sensitive information from the data set. lish them all, because if an attacker knows that a person who lives
In terms of privacyk-anonymity [33] and/-diversity [23] pro- in 14850 and is under 40 is in the original table (from Figure 1(e)
vide strong guarantees on the confidentiality of individuals in the or from background knowledge), then the attacker can join Figures
data. Both concepts rely ogeneralizationso preserve privacy: ~ 1(b) and 1(d) to deduce that the person has measles.
attributes are replaced with less specific information (for example,  In order to answer the question of which anonymized marginals
“state” may be replaced with “region” and “age” may be replaced to publish, we first introduce in Section 3 a new way of quanti-
with “age range”). However, the utility of these “anonymized” data fying the amount of information (utility) contained in anonymized
sets has received much less study. Many heuristics for measuringdata, and we discuss how this information should be combined to
utility have been proposed, but to the best of our knowledge there approximate the original data. Using these ideas, we will take ac-
are no formal measures of the utility of an anonymized dataset. ~ cepted single-table privacy definitions and extend them so that they
apply to collections of anonymized marginals in Section 4. The
technical challenges are that combining information from margi-
nals and computing the utility require slow iterative algorithms, and
Permission to make digital or hard copies of all or part of this work for checking for privacy is NP-hard. We will deal with those issues in
personal or classroom use is granted without fee provided that copies areSections 5, 6, and 7. In Section 5.1 we will review the notion of
not made or_distributed for profi_t or comme_rcial advantage and that popies decomposabilitfrom the graphical models literature. This will let
bear;?'sh”ft'ce i”d the full C'tatt'on i tth%f'tmtp"l".gf' To copy Othe”’"'sen}_" us impose a structure on anonymized marginals that will simplify
Lzeumigzidn%ﬁglsofgfg_vers orforedistribute foliSts, requires prior specific utility calculations and will let us develop tractable algorithms for
SIGMOD 2006,June 27—29, 2006, Chicago, lllinois, USA. checking for privacy. As aresult, a data publisher will have the abil-
Copyright 2006 ACM 1-59593-256-9/06/000655.00.



Zip CodgCondition| Age | [Zip CodeCondition| Age
14850 | Measles| 33 1485* | Allergy | <40 Zip CodegCondition| Count
14853 | Allergy 26 Gout <40 14850 | Flu 2 Zip CodgAge Count
14853 | Gout 22 Measles| < 40 Age Count Heart 1 14850 | [41-50] 3
14853 | Cancer | 32 Cancer | <40 21 —25 2 Measles 1 [31-40] 1
14850 | Flu 48 1485* | Heart > 40 26 — 30 2 14853 | Cancer 2 14853 | [51-60] 2
14850 | Heart 47 Flu > 40 31—35 2 Heart 1 [21-30] 2
14850 | Flu 46 Heart > 40 36 — 40 2 Allergy 1 [31-40] 1
14853 | Cancer | 53 Flu > 40 41 — 45 0 Gout 1 13063 | [21-30] 1
14853 | Heart 51 Cancer | > 40 46 — 50 3 13063 | Flu 1 [31-40] 1
13063 | Flu 24 1306* | Heart <40 51 — 55 2 Cancer 1 13068 | [31-40] 1
13063 | Cancer | 38 Flu <40 (c) Age Marginal | 13068 | Cancer 1 [21-30] 1
13068 | Cancer | 38 Cancer | <40 Heart 1 (e) Zip/Age Marginal
13068 | Heart 30 Cancer | <40 (d) Zip/Condition Marginal

(a) Original table (b) (2, 3)-diverse table

Figure 1: Anonymized Marginals

ity to examine many different collections of anonymized marginals ployees was joined to voter registration records using the attributes
before deciding which collection to publish. In Section 5.2 we will birth date, gender, and zip code. Since the governor of Massa-
briefly review the theory of log-linear models and show that pub- chusetts had a unique combination of those attributes, his medical
lishing marginals can be viewed in a different way: it can be viewed records were easily identified. Generally, a set of attributes (like
as selecting the set of conditional independence relations that besthe set{birth date, gender, zip codlén the previous example) that
describe the original table. The theory in Section 5 is designed for acts almost like a key and can be used to uniquely identify some
ordinary marginals. In Section 6 we will extend this theory to anon- individuals is known as a quasi-identifier [33]:

ymized marginals and discuss how to traverse the search space of

anonymized marginals. Then we will describe our algorithms for
checking for privacy in Section 7. In Section 8 we will present our
experiments that show that the strategy of publishing a collection
of anonymized marginals indeed provides a dramatic improvement
in utility over the strategy of publishing a single anonymized table.

In summary, our contributions include formalizing the notion of
utility for k-anonymous and-diverse tables, extending these defi-
nitions to anonymized marginals, extending results from graphical
and log-linear models to anonymized marginals (including results
on search-space traversal), and providing algorithms for checking
for privacy.

2. PRELIMINARIES

In this section we will introduce the notation and basic defini-
tions that will be used later on. First we will introduce basic nota-
tion and definitions related to privacy, and then we will introduce
notation for dealing with tabular data.

2.1 Privacy Basics

Let D = {t1,...,tn} be a database of tuples where each tuple
hasd = di + d; attributes:t; = {t;.R1,...,t:;.Ra,, t:.S1, ...,
t;.Sq4, }. We will slightly abuse notation and uge; to also refer
to the domain of attributé. R; andS; to refer to the domain of at-
tributet.S;. The attributesky, . . ., Rq, are called th@onsensitive
attributes. This is because they are either public knowledge or be-
cause they are available from some external data set. For example
date of birth, gender, and zip code are available from voter regis-
tration records and so are considered nonsensitive. The attribute
S, ..., Sa, are thesensitiveattributes. For example, disease (in a
hospital data set) would be considered sensitive. Since the datase
is given in tabular form, we will use the terms “dataset” and “table”
interchangeably.

The goal of privacy-preserving data publishing is to make it dif-
ficult for an attacker to determine that someone is in the dataset,
and to make it difficult to determine the values of the sensitive at-
tributes of individuals that are known to be in the table. One glaring
example of these goals not being met is described in [33]: a (sup-
posedly anonymized) medical dataset of Massachusetts state em

DEFINITION 2.1 (QUASI-IDENTIFIER). A set of nonsensitive
attributes{ Ry, .. ., R, } in adatabasé is called aquasi-identifier

if this set can be used to identify at least one individual from a given
population by linking those attributes to external data sets.

Without loss of generality, we assume that all the set of all non-
sensitive attributes forms the quasi-identifier. To prevent linking
attacks that use the quasi-identifier, it is common togeseeraliza-
tions

DEFINITION 2.2 (GENERALIZATION). LetV be the domain
of an attributet.V. A generalizationi’ of V' is a new domain
formed by partitioningl” into disjoint buckets and identifying all
the points in a bucket with one value##i. A generalization map
is a functiong : V' — W such thatp(v) corresponds to the bucket
that containsy.

As an example, consider the integer-valued attribute Age. One
generalization of Age is the set of intervald = {[0 — 5],[6 —
10],[11 — 15],...}. The generalization map from Age ' re-
places each integer with an intervall’ itself can also be gener-
alized. One such generalization df is A” = {[0 — 10],[11 —

20], ... }. Note thatA” is also a generalization of Age (generaliza-
tions are transitive). Thus we can define a partial order on domains:
A=< B if and only if B is a generalization ofl (note thatA < A

is always true). To generalize a table, we choose a generalization
for each attribute and apply the appropriate generalization maps
to the attributes of all tuples We can perform generalizations on
the nonsensitive attributes (quasi-identifier) to make linking attacks
difficult. This is the goal ok-anonymity [33].

S

DEFINITION 2.3 (k-ANONYMITY ). AtableD satisfies
k-anonymity if for every tuple € D there exist at least — 1 other
tuples that have the same valueg dsr every quasi-identifier.

