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Abstract. Intelligence applications have to process massive amounts
of data in order to extract relevant information. This includes archived
historical data as well as continuously arriving new data. We propose a
novel architecture that addresses this problem – the Cornell Knowledge
Broker. It will not only support knowledge discovery, but also security,
privacy, information exchange, and collaboration.

1 Introduction

A major challenge for intelligence agencies is to collect the relevant data. How-
ever, often an even greater challenge is to analyze that data and to draw conclu-
sions from it. With increasing efforts for collecting more information, the data
analysis problem will be aggravated. For that reason the Knowledge Discovery
and Dissemination Working Group (KD-D) has initiated research on an infor-
mation infrastructure that will meet the needs of U.S. intelligence and law en-
forcement agencies. This infrastructure will integrate new technology for online
analysis of incoming data streams as well as novel offline data mining approaches.
Based on discussions and projects within KD-D, we proposed the information
spheres architecture to address both operational and legal requirements for in-
telligence agencies [18]. The architecture consists of two components – local and
global information sphere.

A local information sphere exists within each government agency. In practice
it could correspond to even smaller units, depending on restrictions of access to
data. Its main goal is to support online analysis and data mining of multiple
high-speed data streams, with conceptually unrestricted local access to all data
managed by the system. Notice that information does not flow freely, i.e., the
local information sphere also enforces access control to ensure that an analyst
can only access what she needs to know.

The global information sphere spans multiple government agencies, and me-
diates inter-agency collaboration. It addresses the sometimes conflicting require-
ments of allowing analysts from different government agencies to efficiently share
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information, hypotheses and evidence without violating applicable laws regard-
ing privacy and civil rights. Hence the research challenges with respect to the
global information sphere extend beyond efficient analysis and access control to
privacy preserving data mining and information integration [2, 22, 27, 36, 43].

We propose the Cornell Knowledge Broker (CKB) which supports the func-
tionality required for both information spheres: continuous processing of high-
speed data streams from a variety of sources. This includes on-line data mining
and trigger evaluation, deep offline analysis of archived data, as well as support-
ing interactive data analysis and exploration for analysts. The CKB will include
novel techniques which are currently developed as part of the KD-D initiative,
and it will follow the plug-and-play paradigm in order to support easy integration
of new data mining and analysis operators and in order to be easily extended
with new functionality. Already existing components are an adaptive subscrip-
tion matcher, and a calculus for expressive subscriptions that can be stateful
(across several documents, both temporally as well as content-wise). This will
enable analysts to set up powerful filters for delivering relevant information from
streams of incoming data in real-time. We are currently expanding the existing
infrastructure to release a first version of the system in summer 2004.

2 System Architecture Overview

Figure 1 shows an overview of the information sphere architecture. Several local
information spheres are connected with each other through a network. To pre-
serve the privacy of individuals and also the privacy of the analyst (queries posed
by an analyst might reveal that analyst’s knowledge), access to a local sphere
from the outside is restricted to privacy preserving technology. This technology
is located in the Gateway Modules (GW). It allows analysts to leverage global
knowledge within the bounds set by legal and security considerations.
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Fig. 1. Information sphere architecture

The local information sphere (cf. Figure 2) consists of one or more Cornell
Knowledge Brokers, connected by a high-speed internal network (intranet). Each
CKB has one or more processors with large main memory and essentially un-
restricted archival capabilities, e.g., large hard disk drives or RAID arrays. We
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Fig. 2. Local information sphere

do not advocate any specific technology, e.g., a CKB unit could be a massively
parallel machine or a cluster of PCs. Within a local information sphere informa-
tion conceptually is allowed to flow freely. This does not imply that anybody can
access any information. In fact, as we discuss later on, each CKB will support
sophisticated access control mechanisms. The main difference from the global
information sphere is that within a local information sphere data can essentially
be stored and processed on any of the CKBs (by authorized users), requiring
simpler interfaces that can be optimized for efficient information sharing. Stated
differently, a user within the local information sphere can trust the system to
enforce all applicable access control and security policies. Systems outside this
trust boundary can only be accessed through the Gateway Modules. The Cornell
Knowledge Broker will be discussed in detail in the next section.

