
DualMiner: A Dual-Pruning Algorithm for

Itemsets with Constraints

Cristian Bucilă, Johannes Gehrke and Daniel Kifer
({cristi,johannes,dkifer}@cs.cornell.edu)
Department of Computer Science
Cornell University

Walker White∗
(wmwhite@udallas.edu)
Department of Mathematics
University of Dallas

Abstract. Recently, constraint-based mining of itemsets for questions like “find all
frequent itemsets whose total price is at least $50” has attracted much attention.
Two classes of constraints, monotone and antimonotone, have been very useful in this
area. There exist algorithms that efficiently take advantage of either one of these two
classes, but no previous algorithms can efficiently handle both types of constraints
simultaneously. In this paper, we present DualMiner, the first algorithm that effi-
ciently prunes its search space using both monotone and antimonotone constraints.
We complement a theoretical analysis and proof of correctness of DualMiner with
an experimental study that shows the efficacy of DualMiner compared to previous
work.

∗ Research conducted at Cornell University with the Intelligent Information
Systems Institute

c© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

DualMinerJournal.tex; 17/03/2003; 0:53; p.1

1. Introduction

Mining frequent itemsets in the presence of constraints is an important
problem in data mining [5, 16, 17, 18, 20]. (We assume that the reader
is familiar with the terminology from the association rules literature
[2].) The problem can be stated abstractly as follows. Let M be a finite
set of items from some domain (for example, products in a grocery
store). All the items have a common set of descriptive attributes (i.e.,
the name, brand, or price of the item). A predicate (or constraint)
over a set of items is a condition that the set has to satisfy. We can
assume, without loss of generality, that each item has the same single
descriptive attribute, and for convenience we will associate an item
with its attribute value. Thus by “a predicate over a set of items X,”
we always mean a predicate over the associated set of attribute values
of the items in X. For example, when we talk about the average of
a set M , we are referring to the average of the values of the items in
M . The goal of constraint-based market basket analysis is then: given
a set of predicates P1, P2, . . . , Pn, find all subsets of M that satisfy
P1 ∧ P2 ∧ · · · ∧ Pn .

Important classes of constraints, most notably monotone and an-
timonotone, have been introduced by Ng et al. [17, 16, 5, 18, 20].
There exist algorithms that take advantage of each class of constraints.
However, their main deficiency is that they each handle only one class
of constraints efficiently. More recently, Raedt and Kramer [22] have
generalized these algorithms to allow several types of constraints, but
this generalization only handles one type of constraint at a time. In this
paper, we present DualMiner, a new algorithm which efficiently mines
constraint-based itemsets by simultaneously taking advantage of both
monotone and antimonotone predicates.

Previous work has shown that the search space of all itemsets forms
a lattice. Actually, this search space forms a special type of lattice called
an algebra. Algebras can succinctly represent the output in much the
same way that maximal frequent itemsets succinctly represent the set
of all frequent itemsets [4]. The algebra representation adds to the
efficiency of DualMiner and naturally leads to the following cost met-
rics for comparing different algorithms: number of nodes in the search
space that are examined, number of evaluations of the antimonotone
predicate and number of evaluations of the monotone predicate.

c© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

DualMinerJournal.tex; 17/03/2003; 0:53; p.2

3

Not all predicates have the same cost structure. For example, given
an itemset X, the predicate “min(X) ≥ c” can be evaluated in constant
time if the size of X is bounded (a safe assumption) regardless of the
number of transactions in the database. However, the cost of counting
the support of an itemset X may depend on the current node being
examined. For example, the cost can depend on the number of trans-
actions in the database (this is the case when using bitmaps as in the
MAFIA algorithm [8]). As we shall see, different cost structures require
different strategies for traversal through the search space. By design,
DualMiner is traversal strategy agnostic, and thus can accommodate
the traversal strategy that is best for the dataset at hand.

Preliminaries

First, let us formally introduce the notion of an antimonotone con-
straint.

Definition 1. Given a set M , a predicate P defined over the powerset
of M is antimonotone if

∀S, J : (J ⊆ S ⊆M ∧ P (S))⇒ P (J)

That is, if P holds for S then it holds for any subset of S.

The most popular antimonotone constraint is support. Consider a
database D that consists of nonempty subsets of M called transactions.
Given a set X ⊆M , we define the function support(X) to be the num-
ber of transactions in D which contain X 1. Note that frequent itemset
mining is really a special case of constraint-based market analysis.

The advantage of an antimonotone predicate P is that if a set X
does not satisfy P , then no superset of X can satisfy P . Such a set X
can let us prune away a large part of the search space. This pruning can
substantially improve performance. This technique is effective because,
for any small set A, there is a significant probability that any given
larger set is actually a superset of A. This is a consequence of the
fact that the search space forms a lattice and hence the larger sets are
simply the unions of the smaller sets.

For example, consider the itemset lattice illustrated in Figure 1
(with the set of items M = {A,B, C, D}). A typical frequent itemset
algorithm looks at one level of the lattice at a time, starting from the
empty itemset at the top. In this example, we discover that the itemset
{D} is not frequent. Therefore, when we move on to successive levels
of the lattice, we do not have to look at any supersets of {D}. Since

1 We will drop the dependency on D from all our definitions.

DualMinerJournal.tex; 17/03/2003; 0:53; p.3

4

{}

{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B,C} {B,D} {C,D}

{A,B,C} {A,B,D} {A,C,D} {B,C,D}

{A,B,C,D}

Frequent

Not frequent

Figure 1. Frequent Itemsets for M = {A, B, C, D}

half of the lattice is composed of supersets of {D}, this is a dramatic
reduction of the search space.

The collection of all itemsets does not just form a lattice; it forms
a Boolean algebra (which we will call an algebra). Like a lattice, an
algebra has union and intersection. In addition, it also has complemen-
tation. In the algebra of itemsets, the complement of a set is formed
by subtracting it from the set of all items. For example, in the alge-
bra illustrated in Figure 1, the complement of {D} is the set {D} =
{A,B, C}.

In any algebra, complementation introduces a notion of duality.
Every property or operation has a dual, and given any algorithm, we
can construct a new algorithm by replacing everything with its dual.
Figure 1 illustrates this duality. Suppose we wanted to find the itemsets
of our algebra that are not frequent. We can again use a level-wise al-
gorithm, this time starting from the maximal itemset ∅ = {A,B, C, D}
at the bottom.

As we move up levels in our algebra by removing elements from
our itemsets, we can eliminate all subsets of a frequent itemset. For
example, the itemset {A,B, C} is frequent so we can remove half of
the algebra from our search space just by inspecting this one node.
Hence we see that infrequent is the dual of frequent, that subset is the
dual of superset, and that the dual of any set is its complement.

In the previous example, we took advantage of the fact that the
predicate “support(X) ≤ c” for infrequent itemsets is monotone.

DualMinerJournal.tex; 17/03/2003; 0:53; p.4

5

Definition 2. Given a set M , a predicate Q defined over the powerset
of M is monotone if

∀S, J : (S ⊆ J ⊆M ∧ Q(S))⇒ Q(J)

That is, if Q holds for S then it holds for any superset of S.

While it may seem unnatural to search for infrequent itemsets,
monotone predicates do occur naturally. For example, the constraint
“max(X) > b” is monotone. Other constraints, while not monotone
themselves, have monotone approximations that are useful in pruning
the search space. Pei and Han [18] have suggested several monotone
approximations for the constraints “avg(X) ≤ a” and “avg(X) ≥ b.”

The fact that many constraints are monotone or have monotone
approximations motivates the need for an algorithm to find all sets
that satisfy a conjunction of antimonotone and monotone predicates.
Clearly, the conjunction of antimonotone predicates is antimonotone
and the conjunction of monotone predicates is monotone. So our algo-
rithm need only consider a predicate of the form P (X) ∧Q(X), where
P (X) is antimonotone (a conjunction of antimonotone predicates) and
Q(X) is monotone (a conjunction of monotone predicates).

While a similar problem has been considered by Raedt and Kramer
[22], their algorithm performs a level-wise search with respect to the
antimonotone predicate, followed by a level-wise search on the output
with respect to the monotone predicate. If the monotone predicate is
highly selective, this approach unnecessarily evaluates a large portion
of the search space. Furthermore, the output of the first pass need not
have a nice algebraic structure, and may be difficult to traverse. To the
best of our knowledge, our algorithm is the first to use the structures of
both P and Q simultaneously to avoid unnecessary evaluations of these
potentially costly predicates. Thus our cost metrics are the number of
sets X ∈ 2M for which we evaluate P and also the number of sets for
which we evaluate Q.