Given the quasi-identifiefzip code, agg, the table in Figure
1(b) is 4-anonymous. Generalizations partition the tuplesantm-
ymized groups

DEFINITION 2.4 (ANONYMIZED GROUP). An anonymized
group is a (set-wise) maximal set of tuples that have the same (gen-
eralized) value for each nonsensitive attribute.



Note thatk-anonymity says nothing about the sensitive attributes. in the database).
In particular, it does not prevent all tuples in an anonymized group  We will use the termranonymized table refer to a table that has
from having the same value for some sensitive attribute (thus ben-been altered through the use of generalizations. In particular, when
efiting an attacker who knows some of the individuals that are in we apply generalizations to a marginal contingency table, the result
that anonymized group). The concept/adiversity is designed to is ananonymized marginal
guard against this. Machanavajjhala et al [23] give several alterna-
tive formulations of¢-diversity. Any of them can be used here,but 3. UTILITY MEASURES

for concreteness, we will use the following: . . . - .
’ 9 In this section we review current utility measures for anonymized

DEFINITION 2.5 ((¢,£)—DIVERSITY). Letc > 0 be a con- datasets (Section 3.1) and then discuss a more formal measure of
stant and lety be an anonymized group. LStbe a sensitive at- utility (Section 3.2) which has connections to maximum entropy
tribute, letsy, . . ., s, be the values of that appear in the group and conditional independence, and which will be suitable for anon-
and letry, 72, . . ., ., be the their corresponding frequency counts ymized marginals.

ing. Letryy, ), ..., 7mm) bethose counts sorted in non-increasing -
order. We say that the anonymized grougatisfieqc, £)-diversity 3.1 Current Measures of Ut'hty
m, One of the earliest utility metrics igeneralization heighf30].

with respect to a sensitive attributeif r(;) < c .Z[T(“' The set  Generalization height is the total number of generalization steps

{s()} is theheadand the se{s), ..., s(m) } i called thetail. that have been performed on the original data set. The intuition be-
B o . hind it is that a generalization step represents a loss of information,
Intuitively, (-diversity means that an adversary neédd pieces 5o one should use as few generalization steps as possible. As noted
of background knowledge to eliminate— 1 possible values of & i [23], the problem with this approach is that not all generalization
sensitive attribute in order to breach privacy. Likanonymity, steps are created equal: a generalization step on one attribute may

(-diversity can be achieved through generalizations. Throughout put many more tuples into an anonymized group than a generaliza-
the paper we will assume there is only one sensitive attribute. This tjgp, step on another attribute.
is only necessary for clarity. The extension to multiple sensitive  Two similar metrics that take anonymized group size into ac-
attributes is straightforward and is done in the same way as in [23]. cqunt are the average size of anonymized groups [23H@werni-
_Note that there are other ways of sanitizing data: tuple suppres-jjity [6]. Discernibility assigns a cost to each tuple based on how
sion [31], adding random noise [5, 16, 1], and swapping attributes many other tuples are indistinguishable from it. If a tuple is sup-
betvveen tuples [12]. We will restrict our attention to genera_llza- pressed, its cost iD| (the number of tuples in the original data).
tions because they are the mdaithful to the data: any factin i 5 typle is not suppressed, its cost is the number of tuples in its
a generalized table is true of the original table. For example, if anonymized group. Thus the discemibility is the sum of the squares
the value for the Age attribute has been generalize@io- 30] of the anonymized group sizes pl9| times the number of sup-
then we know for certain that the age is within that interval. Fur- pressed tuples. While appealing, neither of these two metrics takes
thermore, we could determine exactly how many individuals inthe {he gata distribution into account. An anonymized group where
original table were between 25 and 30 years old. Faithfulness is the original attributes were uniformly distributed represents less in-
an important concept because it may be used by future data miningformation loss than an anonymized group whose original attributes

algorithms to give quality guarantees on their results. were skewed. For example, suppose there are 10 people who have
2.2 Tabular Data the same value for every attribute except age, and t_heir ages are
) between 20 and 30. In a sense, our best guess (using maximum
Recall that our database = {t1,...,tm} is @ set of tuples  entropy, or the principle of indifference) is that each age is equally
where each tuple hat = d, + d att_rlbutes:ti = ,{ti'Rl'_ s likely. Intuitively, had the original ages bee, 22, ... 30, this
ti-Ra,, 151, ..., ti.54, }. The domain oD, Domain(D), isthe  \yoy|d not have been as much an information loss as the case where

crossproduck; x --- X Rq, X S1 X --- % Sa,. The nonsensitive 5 pegple were 21 years old and the other 5 were 29. lyengar [17]
domain, NonSenDomain(D), is the domain of the nonsensitive  presents a related loss metric which considers how many elements

attributes:R, x - - - x Rq, ; the sensitive dqmailSenDomain(D), in the original domain have been grouped together. Since it also
is the domain of the sensitive attributeS; x --- x S4,. When ignores the tuple distribution, it has the same shortcoming.

all the attributes are discrete (or have been bucketized), it is conve- = 1,0 utility metrics that take distribution into account are the
nient to think of the(g)ata set as a contingency tapie): for any classification metrid17] andinformation-gain-privacy-loss ratio

t € Domain(D), T"7(t) is the number of times appears inD. [34]. The classification metric is appropriate when one wants to

Whenever it is unambiguous, we will drop the explicit notational {rain g classifier over the anonymized data. Thus one attribute is
dependency ot and refer to the corresponding contingency table yeated as a class label. The classification metric assigns a penalty

asT. LetC' C Domain(D). T(C) is the number of tuples i) of 1 to every tuple that is suppressed. If a tupig not suppressed,
that also belong to the subset of the domain represented (ye we look at the majority class label in its anonymized group. If the
will use lower-case letters to denote tuples and upper-case letters tQy|555 |abel fort is different than the majority class labeljs as-

denote sets). Thus we can think’Bfas a function defined on the  gigned a penalty of 1. The classification metric is then the sum of

powerset oDomain(D). _ _ _ all penalties. The classification metric is an appealing measure of
We W1|>” also be concermed with margmal(sj,j)of the contingency ility because it considers a possible use for the data. However, it
tableT”. Let.A be a set of attributes. Theé,” is the marginal s not clear what we should do if we want to build classifiers for

contingency table that we get by projecting out all attribute®of  several different attributes. The information-gain-privacy-loss ra-
that are not in4 (while preserving duplicates). For example, if  tjo is also designed for the purposes of classification. It is a local
A = {R1, Rz} andt = (r1,72) thenTﬁ\m(t) is the number of heuristic in the sense that it is used to determine the next gener-
tuples inD whose value folR; is r; and whose value faRs is rs. alization step (it is similar to the way information gain is used to
Note that the original contingency tableis itself a marginal, and choose the next split point in a decision tree). Here as well it is not
thatTy is the function that always retufi®| (the number of tuples clear what we should do if we want to build classifiers for several



different attributes. Furthermore, because it is a local heuristic, itis 4. EXTENDING PRIVACY DEFINITIONS
difficult to compare the utilities of two different anonymized tables. The next step is to extend the privacy definitionsifeanonymity
3.2 A Formal Utility Measure andé-dlv_ersny from single-table anonymized da_ta to collections of
. . o anonymized marginals. We can extela@dnonymity in two ways,
One of the main goals of data mining and statistics is to make refiecting the motivation provided by Sweeney [33]. Following
statements about the probability distribution that generated the data{33], we can protect the anonymized marginals from being linked

— this i§ certginly true of clas.sification,. parfimeter gstimation, hy- to external data by requiring every anonymized marginal té-be
pothesis testing, and regression. In this spirit, we view the data asgnonymous.

an iid (identically and independently distributed) sample generated

from some multidimensional distributiofi. Here we shall assume DEFINITION 4.1 (k-LINK ANONYMITY ). A collection of anon-
that all attributes are discrete. Note that if we have a continuous ymized marginalé/, . .., M, satisfiesk-link anonymityif for all
domain, we can bucketize it and treat the collection of buckets as a: = 1...r andfor allt € NonSenDomain(M;) eitherM;(t) = 0
discrete domain; other ways of dealing with continuous attributes or M;(t) > k.

