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Abstract

We present a performance study of the MAFIA algorithm
for mining maximal frequent itemsets from a transactional
database. In a thorough experimental analysis, we isolate
the effects of individual components of MAFIA, including
search space pruning techniques and adaptive compression.
We also compare our performance with previous work by
running tests on very different types of datasets. Our exper-
iments show that MAFIA performs best when mining long
itemsets and outperforms other algorithms on dense data
by a factor of three to thirty.

1 Introduction

MAFIA uses a vertical bitmap representation for support
counting and effective pruning mechanisms for searching
the itemset lattice [6]. The algorithm is designed to mine
maximal frequent itemsets (MFI), but by changing some
of the pruning tools, MAFIA can also generate all frequent
itemsets (FI) and closed frequent itemsets (FCI).

MAFIA assumes that the entire database (and all data
structures used for the algorithm) completely fit into main
memory. Since all algorithms for finding association
rules, including algorithms that work with disk-resident
databases, are CPU-bound, we believe that our study sheds
light on some important performance bottlenecks.

In a thorough experimental evaluation, we first quantify
the effect of each individual pruning component on the per-
formance of MAFIA. Because of our strong pruning mecha-
nisms, MAFIA performs best on dense datasets where large
subtrees can be removed from the search space. On shal-
low datasets, MAFIA is competitive though not always the
fastest algorithm. On dense datasets, our results indicate
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that MAFIA outperforms other algorithms by a factor of
three to thirty.

2 Search Space Pruning

MAFIA uses the lexicographic subset tree originally pre-
sented by Rymon [9] and adopted by both Agarwal [3] and
Bayardo [4]. The itemset identifying each node will be re-
ferred to as the node’s head, while possible extensions of
the node are called the tail. In a pure depth-first traversal of
the tree, the tail contains all items lexicographically larger
than any element of the head. With a dynamic reordering
scheme, the tail contains only the frequent extensions of
the current node. Notice that all items that can appear in
a subtree are contained in the subtree root’s head union tail
(��� ), a set formed by combining all elements of the head
and tail.

In the simplest itemset traversal, we traverse the lexico-
graphic tree in pure depth-first order. At each node �, each
element in the node’s tail is generated and counted as a �-
extension. If the support of �n’s head� � ��-extension� is
less than �����	, then we can stop by the Apriori princi-
ple, since any itemset from that possible �-extension would
have an infrequent subset.

For each candidate itemset, we need to check if a su-
perset of the candidate itemset is already in the MFI. If
no superset exists, then we add the candidate itemset to the
MFI. It is important to note that with the depth-first traver-
sal, itemsets already inserted into the MFI will be lexico-
graphically ordered earlier.

2.1 Parent Equivalence Pruning (PEP)

One method of pruning involves comparing the transac-
tion sets of each parent/child pair. Let 
 be a node �’s head
and � be an element in �’s tail. If ��
� � ����, then any
transaction containing 
 also contains �. Since we only



want the maximal frequent itemsets, it is not necessary to
count itemsets containing 
 and not �. Therefore, we can
move item � from the node’s tail to the node’s head.

2.2 FHUT

Another type of pruning is superset pruning. We observe
that at node �, the largest possible frequent itemset con-
tained in the subtree rooted at � is �’s HUT (head union
tail) as observed by Bayardo [4]. If �’s HUT is discov-
ered to be frequent, we never have to explore any subsets
of the HUT and thus can prune out the entire subtree rooted
at node �. We refer to this method of pruning as FHUT
(Frequent Head Union Tail) pruning.

2.3 HUTMFI

There are two methods for determining whether an item-
set 
 is frequent: direct counting of the support of 
, and
checking if a superset of 
 has already been declared fre-
quent; FHUT uses the former method. The latter approach
determines if a superset of the HUT is in the MFI. If a su-
perset does exist, then the HUT must be frequent and the
subtree rooted at the node corresponding to 
 can be pruned
away. We call this type of superset pruning HUTMFI.

2.4 Dynamic Reordering

The benefit of dynamically reordering the children of
each node based on support instead of following the lexi-
cographic order is significant. An algorithm that trims the
tail to only frequent extensions at a higher level will save
a lot of computation. The order of the tail elements is also
an important consideration. Ordering the tail elements by
increasing support will keep the search space as small as
possible. This heuristic was first used by Bayardo [4].