Summary of our contributions:

− We introduce DualMiner, an algorithm that can prune using both
monotone and antimonotone constraints (Sections 2 and 3).

− We give several non-trivial optimizations to the basic algorithm
(Section 4).

− We analyze the complexity of our algorithm and compare it to
other algorithms from the literature (Section 5).

DualMinerJournal.tex; 17/03/2003; 0:53; p.5

6

− We present an improvement of the algorithm so that it outputs
only non-mergeable subalgebras.

− In a thorough experimental study, we show that DualMiner signif-
icantly outperforms previous work (Section 7).

2. Overview of the Algorithm

2.1. Subalgebras

One of the advantages of the MAFIA algorithm is that it only searches
for maximal frequent itemsets [8]. Not only does this permit several
optimizations in the algorithm, it also provides a very concise repre-
sentation of the output. For example, in Figure 1, the maximal frequent
itemset {A,C, D} uniquely defines the collection of all frequent itemsets
in this algebra.

Because our algorithm considers the conjunction of an antimonotone
predicate with a monotone predicate, the itemsets output by the algo-
rithm are no longer closed under subset. For example, let the prices of
A,B, C, D be 1, 4, 3, 2, respectively, and suppose we apply the predicate
“max(X.price) < 4 ∧min(X.price) < 2” to the algebra in Figure 1. As
can be seen in Figure 2, the set {A,C, D} satisfies this predicate but
the subset {C} does not. Therefore, it is not enough to search for only
maximal itemsets (or, similarly, for minimal itemsets).

However, there exists a suitable analogue of a maximal frequent
itemset. Our search space is the powerset of M , which we will refer
to as 2M . This space is an algebra with maximal (top) element M ,
minimal (bottom) element ∅, the binary operations ∩ and ∪, and the
complementation operator . Given any collection of elements Γ ⊆ 2M

that is closed under ∩ and ∪, we can define an algebra for Γ using the
following definitions.

1. T =
⋃

X∈Γ
X is the top element of Γ.

2. B =
⋂

X∈Γ
X is the bottom element of Γ.

3. For any A ∈ Γ, A = T \A.

Given this fact, we define the notion of a subalgebra appropriately.

Definition 3. A subalgebra of 2M is any collection of sets Γ ⊆ 2M

closed under ∩ and ∪.

DualMinerJournal.tex; 17/03/2003; 0:53; p.6

7

Due to the properties of P and Q, the collection of all sets X ∈ 2M

for which P (X) ∧ Q(X) is true can be represented as a collection of
subalgebras. Furthermore, these subalgebras are complete in the fol-
lowing sense: if B is the bottom element of the subalgebra, and T is
the top, then the subalgebra contains every element X of 2M for which
B ⊆ X ⊆ T . More specifically, if both P (T) and Q(B) are true then
any superset X of B which is also a subset of T satisfies P (X)∧Q(X).
So we can compactly represent our subalgebras as pairs (B, T) where
B is the bottom of the subalgebra and T is the top. We will refer to
this collection of subalgebras as good subalgebras to distinguish them
from subalgebras whose members do not necessarily satisfy P and Q.
A maximal good subalgebra is a good subalgebra that is not contained
in any other good subalgebra.

Since our subalgebras are defined by their top and bottom, our
algorithm simultaneously works from both ends of the algebra 2M . We
can do this fairly efficiently, because the combinatorial explosion of the
algebra occurs in the middle and not at the ends. Furthermore, while
the sets on one end may be quite large, we can easily code them by the
elements of M that they are missing instead of the elements that they
contain. This will not affect our ability to evaluate most constraints. If
we know both the average and size of M , then computing the average
and size of A is no more difficult than computing the average and size
of its complement A; this fact is true of most statistical functions.

Our algorithm prunes subalgebras using P on one end and Q on the
other. As an example, consider the algebra illustrated in Figure 2. At
the first level, we see that {B} does not satisfy P , and hence we remove
all supersets of {B}. Furthermore, we see that {A} = {B,C,D} does
not satisfy Q and so we remove all subsets of {A}. We are left with
the subalgebra ({A}, {A,C, D}). We can then repeat the algorithm
on this subalgebra, but this is unnecessary. Since Q is monotone and
{A} satisfies Q, we know every element of this subalgebra satisfies Q.
Similarly, since {A,C, D} satisfies P , all elements of this subalgebra
satisfy P . Thus we can determine that ({A}, {A,C, D}) is the only
maximal good subalgebra without evaluating any of the interior nodes!

Note that if our query requires itemsets to be frequent, the large sets
that we test with Q will probably not be frequent itemsets. However,
for any single element x, the sets not containing x comprise half of the
algebra. Therefore, there is some advantage to applying our constraints
to very large sets, even though they may not satisfy P .

DualMinerJournal.tex; 17/03/2003; 0:53; p.7

8

{}

{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B,C} {B,D} {C,D}

{A,B,C} {A,B,D} {A,C,D} {B,C,D}

{A,B,C,D}

Satisfies P
Satisfies Q

Satisfies P and Q

Figure 2. Simultaneously Pruning with P and Q

({}, {A,B,C,D,E}, {})

({E}, {A,B,C,D}, {})

({E}, {B,C,D}, {A})

({E}, {C,D}, {A,B})

({E}, {D}, {A,B,C})

({E}, {}, {A,B,C,D})

({}, {A,B,C,D}, {E})

({A}, {B,C,D}, {E})

({A,B}, {C,D}, {E})

Figure 3. Evaluation Tree

{}

{A,B,C,D,E}

{A,B,C,D} {B,C,D,E}{A,B,D,E} {A,C,D,E}{A,B,C,E}

{B,C,D}{A,C,D}{A,B,C} {A,B,D} {A,B,E} {A,C,E} {A,D,E} {B,C,E} {B,D,E} {C,D,E}

{A,C} {A,D} {C,D}{B,D}{B,C}{A,B} {A,E} {B,E} {C,E} {D,E}

Satisfies P and Q

Contains E

Does not contain E

{A} {B} {C} {D} {E}

Figure 4. Using the Evaluation Tree

DualMinerJournal.tex; 17/03/2003; 0:53; p.8

9

2.2. Example Run-through

Suppose the database consists of the following two transactions: {A,B,
C,D} and {E}. The prices of A and B are both 26, the prices of C and
D are both 1 and the price of E is 100. Furthermore, let P be the pred-
icate “support(X) ≥ 1” and let Q be the predicate “total price(X) >
50.” Figure 3 shows the evaluation tree of DualMiner.

Each node τ in the tree has a state that evolves as the algorithm
runs. In this figure, the evolution of the state of each node is represented
as a series of ordered triples of the form (X, Y, Z). We shall refer to the
set X as IN(τ), Y as CHILD(τ) and Z as OUT(τ). When it is unam-
biguous, we shall just refer to IN,CHILD, and OUT. For each node τ ,
IN(τ) gives a lower bound on the bottom element of the subalgebra
represented by the subtree rooted at τ ; OUT(τ) represents a subset of
the complement of the top element of that subalgebra; and CHILD(τ)
represents the rest of the items. The evolution of a node occurs as it
finds items that have already been placed in IN(τ) and OUT(τ). When
the algorithm finds that no single item is either required to be in IN(τ)
or required to be in OUT(τ), it chooses an item x from CHILD(τ)
and considers both extensions to the state represented by the now-
fully-evolved τ : that in which x is in IN(τ), or that in which x is in
OUT(τ).

Initially we are at the root node α with state ({}, {A,B, C, D, E}, {}).
Since every element is frequent, we cannot prune with P . We also
cannot prune with Q since no single element is required to be in a set in
order for its total price to exceed 50 (had Q been “total price(X) > 99”
then clearly a set must contain E in order to satisfy Q).

Note that {A,B, C, D, E} is infrequent, so our good subalgebras
cannot contain everything. Thus we have to make a choice. We choose
an element, such as E, from CHILD(α) and explore what happens
when a set contains this element. This leads to the creation of node
β with state ({E}, {A,B, C, D}, {}). Since no itemset contains both
E and A (i.e. {A,E} does not satisfy P), we can remove A from
consideration and move it from CHILD(β) to OUT(β). Now β has
state ({E}, {B,C,D}, {A}). The same is done with B,C and D and β
ends up in state ({E}, {}, {A,B, C, D}). We can interpret this to mean
that every set that contains E and does not contain any of the items
A,B, C, D satisfies P and Q. So the first algebra that we find is the
singleton algebra ({E}, {E}).