3 The Cornell Knowledge Broker

The Cornell Knowledge Broker (see Figure 3) processes potentially massive
streams of data, e.g., newsfeed data and continuously arriving measurements
from sensors, but also reports from analysts, and other intelligence feeds. It sup-
ports on-line extraction of relevant information from streams in real-time, and
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Fig. 3. Cornell Knowledge Broker

at the same time archives all incoming information for later deep offline analysis.
Hence the CKB will ultimately combine the functionality of data warehouses [34]
with that of data stream management systems (STREAM [5, 7], Aurora [12],
TelegraphCQ [15], NiagaraCQ [16]) and sensor database systems [9, 37]. In the
following sections we describe the components of the Cornell Knowledge Broker
in more detail.

3.1 Annotation Component

The raw data that arrives at the knowledge broker might come in a variety
of formats, e.g., streams of text data, relational data, images, voice recordings,
sensor signals, and so on. Annotation Components (AC) transform this data
into a coherent format which is amenable to data mining and stream process-
ing techniques. For instance, an annotation module might parse incoming voice
recordings and output the corresponding text. Another annotation module’s task
might be to analyze a plain text message and derive structural information from
it like the topic of the text. Annotation modules hence add metadata to an item.
This metadata will also describe in a uniform format where, when, and how this
information was obtained or derived [10, 11].

In general we envision the annotation modules to annotate incoming data
streams with XML metadata. XML is the ideal choice, because the majority
of the data will be semi- or unstructured, typically plain text. Notice that this
does not necessarily imply that the data be stored in native XML databases.
Also, a mining tool might decide to first extract structured information from an
XML document (certain attributes of interest) and then work on the structured
information only.
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3.2 Archiving Components

All incoming (annotated) information is stored for future reference and deep
analysis in an Archive DataBase (ADB), shown in more detail in Figure 4. To
support this functionality the CKB can initially rely on proven data warehousing
technology. Data warehouses support sophisticated index structures and pre-
computed summaries for efficiently answering complex analysis queries over very
large data sets. The major disadvantage is that updates cannot be applied in real-
time since they would interfere with the query processing and considerably slow
it down. Hence the archive will use a combination of an online DataBase (DB)
together with a Data Warehouse (DW). The (much smaller) online database
keeps track of newly arriving data in real-time, but is typically not accessible
for queries. The updates collected in the online database are then periodically
moved to the data warehouse in large batches, where they can be accessed by
the data mining modules.
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Fig. 4. Archive components

The Bulk Loading Module (BLM) controls the transfer of recent data from
DB to DW. This setup is similar to current business architectures consisting
of OLTP databases and data warehouses. BLM is fully aware of which data
resides in DB and which has been moved to DW. It exports these statistics to
the Archive Query Module (AQM), which handles queries from the Subscription
Matcher (SM) and provides a consistent view of the archive database.

3.3 Data Mining Modules

Data Mining Modules (DMM) access the Data Warehouse in the archive to per-
form deep analysis over the collected information. Any technique for mining text
data, images, numerical data, and so on, could be plugged in here. Data mining
results need to be updated whenever a sufficient amount of new information has
been moved from DB to DW. This update could be performed incrementally, or
the data mining application computes a new result from scratch.

Within the context of the CKB the data mining modules are not just data
consumers. They are also significant producers of new (derived) information.
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The results produced by a DMM are fed back into the data processing life cycle
within a CKB. In our current architecture data mining modules either generate
(annotated) events or they populate relations (materialized views) in the archive.
If events are generated, they can be processed in the Subscription Matcher like
newly arriving information. The materialized views are available as input for
other data mining applications.

The system can take advantage of this data cycle by incrementally extracting
more detailed information from unstructured data, e.g., text and images, in a
demand-driven manner. For example, assume in the beginning the metadata of
a text consists only of the topic. In a first round of processing, a data mining
tool determines the main keywords and adds them to the metadata. Based on
this newly added information, the text could be labeled as “interesting” by
an analyst’s subscription (see discussion on Subscription Matcher below). This
triggers another data mining application in the second round of processing to
extract more detailed information with respect to some of the keywords, and so
on.

The data analysis life cycle opens up several challenging research problems.
First, how should different data mining applications be designed such that there
is a maximum use of common intermediate results? Second, which of the inter-
mediate results should be stored in the archive for later use? This problem is
related to materialized view maintenance in data warehouses [29]. Third, how
can events produced by diverse mining applications be efficiently processed such
that large numbers of queries and high data arrival rates are supported?