are the subject of future work. With this simplification, the data fol-
lows a multinomial distribution. Suppose the tuples in our dataset
have discrete-valued attributés, . .., U,. Then we can estimate

F with theempirical distributionf”. F'(u,, . .., u,) is an estimate

of the probabilityP(t.U1 = ua,...,t.U, = u,) and is defined

as the fraction of tuples in the database that satisfy this constraint - yiTioN 4.2 (k-COMBINATORIAL ANONYMITY ). LetD

(e t.Ur =u,..., ”_J" = Un). o ) _ be the domain of the nonsensitive attributes. A collection of anony-
Now that we have given a probabilistic interpretation to the orig- ized marginald,, . .., M, satisfiesc-combinatorial anonymity
inal data, we will proceed to do the same for the anonymized data. it tor a1l ¢ €D oneo’f thé following holds:

Suppose we are given a collection of anonymized marginals that

were derived from the same table. We can view these marginals as 1. For all tablesT" consistent with the marginal§/y, . . ., M,
constraints. Figure 1 shows a set of anonymized marginals that cor- T#) =0

respond to the table in Figure 1(a) that has 13 tuples. These anon-

ymized marginals impose constraints such 23% of the tuples
have age between 46 and 50 (Figure 1(83)5% of the tuples are

in zip code 14853 (Figure 1(d))5.4% of the tuples are in zip code
1306*, have cancer, and have age at most 40 (Figure 1(b)). Thus
given anonymized marginals, we can compute the maximum en-
tropy probability distribution that corresponds to these constraints
We will see in Section 5.2 that this maximum entropy distribution
is exactly the same as the maximum likelihood distribution for a
multinomial model that satisfies certain intuitive conditional inde-
pendence requirements.

We now have a probability distributioﬁjl associated with the DEFINITION 4.3 (MAXENT #£-DIVERSITY). The anonymized
original data, and a probability distributidr, associated with the marginalsM,, ..., M, satisfy maxené-diversity if the maximum
released anonymized marginals. The next step is to compare thementropy distribution that is consistent with/, ..., M, satisfies
Let z1,...,zn be the elements of the multidimensional domain ¢-diversity.
for our data. Lep!" be the probability ofz; according tof; and

let p!* be the probability according t8,. The Kullback-Leibler 5. STATISTICAL MODELS

We must also be sure that an adversary cannot use combinator-
ial techniques to determine that a tuple with a certain value for its
quasi-identifiers exists in the original table and that the number of
such tuples is less than

2. There exists a tabl& consistent with the marginal®/, . . .,
M, such thatl'(t) > k.

Our final privacy requirement is a straightforward generalization
of /-diversity. Using the anonymized marginals, the maximum en-
tropy principle, and techniques we will discuss later, we can fill
" in (fractional) cell counts for the original table. Thus we directly
apply the definition of?-diversity [23] to the reconstructed table
(i.e., for each combination of nonsensitive attributes, the sensitive
attributes must havéwell-represented values).

divergence (KL-divergence) betweén andF; is defined as: In this section we will discuss how to combine information from
1 ordinary marginals to estimate the original data; in Section 6 we

pr log p§2) will show how to apply this theory to anonymized marginals. The
3 D, estimator can be viewed as a maximum entropy distribution as well

as a maximum likelihood estimator for multinomial models. This
will give marginals interpretations as constraints and as statements
about conditional independence. In general, computing the maxi-
mum entropy distribution requires iterative algorithms [7, 24, 10].
However, with some additional restrictions on the allowable mar-
ginals, there is a closed-form solution [20]. This lets the data pub-
lisher examine many different collections of marginals before de-
ciding which ones to publish. We will discuss how to compute the

The KL-divergence is minimized only whelf, = F». In Section

5.2, we shall see that the KL-divergence is equal to the difference
in log-likelihood when we estimate the “true” distributidn with

the original data and when we estimate the “true” distribution
with the anonymized marginals. Since our goal is to determine
which anonymized marginals to release, we will be chandihg

but not /1. Thus minimizing the KL-divergence will be mathe-

matically equivalent to maximizing _; Pé” log pi” which is —1 maximum entropy distribution in Section 5.1 and we will discuss
times the cross-entropy betweéh and F»>. We will use the stan- the connection to maximum likelihood in Section 5.2.
dard convention thallog 0 = 0 so that we only need to compute .
probabilities for cells that appear in the original table. 5.1 Decomposable Graph|cal Models
Note that this approach is similar in spirit to [4] and [5]: we Given a set of marginald/y, . . ., M., build an interaction graph

are trying to reconstruct the original distribution as accurately as in the following way: the vertices of the graph are the attributes
possible given anonymized (but unperturbed) data while [4] and that appear in any marginal. For any two verticeand B, draw

[5] try to reconstruct the original distribution given a dataset with an undirected edge betwednand B if attributes A and B appear
additive noise. together in some marginal. Figure 2(a) shows an interaction graph



A A

! E DEFINITION 5.5 (GRAPHICAL MARGINALS). Let My, ...,
\ C E S c : C ‘ M, be a collection of marginals and &t be the corresponding
| A interaction graph. The collectiod, ..., M, is graphical if the
A / B DI B D marginals contain all of the maximal cliques of the corresponding
B D | interaction graphG.
(#) Interaction Graph g%)m%%rsr}ggrr:ents under a de- In other words, if€; is a maximal clique of the interaction graph,

there is a marginal/; such that all of the attributes that correspond

. . . ) to vertices ing; are the attributes af/;.
Figure 2: Interaction Graph and Decomposition for Marginals

ABC,BCD,DE DEFINITION 5.6 (DECOMPOSABLEMARGINALS). A set of
marginalsM;, ..., M, is decomposable if it is graphical and the
‘T ]T corresponding interaction grap&y' is decomposable.
C D The interaction graph in Figure 2(a) is generated by the margi-
nals with attributesA BC', BC'D, andDE. ltis also generated by
Figure 3: Smallest Non-decomposable graph ABC, BD, CD, andDE. While the interaction graph is decom-

posable, the maximal cliques correspond onlyi#i8C', BC' D, and
DE. Thus the set of marginalsABC, BCD, DE} is decompos-
able while{ABC, BD,CD, DE} is not.

Decomposability is important to us because the maximal cliques
can be ordered in perfect sequencf0] which can be used to
compute the maximum entropy distribution:

for the three marginals whose attributes d8C', BC D, andDFE
Our first requirement is that the interaction graph mustriaegu-
lated:

DEFINITION 5.1  (TRIANGULATED GRAPH). An undirected
graph is triangulated if for every cycle of length 4 or more, there graph and let1, &, ... ., £, be a sequence of complete subgraphs
exists an edge not in the cycle that connects two vertices in the 5t~ that includes all 'Ehg maximal cliques . The sequence
cycle. 1,6, ..., &, is perfectif fori = 2...p, the setS; = & N (&1 U
-+U&;_1) is complete and there existgia< ¢ such thatS; C &;.

DEFINITION 5.7 (PERFECTSEQUENCE[20]). LetG be a

Intuitively this means that every cycle that has more than 3 nodes

has a “shortcut”. Undirected triangulated graphs are equivalent to Returning to our example in Figure 2(a), we see 4t B, C'}
undirectedjeco_mposa_blg_raphs [20]. To explain this concept, we {B,C, D}, {D, E} is a perfect sequence. It is a fundamental fact
need the following definitions: that every decomposable graph has a perfect sequence [20]. Also,
it is easy to see thaff; separate$€; U---UE&;—1)\ S; and&; \ S;.
D.EF'N'T'ON 5.2 (SEPARATOR[ZO].)'. I__etG =V, E) be an The sets&; ... &, and S, ..., S, (note the separators are hum-
undirected graph and le#l, 5 C V be disjoint sets of vertices. The bered starting from 2) can be used to compute the maximum en-

setC C V'\ {{AUB} separates (is a separator o} and B if every tropy (maxent) distribution. LeE,...,&, be sets of attributes

path fromA to B contains a node . that correspond to a decomposable graphical model and that have
already been arranged in a perfect sequenceStet ., S, be the
corresponding separators as in Definition 5.7. For gaddt T,

be the marginal of the base taldlecorresponding to attribute set

& andTs, be the marginal corresponding to the attribute Set

For eacht € Domain(T) let te, be the projection of onto the
attributes in&; and similarly forts,. The maximum entropy prob-
ability associated witht (which is also the maximum likelihood
estimate associated with log-linear models, which will be briefly
discussed in Section 5.2) is [24]:

DEFINITION 5.3 (DECOMPOSITION[20]). LetG = (V, E)
be an undirected graph and let, 3,C C V be disjoint sets of ver-
tices such that’ = AUBUC. ThenA, B, C form a decomposition
of G if C separates4 and B, andC is complete (every two vertices
in C have an edge between them).