In Section 5.3.1, we quantify the effects of the algo-
rithmic components by analyzing different combinations of
pruning mechanisms.

3 MAFIA Extensions

MAFIA is designed and optimized for mining maximal
frequent itemsets, but the general framework can be used to
mine all frequent itemsets and closed frequent itemsets.

The algorithm can easily be extended to mine all fre-
quent itemsets. The main changes required are suppressing
any pruning tools (PEP, FHUT, HUTMFI) and adding all
frequent nodes in the itemset lattice to the set FI without
any superset checking. Itemsets are counted using the same
techniques as for the regular MAFIA algorithm.

MAFIA can also be used to mine closed frequent item-
sets. An itemset is closed if there are no supersets with the

same support. PEP is the only type of pruning used when
mining for frequent closed itemsets (FCI). Recall from Sec-
tion 2.1 that PEP moves all extensions with the same sup-
port from the tail to the head of each node. Any items re-
maining in the tail must have a lower support and thus are
different closed itemsets. Note that we must still check for
supersets in the previously discovered FCI.

4 Optimizations

4.1 Effective MFI Superset Checking

In order to enumerate the exact set of maximally fre-
quent itemsets, before adding any itemset to the MFI we
must check the entire MFI to ensure that no superset of the
itemset has already been found. This check is done often,
and significant performance improvements can be realized
if it is done efficiently. To ensure this, we adopt the pro-
gressive focusing technique introduced by Gouda and Zaki
[7].

The basic idea is that while the entire MFI may be large,
at any given node only a fraction of the MFI are possible
supersets of the itemset at the node. We therefore maintain
for each node a LMFI (Local MFI), which is the subset of
the MFI that contains supersets of the current node’s item-
set. For more details on the LMFI concept, please see the
paper by Gouda and Zaki [7].

4.2 Support Counting and Bitmap Compression

MAFIA uses a vertical bitmap representation for the
database [6]. In a vertical bitmap, there is one bit for each
transaction in the database. If item � appears in transac-
tion , then bit  of the bitmap for item � is set to one;
otherwise, the bit is set to zero. This naturally extends
to itemsets. Generation of new itemset bitmaps involves
bitwise-ANDing bitmap(�) with a bitmap for 1-itemset �
and storing the result in bitmap (� � � ). For each byte in
bitmap(� �� ), the number of 1’s in the byte is determined
using a pre-computed table. Summing these lookups gives
the support of �� � � �.

4.3 Compression and Projected Bitmaps

The weakness of a vertical representation is the sparse-
ness of the bitmaps especially at the lower support levels.
Since every transaction has a bit in vertical bitmaps, there
are many zeros because both the absence and presence of
the itemset in a transaction need to be represented. How-
ever, note that we only need information about transactions
containing the itemset � to count the support of the subtree
rooted at node � . So, conceptually we can remove the bit
for transaction � from � if � does not contain � . This is



Dataset T I ATL
T10I4D100K 100,000 1,000 10
T40I10D100K 100,000 1,000 40

BMS-POS 515,597 1,657 6.53
BMS-WebView-1 59,602 497 2.51
BMS-WebView-2 3,340 161 4.62

chess 3196 76 37
connect4 67,557 130 43
pumsb 49,046 7,117 74
pumsb-star 49,046 7,117 50

T = Numbers of transactions
I = Numbers of items
ATL = Average transaction length

Figure 1. Dataset Statistics

a form of lossless compression on the vertical bitmaps to
speed up calculations.

4.3.1 Adaptive Compression

Determining when to compress the bitmaps is not as simple
as it first appears. Each 1-extension bitmap in the tail of the
node� must be projected relative to the itemset � , and the
cost for projection may outweigh the benefits of using the
compressed bitmaps. The best approach is to compress only
when we know that the savings from using the compressed
bitmaps outweigh the cost of projection.

We use an adaptive approach to determine when to ap-
ply compression. At each node, we estimate both the cost
of compression and the benefits of using the compressed
bitmaps instead of the full bitmaps. When the benefits out-
weight the costs, compression is chosen for that node and
the subtree rooted at that node.