3.4 Subscription Engine

The Subscription Matcher (SM) is part of the data processing cycle in the CKB.
Its purpose is to analyze incoming data streams in real-time to alert analysts
about relevant information and feed important data to data mining applications.
For instance an analyst might set up a subscription that generates an alert
whenever a document referring to a certain location or event is arriving. This
would be a fairly simple subscription (filter predicate that compares an attribute
value of incoming data with a given constant), like the ones supported by current
publish/subscribe (pub/sub) systems [25].

For intelligence applications support for more complex subscriptions is re-
quired. This includes subscriptions concerning multiple events from multiple
streams and temporal queries, e.g., discovery of temporal patterns. Similar to
data mining applications (see Section 3.3), subscriptions can produce new events
which are fed back into the system. For instance, there could be multiple low-
level subscriptions that search for simple patterns in the incoming data. These
patterns are then analyzed by more high-level subscriptions which discover more
complex patterns consisting of simple patterns, and so on. Hence the subscrip-
tion engine has to support composite events, i.e., queries can refer to events
generated by other queries. Subscriptions are maintained in the Subscription
DataBase (SDB).
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Subscriptions may be defined such that their evaluation requires access to
the archive. The main difference from data mining applications is the real-time
requirement for processing subscriptions. The results of data mining applications
could have considerable delay depending on the complexity of the algorithms.

Notice that there is an interesting duality between subscriptions and data
mining. Subscriptions can be automatically generated by a data mining applica-
tion, e.g., a mining workflow might have arrived at a stage where finding a new
document mentioning A would result in a different next step than finding a doc-
ument related to B. Hence the mining application would automatically generate
a subscription to look for documents related to A or B. On arrival of a corre-
sponding document, the mining application would be automatically notified and
hence could continue its analysis appropriately. Similarly, a subscription set up
by an analyst might trigger a deep analysis of historical information related to
currently arriving data.

3.5 Load Smoothing

The Load Smoothing Module (LSM) ensures that the CKB does not collapse
under sudden load spikes. As soon as LSM detects a possible overload situation,
it pre-emptively eliminates some events from the data streams. Notice that the
information is not lost, but its processing is deferred until the load on the system
decreases.

LSM essentially works in two different modes. During load spikes it selects
events to be removed from the system. Hence during that time only approximate
results can be computed by those queries which are affected by dropped events.
The goal of LSM during load spikes is to minimize given loss metrics for the
currently active queries. Later, when the load returns to “normal” levels, LSM
post-processes the initial approximate results until the exact results are obtained
for all queries. As long as the system in the average has enough capacity to
process incoming data, LSM smoothes load spikes by deferring computation.

The Load Smoothing Module addresses two challenging problems. First, it
has to select which events to eliminate in order to cause the least loss in overall
query accuracy during a load spike. Second, it has to decide which events to
store in a fast database such that as soon as the load decreases, the exact result
can be recovered. This is non-trivial, e.g., for joins not only the dropped events,
but also matching partner-events need to be available for post-processing.

3.6 Personalization and Collaboration

The components related to personalization and collaboration are the SDB data-
base, the Collaboration Module (CoM), and the Personalization Modules (PeM).
The SDB database stores the personal profiles of analysts and applications. Here
a personal profile contains metadata about current and past projects, keywords
describing previous experience and expert knowledge, and of course the cur-
rently active subscriptions. This information affects the exchange of knowledge
with other experts, but also between data mining applications. For instance, the
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semantics of a subscription or the importance of incoming data might be differ-
ent depending on an analyst’s background and her current projects and active
subscriptions and data mining workflows.

Similarly, Personalization Modules (PeM) will support on-line re-organization
and annotation of incoming data to take personalization information of the data
consumer into account. For example, a PeM can automatically learn search pref-
erences of an analyst for providing customized rankings of large query result sets
(see also Section 4.4).

One of the most challenging modules to develop is CoM. Its main goal is to
automatically enhance the collaboration between analysts. This includes meta-
computing, meaning that CoM will search for commonalities in the different
subscriptions and data mining workflows. Assume two analysts are working on
different cases, but there is a connection between these cases. By identifying
commonalities in their analysis setup, CoM would be able to alert the analysts.
To simplify information exchange, CoM would generate a description of the en-
countered similarities and some of the most relevant differences (e.g., data one
analyst was not aware of).