After examining the sets that contain E (in node β) we go to node γ
to explore sets that do not contain E. For this reason γ has the initial
state ({}, {A,B, C, D}, {E}). We cannot prune using P , but now we
see that a set not containing E has no hope of satisfying Q unless

DualMinerJournal.tex; 17/03/2003; 0:53; p.9

10

it contains A. Thus the state of γ changes to ({A}, {B,C,D}, {E}).
Another iteration of pruning shows that any superset of A not con-
taining E does not satisfy Q unless it also contains B. The state of γ
becomes ({A,B}, {C,D}, {E}). At this point we cannot prune with any
of our predicates, and so γ has reached its final state. We discover that
{A,B} satisfies Q while {E} = {A,B, C, D} satisfies P . Therefore we
have found our second subalgebra ({A,B}, {A,B, C, D}). Thus the al-
gorithm completes with the output ({E}, {E}), ({A,B}, {A,B, C, D}).
This is illustrated in Figure 4.

In the next two sections, we will refer back to this example and
Figure 3 for illustrative purposes. Unless otherwise mentioned, when
we refer to the states of β and γ we are referring to their final states.

3. DualMiner

The basic algorithm dynamically builds a binary tree T. Each node τ ∈
T corresponds to a subalgebra of 2M , which we refer to as SUBALG(τ).
Note that these are not necessarily “good” subalgebras. Each subalge-
bra is associated with the following objects.

1. τnew in ⊆ 2M is one of the two (implicit) labels associated with the
edge coming in to τ . If τ is the root, then τnew in is defined to be
∅. Otherwise, if σ is the parent of τ , then τnew in is generated from
σ and represents items that should be included in every element of
SUBALG(τ) but are not necessarily contained in every element of
SUBALG(σ). In our example, βnew in = {E}, γnew in = {A,B}.

2. τnew out ⊆ 2M is the other label associated with the edge coming in
to τ . If τ is the root, then τnew out is defined to be ∅. Otherwise, if σ
is the parent of τ , then τnew out is generated from σ and represents
items that should not be included in any element of SUBALG(τ)
but which are included in some element of SUBALG(σ). In our
example, βnew out = {A,B, C, D}, γnew out = {E}.

3. IN(τ) is the minimal set (bottom) of this subalgebra. Every element
in SUBALG(τ) is a superset of IN(τ). IN(τ) is thus defined as:

IN(τ) =
⋃
ρ�τ

ρnew in

Here � is the standard ancestral relation; ρ � τ if ρ is either τ or
an ancestor of τ . In our example, IN(β) = {E}, IN(γ) = {A,B}.

DualMinerJournal.tex; 17/03/2003; 0:53; p.10

11

4. OUT(τ) is the complement of the maximal set (top) of this sub-
algebra. Every element in SUBALG(τ) is a subset of OUT(τ). As
with IN(τ),

OUT(τ) =
⋃
ρ�τ

ρnew out

In our example, OUT(β) = {A,B, C, D}, OUT(γ) = {E}. We will
maintain the invariant that IN(τ) ∩OUT(τ) = ∅.

5. CHILD(τ) is a macro for IN(τ) ∪OUT(τ) and so is the set of items
representing the atoms of SUBALG(τ). That is, every nontrivial
element of SUBALG(τ) is a union of some sets of the form IN(τ)∪
{x} (where x ∈ CHILD(τ)). In our example, CHILD(γ) = {C,D}.

Collectively, we refer to these objects as the state of τ .
As we dynamically build our tree, we classify nodes as either deter-

mined or undetermined and the classification of each node will change
during the course of the algorithm. By default, every node starts out as
undetermined. The state of an undetermined node may change. Because
of this, we define the sth-iteration of a node τ to be the sth state assigned
to it during the algorithm. For convenience, we refer to this as τ s; hence
the sth version of IN(τ) is IN(τ s). If we simply write τ , then we mean
the most recent iteration of τ in our algorithm. Note that we do not
consider τ s to be a parent of τ s+1. In our example, the node γ has three
iterations and IN(γ1) = {A} (because we start counting at 0).

At each stage, we visit a node that is undetermined and make it
determined. We continue until all the nodes of T are determined. Our
traversal strategy is irrelevant; any traversal strategy that visits parents
before children is acceptable. This allows our algorithm some flexibility
for the sake of optimizations. Therefore, at the highest level, we have
DUAL MINER, illustrated in Algorithm 1.

Algorithm 1 : DUAL MINER
1: λnew in, λnew out ← ∅
2: R← ∅
3: while There are undetermined nodes do
4: Traverse to the next undetermined node τ .
5: G← EXPAND NODE(τ)
6: R← R∪G
7: Mark τ as determined.
8: end while
9: Answer = R

Let λ be the initial node. IN(λ) = OUT(λ) = ∅. Note that by our
definition of λ, SUBALG(λ) is the algebra 2M . The algorithm EX-

DualMinerJournal.tex; 17/03/2003; 0:53; p.11

12

PAND NODE(τ) expands the tree T to break the algebra SUBALG(τ)
into smaller, disjoint subalgebras that may be more easily searched.
This is done by adding children to τ that specify further subalgebras of
SUBALG(τ). It is important that the children of τ represent disjoint
subalgebras of SUBALG(τ). This is not difficult because our algorithm
ensures that no undetermined node has any children. All we have to
do is chose some item x ∈ CHILD(τ), and split SUBALG(τ) into
those sets containing x and those sets not containing x. The result
is EXPAND NODE, shown in Algorithm 2.

Algorithm 2 : EXPAND NODE(τ)
Require: τ is an undetermined node.
Returns: G, a good subalgebra or ∅.
1: G← PRUNE(τ)
2: if CHILD(τ) is not empty then
3: Choose some x ∈ CHILD(τ).
4: ρnew in, ηnew out ← {x}
5: ρnew out, ηnew in ← ∅
6: Add ρ and η as children of τ .
7: end if
8: return G

As mentioned before, the pruning strategy in PRUNE uses both
ends of our algebra, evaluating both P and Q to generate successive
states for τ . When we prune with respect to P , we look at each item
x ∈ CHILD(τ). If IN(τ)∪{x} does not satisfy P , then the antimonotone
property of P implies that no superset of IN(τ) ∪ {x} satisfies P . This
is equivalent to saying that no element of SUBALG(τ) containing x
satisfies P . Therefore, we can put x into τnew out, further restricting
SUBALG(τ). Putting this all together, we get MONO PRUNE, which
is shown in Algorithm 3.

An analogous result holds for pruning with respect to the predicate
Q. If we replace everything in the algorithm MONO PRUNE by its dual
notion, we get ANTI PRUNE, the algorithm for pruning with respect
to Q. This is shown in Algorithm 4.

Both of these algorithms assume that SUBALG(τ) is an interest-
ing algebra. It is possible that, as ANTI PRUNE puts elements into
τnew in, IN(τ) no longer satisfies P . In this case, no element of the
subalgebra satisfies P , so we will not need to do further pruning or to
construct children for this node. The easiest way to signify this is to
empty CHILD(τ) by adding CHILD(τ) to τnew out. We represent this
straightforward action as EMPTY CHILD.

DualMinerJournal.tex; 17/03/2003; 0:53; p.12

13

Algorithm 3 : MONO PRUNE(τ s)
Require: IN(τ s) satisfies P
Returns: τ s+1

1: τ s+1
new in ← τ s

new in

2: τ s+1
new out ← τ s

new out

3: for all x ∈ CHILD(τ s) do
4: if IN(τ s) ∪ {x} does not satisfy P then
5: τ s+1

new out ← τ s+1
new out ∪ {x}

6: CHILD(τ s+1)← CHILD(τ s+1)− {x}
7: end if
8: end for
9: return τ s+1

Algorithm 4 : ANTI PRUNE(τ s)

Require: OUT(τ s) satisfies Q
Returns: τ s+1

1: τ s+1
new in ← τ s

new in

2: τ s+1
new out ← τ s

new out

3: for all x ∈ CHILD(τ s) do
4: if OUT(τ s) ∪ {x} does not satisfy Q then
5: τ s+1

new in ← τ s+1
new in ∪ {x}

6: CHILD(τ s+1)← CHILD(τ s+1)− {x}
7: end if
8: end for

It is clear that these pruning algorithms affect each other. The out-
put of MONO PRUNE is determined by IN(τ), which is in turn modi-
fied by the algorithm ANTI PRUNE. Similarly, MONO PRUNE mod-
ifies OUT(τ), which determines the output of ANTI PRUNE. There-
fore, it makes sense to interleave these algorithms until we reach a
fixed point. The resulting pruning algorithm PRUNE(τ) is shown in
Algorithm 5.

Note that PRUNE is the most extreme pruning strategy. It will
not affect the correctness of our algorithm to do less pruning. We
may choose only to do a fixed number of passes of MONO PRUNE
and ANTI PRUNE. We may even choose to skip one or both of them
altogether. This allows us some flexibility for optimization, as discussed
in Section 4.