5 Experimental Results

5.1 Datasets

To test MAFIA, we used three different types of data.
The first group of datasets is sparse; the frequent itemset
patterns are short and thus nodes in the itemset tree will
have small tails and few branches. We first used artificial
datasets that were created using the data generator from
IBM Almaden [1]. Stats for these datasets can be found in
Figure 1 under T10I4D100K and T40I10D100K. The distri-
bution of maximal frequent itemsets is displayed in Figure
2. For all datasets, the minimum support was chosen to
yield around 100,000 elements in the MFI. Note that both
T10I4 and T40I10 have very high concentrations of item-
sets around two and three items long with T40I10 having
another smaller peak around eight to nine items.
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Figure 2. Itemset Lengths for shallow, artifi-
cial datasets
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Figure 3. Itemset Lengths for shallow, real
datasets
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Figure 4. Itemset Lengths for dense, real
datasets



The second dataset type is click stream data from two
different e-commerce websites (BMS-WebView-1 and BMS-
WebView-2) where each transaction is a web session and
each item is a product page view; this data was provided
by Blue Martini [8]. BMS-POS contains point-of-sale data
from an electronics retailer with the item-ids corresponding
to product categories. Figure 3 shows that BMS-POS and
BMS-WebView-1 have very similar normal curve itemset
distributions with the average length of a maximal frequent
itemset around five to six items long. On the other hand,
BMS-WebView-2 has a right skewed distribution; there’s
a sharp incline until three items and then a more gradual
decline on the right tail.

Finally, the last datasets used for analysis are the dense
datasets. They are characterized by very long itemset pat-
terns that peak around 10-25 items (see Figure 4). Chess
and Connect4 are gathered from game state information and
are available from the UCI Machine Learning Repository
[5]. The Pumsb dataset is census data from PUMS (Public
Use Microdata Sample). Pumsb-star is the same dataset as
Pumsb except all items of 80% support or more have been
removed, making it less dense and easier to mine. Figure
4 shows that Chess and Pumsb have nearly identical item-
set distributions that are normal around 10-12 items long.
Connect4 and Pumsb-star are somewhat left-skewed with
a slower incline that peaks around 20-23 items and then a
sharp decline in the length of the frequent itemsets.

5.2 Other Algorithms

5.2.1 DepthProject

DepthProject demonstrated an order of magnitude improve-
ment over previous algorithms for mining maximal frequent
itemsets [2]. MAFIA was originally designed with Depth-
Project as the primary benchmark for comparison and we
have implemented our own version of the DepthProject al-
gorithm for testing.

The primary differences between MAFIA and Depth-
Project are the database representation (and consequently
the support counting) and the application of pruning
tools. DepthProject uses a horizontal database layout while
MAFIA uses a vertical bitmap format, and supports of item-
sets are counted very differently. Both algorithms use some
form of compression when the bitmaps become sparse.
However, DepthProject also utilizes a specialized counting
technique called bucketing for the lower levels of the item-
set lattice. When the tail of a node is small enough, bucket-
ing will count the entire subtree with one pass over the data.
Since bucketing counts all of the nodes in a subtree, many
itemsets that MAFIA will prune out will be counted with
DepthProject. For more details on the DepthProject algo-
rithm, please refer to the paper by Agarwal and Aggarwal
[2].

5.2.2 GenMax

GenMax is a new algorithm by Gouda and Zaki for finding
maximal itemset patterns [7]. GenMax introduced a novel
concept for finding supersets in the MFI called progessive
focusing. The newest version of MAFIA has incorporated
this technique with the LMFI update. GenMax also uses
diffset propagation for fast support counting. Both algo-
rithms use similar methods for itemset lattice exploration
and pruning of the search space.

5.3 Experimental Analysis

We performed three types of experiments to analyze the
performance of MAFIA. First, we analyze the effect of each
pruning component of the MAFIA algorithm to demon-
strate how the algorithm works to trim the search space of
the itemset lattice. The second set of experiments exam-
ines the savings generated by using compression to speed
support counting. Finally, we compare the performance of
MAFIA against other current algorithms on all three types
of data (see Section 5.1). In general, MAFIA works best on
dense data with long itemsets, though the algorithm is still
competitive on even very shallow data.

These experiments were conducted on a 1500 Mhz Pen-
tium with 1GB of memory running Redhat Linux 9.0. All
code was written in C++ and compiled using gcc version
3.2 with all optimizations enabled.