A decomposition(.A, B, C) splits a graphG = (V, E) into two
components. The first component is the subgraph thfat contains
the verticesAUC and the second component contains the subgraph

induced by the vertice8 U C. If both A and5 are nonempty then P
the decomposition iproper (each component is strictly smaller 1 11;[1 Te, (te:)
that the original grapldr). ﬁ R @)
_ I1 Ts; (ts;)
DEFINITION 5.4 (DecompPOsSABLE. A graph is decompos- j=2

able if it is complete or if it has a proper decomposition where each

X and, given a table of sizZg’|, the expected count of tuples in the
component is decomposable.

cell corresponding to is therefore:

THEOREM5.1 (TRIANGULATED GRAPHS[20]). An P Te, (te,)
undirected graph is decomposable if and only if it is triangulated. = EilEi @
P
Figure 2(b) shows the components of the graph in Figure 2(a) II Ts, (ts;)
under the decompositiofd}, {E}, {B, C, D} (where{B,C, D} =2

is the separator). Because of the equivalence between decompos- By definition, for anyj, there is ani such thatS; C &; so
able and triangulated graphs, it is easy to check whether a graph isthat7s; can be computed frofily, and so the maximum entropy
decomposable. Figure 3 is the smallest non-decomposable graphistribution can be computed from the marginals corresponding to
(if it had an edgeA and B or C and D then it would be triangu- &1, ..., &y with little effort once they are ordered in a perfect se-
lated/decomposable). guence (an algorithm for such an ordering is provided in [20]).



5.2 Log-linear models: the connectionto max-  Since there is no interaction term (i.@.45, uic, upc, vasc),
imum likelihood this model seems to suggest that attributes3, andC are inde-

An interaction graph (e.g., Figure 2(a)) also has an interpreta- P€ndent. This is not a coincidence: we will see tHatB, and
tion in terms of conditional independence [10]. L&t B, andC C are indeed independent in the maximum I_|keI|hood_d|str|but|on
be disjoint sets of attributes (vertices) in the interaction graph and for that model. In general, the maximum likelihood estimates for a
suppose that every path from a vertexAro a vertex in contains restricted model will not be the same as the cell counts (unlike the
a vertex inC. Intuitively, the effects of4 and3 on each other are ~ €8S for saturated models). Thus saturated models will always have
blocked by the separatGrand thus we have the interpretation that Nigher log-likelihoods. A common way of measuring how well a
A and5 are conditionally independent giveh Using the notation restricted model fits the data, is to look at the difference between the
thatt., t5, taus andic are the projections dfonto the attributes log-likelihood of the saturated model and the log-likelihood of the
in A B A’u B, C, respectively, we can write the conditional inde- restricted model [10]. Since these models estimate parameters for

pendence restriction mathematically. Foe A, b € B, c € C: a multinomial distribution (i.e., the cell counts or, equivalently, the
’ ’ cell probabilities), the difference in log-likelihoods is exactly the

P(tausue = (a,b,¢)) K L-divergence between the two respective maximum-likelihood
= P(tas = (a,b)lte = ) - P(te = ¢) distributions. — .
— P(ta = alte = ¢) - P(ts = blte = ¢) - Pte = ¢) M.o_st Iog-hnear _models u_se_d in pract_lce have the foIIOW|_ng prop-
A ¢ B ¢ erty: if an interaction term is included in the model, then its lower
_ P(taue = (a,¢)) - P(tsuc = (b, ) 3) order effects are also included. For example, if a log-linear model
P(tec =¢) has auascp term, then there is a termy for everyX C{A, B,

C, D}. Log-linear models that have this property are caliettar-

To see the relation to Equation 1, suppose we were given two mar- chical, and we shall restrict our attention to these types of models.

ginalsTaue andT.BUC' We can cqmpu;é“c fromdeltghizzﬁiig Just as with marginals, we can build an interaction graph for hier-
Tisuc. We can estimaté (t.auc) using the count data=4z; archical log-linear models: the vertices are the attributes and there

(and similarly fortc andtsuc). By substituting these estimates in s an edge between two vertices if both are contained in some in-

the right side of Equation 3 we get teraction term (for example, if the model had.agc term, there
T ¢ TN (T, ¢ T would be edges betweetrand B, B andC, andA and(C). ltis
P(tausuc = (a,b,c)) = (Taue AUC)I/JC (2)(”?'6( sue)/IT) common to describe hierarchical log-linear models using only the

highest order interaction terms [10]: if a model has a parameter
which is the same as the maximum entropy estimate (Equation 1). uapcp andugc, we would omitu s because it is implied by the
To formally relate maximum entropy and maximum likelihood wagcp term. It is also common to represent interaction terms as
in multinomial models, we must first discuss log-linear models — [ABC]| rather tharuapc. Thus the log-linear model in Equation
popular statistical tools for analyzing contingency tables [10]. 4 can be compactly represented[d€3] and the log-linear model
Let ¢t be a cell in a contingency table, and Igt) be the ex- in Equation 5 can be compactly represented 4$B][C]. This
pected cell count under a multinomial model. The goal of statistical compact representation is sufficient for constructing the interaction
analysis of contingency tables is to learn about some dependenciegraph.
between they(t); in particular, the goal is to determine hat) The log-linear model igraphicalif the interaction terms are ex-
is affected by the various attribute dimensions of the contingency actly the maximal cliques of the corresponding interaction graph,
tablé. In this analysis, one builds a linear model for predicting and it isdecomposabli it is graphical and if the interaction graph

log q(t) (there are technical reasons for modeling ¢(t) rather is decomposable as well. Figure 2(a) shows the interaction graph
thang(¢)). To see how this works, suppose our table has 2 attributes for the log-linear modelABC][BC D][DE].
AandB. Foracellt € A x B, letq(t) be the expected cell count The similarity between the interaction terms of a decomposable
for ¢. For this scenario, theaturatedog-linear model is: log-linear model and the marginals (of the base table) with the same
attributes is not superficial. The model can be built using only the
log q(a,b) = u + ua(a) +up(b) +uas(a,b) Q) marginals whose attributes are specified by the interaction terms,

whereu represents a baseline cell occupancy based on no inter-and the maximum likelihood estimates of cell probabilities and ex-
actions,u4 represents the effect of attribute on cell occupancy ~ Pected values for a graphical decomposable log-linear model are
(beyond the effects of the baseline)s represents the effects of ~ 9iven by Equations 1 and 2, respectively [20]. Furthermore, any
attribute B on cell occupancy (beyond the effects of the baseline) conditional independence relations that we can read off the interac-
anduz represents the effects of the interactions betwéeand tion graph are also true of the maximum likelihood estimator [10]:
B (beyond the individual effects of, B, and the baseline). In the THEOREM 5.2. Given a graphical, decomposable interaction
general case, a saturated model has a term for each subset of the ab'raph for a log-linear model, if the séts of variables/nodeand
trlbutes. The saturateq modgl |s.not very mterestmg peqause itover-p - e separated by, then under the maximum likelihood distribu-
fits the data: the maximum likelihood estimator &) is just the ; _

. ) . tion, P(A, B|C) = P(A|C)P(BIC).
number of timeg appears in the data. Thus the saturated model is
also called theainrestricted modelBecause the unrestricted model Thus we have two complementary goals in releasing marginals:
is too powerful (i.e., it overfits the data), a typical statistical analy- to provide a set of constraints (marginals) that lead to a maximum
sis would only look at a subset of the possible interaction terms. entropy distribution that is as close as possible to the real data sub-
For example, if our table had 3 attributds B, C', we could try to ject to privacy restrictions; and to determine a set of conditional
model it with independence relations that best approximates the data subject to

rivacy restrictions.
log (a, b, ¢) = u + wa(a) + us(b) + uc(c) s Py

!In the statistical literature, the term “factor” is used instead of “at-
tributes” and “level” instead of “attribute value”
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Figure 4: Age Hierarchy

6. ANONYMIZED MARGINALS

In this section, we will provide a reduction from anonymized
marginals to ordinary marginals (Section 6.1) and we will use this
reduction to extend the theory of graphical models to anonymized
marginals (Section 6.2).