The correctness of this algorithm should be somewhat clear from
the accompanying discussion. However, for a more rigorous proof, we
present the following.

DualMinerJournal.tex; 17/03/2003; 0:53; p.13

14

Algorithm 5 : PRUNE(τ)
Returns: A good subalgebra or ∅.
1: s← 0 (Note, at this point τ = τ0 by definition)
2: repeat
3: if IN(τ s) satisfies P then
4: τ s+1 ← MONO PRUNE(τ s)
5: else
6: τ s+1 ← EMPTY CHILD(τ s)
7: end if
8: s← s + 1 // Pruning has changed the iteration
9: if OUT(τ s) satisfies Q then

10: τ s+1 ← ANTI PRUNE(τ s)
11: else
12: τ s+1 ← EMPTY CHILD(τ s)
13: end if
14: s← s + 1 // Pruning has changed the iteration
15: until τ s

new in = τ s−1
new in and τ s

new out = τ s−1
new out

16: if IN(τ s) satisfies Q and OUT(τ s) satisfies P then
17: τ s+1 ← EMPTY CHILD(τ s) (At this point τ = τ s+1)
18: return (IN(τ s),OUT(τ s))
19: else
20: return ∅
21: end if

Definition 4. The depth of a node τ s is an ordered pair (p, s) where
p is the number of nodes (excluding τ) whose descendants include τ ,
and s is the most recent iteration of τ . We define an ordering ≥η on
depth as follows: (p1, s1) ≥η (p2, s2) if p1 > p2 or (p1 = p2)∧ (s1 ≥ s2).

Theorem 1. A set A satisfies P ∧Q if and only if A is an element of a
subalgebra returned by EXPAND NODE at some point in the algorithm.

Proof. Note that EXPAND NODE returns the same subalgebra that
it receives from PRUNE. We will prove the direction assuming that
A satisfies P ∧ Q; the other direction is clear. Define the predicate
INCLUDEDτ as:

INCLUDEDτ (A) = IN(τ) ⊆ A ⊆ OUT(τ) (1)

Note that INCLUDEDλ0(A) is true (where λ is the root node of T). Let
τ s be the node of greatest depth for which (1) holds. If IN(τ s) satisfies
Q and OUT(τ s) satisfies P then clearly we are done. Otherwise, after
calculating IN(τ s) and OUT(τ s) in PRUNE, the algorithm would either

DualMinerJournal.tex; 17/03/2003; 0:53; p.14

15

call EMPTY CHILD(τ s), go through another pruning iteration, or add
two children to τ s in EXPAND NODE.

If the algorithm called EMPTY CHILD(τ s) then either IN(τ s) fails
to satisfy P or OUT(τ s) fails to satisfy Q. In the first case, since P
is antimonotone, A also fails to satisfy P , a contradiction. The second
case is similar because of symmetry.

If we go through another pruning iteration, then we get τ s+1 from
either MONO PRUNE or ANTI PRUNE. In either case, it is clear
that INCLUDEDτs+1(A) holds, which contradicts the maximality of
the depth of τ s.

If we add two children to τ s then let x ∈ CHILD(τ) be the item
defining the two children of τ in EXPAND NODE. Assume that x ∈
A(the case that x 6∈ A is symmetric), and let ρ be the child of τ
such that x ∈ ρnew in. Then INCLUDEDρ0(A) holds, which is also a
contradiction.

4. Optimizations

The algorithm outlined above is in its most primitive form in order
to make it easy to follow. There are several places in which it can
be optimized. The most obvious optimization is to remove calls to
MONO PRUNE or ANTI PRUNE that we know will not actually do
any pruning. For example, if τ s

new in is empty and σ is the parent of τ ,
then IN(τ s) = IN(σ). Therefore, there is nothing to be gained calling
MONO PRUNE on τ s when τ s

new in is empty. A similar result holds for
ANTI PRUNE when τ s

new out is empty.
Similarly, in the non-degenerate case, we run the same pruning al-

gorithm on τ s+2 that we run on τ s. Hence there is no point pruning
τ s+2 with MONO PRUNE if τ s+2

new in = τ s
new in. Part of this rationale

is captured by the repeat-until loop in PRUNE. However, this loop
continues until both τnew in and τnew out achieve a fixed point.

Another optimization issue depends on the cost structure of our
predicates. Certain predicates may be very expensive on large sets, so
we may wish to avoid computing P on OUT(τ s) as we do in line 16 of
PRUNE. In order to avoid this computation, we conservatively assume
that OUT(τ s) does not satisfy P and thus return the empty set. This is
equivalent to replacing lines 16–21 of PRUNE with “return” (we don’t
care about the return value since it would always be the empty set).
We will refer to this alternate version of PRUNE as PRUNE′. We then
continue exploration of the subalgebra and use the observation that
if τ has no children and IN(τ) satisfies P , then so will IN(τ ′) for any

DualMinerJournal.tex; 17/03/2003; 0:53; p.15

16

({}, {A,B,C,D}, {E})

({A}, {B,C,D}, {E})

({A,B}, {C,D}, {E})

 ({A,B,C}, {D}, {E})

 ({A,B,C,D}, {}, {E})

Figure 5. An Extended Evaluation Tree

ancestor τ ′ of τ . This is done by replacing EXPAND NODE with the
following algorithm, EXPAND NODEP .

Algorithm 6 : EXPAND NODEP (τ)
Require: τ is an undetermined node.
Returns: a good subalgebra or ∅.
1: PRUNE′(τ)
2: if CHILD(τ) is not empty then
3: Choose some x ∈ CHILD(τ).
4: ρnew in, ηnew out ← {x}
5: ρnew out, ηnew in ← ∅
6: Add ρ and η as children of τ .
7: return ∅
8: else if IN(τ) satisfies P then
9: σ ← the ancestor of τ of minimal depth satisfying Q.

10: return (IN(σ),OUT(τ))
11: end if

To see how this alters the original algorithm, consider the example
from Section 2.2. Instead of checking whether γ gives us a good subal-
gebra (which it does), we further expand it to nodes δ and ε as shown
in Figure 5. Once we reach ε, we discover that {A,B, C, D} satisfies P
and hence every subset of it must also satisfy P . As γnew in satisfies Q,
we see that ({A,B}, {A,B, C, D}) is a good subalgebra.

The proof that this new algorithm is correct is not that different from
before. If A satisfies P ∧ Q, then it is an element of some subalgebra
returned by EXPAND NODEP . Again, let τ be the node of greatest
depth for which (1) in the proof of Theorem 1 holds (i.e. IN(τ) ⊆
A ⊆ OUT(τ)). Subsequent calls to PRUNE′ will not prune A because
the modified version of PRUNE and the old version still do the same

DualMinerJournal.tex; 17/03/2003; 0:53; p.16

17

pruning. This is because the affected lines (16-21 of PRUNE) are not
involved in pruning the search space — they only delay the output of
good subalgebras. Furthermore, we cannot expand the node τ , as one
of the children would satisfy (1). Therefore, CHILD(τ) must be empty
and so

A = IN(τ) = OUT(τ)

Therefore A is output in EXPAND NODEP in line 10.
For the other half of correctness, we introduce the following defini-

tion.

Definition 5. A complete left chain is a sequence of nodes {τk}k≤n

such that the following all hold.

1. CHILD(τ0) = ∅

2. τk+1 is the parent of τk for all k < n.

3. (τk)new out = (τn)new out for all k < n.

Looking at Figure 5, we see that {ε, δ, γ} forms a complete left chain.
If we replace (τk)new out with (τk)new in in the previous definition, we
get a complete right chain.

Note that for any ancestor σ of τ , IN(σ) ⊆ IN(τ) and OUT(τ) ⊆
OUT(σ). Therefore, since P is antimonotone and Q is monotone, we
have the following result giving us the correctness of our new algorithm
with EXPAND NODEP .

Proposition 2. If {τk}k≤n is a complete left chain, every element of
SUBALG(τn) satisfies P . Furthermore, if additionally IN(τn) satisfies
Q, then every element of SUBALG(τn) satisfies P ∧Q. A similar result
holds when {τk}k≤n is a complete right chain.

This means that once we find a node τ such that CHILD(τ) = ∅,
we need only find the least σ � τ such that

1. There is a complete left chain from τ to σ.

2. IN(σ) satisfies Q.

These two properties imply that all of SUBALG(σ) satisfy P ∧ Q. In
this case, we should consider every descendant of σ to be determined,
and choose the sibling of σ to be our next node in our traversal strategy.