5.3.1 Algorithmic Component Analysis

First, we present a full analysis of each pruning component
of the MAFIA algorithm (see Section 2 for algorithmic de-
tails). There are three types of pruning used to trim the
tree: FHUT, HUTMFI, and PEP. FHUT and HUTMFI are
both forms of superset pruning and thus will tend to “over-
lap” in their efficacy for reducing the search space. In ad-
dition, dynamic reordering can significantly reduce the size
of the search space by removing infrequent items from each
node’s tail.

Figures 5 and 6 show the effects of each component of
the MAFIA algorithm on the Connect4 dataset at 40% min-
imum support. The components of the algorithm are repre-
sented in a cube format with the running times (in seconds)
and the number of itemsets counted during the MAFIA
search. The top of the cube shows the time for a simple
traversal where the full search space is explored, while the
bottom of the cube corresponds to all three pruning meth-
ods being used. Two separate cubes (with and without dy-
namic reordering) rather than one giant cube are presented
for readability.

Note that all of the pruning components yield great sav-
ings in running time compared to using no pruning. Apply-
ing a single pruning mechanism runs two to three orders of



NONE
8,423.85s

341,515,395c

FHUT
173.62s

7,523,948c

HUTMFI
101.54s

4,471,023c

PEP
20.56s

847,439c

FH+HM
101.25s

4,429,998c

FH+PEP
9.84s

409,741c

HM+PEP
2.67s

102,759c

ALL
2.48s

96,871c

Figure 5. Pruning Components for Connect4
at 40% support without reordering

magnitude faster while using all of the pruning tools is four
orders of magnitude faster than no pruning.

Several of the pruning components seem to overlap in
trimming the search space. In particular, HUTMFI and
FHUT yield very similar results, since they use the same
type of superset pruning but with different methods of im-
plementation. It is interesting to see that adding FHUT
when HUTMFI is already performed yields very little sav-
ings, i.e. from HUTMFI to FH+HM or from HM+PEP
to ALL, the running times do not significantly change.
HUTMFI first checks for the frequency of a node’s HUT
by looking for a frequent superset in the MFI, while FHUT
will explore the leftmost branch of the subtree rooted at that
node. Apparently, there are very few cases where a superset
of a node’s HUT is not in the MFI, but the HUT is frequent.

PEP has the largest impact of the three pruning meth-
ods. Most of the running time of the algorithm occurs at the
lower levels of the tree where the border between frequent
and infrequent itemsets exists. Near this border, many of the
itemsets have the same exact support right above the mini-
mum support and thus, PEP is more likely to trim out large
sections of the tree at the lower levels.

Dynamically reordering the tail also has dramatic sav-
ings (cf. Figure 5 with Figure 6). At the top of each cube, it
is interesting to note that without any pruning mechanisms,
dynamic reordering will actually run slower than static or-
dering. Fewer itemsets get counted, but the cost of reorder-

NONE
12,158.15s

339,923,486c

FHUT
15.56s

609,993c

HUTMFI
14.98s

609,100c

PEP
9.89s

296,685c

FH+HM
14.78s

608,222c

FH+PEP
1.82s

63,027c

HM+PEP
1.74s

62,307c

ALL
1.72s

62,244c

Figure 6. Pruning Components for Connect4
at 40% support with reordering

ing so many nodes outweighs the savings of counting fewer
nodes.

However, once pruning is applied, dynamic reordering
runs nearly an order of magnitude faster than the static or-
dering. PEP is more effective since the tail is trimmed as
early in the tree as possible; all of the extensions with the
same support are moved from the tail to the head in one step
at the start of the subtree. Also, FHUT and HUTMFI have
much more impact. With dynamic reordering, subtrees gen-
erated from the end of tail have the itemsets with the highest
supports and thus the HUT is more likely to be frequent.

5.3.2 Effects of Compression in MAFIA

Adaptive compression uses cost estimation to determine
when it is appropriate to compress the bitmaps. Since the
cost estimate adapts to each dataset, adaptive compression
is always better than using no compression. Results on dif-
ferent types of data show that adaptive compression is at
least 25% faster as higher supports and at lower supports up
to an order of magnitude faster.