6.1 A Reduction

For each attributé;, letG; be the set of possible generalizations
of R; which are to be considered. For example, we may specify that
we are only interested in three generalizations for the Age attribute:

one that partitions Age into the intervdls— 5], [6 — 10], ... ; one
that partitions Age into interval — 10], [11 — 20], . ..; and one
that partitions Age into the interval® — 30], [31 — 60], .... For

tractability, and for clarity, we will restrict our attention to the case

where, for eachR;, the generalizations ig; are totally ordered

according to< (Section 2.1). This restriction is common in the

literature ([30, 21]). Without loss of generality we can assume that

the most general generalization simply suppresses the attribute.
First, we require that a collection of anonymized marginéls

Mo, ..., M, only use the anonymizations we specify.

DEFINITION 6.1  (VALIDITY ). LetM;, Ma, ..., M, be a set
of marginals and letRy, ..., R4 be the attributes that appear in
those marginals. Foi 1...d, let G; be a set of generaliza-
tions for R; such thatg; is totally ordered according te<. Then
My, ..., M, are valid with respect tg, . . ., G if for every mar-
ginal M; and every attributeR, that appears inV/;, R, has been
generalized according to one of the generalization§jn

Note that attributes can be generalized differently in different mar-
ginals: if Age appears in marginall; and marginalM>, it could
have been generalized using the inten{als— 5], [6 — 10], ... } in
M, and generalized using the intervdl® — 10], [11 — 20],...}
in M>. The reduction from anonymized to ordinary marginals re-

lies on the fact that a totally ordered set of generalizations induces
a natural hierarchy on the base domain. The reduction proceeds

as follows. LetR; be an attribute andj; be a set of possible
generalizations fo?;. Let h be the number of generalizations
in G;. The first step is to label the generalizations so that the
most general generalization is labeléd, the second most gen-
eral generalization is labele@?, etc. Figure 4 shows (part) of a

GeneralizationG4
L79° 1 139 [ 139° | Count
i 1 ; g GeneralizatiorG3
i 2 1 2 L1% | 3% | Count
1 1 8
1 2 2 0 1 2 2
1 3 1 0
1 3 0
1 3 2 0 2 1 5
2 1 1 4
2 1 2 1 3 1 0
3 1 1 0
3 1 2 0

Figure 5: Induced Attributes

children for any node in generalizati@¥ (in our exampleg; = 3,
c2 =3, andC3 = 2)

We can now treat the attribufe; as an(h — 1)-dimensional vec-
tor of induced attribute€! " .., L") where thei"dimension
hasc; points. A point(z1,...,zr—1) in this space represents the
path taken from the roaf” to a leaf node. It is easy to see that
any generalizatiolG® € G, of R; corresponds to the subspace
consisting of the first — 1 dimensions LERJ'), . .,Lf{)). Fig-
ure 5 shows the induced attributes for two of the generalizations
in Figure 4. By applying this reduction to every attribute in every
anonymized marginal/y, ..., M,, we get a new set of marginals
M;i, M3, ..., M. The only restriction on these new marginals is

that if attributeL ' appears in some margind{; then M; must
also contain the attributes, | LéRJ'), .., LY Thus we view

the set of induced attributesZ.\"*, L% . L")} asR; at
resolution level. The higher the resolution, the more information
there is about attribut®;.

6.2 Extensions of the Theory

Given the reduction in Section 6.1, the notions of interaction
graph and decomposability carry over directly to anonymized mar-
ginals. In this section, we will discuss how this affects the max-
imum entropy distribution and the statements of conditional inde-
pendence. We will also discuss how to traverse the search space of
anonymized marginals.

For anonymized marginals, the probability computation (Equa-
tion 1) needs to be extended to deal with the case where some at-
tribute never appears at its highest level of resolution. Recall that
for any attributeB, the induced attributes!”, ... L") repre-
sents a path from the root to an interior node of the generalization
tree for B. Let child(t, L§B>) be the function that first projects
onto the induced attributds,” . . . ., L{* to get a node in the gen-
eralization tree and then returns the number of leaves in the subtree
rooted at that node. For example, let us consider the left-most table
in Figure 5. If¢ is a tuple in the first row, thechild(t, L'9°) = 6
because projected ontoL’f‘ge gives us the left-most child of the

hierarchy over the age attribute. Here we have four generaliza- "00t, and it has 6 leaf descendants.

tionsG* < G® < G? < G*, whereG" is equivalent to suppressing

the entire attribute. Each generalization represents one level of the
hierarchy, and each node in the hierarchy tree has a bounded num

ber of children (since we have finitely many data points). For each
node, we order its children (arbitrarily) and number them accord-
ing to that order. We will use this numbering to create a new set of
attributes. Foi = 1,...,h — 1, letc; be the maximum number of

THEOREM 6.1. Leté&y, ..., &, be the maximal cliques of a de-
composable graphical modé€l arranged in a perfect sequence,
and letS,, ..., S, be the separators (as defined in Definition 5.7).

Let By, ..., By be the original attributes. For each original at-
tribute B;, IetLEfaji be the induced attribute d8; that appears in
(B;)

one of the marginals (that correspond to #ig such thatl,, /-, |



does not appear. Then the maximum entropy probability of a tuple is between 11 and 20 years old, knowing the exact state of a re-

t € Domain(T) is:

P
1 H Te;(te;) 4
ﬁ T H (Bj) (6)
[1 Ts, (ts,) =1 child (t Lma,)
j=2

This says that the probability for a tupl¢that is not at the highest

level of resolution) is spread uniformly across all possible comple-

tions oft.

gion would not help narrow the age range (assuming the maximum
entropy distribution is correct).
The previous example raises an important issue — how correct is

the maximum entropy distribution? Intuitively, adding additional

marginals or merging marginals together (releasii§)C D instead

of AB andC D) gives us additional information and should help us
better approximate the original distribution. In fact, this is also true
mathematically.

THEOREM 6.3. Let G and H be the interaction graphs of two

The interpretation of conditional independence can also be ex- decomposable graphical models. If the verticegioére a subset

“) pe the in-
LY,

tended to anonymized marginals. LbiA)
duced attributes for original attributé. Recall that.{* | .
representA at a lower level of resolutionf(* .. L(A2 rep-
resentsA at an even lower level of resolution, etc (noteDj'A)

appears in a marginal then we have the requirementﬂhﬁt ap-
pears in the same marginal for gll < ). Thus generalizing a

marginal involves suppressing (marginalizing) the induced attribute

LW
induced attrlbuteLgA> with j > 7). Equivalently, generalizing a

marginal can be seen as reducing the level resolution for (original)

of the vertices of7 and the edges dff are a subset of the edges of
G, then the maximum entropy distribution fGrapproximates the
original table at least as well as the maximum entropy distribution
for H (in terms of the KL-divergence).