A problem with the new algorithm is that, as written, EXPAND -
NODEP outputs multiple subsets of a subalgebra. In the example
above, the descendants of γ other than ε will also give us subsets of
the same subalgebra, ({A,B}, {A,B, C, D}). To solve this problem, we

DualMinerJournal.tex; 17/03/2003; 0:53; p.17

18

can generalize the HUT strategy from the MAFIA algorithm [8]. We
will call this strategy Dual HUT. In a standard depth-first traversal
(of a frequent itemset algorithm), we know that if every element of
the leftmost branch satisfies P , then everything to the right must also
satisfy P (i.e. everything to the right is a subset of a set in the leftmost
branch). Similarly, if σ � τ , then SUBALG(τ) ⊆ SUBALG(σ). There-
fore, if we can find a complete left chain from τ to σ, we can output
SUBALG(σ) and mark all of the descendent’s of σ as determined.

An analogous statement is true for complete right chains. Complete
right chains are useful when the evaluation of Q is expensive while
the evaluation of P is relatively cheap. To take advantage of such
knowledge we can derive EXPAND NODEQ from EXPAND NODEP

by appropriately modifying lines 10-12. We will refer to this technique
for complete left and right chains as the Dual HUT strategy.

We are interested in complete left chains from τ to σ even if IN(σ)
does not satisfy Q. We still know that every element of SUBALG(σ)
satisfies P . Hence we no longer need to evaluate MONO PRUNE for
nodes in SUBALG(σ) even though we have to traverse them. A similar
argument holds for Q if IN(σ) satisfies Q.

Because we value complete right chains as much as complete left
chains in our algorithm, it may be advantageous to take a “steady
state” approach to our traversal strategy. In this approach, if we are
visiting the left child of a node (i.e. a child τ such that τ0

new out = ∅), we
should continue choosing the left child as we descend the tree. Similarly,
if we are visiting the right child of a node, we should continue choosing
the right child as we descend the tree.

Now we can see how the traversal strategy may depend on the cost
structure of P . For example, suppose P is a support constraint and
support counting is done using bitmaps, as in the MAFIA algorithm.
If we continue to visit left children (starting from a node σ), then the
total cost of evaluating P on IN(τ) (for each node τ that we expand)
is almost the same as the cost of evaluating P on OUT(σ). Therefore,
there is no point in checking if OUT(σ) satisfies P , since we will find
this out during our traversal of left children at almost the same cost.
However, if P is a constraint of the form “min(X) > c” then evaluating
P takes constant time and so we can evaluate P on OUT(σ) in the hope
that this will result in fewer nodes being expanded.

Other MAFIA optimizations [8], such as keeping a partial list of
maximal frequent itemsets (or minimal sets that satisfy Q) may also
be used to reduce the number of predicate evaluations.

Sometimes, evaluations of MONO PRUNE or ANTI PRUNE may
be very inefficient, especially if they do not result in any pruning.
Usually we can’t predict these occurrences, but knowledge of the do-

DualMinerJournal.tex; 17/03/2003; 0:53; p.18

19

main and knowledge of extra properties of P and Q can be utilized to
develop heuristics. For example, suppose we are given the constraint
total price(X) > c and the prices of items are low and relatively uni-
form. If CHILD(τ) has many items and IN(τ) has few (and so would
have a small total price) we would not expect much pruning to be done.
In this case, a suitable heuristic would avoid pruning with Q until the
size of CHILD(τ) falls beneath some threshold. This would save many
unnecessary evaluations of Q.

At the same time, some chances to prune with Q may be missed.
It would be unfortunate if this results in an incorrect algorithm. This
turns out not to be a problem with DualMiner. The proof of correctness
in Theorem 1 is general enough to apply to any deterministic pruning
strategy that satisfies the following properties:

1. The pruning phase is safe (i.e. no element is incorrectly moved to
OUT(τ))

2. Once the pruning phase at a node stops, the algorithm performs a
choice step (as in lines 3-6 of EXPAND NODE) and subsequently
it considers both children of that node.

With these guidelines, several types of heuristics are available to us:

Traversal Strategy: As hinted in line 4 of DUAL MINER (Algo-
rithm 1), nodes can be visited in almost any order. For example,
nodes can be traversed in a depth-first Mafia-style order or a
breadth-first Apriori-style order. They can even be visited using a
hybrid traversal strategy. The choice of this heuristic depends on
which implementation is considered to be more efficient.

Pruning Order Heuristics: These heuristics select the order in which
elements from CHILD(τ) are selected for pruning tests (see line 3
of MONO PRUNE and ANTI PRUNE)

Choice Order Heuristics: Similar to the pruning order heuristics,
they choose which element from CHILD(τ) to branch on (see line
3 of EXPAND NODE).

Stop Heuristics: These heuristics decide when to stop performing
pruning tests on elements in CHILD(τ). For example, stop when
all the elements have been tested (this is what DualMiner does by
default).

Control Heuristics: Control Heuristics decide the order of calls to
MONO PRUNE and ANTI PRUNE and also decide when to end
the pruning phase at a node. By default, DualMiner alternates

DualMinerJournal.tex; 17/03/2003; 0:53; p.19

20

pruning with P and Q and ends the pruning phase when no more
changes can be made.

Once again, suppose Q is the constraint “total price(X) > c.” We
can use the pruning and choice order heuristics to order the elements of
CHILD(τ) by decreasing value. A stop heuristic would stop Q pruning
tests as soon as an element is not placed in IN(τ) (i.e. it doesn’t satisfy
the “if” condition on line 4 in ANTI PRUNE). Since no element with
a smaller value could be placed in IN(τ) during this evaluation of
ANTI PRUNE, unnecessary work is avoided. A control heuristic could
decide to alternate evaluations of ANTI PRUNE and MONO PRUNE
until no changes are possible, unless |CHILD(τ)| is larger than a spe-
cific threshold (in which case ANTI PRUNE is not evaluated at all).
Note that if Q were an upper bound on support rather than a lower
bound on sum, the stop heuristics in conjunction with the order heuris-
tics would not be as effective; a new set of heuristics would be needed.

With all this leeway, DualMiner is a highly customizable algorithmic
framework. Its efficiency can be improved by utilizing domain-specific
knowledge and properties of the desired constraints.

5. Complexity

We can consider the antimonotone predicate P and monotone pred-
icate Q to be oracles whose answers satisfy the antimonotone (resp.
monotone) constraints. Thus we identify the predicate P with the
oracle that evaluates P on a set of items (and similarly for Q). The
underlying dataset D and the set of all items I are assumed to be
arbitrary but fixed and so need not be mentioned explicitly. Given
these preliminaries, we can define the following sets (Ω will be used to
denote an oracle/predicate which is either monotone or antimonotone):

Theory of Ω : Th(Ω) = {S | Ω(S)}
Border of P : B(P) = {S | ∀T ⊂ S : P (T)

∧ ∀W ⊃ S : ¬P (W)}
Border of Q : B(Q) = {S | ∀T ⊃ S : Q(T)

∧ ∀W ⊂ S : ¬Q(W)}
Positive Border of Ω : B+(Ω) = B(Ω) ∩ Th(Ω)

Negative Border of Ω : B-(Ω) = B(Ω) ∩ Th(¬Ω)

Note that the last two equations imply that the border of P is divided
into the positive border (whose sets satisfy P) and the negative border
(whose sets do not satisfy P). Also note that B-(Ω) is equivalent to

DualMinerJournal.tex; 17/03/2003; 0:53; p.20

21

B(Ω) − B+(Ω) and is used for pruning, while B+(Ω) is used to verify
that a set of items satisfies Ω. This observation leads to the following
proposition by Gunopulos et al. [10]:

Proposition 3. Given a monotone or antimonotone predicate Ω, com-
puting Th(Ω) requires at least |B(Ω)| calls to the oracle Ω.

In the sequel, quantities such as “|B(Ω)| evaluations of Ω” will be
written as “|B(Ω)|Ω evaluations.” Analogously, to compute all sets of
items that satisfy P and Q (i.e. Th(P) ∩ Th(Q) - which we shall refer
to as Th(P ∧Q)) we have the following bounds:

Proposition 4. Computing Th(P ∧Q) using the oracle model requires
at least |Th(Q) ∩B(P)|P + |Th(P) ∩B(Q)|Q oracle calls.