The second functionality of CoM is to support introspection, i.e., “mining for
best practice.” CoM keeps track of previous cases by storing in the SDB database
which approaches had success in the past and which were not as effective (e.g.,
which mining models and parameters were selected, which subscriptions were
used, which data sources were combined in which way). If in the future an
analyst works on a problem which has a similar structure as a past one, CoM
could recommend “good” approaches or even perform an initial automatic setup
of the required data mining workflow and subscriptions.

3.7 Policy and Access Control

The Policy and Access Control (PM) module ensures that only authorized users
have access to certain data, including subscriptions and personalization related
information. PM also contains some of the privacy-preserving functionality
needed for information exchange with other participants in a global informa-
tion sphere. The functionality of PM therefore extends far beyond simple access
control in operating systems, e.g., Windows or UNIX file ownership attributes.
There has been work on security and access control for statistical and XML
databases [1, 8, 45], but to date none of the proposed techniques provides a satis-
factory combination of guaranteeing access restrictions while supporting desired
analysis functionality.

We identified the following key features for PM. First, PM should support
fine-grained access control, down to the level of single attribute values in docu-
ments. This results in potentially high overhead for enforcing policies, but will
enable an analyst to access that and only that data that she needs to know. Sec-
ond, there should be support for dynamic policies, i.e., the overhead for changing
policies should be low. For instance, assume during an investigation an analyst
detects a link between two documents in the database. Both documents are ac-
cessible to the analyst, but a third document which forms the link between the
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two currently is not. Depending on the case it might be necessary to extend the
analyst’s need-to-know in order to let her proceed with the investigation. Third,
PM should support adaptive content-based access control. When new documents
arrive at the system, it might not be initially clear which access policies apply.
Only after several processing steps, when a document’s content has been suffi-
ciently analyzed, can proper access rights be assigned. In order to take as much
of the computational burden away from human operators, PM should be able to
automatically update access rights as the document is processed.

4 Current Status and Next Steps

We have available several techniques for the different modules, mostly for the
Subscription Matcher, Load Smoothing and Data Mining Modules. In the follow-
ing sections some of these techniques are surveyed, accompanied by a discussion
how the different components will be connected in an initial version of the Cor-
nell Knowledge Broker.

4.1 Techniques for the Subscription Matcher

The purpose of the Subscription Matcher is to analyze incoming data streams in
real time to alert analysts about relevant information and feed important data to
data mining applications. It is functionally similar to a continuous data stream
query processor [5, 7, 12, 15, 16], a publish/subscribe system [25], or an event
processing system [3, 13, 14, 38, 44]. However, there are significant differences.

In a conventional pub/sub system the query language typically consists of
simple filter predicates–Boolean expressions evaluated on a single record of the
publication stream [25]. Such queries lend themselves to efficient implementation.
However, while they are able to select individual records or events of interest,
they are obviously not able to identify spatial or temporal patterns, which involve
multiple events, possibly from different input streams. We believe supporting
such patterns is essential for intelligence applications. Thus, a more expressive
subscription query language is required.

One very powerful approach is represented by the CQL Continuous Query
Language implemented in the Stanford STREAM system [4]. In STREAM, data
is modeled both as timestamped streams and as conventional relations. CQL
includes the full SQL language, and performs the bulk of its data manipulation
in the relational domain. In addition, there is a small set of stream-to-relation
and relation-to-stream operators, used to translate stream data and query re-
sults between the stream and relational domains. While formally appealing, this
approach has the drawback that it can easily express stream queries that are
infeasibly expensive to execute; and there are no obvious criteria the user can
apply to ensure her queries will be efficient.

We are taking a different approach. Instead of defining a single very powerful
data stream query language, we are developing a hierarchy of query languages.
At the bottom is a data stream query language that we already know how
to implement very efficiently – simple attribute/value based publish/subscribe.
Moving up in the hierarchy yields increasingly more expressive languages, with
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increasingly more expensive query execution. Instead of targeting one design
point whose query language has great expressiveness, we are developing a “sliding
scale” of expressiveness/performance design points which will allow us to control
the tradeoff between expressiveness and performance.