Note that the case where the verticegdnd the vertices off are

the same is proved in [24]. Since generalization may completely
remove some induced attributes from all of the marginals, this re-
moval will result in a model with less nodes as well as edges. Thus

with the largest index (i.e., the marginal does not contain an we need the result that adding edges and verticé$ {ahen the

vertices ofH are a subset of the vertices@) never hurts utility.
The only case where adding marginals or merging them would

attribute A. The conditional independence interpretation relies on not increase utility is when the tuple distribution of original table

the following theorem:

THEOREM 6.2. Let X, Y, andC be disjoint sets of vertices of
an interaction graphG for graphical decomposable anonymized
marginalsM, ..., M,. If X andY are complete subgraphs 6f
andC is a set-wise minimal (i.e., no subset®has this property)
separator ofX andY then the following is true

1. C is complete (and therefore the vertices corresponding to
correspond to attributes that are contained in some marginal
M;)

2. If LY € X then for allj, LEA) ¢v.

LYY e X and LYY € ¢ theni > j (i.e., C has lower
resolutlon |nformat|on about original attribute than does
X).

Theorem 6.2 says that X is a set of attributes that appear in
some anonymized marginal, and is a set of attributes that ap-
pear in some anonymized marginal, the minimal separ@tte-
tween X andY is also a set of attributes in some anonymized
marginal. FurthermoreX andY do not contain any of the same
original attributes (even at different levels of resolution) for it does

not make sense to talk about independence between the age ranges

{[0—2],[3—10], [11—20], [21 — 30][30, o]} and{[0—10], [11 —
20], [20, o] }. Additionally, if X andC (or Y andC) have infor-

mation about the same original attributes, then the information in

X is an incremental gain in resolution ov@r Thus in addition

to statements about conditional independence of attributes, we also

is exactly the maximum entropy distribution for that set of margi-
nals. Since that is unlikely in practice, even the following simple
technique is almost certainly guaranteed to improve the utility of a
single anonymized tablé’ that was derived from a base talile
take the marginal\f of T that has all attributes but the sensitive
ones. Create A-anonymous versioi’ of M. Then releasing/’
andT” gives more utility than releasirif’ alone (as is the standard
practice in the literature). In Section 7 we will discuss how to make
sure that privacy guarantees still hold.

We conclude this section with a discussion of how to select a set
of anonymized marginals to publish. It is known that model se-
lection for decomposable graphical models requires an exhaustive
search [28] and that even finding an optickghnonymous table is
NP hard [25, 3]. Therefore a search algorithm such as a genetic
algorithm or a random walk on the space of models is needed. We
will briefly discuss how to extend results on stepwise edge/vertex
selection [35, 13] that will allow us to go from one graphical model
to another.

The following three conditions need to be simultaneously satis-

fied in order to remove an edge connectml(xg]4> andL§B’:

1. LEA) andLs.B) cannot appear together in 2 or more marginals
(equivalently, they do not both appear in a minimal separator
between two nodes). This rule, due to Wermuth, ensures that
the resulting model is decomposable [35].

2. A+ B.

3. There is no edge connectidg,"’ andL{” with i’ > i (and
similarly for j).

have statements about independence of resolution: “given some the

level of resolution irC, the extra precision itk andY” is indepen-
dent.”
gorized by geographical region and age rarjge{10], [11 — 20],
etc). Given a marginal that consists of age ranffes 6], [6 — 10],

For example, suppose we have a table of flu patients cate-

The last two conditions ensure that the induced attributes in every
marginal describe a path from the root to an interior node of the
generalization tree (instead of only a subset of a path) and there-

fore correspond to an actual generalization. A nﬂélé) can be

etc) and a marginal that consists of states (instead of just geographiremoved if

cal regions), the maximum entropy distribution would be consistent
with the assumption that given the first table, increased resolution
In This also ensures that the induced attributes in every marginal de-

in age is independent of the increased resolution in location.

e There is no node " with j > .

other words, once we know that a flu patient is in the Northeast and scribe a path from the root to an interior node of the generalization



tree. Note that removing a node from a decomposable graph results 2. There exists @ such that the intermediate product

in a graph that is decomposable [20]. A n(ﬁuﬁe“) can be added to
a graph if one of the following is true

e ; = 1 (in which case the node is added with no edges) OR

. L§.A> is already in the graph for evepy< i — 1. In this case,
L{* is added with an edge to evefy ™.

And edge betweert, ")

and L\"
conditions hold:

can be added if the following

1. There exists a minimal separaﬁ)rbetweenLEA) andLg.B)
such that every node ifi has an edge to bothA) andLEB).

This rule, due to Deshpande et al, ensures that the resulting of precisely thef; that containC. Let S5, .

model is decomposable [13].

2.1 =j = 1orforalli < ithereis an edge frorﬂgf‘) to
L{® (and similarly forj)

7. ALGORITHMS

In this section we discuss procedures for checking a set of anon-

ymized marginals for privacy. The first criterion, from Definition
4.1, is that an attempt to link any marginal to external data will give
either0 or at least tuples. Thus it is sufficient to check that each
marginal satisfieg-anonymity by itself.

The next requiremenk-combinatorial anonymity, is more strin-

Te, (te;)

T5, (i5,) corresponds to a probability distribu-

P

T£1 (tfl ) H2
j=

tion that is not/-diverse.

Proposition 7.2 tells us that sometimes intermediate results (rather
than the complete maximum entropy distribution) can be used to
determine if a set of marginals does not satisfy entriversity.

PROPOSITION 7.3. Let C be the sensitive attribute. L&,
..., Te, be decomposable and graphical (anonymized) marginals,
let &, ..., &y be sets of (induced) attributes arranged in a perfect
sequence (Definition 5.7), and I64, . . ., S, be the corresponding
separators. Lefy, ..., &, be the subsequence of ieconsisting
.., Sp, be the subse-
qguence of the; consisting of precisely th€; that containC. Then
the following is true:

1 Ty, ,Tg;l are graphical and decomposable marginals.

2. &,...,&, is a perfect sequence arf, ..., S,, are the

corresponding separators to the perfect sequence (and hence
p1 = p2).

3. Checkingl“gi, e ,Tg{)1 for maxent-diversity inC'is equiv-
alent to checking’e, , . . ., T¢, for maxent/-diversity inC'

Proposition 7.3 tells us two things. First, marginals that do not

gent. An adversary should not be able to use combinatorial tools Contain the sensitive attribute do not affect maxediversity at all.

(such as the inclusion-exclusion principle) to determine that for all

Thus if we publish a table that is bofkdiverse andc-anonymous,

tables consistent with a set of given marginals, a particular cell must W& can approximate the original table better (while preserving pri-
have between andk — 1 tuples (for then this cell can be linked ~ Vacy) just by releasing addition&tanonymous marginals that do
back to external data). In general, checking for privacy by com- not contain the sensitive _attnbutg. This is a!ready an improvement
puting upper and lower bounds for a cell is NP-hard [22]. How- Over the standard technique of just releasing one table. Second,
ever, when the marginals correspond to a decomposable graphicapy ignoring marglnals_ without sensitive attributes, we get a sm_a_ller
model, exact bounds can be computed in closed form. Dobra’s decomposable graphical model to which we can apply Propositions

bounds [15] extend to anonymized marginals: the cell cauim}
is bounded by

T(t) < min(Tgl (tgl ), ceey Tgp (tgp)) (7)
(note the similarity to Equation 1) and this bound is tight in the

sense that for each upper bound, there exists a table that achieve

it. Checking fork-combinatorial anonymity relies on Equation 7
and a variant of the maxe#tdiversity algorithm that is described
below. Details are omitted due to lack of space.

Checking maxent-diversity for all points ifNonSenDomain(7")

is a harder task. First, there are several simplifications we can per-

form:

PROPOSITION 7.1. Let My, ..., M, be a set of anonymized
marginals in a graphical model. L&t be the set of induced at-
tributes that appear in at least one of thd;. Then checking
for maxent/-diversity inDomain(7") is equivalent to checking for
maxent/-diversity inDomain(7v ).