Proof. The search space consists of four regions: Th(P)∩Th(Q), Th(P)∩
Th(¬Q), Th(¬P) ∩ Th(Q) and Th(¬P) ∩ Th(¬Q). The first region
cannot be described more succinctly than by the set of tops (Th(Q) ∩
B+(P)) and by the set of bottoms (Th(P)∩B+(Q)) of maximal subal-
gebras. The second and third regions are areas where only one predicate
can be used to prune the search space. Thus knowing Th(P)∩B-(Q) is
necessary to prune part of the second region, while B-(Q) is sufficient
to prune all of it (neither bounds are very tight for reasons discussed
later). Similar statements hold for the third region. Thus we need at
least

|Th(Q) ∩ B+(P)|P + |Th(Q) ∩ B+(P)|Q
+|Th(Q) ∩ B-(P)|P + |Th(P) ∩ B-(Q)|Q
= |Th(Q) ∩B(P)|P + |Th(P) ∩B(Q)|Q

oracle calls.

The presence of the fourth region (Th(¬P) ∩ Th(¬Q)) shows why
the bounds are not very tight. This region can be pruned using B-(P)∩
Th(¬Q) or B-(Q)∩Th(¬P) or by using various sets from each of those
borders. The best choice relies heavily on the relative costs and cost
structures of P and Q as well as the structure of the areas they prune.
For example, pruning some areas with P may require many sets from
B-(P) ∩ Th(¬Q) while pruning the same area with Q may require less
sets from B-(Q)∩Th(¬P). There may also be a lot of redundancy due to
heavy overlapping of regions pruned by various sets in B-(P)∩Th(¬Q).

For the regions where only one predicate can be used to prune (such
as Th(Q)∩Th(¬P)) we have similar issues. This region can be pruned
by evaluating P on the B+(¬P ∧Q) (i.e. the minimal sets that satisfy Q
but not P). This set includes the necessary Th(Q)∩B-(P) (as required

DualMinerJournal.tex; 17/03/2003; 0:53; p.21

22

by the previous proposition). However, we can also use the following
subset of B-(P) to prune the same region:

M = {S|S ∈ B-(P) ∧ ∃T ∈ Th(¬P) ∩ Th(Q) ∧ T ⊇ S}

There are situations where either collection has a smaller cardinality,
howeverM has the added benefit of pruning some of Th(¬Q)∩Th(¬P)
as well.

Existing Algorithms

Running times for algorithms that mine constrained itemsets tend to
be highly correlated with the number of predicate evaluations that are
required (since the predicates are evaluated for each candidate set that
is generated). Thus we use the number of evaluations of P and Q as the
cost metric for analyzing DualMiner and various alternative algorithms.

The Apriori algorithm for computing Th(P) requires exactly |Th(P)
∪B−(P)|P oracle queries (since the collection of non-frequent candidate
sets it generates is precisely the negative border). Similarly, its dual
algorithm for calculating Th(Q) requires exactly |Th(Q) ∪ B−(Q)|Q
oracle queries.

MAFIA, in contrast to Apriori, uses a depth-first traversal strat-
egy. Because of this, MAFIA cannot use a candidate generation al-
gorithm as good as Apriori. In fact, it is possible that MAFIA tests
the support of sets outside Th(P) ∪ B-(P). For example, given the
set of items {A,B, C, D, E}, if the transaction {A,B, C, D} is frequent
but {C,E} is not, it is possible that MAFIA test the support of the
transactions {A}, then {A,B} then {A,B, C}, then {A,B, C, D} and
{A,B, C, D, E}. However {A,B, C, D, E} is not in Th(P), nor is it in
B-(P) since {C,E} is not frequent. If a set S is frequent, or has a
frequent subset of size |S| − 1, then it is possible that MAFIA will test
its support and so MAFIA will use at most (N + 1) Th(P) oracle calls
(where N is the number of items). This is a very loose upper bound
since MAFIA looks for maximal frequent itemsets and has various
optimizations that reduce the number of sets in Th(P) whose support
needs to be checked (such as the HUT strategy which can avoid testing
the exponentially many subsets of a maximal frequent itemset). Let S
be the collection of all sets in Th(P) for which MAFIA evaluates P .
Then MAFIA will evaluate P for at most N |S| sets outside Th(P).
Thus MAFIA uses heuristics to reduce the size of S. It also has smaller
memory requirements than Apriori (due to its depth-first rather than
breadth-first traversal of the search space) and avoids Apriori’s expen-
sive candidate generation algorithm. In addition, there is experimental
evidence to show that it is more efficient than Apriori [8].

DualMinerJournal.tex; 17/03/2003; 0:53; p.22

23

Computing Th(P ∧ Q) can be done naively by separately running
Apriori or MAFIA (using P), the corresponding dual algorithm (using
Q) and then intersecting the results. This algorithm, which will be
referred to as INTERSECT, clearly has a worst case bound |Th(P) ∪
B−(P)|P + |Th(Q) ∪B−(Q)|Q oracle queries (when using Apriori).

Another naive approach, POSTPROCESS, computes Th(P) and
then post-processes the output by evaluating Q for each element of
the output. This can be done using |Th(P) ∪ B−(P)|P + |Th(P)|Q
oracle evaluations. POSTPROCESS does not leverage the monotone
properties of Q, and so can be improved as in [20]: for each x ∈ Th(P)
that is found, evaluate Q(x) unless we know Q(t) is true for some t ⊂ x.
This algorithm (when using Apriori), which we will refer to as CON-
VERTIBLE, evaluates Q on every set in Th(P)∩(Th(¬Q)∪B+(Q)) and
thus uses |Th(P)∪B−(P)|P + |Th(P)∩Th(¬Q)|Q+ |Th(P)∩B+(Q)|Q
predicate evaluations. Assuming P is more selective than Q (as is usu-
ally true when P contains a support constraint), the CONVERTIBLE
algorithm will tend to dominate both POSTPROCESS and INTER-
SECTION. It will also be very efficient when Q is not very selective
since then |Th(¬Q)| is small.

One more alternative to DualMiner is an enhanced version of Mel-
lish’s algorithm [22]. This algorithm outputs two sets S and G (the
collection of tops of all maximal subalgebras and the collection of all
bottoms, respectively). While this representation is very compact, con-
siderable work needs to be done to output Th(P ∧ Q) from its result.
The algorithm takes as input a predicate of the form c1 ∧ c2 ∧ · · · ∧ cn

where each ci is either a monotone or antimonotone predicate. MEL-
LISH+ computes S and G for c1 (using a top-down or bottom-up
level-wise algorithm similar to Apriori). The borders are then refined
using c2 and a level-wise algorithm that starts at the appropriate border
S or G (depending on the type of the constraint c2). This process
is then repeated for the predicates c3, . . . , cn. This algorithm is very
likely to waste computation because it does not combine all the mono-
tone predicates into one (more selective) monotone predicate (through
the use of conjunctions) and similarly for antimonotone predicates.
The result is that predicate evaluations occur for sets that could have
already been pruned. For this reason the running time is heavily in-
fluenced by the order in which the predicates are presented to the
algorithm. To avoid this, we can merge all the antimonotone pred-
icates into one (and similarly for the monotone ones) and then use
the antimonotone predicate first (since it is likely to be more selec-
tive). Assuming P has a support constraint (and is thus probably
more selective than Q) it makes sense to run the bottom-up level-
wise algorithm for P first. If top-down algorithm is then run for Q,

DualMinerJournal.tex; 17/03/2003; 0:53; p.23

24

the resulting complexity is similar to CONVERTIBLE. If the bottom-
up version is used for Q then we can get the following upper bounds:
|Th(P)∪B-(P)|P + |Th(P)∩Th(Q)|Q + |Th(P)∩B-(Q)|Q evaluations.

The main distinction between DualMiner and its competitors is that
DualMiner interleaves the pruning of P and Q. The other algorithms
can be logically separated into two phases (even though they may not
be implemented that way): finding Th(P) and then refining the result
to compute Th(P) ∩ Th(Q). This is not very efficient for selective Q
since its pruning power is not used in the first phase.

As the results for MAFIA indicate, it is possible that DualMiner
(using depth-first traversal) can make an oracle call for a set outside
Th(P)∪B-(P) and Th(Q)∪B-(Q). However, the same thing can happen
for a breadth-first traversal strategy. The reason for this is that pruning
with Q can eliminate some frequent itemsets from consideration. This
prevents the use of the Apriori candidate generation algorithm: for a
given set S, we may not be able to verify (without additional evalua-
tions of P) that all of its subsets of size |S|−1 are frequent. Thus using
a depth-first or breadth-first strategy, DualMiner will never make more
than (N +1)|Th(P)|P +(N +1)|Th(Q)|Q + |Th(P)∩Th(¬Q)|Q oracle
calls. The last term in the sum is the result of DualMiner testing for the
bottom of a subalgebra. This is an overly pessimistic upper bound since
it does not take into account the savings we get from pruning Th(P)
with Q and vice-versa. Also, optimizations can be used to reduce the
number of evaluations of P and Q. For example, for depth-first strategy,
we can use the same optimizations that MAFIA uses [8].