The languages in our hierarchy are capable of defining “composite events”
as discussed in Section 3.4. Query results produce events whose treatment by
subsequent queries is indistinguishable from the treatment of primitive events
arriving on the input data streams.

We are developing a general calculus for data stream queries. This calculus
will provide the means for comparing the expressiveness and complexity of dif-
ferent query languages in a precise, formal way. Our preliminary results are quite
encouraging, and we believe they validate our fundamental design choices:

– A data model comprising temporally-annotated data streams;
– A two-sorted first order logic including data terms and temporal terms, with

strict limitations on the use of temporal terms;
– A specialized binding construct to allow parameterized aggregation.

Our calculus is powerful enough to simulate the majority of previous work
in languages for data stream processing systems, pub/sub, and event processing
systems. At the same time, we have been able to find fairly simple syntactic
characterizations of subsystems that are semantically equivalent to the query
systems we have examined, even systems that are much less expressive than our
full calculus. The characterizations use properties such as nesting depth of oper-
ators and quantifiers, and the number of free variables in a formula – properties
that intuitively have a natural relation to execution complexity, and in some
cases translate directly to the structure of a message-oriented implementation of
the subscription engine.

4.2 Techniques for the Data Mining Module

In the following we survey techniques that will be integrated as part of the Data
Mining Module. Other data mining approaches can be easily added later on as
the CKB evolves.

Change Detection. One of the major challenges presented by data streams
is detecting a change. Up to now, work in this area has taken a parametric
approach: the data has been modeled by prespecified families of distributions or
Markov processes. A change is announced whenever an algorithm finds a model
in this family that describes the current data better than the current model.
We are working on a completely different, nonparametric approach. We make no
assumptions about the distribution of data except that the records are generated
independently; that is, the value of one record does not depend on the values
of the records that appeared before it in the data stream. This technique has
several advantages: it is intuitive, it is completely general (it is independent of
the distributions that generate the data), works for discrete and continuous data,
and shows good results experimentally.
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Change has far-reaching impact on any data processing algorithm. For ex-
ample, when constructing a data mining model over a data stream, old data
before a change can bias a data mining model towards data characteristics that
do not hold any longer. If we process queries over data streams, we may want
to give separate query answers for each time interval where the underlying data
distribution is stable. Our work is based on a formal definition of change and as-
sociated techniques for quickly detecting whenever statistically significant change
has occurred.

Hopcroft et al. attack this problem for graph-structured data [30]. They
examine how to detect communities in large linked networks, and how to track
such communities over time. They focus in particular on data with a low signal-
to-noise ratio.

Detecting Bursts in Data Streams. Kleinberg [35] proposes a framework
for modeling “bursts” in temporal data, in such a way that they can be robustly
and efficiently identified, and can provide an organizational framework for ana-
lyzing the underlying content. Many of the most widely used on-line media and
Web information sources can be naturally viewed as continuous streams of infor-
mation. Their time scales range from the minute-by-minute dynamics of usage
at high-volume Web sites, to the hourly and daily evolution of topics in e-mail,
news, and blogs, to the long-term research trends that are evident in research
paper archives. Kleinberg’s approach rests on the premise that the appearance
of a topic or event is signaled by a “burst of activity,” with certain features rising
sharply in frequency as the topic emerges. The approach is based on modeling
the stream using an infinite-state automaton, in which bursts appear as state
transitions. The automaton also implicitly imposes a hierarchical structure on
the bursts in a stream.

4.3 Techniques for the Load Smoothing Module

As discussed in Section 3.5, load smoothing consists of two different modes of
operation: peak-load mode and low-load mode. During peak load, LSM removes
events from the system in order to avoid thrashing. This is also referred to as load
shedding. Most current approaches are based on random load shedding [6, 33, 42]
(Tatbul et al. [42] also consider simple heuristics for semantic load shedding,
where certain events have higher value to the query than others). Random load
shedding works well for queries that compute aggregates, but as we show [17],
random load shedding is inferior if we are concerned with the approximation
quality of set-valued query results. In intelligence applications we expect a large
fraction of the queries to have set-valued results, e.g., queries searching for certain
documents or groups of similar documents from multiple input streams. Notice
that we treat incoming documents as events with attached application data.