7.1 and 7.2. This lets us cut down on the size of the domain that
must be checked.

It is clear that checking for maxetdiversity can be done in
time that is linear in the size of the join of all the marginals contain-
ing the sensitive attribute. In cases where the sensitive attribute has
@ small domain, we can use the decomposable property of the inter-
action graph to reduce the complexity even further: we will prune
away tuples that do not need to be joined. We will also present a
variant of this pruning algorithm for the case wh&tg = /. In this
case, the running time will b&(|C|*p|J|) wherep is the number
of marginals|J| is the size of the largest join between 2 marginals
(not counting duplicatesy;' is the domain of the sensitive attribute
and|C| is its size. For other cases (when the overall join size is
too large and whefC| is large), we will present an algorithm that
relaxes the-diversity conditions.

To discuss the algorithms, we need to introduce the following
definition:

DEFINITION 7.1  (UNCTION TREE). LetV = {V1,...,V,}

Proposition 7.1 tells us that the we do not need to worry about any pa 4 collection of sets. A junction tree is a graph, £) that is a
level of resolution that does not appear in the marginals. Thus We raa with the following property: for any;, V; € v’ and for any

can use Equation 1 instead of Equation 6 for our computations.

PROPOSITION 7.2. Leté&y,. .., &, be sets of (induced) attributes
arranged in a perfect sequence (Definition 5.7) anddet. . ., S,
be the corresponding separators. If any of these two conditions
hold, then the set of anonymized margingl, , ..., T¢,} does
not satisfy maxent-diversity:

1. The marginallg, is not¢-diverse (individually) for some

V'’ € Vin the path betweel; andV;, we haveV; NV, C V.

Figure 6 shows a junction tree for the interaction graph in Figure
2(a). If we let theV; be the maximal cliques of a connected decom-
posable graph, then there always exists a junction tree that contains
all of theV; [20]. Junction trees can be created from scratch in time
that is quadratic in the number of cliques [18] or maintained incre-
mentally as in [13]. Because of Proposition 7.3, we can assume



{BCD}
{ABC} {DE}

Figure 6: Junction Tree for Figure 2(a)

Algorithm 1 : Diversity_Check(nodew)

Require: Each node of a junction tree is a set of attributes
1. I, < T,
2: for all z € children(v) do

3:  Diversity. Check()

4:  Tmp— I, <1 I

5. forall ¢t eTmpdo

6: Tmp(t) <« Iy (tv) - Io(te)/Tona (tvne)
7:  endfor

8:  Prune(Tmp)

9 I,—Tmp

10: end for

11: if v =rootthen

12:  Check ifI, satisfieqc, £)-diversity
13: else

14:  Prune(Tmp N parent(v))

15: I, —Tmp

16: end if

that all marginals contain the sensitive attribGtethat the decom-

The pruning algorithm runs from the bottom up. For each node
v whose childreny, ..., d; are all leaves, it sequentially joins the
marginals corresponding toand its children to get an intermediate
resultZ,. For each tuple € Z,, the pruning algorithm computes
the expected count by multiplying the marginal counts and divid-
ing by the separatord:, (tv) [1,(T4; (ta;)/Tona; (tvnd;)). We can
think of Z,, as a new marginal where the count of each cell is the
expected count that we computef], will be treated as the “new”
marginal forv and soZ, will itself be joined with the parent of
andv’s siblings. After each join, a pruning step is performed. The
pseudo-code is shown in Algorithm 1. Note that Algorithm 1 calls
a procedure called “Prune” which takes two arguments. The first
is a marginal and the second is the set of attribu¢d). In the
basic pruning algorithm, “Prune” removes anonymized groups that
are not part of the convex hull of their relevant blocks.

THEOREM7.1 (CORRECTNESS OFPRUNING). Ifthere exists
anyt € NonSenDomain(7") that is not maxent-diverse then at
least one such will belong to an unpruned anonymized group of
o0t at the end of the algorithm.

In the case wheré = |C/|, we can efficiently check fofc, ¢)-
diversity while avoiding the computation of convex hulls. To ac-
complish this, we only need to modify the “Prune” procedure. Let
s1,...,8¢ be the sensitive values ¢€|. Within each relevant
block B; we do the following. For each ordered p&i;, s;/) of
sensitive values, we find and retain the anonymized group;in
where the ratio of the frequencies of to s;, is maximal. The
anonymized groups that are not retained are discarded. Thus for

posable graph is therefore connected, and therefore that a junctionreach combination of values that will participate in a join between
tree exists. In our case, each node of the junction tree is a set of at-two marginals, we have at mdst|? tuples. With this pruning pro-
tributes and corresponds to a marginal. It is not hard to see that anycedure, once we get to the root, we look at the ratio of frequencies
topological sort of a junction tree results in a perfect sequence (De- of s; to s;/ (for all j, ;') in each anonymized group. If all of the
finition 5.7), and that the intersection between a parent and child ratios are< ¢ then the marginals satisfy maxe(at £)-diversity.

is the separator for the child in the perfect sequence. Thus we can

In the case where the size of the join of all marginals contain-

compute the expected cell counts (in Equation 2) by multiplying the ing the sensitive value is large (the worst case occurs when all

marginal countd’, (¢, ) corresponding to each nodeand dividing
by the Separatorﬁvﬂparent(v) (tvﬁparent(v))-

We will perform all joins in the junction tree from the bottom
up. For a node), let A, be the set of attributes that appear in the
subtree rooted at. Note that attributes i, not involved in a join
betweenv andparent(v) will never be used later on because, by

marginals contain the same sensitive attribute and one additional
attribute), and whenC| is large, there are several ways we can
speed up the checking for maxeftliversity. The first approach

is to reduce the join size by imposing additional restrictions on the
structure of anonymized marginals. When searching through the
space of collections of anonymized marginals, we can restrict our

definition of the junction tree, those attributes are separated from attention to collections where at mast(a user-defined parameter)
the rest of the tree by the attributes that are involved in the join. anonymized marginals contain the same sensitive attribute. An-

For example, in Figure 6{ ABC'} can be joined with its parent
{BCD} using the attribute® andC'. A is not involved in the join

other approach is to take a base table and to first apply any of the
existing algorithms that can be used to generate miniruiverse

and so does not appear anywhere except in the subtree rooted atables (see [23, 21, 6]); afrdiverse tablel” is minimal if there

{ABC?}. The attributes of that appear only in the subtree rooted
at v will be denoted byirrel(v) (because they arerelevant for
the join betweeny and its parent and any other join that will be

is no¢-diverse table that can be transformed iffitoby using gen-
eralizations. Afterwards, when we search for collections of anony-
mized marginals, we only consider collections that include that par-

performed afterwards) and the rest of the nonsensitive attributes ofticular ¢-diverse version of the base table as one of the marginals.

v will be denoted byrel(v) (relevant). After each join, we will
group tuples intaelevant blockswvhere all tuples with the same
values for the attributes irel(v) are in the same relevant block.
Within each relevant block we will do the pruning.

This type of search is equivalent to starting out witi/ativerse ta-

ble and searching for which additional anonymized marginals can
be published as well (thus these marginalsiajecting utility into

the original anonymized table). The inclusion of such/ativerse

To do pruning, first note that each relevant block is composed table naturally limits the join size, and our experiments indicate
of anonymized groups (recall that an anonymized group consists of empirically that this approach also yields good utility.

all tuples with the same values for the nonsensitive attributes; in

this case they are the attributesriti(v) andirrel(v)). For prun-
ing, we will treat each anonymized group as a vector of lefigth
where the'l' component is the frequency of sensitive vatu@n the

anonymized group. In the pruning step, we remove all anonymized tive value fort.

The other approach is to relax theliversity requirements. Given
a relaxation parameter we can guarantee that for each
NonSenDomain(7T'), there are at leagt sensitive values that are
at least(1 — ¢)? times as frequent as the most frequent sensi-
First we have a preprocessing step where for

groups that are not in the convex hull in their respective relevant each non-root node and each tuple¢ € T,, we setT, (t) =

blocks.