6. The Subalgebra Fragmentation Problem

The same thing that lets DualMiner beat its complexity estimates
can also cause a disadvantage. The performance of DualMiner may
be adversely affected by a fragmentation problem due to our use of
subalgebras. While this output representation is more compact than
just outputting itemsets, DualMiner does not output the minimal rep-
resentation in terms of subalgebras. This happens because every time
a choice on an item is made, the search space is split in two halves, and
if a subalgebra exists that covers parts of both halves then that subal-
gebra would also be split. It turns out that a subalgebra can be split
arbitrarily many times. This fragmentation problem can be addressed
either by trying to merge the resulting subalgebras or by using some
strategies in choosing the splitting item to minimize the fragmentation
problem (for example if Q is“total price(X) > 100,” we may choose an
item with large price - this resulted in an algorithm that will be referred

DualMinerJournal.tex; 17/03/2003; 0:53; p.24

25

to as DualMiner+q in the experiments). The second approach is more
promising, even though we cannot eliminate the problem entirely.

An example that illustrates the fragmentation problem is the follow-
ing. Suppose the items are A1, A2, . . . , An, B, C, with prices 1, 1, . . . , 1,
n+1, n+1, the transaction database contains transactions {A1, A2, . . .,
An, B} and {A1, A2, . . ., An, C}. Let P be “support(X) ≥ threshold
(> 0)” and let Q be “total price(X) > n.” The most compact repre-
sentation of the solution in this case is ({B}, {A1, A2, . . ., An, B}) and
({C}, {A1, A2, . . ., An, C}), which happens if the algorithm first selects
B, then C (or first C then B). If the first choices are made on some Ai’s
(as is very likely for DualMiner without using some clever strategies)
then these two subalgebras can become very fragmented.

6.1. Splitting and Merging Subalgebras

A subalgebra can be split into two or more disjoint subalgebras. We
will consider the first case, the other cases are just generalizations of
the first one, that is the resulting two subalgebras are further split in
two and so on. We first need to establish the possible cases for splitting
a subalgebra or the reverse operation, that is merging two subalgebras
into one.

Given that the subalgebras produced by DualMiner are complete,
that is have the form (B, T) = {X |B ⊆ X ⊆ T}, the following lemma
gives us the information required for splitting and merging complete
subalgebras.

Lemma 5. Let G = (B, T), G1 = (B1, T1), G2 = (B2, T2) be complete
subalgebras. Then G = G1 ∪ G2, G1 ∩ G2 = ∅ if and only if, for some
E ∈ T \B, either of the following hold:

1. B1 = B, B2 = B ∪ {E}, T1 = T \ {E}, T2 = T ;

2. B1 = B ∪ {E}, B2 = B, T1 = T, T2 = T \ {E}.

Proof. First we prove the reverse direction. Suppose (1) holds. It is clear
that G1 ⊂ G and G2 ⊂ G, so G1∪G2 ⊆ G. To show that G ⊆ G1∪G2,
take X ∈ G. We have either E ∈ X, or E 6∈ X. If E ∈ X, then
B ∪ {E} ⊆ X ⊆ T, so X ∈ G2. If E 6∈ X, then B ⊆ X ⊆ T \ {E}, so
X ∈ G1. Therefore G ⊆ G1 ∪ G2, then G = G1 ∪ G2. It is clear that
G1 ∩G2 = ∅ because every set in G1 does not contain E and every set
in G2 contains E. The proof for when (2) holds is similar.

Now suppose G = G1 ∪G2, G1 ∩G2 = ∅. Because B ∈ G, we have
that B ∈ G1 or B ∈ G2. Suppose B ∈ G1. Then we can show that
(1) holds. In the case when B ∈ G2, we can show that (2) holds using
similar arguments. B ∈ G1 implies that B1 ⊆ B. B1 ∈ G1 implies that

DualMinerJournal.tex; 17/03/2003; 0:53; p.25

26

B1 ∈ G1 ∪ G2 = G, then B ⊆ B1. Therefore B1 = B. T ∈ G implies
that T ∈ G1 or T ∈ G2. But T 6∈ G1 otherwise G = G1 and G2 = ∅
which contradicts lemma’s assumptions. So T ∈ G2. Then T ⊆ T2.
Similar to B ⊆ B1 we can show that T2 ⊆ T. Therefore T2 = T.

We also have B ⊂ B2 and T1 ⊂ T. We can not have equality because
in that case G1∩G2 6= ∅ would contradict the hypothesis. Assume B2 =
B∪{E1, E2, . . . , Ek}, for some k ≥ 1 and E1, E2, . . . , Ek ∈ T \B. If k ≥
2, then ∀i ≤ k, B ∪ {Ei} 6∈ G2, since B ∪ {Ei} ⊂ B ∪ {E1, E2, . . . , Ek},
the latter being the bottom element of G2. Since B ∪ {Ei} ∈ G, it
follows that B∪{Ei} ∈ G\G2 = G1 for any i ≤ k. As G1 is a complete
subalgebra, it must contain B∪{E1, E2, . . . , Ek} = B2. This contradicts
the fact that G1 ∩ G2 = ∅. Therefore it must be the case that k = 1.
So B2 = B ∪ {E}, considering E = E1. Similarly, we can show that
T1 = T \ {E′}. It is easy to see that E = E′, otherwise we could get
B2 = B ∪{E} ⊆ T \ {E′} then G1 ∩G2 6= ∅, again a contradiction.

The above lemma says that a subalgebra can be split into two sub-
algebras, one of them having all sets that contain a chosen element
and the other one having all sets that do not contain the same chosen
element. It also tells that two subalgebras can be merged into one
subalgebra only when all the sets of one subalgebra can be obtained
from the sets of the other subalgebra by adding or removing a single
element.

Thus, merging two subalgebras reduces to checking for these cases
among the subalgebras in the output. One solution would be to post-
process the result, but there is a better solution, that is merging sub-
algebras during the execution of the algorithm.

6.2. Adjusting the Algorithm

In order to do the merging of subalgebras during the normal execution
of the algorithm, we need to add a new field to the nodes of our search
tree. Thus, in addition to IN,CHILD and OUT, a node will have a field
SUBALGS that would contain some subalgebras of algebra (IN,OUT).
The result of the algorithm will be the union of all the sets SUBALG
for all the expanded nodes of the search tree.

We only need to modify Algorithm 1 (DUAL MINER) and Al-
gorithm 2 (EXPAND NODE(τ)). In DUAL MINER we do not need
lines 2 and 6, and in line 9 we replace R with the union of the fields
SUBALGS described above. EXPAND NODE needs not return a value
anymore, since it would not be used in DUAL MINER. In EXPAND -
NODE we add G to SUBALGS(τ) and then call MERGE(G, τ).

The new algorithm would insure that there is no more merging
possible. However, the output is not necessarily optimal, as can be seen

DualMinerJournal.tex; 17/03/2003; 0:53; p.26

27

Algorithm 7 : MERGE(G, τ)
Require: G = (B, T) is a good subalgebra, τ is a node.
1: for all ancestors σ of τ (taken from the closest to τ to the farthest,

and including τ) do
2: if any of the children of σ is undetermined then
3: continue
4: end if
5: let ρ be the child of σ that is an ancestor of τ and let η be the

other child.
6: if ρ0

new in = {E} then
7: let G′ = (B \ {E}, T \ {E})
8: else
9: let G′ = (B ∪ {E}, T ∪ {E})

10: end if
11: look for subalgebra G′ in the tree rooted at η (This can be done

efficiently by following only one path in the tree.)
12: while G′ was found do
13: remove G and G′ from their location, let G = G ∪G′ and add

G to SUBALGS(σ)
14: look for a subalgebra G′ in SUBALGS(σ) that can be merged

to G.
15: end while
16: end for

from the following example. Consider two transactions {A,B, C} and
{B,C,D,E} where item B has a high price (e.g. 100) while the other
items have low prices (e.g. 1). Furthermore, let P be “support(X) ≥
0.5” and let Q be “total price(X) ≥ 50.” Then the solution would be
({B}, {A,B, C}), ({B}, {B,C,D,E}). However, these two subalgebras
are overlapping; that is they both contain subalgebra({B}, {B,C}),
so they can not be output by DUAL MINER. We could have either
({A,B}, {A,B, C}) and ({B}, {B,C,D,E}) or ({B}, {A,B, C}), ({B,
D}, {B,C,D}), and ({B,E}, {B,C,D,E}). While the former represen-
tation is desirable (especially when we replace {E} with {E,F, G, . . . },
as then the second subalgebra can be split into more than two subalge-
bras), the latter is also possible. We may want to first split ({B}, {A,B,
C}) into ({A,B}, {A,B, C}) and ({B}, {B,C}) and then merge the
second subalgebra into ({B,D}, {B,C,D}) and ({B,E}, {B,C,D,E})
to form ({B}, {B,C,D,E}), but that requires much more work as we
would need to split every subalgebra we find at the beginning, then
to decide which representation is better. If we allowed overlapping
subalgebras we would still have to break a subalgebra in order to be

DualMinerJournal.tex; 17/03/2003; 0:53; p.27

28

able to merge its components with other subalgebras. But breaking
subalgebras is not advisable, because the complexity of the problem
would increase too much.