In [17] we propose novel approximation techniques for joins of data streams,
i.e., where we are interested in finding matching (similar) documents or events
in different data streams. We examine several popular and established approxi-
mation measures for sets. In our load shedding scenario most of these measures
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reduce to the MAX-subset measure: the best approximate result is the one which
is the largest subset of the exact query answer. For MAX-subset we develop an
optimal offline algorithm. For given input sets it determines in polynomial time
(polynomial in parameters like input size, memory size, and size of the join win-
dow for sliding window joins [17]) the optimal strategy of keeping or dropping
incoming events. This algorithm assumes complete future knowledge and hence
is not applicable in a real system. However, it serves as a benchmark for compar-
ing any practical online strategy with what is the best any such strategy could
ever achieve with the given system resources.

As it turns out, as long as one can approximately predict future arrival proba-
bilities of similar events, simple random load shedding is far inferior to semantic
join approximation techniques like PROB [17]. PROB is a simple lightweight
heuristic that in case of system overload drops the events with the lowest pre-
dicted arrival probability of a matching partner event in the other stream. PROB
will therefore be added to LSM.

Unfortunately the optimization problem of minimizing result loss during peak
load periods is very complex in general. To date there is no complete end-to-
end load shedding approach except for simple random load shedding. The initial
version of CKB therefore will support semantic join approximation as well as
random load shedding for aggregation queries.

The second mode of operation of LSM, the low-load mode, presents new
challenges which have not been sufficiently examined by the database commu-
nity. In [17] we introduce the Archive-Metric (ArM) which measures the post-
processing cost for the recovery of the exact result after a load spike. We have
developed system models for optimizing different cost metrics related to ac-
cessing and processing all events that were dropped during peak load periods.
Unfortunately optimal offline algorithms for this problem so far are too complex
and hence not useful for benchmarking. We are currently developing efficient
online heuristics that balance parameters like archive access cost, result latency,
and total processing cost in terms of CPU and memory usage.

4.4 Techniques for Personalization and Collaboration

In recent work Joachims [32] proposes a novel approach to optimizing retrieval
functions using implicit feedback. The main idea is to automatically learn func-
tions that rank documents according to their relevance to a query. Taking an
empirical-risk-minimization approach with Kendall’s Tau as the loss function, a
Support Vector algorithm is defined for the resulting convex training problem.
An important property of this algorithm is that it can be trained with partial
information about the target rankings like “for query Q, document A should be
ranked higher than document B”. In Web search applications such preference
data is available in abundance, since it can be inferred from the clicking behav-
ior of users. We expect similar properties to hold for intelligence applications,
allowing the system to learn an analyst’s preferences with respect to a certain
query or project.
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4.5 Privacy-Preserving Data Mining

As outlined in Section 1, a vital component of our system will be the capability
to perform privacy-preserving computation and data mining in the global infor-
mation sphere. Assume that there is an analyst in one local information sphere
that initiates the privacy-preserving computation, and we call this information
sphere the server sphere. We call the information spheres that participate in the
computation by engaging in a protocol for privacy-preserving computation client
spheres. For simplicity, we assume that there is one server and a set of clients,
each having some data.

The usual solution to the above problem consists in having all client peers
send their private data to the server sphere. However, the system that we are
building will be able to accomplish this computation without violating the privacy
of individual clients. In other words, if all the server needs is a data mining
model, a solution is preferred that reduces the disclosure of private data while
still allowing the server to build the model. Similarly, if all the server needs is the
answer to an aggregate query, the computation of this query should not disclose
anything beyond the answer to the query (and what can be concluded from the
query answer).

One possibility is as follows: before sending its piece of data, each client
sphere perturbs it so that some true information is taken away and some false
information is introduced. This approach is called randomization. Another pos-
sibility is to decrease precision of the transmitted data by rounding, suppressing
certain values, replacing values with intervals, or replacing categorical values by
more general categories up the taxonomic hierarchy, see [19, 31, 40, 41].

The usage of randomization for preserving privacy has been studied exten-
sively in the framework of statistical databases [20, 21, 26, 28, 39]. In that case,
the server has a complete and precise database with the information from its
clients, and it has to make a version of this database public, for others to work
with. One important example is census data: the government of a country col-
lects private information about its inhabitants, and then has to turn this data
into a tool for research and economic planning. However, it is assumed that
private records of any given person should not be released nor be recoverable
from what is released. In particular, a company should not be able to match up
records in the publicly released database with the corresponding records in the
company’s own database of its customers.