T (t)/ Tonparent(v) (t) (i.€., we perform the division by the sepa-
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Figure 7: Anonymized Tables Figure 8: Anonymized Marginals Figure 9: Incremental Utility

rators in advance). Whemis the root, we sef; = T;,. We then utility by adding additional anonymized marginals). For each of

form the marginald, as follows. For each € T, we examine the anonymized tables, B, andC, we found the best sets of anon-

the anonymized group to whichbelongs. Lett,,q, be the tu- ymized marginals that contained each table. The results are shown

ple int’s anonymized group such th&¥ (tma=) is maximized. If in in Figure 8. Here the bar labele&t- is the KL-divergence to

T, (t) > (1—€)Ty (tmaz) thenl, (t) = 1 and otherwisd, (t) = 0. the best collection of marginals that contain the anonymized table

These are now the marginals that would appear in Line 1 of Algo- A (similarly for B4, andC+). In our experiments it turned out that

rithm 1. Line 6 is now replaced bY'mp(t) «— I,(tv) * I (tz). the best collection of anonymized marginals contairBngas also

Each anonymized group can now be treated as a vector of lengththe overall best collection of anonymized marginals (whose utility

|C| where thei™ component is 1 if and only if, (t;) = 1 (where is labeledoptin Figures 7 and 8).

t; is the tuple in the anonymized group such that = s;). The Finally, in Figure 9 we show that even a very simple search for

the pruning step removes redundant anonymized groups in each relanonymized marginals can yield dramatic results when compared
evant block. It also removes anonymized groups whichinate to the utility of just a single anonymized table. To illustrate this ef-
another anonymized group: §fi and g3 are vectors correspond-  fect, we used tabl€, although our results were qualitatively similar

ing to anonymized groupg andgs, respectively, then we say for tablesA andB as well. We measured how the KL-divergence
dominatesy, if every component ofji is greater than or equal to  decreased as we added marginals that contained only one attribute
every component aj;. At the root, we say that there is maxeént each. The marginals were added in order of greatest improvement
diversity withe relaxation if each anonymized group, when treated in utility. Starting out with tableC, we first added a marginal on

as a vector, has at leastomponents equal to 1. race (bar labeledC1), to this we then added a marginal prarital

status(bar C2), thengender(bar C3), and finally we also added
marginal on age (ba€4). The marginal on age was bucketized
8. EXPERIMENTS into ranges of size 5[¢ — 4],[5 — 9],...) in order to meet the
We performed our experiments on the Adult dataset in the UCI -anonymity requirements. Note that there is still a noticeable dif-
Machine Learning Repository [29]. We removed all tuples with ference in utility between this collection of anonymized marginals
missing values and were left with a table containing 45222 tuples. and the best collection that contains tabl€as well as the over-
We used the attributasce, gender age andmarital statusas the all best collection of anonymized marginals); however, this simple
nonsensitive attributes, armtcupationas the sensitive attribute.  collection of marginals still created an enormous improvement in
Using the same generalization hierarchies as in [21] and [23], we utility over a single anonymized table.
generated three tables that were simultaneously 6-diverse and 6-
anonymous. These tables were minimal in the sense that any other
6-diverse, 6-anonymous table can be generated from one of these”?- RELATED WORK
three by using generalizations. The utility of data that has been altered to preserve privacy has
We measured utility in terms of KL-divergence; the smaller the often been studied in contexts where the future use of the data is
number, the better it approximates the original un-anonymized ta- known. For example, [16] studies how to reconstruct association
ble. Figure 7 shows the utilities of the three minimal 6-diverse, rules after noise has been added; [5] and [4] study how to recon-
6-anonymous tables. The bar label@aorresponds to the KL- struct the distribution of a continuous variable after noise with a
divergence to the table where all nonsensitive attributes were com-known distribution has been added; [9] studies how to perturb the
pletely suppressed (i.e., they were generalized to a single value).values of continuous numeric attributes so that data clusters can
The bar labeleapt corresponds to the KL-divergence to the best be reconstructed (note that [9] also proposes publishing perturbed
set of anonymized marginals that satisfy 6-anonymity and maxent data in addition to a histogram, but this method does not handle
6-diversity. The three 6-diverse, 6-anonymous tables were labelednon-numeric attributes and the privacy guarantees use the assump-
A, B, andC. As we can see, the anonymized tables do not approxi- tion that the data is generated from a uniform distribution); and [17]

mate the original table particularly well. and [34] anonymize data while trying to maximize decision tree ac-
One way to speed up the search for a good collection of anon- curacy. There have also been some negative results for utility. In
ymized marginals, and to make checking fediversity more effi- addition to the curse of dimensionality féranonymity [2], there

cient, is to start with an anonymized table and to only consider col- is work showing that an ideal privacy criterion places extremely
lections of anonymized marginals such that the given anonymized strong restrictions on the types of queries that can be answered
table is one of them (i.e., start with an anonymized tableinjedt [26] (in particular, aggregate statistics cannot be computéd).



Anonymity [33] and/-diversity [23] are weaker privacy definitions
(they do not protect against adversaries with arbitrary amounts of disclosure controlJournal of Statistical Planning and
background knowledge) but they provide considerably more utility. Inference 6:73-85, 1982.

There are several approaches to sanitizing a dataset to ensur¢13] Amol Deshpande, Minos N. Garofalakis, and Michael I.
privacy. These include generalizations [31], tuple suppression [11, Jordan. Efficient stepwise selection in decomposable models.
31], adding noise [1, 5, 16, 9], publishing marginals that satisfy In UAI, pages 128-135, 2001.

a safety range [15], and data swapping [12] — a technique where[14] |. Dinur and K. Nissim. Revealing information while
attributes are swapped between tuples in such a way that certain preserving privacy. [iPODS pages 202210, 2003.
marginal totals are preserved. Queries can also be posed online a”‘f'l5] A. Dobra. Statistical Tools for Disclosure Limitation in
the answers audited [19] or perturbed [14]. . Multiway Contingency Table®hD thesis, CMU, 2002.

Log_—lmear models [.10’ 20] and logistic regression are popular [16] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy
techniques for analyzing tabulgr data, and graphical models _[20, breaches in privacy preserving data miningP@DS 2003.

28, 27] provide a compact and interpretable representation of high- [17] Vijay S. lyengar. Transforming data to satisfy privacy

dimensional probability distributions. constraints. IrKDD, pages 279288, 2002.

The maximum entropy distribution that satisfies given constraints 418] Finn Verner Jensen and Frank Jensen. Optimal junction trees
has also been studied in the database literature. For example, thi ’ :
udied | eratu Xample, TS~ | UAI, pages 360366, 1994.

has been applied to the exploration of OLAP data cubes [32]. ) g o .
[19] K. Kenthapadi, N. Mishra, and K. Nissim. Simulatable

auditing. InPODS 2005.

10. CONCLUSIONS AND FUTURE WORK [20] S. L. LauritzenGraphical ModelsOxford Science
Anonymized marginals can be thought of as statements about the Publications, 1996.

original data set that are guaranteed to be true. The maximum en-[21] K. LeFevre, D. DeWitt, and R. Ramakrishnan. Incognito:

tropy distribution is then our best guess about the rest of the data. Efficient fulldomain k-anonymity. I'SIGMOD, 2005.

Another way to think of this is that anonymized marginals are a [22] Jedis A. De Loera and Shmuel Onn. The complexity of

compact representation of a statistical model (a density estimate of three-way statistical tableSIAM J. Comput.

the original table). A promising direction of future work is releas- 33(4):819-836, 2004.

ing a set of models in addition to the data, studying the utility of ng] A. Machanavajjhala, J. Gehrke, D. Kifer, and

such an ensemble, providing guarantees about the resulting privac M. Venkitasubramaniant-diversity: Privacy beyond
of information, and constructing data mining algorithms that use . p '

[12] T. Dalenius and S. Reiss. Data swapping: A technique for

all of this information as the input.
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