Figures 7 and 8 display the effect of compression on
sparse data. First, we analyze the sparse, artificial datasets
T10I4 and T40I10 that are characterized by very short item-
sets, where the average length of maximally frequent item-
sets is only 2-6 items. Because these datasets are so sparse
with small subtrees, at higher supports compression is not
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Figure 7. Compression on sparse datasets

often used and thus has a negligible effect. But as the sup-
port drops and the subtrees grow larger, the effect of com-
pression is enhanced and the running times for adaptive
compression increase to nearly 3-10 times faster.

Next are the results on the sparse, real datasets: BMS-
POS, BMS-WebView-1, and BMS-WebView-2 in Figure
8. Note that for BMS-POS, adaptive compression follows
the exact same pattern as the synthetic datasets with the
difference growing from negligible to over 10 times bet-
ter. BMS-WebView-1 follows the same general pattern ex-
cept for an anomalous spike in the running times without
compression around .05%. However, for BMS-WebView-2
compression has a very small impact and is only really ef-
fective at the lowest supports. Recall from Figure 3 that
BMS-WebView-2 has a right-skewed distribution of fre-
quent itemsets, which may help explain the different com-
pression effect.

The final group of datasets is found in Figure 9 and
shows the results of compression on dense, real data. The
results on Chess and Pumsb indicate that very few com-
pressed bitmaps were used; apparently, the adaptive com-
pression algorithm determined compression to be too ex-
pensive. As a result, adaptive compression is only around
15-30% better than using no compression at all. On the
other hand, the Connect4 and Pumsb-star datasets use a
much higher ratio of compressed bitmaps and adaptive com-
pression is more than three times faster than no compres-
sion.

It is interesting to note that Chess and Pumsb both have
left-skewed distributions (see Figure 4) while Connect4 and
Pumsb-star follow a more normal distribution of itemsets.
The results indicate that when the data is skewed (left or
right), adaptive compression is not as effective. Still, even
in the worst case adaptive compression will use the cost es-
timate to determine that compression should not be chosen
and thus is at least as fast as never compressing at all. In the
best case, compression can significantly speed up support
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Figure 8. Compression on more sparse
datasets
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Figure 9. Compression on dense datasets
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Figure 10. Performance on sparse datasets

counting by over an order of magnitude.

5.3.3 Performance Comparisons

Figures 10 and 11 show the results of comparing MAFIA
with DepthProject and GenMax on sparse data. MAFIA
is always faster than DepthProject and grows from twice
as fast at the higher supports to more than 20 times faster
at the lowest supports tested. GenMax demonstrates the
best performance of the three algorithms for higher supports
and is around two to three times faster than MAFIA. How-
ever, note that as the support drops and the itemsets become
longer, MAFIA passes Genmax in performance to become
the fastest algorithm.

The performances for sparse, real datasets are found in
Figure 11. MAFIA has the worst performance on BMS-
WebView-2 for higher supports, though it eventually passes
DepthProject as the support lowers. BMS-POS and BMS-
WebView-1 follow a similar pattern to the synthetic datasets
where MAFIA is always better than DepthProject, and Gen-
Max is better than MAFIA until the lower supports where
they cross over. In fact, at the lowest supports for BMS-
WebView-1, MAFIA is an order of magnitude better than
GenMax and over 50 times faster than DepthProject. It
is clear that MAFIA performs best when the itemsets are
longer, though even for sparse data MAFIA is within two to
three times the running times of DepthProject and GenMax.

The dense datasets in Figure 12 support the idea that
MAFIA runs the fastest on longer itemsets. For all supports
on the dense datasets, MAFIA has the best performance.
MAFIA runs around two to five times faster than GenMax
on Connect4, Pumsb, and Pumsb-star and over five to ten
times faster on Chess. DepthProject is by far the slowest al-
gorithm on all of the dense datasets and runs between ten to
thirty times worse than MAFIA on all of the datasets across
all supports.
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Figure 11. Performance on more sparse
datasets
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Figure 12. Performance on dense datasets



6 Conclusion

In this paper we present a detailed performance analy-
sis of MAFIA. The breakdown of the algorithmic compo-
nents show that powerful pruning techniques such as parent-
equivalence pruning and superset checking are very benefi-
cial in reducing the search space. We also show that adap-
tive compression/projection of the vertical bitmaps dramat-
ically cuts the cost of counting supports of itemsets. Our
experimental results demonstrate that MAFIA is highly op-
timized for mining long itemsets and on dense data consis-
tently outperforms GenMax by two to ten and DepthProject
by ten to thirty.
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