Our recent work in this area has addressed the problem of privacy-preserving
association rule mining, and we introduced a novel notion of privacy breaches,
a formal definition of how much privacy is compromised for a given privacy-
preserving data mining method [24, 23].

4.6 How to Connect the Different Modules

At first glance, implementing the infrastructure that connects the different mod-
ules of the CKB might appear to be a substantial effort. We believe this is not
the case. While the CKB’s infrastructure does have some unusual requirements,
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it is fundamentally similar to many high-performance enterprise applications.
The requirements are generally quite close to what is provided in existing J2EE
implementations.

We propose to start from an existing open-source J2EE system such as JBoss
(http://sourceforge.net/projects/jboss). Rather than building new infras-
tructure, we view ourselves as building a medium-size J2EE application, possibly
with minor enhancements to a few of the APIs – e.g., enhancing JMS to sup-
port our richer subscription semantics. Developing a CKB prototype in this way
should be well within the capabilities of a university research group. Stated dif-
ferently, by relying on J2EE technology we can concentrate our efforts on the
design of the CKB modules and their interaction.

5 Conclusion

The major challenge for intelligence applications is to find relevant information
in massive amounts of available data, both data which is already archived as
well as newly arriving data. We have presented the Cornell Knowledge Broker,
which constitutes the information processing unit of the information sphere ar-
chitecture. The CKB takes a unique approach to combining offline deep analysis
(traditional data mining) with real-time online processing, while at the same
time providing support for access control and privacy-preserving technology.

We do not claim that the Cornell Knowledge Broker and the Information
System architecture are the only possible way to support analysts in processing
massive amounts of data. Indeed, the architecture itself leaves room for alterna-
tive implementations. Our main goal is to create an infrastructure that integrates
novel data mining techniques to maximize their effectiveness.

Our future work will therefore follow two directions. First, we will continue
to develop novel techniques for mining large data sets and data streams. These
techniques lie at the heart of the actual data processing task performed by an
analyst. Second, we will extend the system architecture to integrate these tech-
niques to maximize their effectiveness, enabling them to interact with each other
and with system services such as access control. We are currently implementing
several of the CKB’s modules and expect a first prototype of the system to be
ready in the second half of 2004. Once a prototype system is available, we will
be able to evaluate our architecture design decisions and to make quantitative
comparisons to alternative approaches.

References

1. N.R. Adam and J.C. Wortmann. Security-control methods for statistical databases:
A comparative study. ACM Computing Surveys, 21(4):515–556, 1989.

2. R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proc. ACM SIG-
MOD Int. Conf. on Management of Data, pages 439–450, 2000.

3. M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra.
Matching events in a content-based subscription system. In Proc. ACM Symp. on
Principles of Distributed Computing (PODC), pages 53–61, 1999.



160 Alan Demers, Johannes Gehrke, and Mirek Riedewald

4. A. Arasu, S. Babu, and J. Widom. The CQL continuous query language: Semantic
foundations and query execution. Technical report, Stanford University, 2003.

5. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in
data stream systems. In Proc. Symp. on Principles of Database Systems (PODS),
pages 1–16, 2002.

6. B. Babcock, M. Datar, and R. Motwani. Load shedding techniques for data stream
systems (short paper). In Proc. Workshop on Management and Processing of Data
Streams (MPDS), 2003.

7. S. Babu and J. Widom. Continuous queries over data streams. ACM SIGMOD
Record, 30(3):109–120, 2001.

8. E. Bertino, S. Jajodia, and P. Samarati. Database security: Research and practice.
Information Systems, 20(7):537–556, 1995.

9. P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor database systems. In Proc.
Int. Conf. on Mobile Data Management (MDM), pages 3–14, 2001.

10. P. Buneman, S. Khanna, K. Tajima, and W. C. Tan. Archiving scientific data. In
Proc. SIGMOD, pages 1–12, 2002.

11. P. Buneman, S. Khanna, and W. C. Tan. Why and where: A characterization of
data provenance. In Proc. Int. Conf. on Database Theory (ICDT), pages 316–330,
2001.
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