The following theorem establishes the correctness of the modified
algorithm.

Theorem 6. At the end of the execution of the algorithm, there are
no subalgebras that could be merged.

Proof. We prove the theorem by contradiction. Suppose there are two
subalgebras that could have been merged. They are either at the same
node in the tree or not. In the case they are located at the same node in
the tree, we have a contradiction with lines 13-14 of algorithm MERGE.
So, they must be located at different nodes in the tree. Now, if they
are located at nodes that are descendants of a node on its two different
branches, they should have been merged at lines 5-14. The only case
that is left is that one subalgebra G1 = (B1, T1) is located at a node
σ1 that is a descendant of the node σ2 where the other subalgebra
G2 = (B2, T2) is located. Let B = B1 ∩B2. Then, there is some E such
that either E ∈ B1, but E 6∈ B2, or E 6∈ T1, but E ∈ T2. E is in fact
the element that is contained in σ0

2,new in or in σ0
2,new out respectively.

But this case is not among the cases of Lemma 5. This completes the
proof.

7. Experimental Results

While DualMiner interleaves the pruning of P and Q, the other algo-
rithms (POSTPROCESS, MELLISH+, INTERSECTION, CONVERT-
IBLE) essentially calculate Th(P) and then refine the result (any al-
gorithm that does this will be called a “2-phase” algorithm). If Q
has little selectivity, then CONVERTIBLE is expected to be the best
algorithm, since it examines Th(¬Q) (which should be a small set).
However, if Q is selective then it is possible that 2-phase algorithms
waste too much time finding Th(P). Our experiments show that in
this case DualMiner beats even a “super” 2-phase algorithm (where
the second phase is computed at no cost). To make this evaluation, we
assume that P is more expensive than Q to evaluate. If P is a support
constraint and Q is a constraint on the sum of prices, it is reasonable
to expect that P is about N times more expensive to compute than Q
(where N is the number of transactions in the database). We use a more
conservative estimate and say that P is only 100 times as expensive as
Q (P = 100Q). For the first phase of the 2-phase algorithms, we used

DualMinerJournal.tex; 17/03/2003; 0:53; p.28

29

a MAFIA implementation since it turns out to be more efficient than
Apriori. We used the IBM data generator to create the transaction files.
Prices were selected using either uniform or Zipf distributions.

The IBM synthetic data generator [24] is given a set of parameters,
of which the following are of direct interest to us: ntrans, avglen, patlen,
nitems, npats. The number of transactions is given by ntrans, the length
of a transaction is determined by a Poisson distribution with parameter
avglen. The length of a transaction may be zero, thus the number of
transactions generated may be less than ntrans. The number of patterns
is given by npats and the average size of a pattern is given by patlen.
Finally, the number of distinct items in all the transactions is given
by nitems. The values used for these parameters are displayed on the
top of the graphs of this section. The value for npats was the default
one, that is 10000. The other two parameters on the graphs are unif,
which denotes the distribution of the prices, and support, which gives
the minimum support for which an itemset is considered frequent.

We also compare the evaluations of Q for DualMiner (using depth-
first traversal) and an implementation of CONVERTIBLE that uses
a MAFIA-style traversal for the first phase. The predicate Q was of
the form “total price(x) > qthreshold” (the value of “qthreshold” is
taken from the x-axis), and P was a support constraint. Here we also
show results for DualMiner+q, an optimization which chooses the most
expensive item to split on.

Figures 6 and 7 show the number of evaluations of Q for CONVERT-
IBLE, DualMiner and DualMiner+q vs. the selectivity of Q, using a
uniform and a Zipf price distribution, respectively. The y-axis is the
number of evaluations of Q and the x-axis is the threshold that the
sum of prices in an itemset must exceed. As expected, CONVERTIBLE
makes much less oracle calls when Q is not selective, but DualMiner
does better as the selectivity of Q increases. There is a sharp spike
in the graph for the Zipf distribution. At this point DualMiner needs
more evaluations of Q even though it is more selective. This could
be a characteristic of the distribution and the fact that DualMiner
may evaluate Q outside Th(Q) when it is looking for the bottom of a
subalgebra.

Figures 8 and 9 compare total oracle queries for DualMiner and
the first phase of the 2-phase algorithms (using uniform and Zipf price
distributions, respectively). Here P is 100 times as expensive as Q.
The y-axis is the weighted sum EP + EQ

100 (where EP is the number of
evaluations of P , and similarly for Q) and the x-axis is the same as
before.

DualMinerJournal.tex; 17/03/2003; 0:53; p.29

30

Figure 10 compares total oracle queries for DualMiner and the first
phase of the 2-phase algorithms. The y-axis is the weighted sum EP +
EQ (P and Q are weighted equally) and the x-axis is the same as before.

DualMiner does very well when Q is selective and inexpensive; it is
also competitive when Q is just as expensive as P and is also selec-
tive (keeping in mind that all 2-phase algorithms need to do an extra
refinement step with Q). When Q is expensive and not very selective,
DualMiner performs too many evaluations of Q (in this circumstance,
CONVERTIBLE would be the algorithm of choice, since it does not
waste time pruning with an ineffective Q and only looks at Th(¬Q),
which is a relatively small set).

0

10000

20000

30000

40000

50000

60000

70000

80000

10 100 1000 10000 100000

T
ot

al
 n

um
be

r
of

 e
va

lu
at

io
ns

 o
f Q

Q threshold

ntrans = 10000, avglen = 15, patlen = 10, nitems = 1000, unif dist, support = 0.4%

DualMiner
Convertible

DualMiner+q

Figure 6. Evaluations of Q vs. Selectivity of Q

0

5000

10000

15000

20000

25000

30000

35000

40000

10 100 1000 10000 100000

T
ot

al
 n

um
be

r
of

 e
va

lu
at

io
ns

 o
f Q

Q threshold

ntrans = 10000, avglen = 15, patlen = 10, nitems = 1000, zipf dist, support = 0.8%

DualMiner
Convertible

DualMiner+q

Figure 7. Evaluations of Q vs. Selectivity of Q

DualMinerJournal.tex; 17/03/2003; 0:53; p.30

31

0

10000

20000

30000

40000

50000

60000

70000

80000

10 100 1000 10000 100000

W
ei

gh
te

d
nu

m
be

r
of

 e
va

lu
at

io
ns

 (
P

 +
 Q

/1
00

)

Q threshold

ntrans = 10000, avglen = 15, patlen = 10, nitems = 1000, unif dist, support = 0.4%

DualMiner
DualMiner+q

Mafia (P only)

Figure 8. Oracle Calls (EP +
EQ

100
) vs Selectivity of Q

35000

40000

45000

50000

55000

60000

65000

70000

75000

80000

85000

10 100 1000 10000 100000

W
ei

gh
te

d
nu

m
be

r
of

 e
va

lu
at

io
ns

 (
P

 +
 Q

/1
00

)

Q threshold

ntrans = 10000, avglen = 15, patlen = 10, nitems = 1000, zipf dist, support = 0.4%

DualMiner
DualMiner+q

Mafia (P only)

Figure 9. Oracle Calls (EP +
EQ

100
) vs Selectivity of Q

8. Approximations

While monotone and antimonotone predicates behave nicely, not all
constraints have the form P ∧Q. We may have a support constraint to-
gether with an unclassified constraint like “avg(X) < c.” In addition, a
monotone or antimonotone predicate may be too expensive to evaluate
many times. If we can approximate these constraints with either mono-
tone or antimonotone predicates (that aren’t too expensive), then we
can use them in DualMiner in the place of the original constraints. An
approximation is necessarily a weaker constraint and might not prune
all possible itemsets. As a result, DualMiner will return a superset of the
correct result. The output should be filtered by a post-processing step
that checks the actual constraint on the itemsets that were produced.

DualMinerJournal.tex; 17/03/2003; 0:53; p.31

32

0

10000

20000

30000

40000

50000

60000

70000

10 100 1000 10000 100000

T
ot

al
 n

um
be

r
of

 e
va

lu
at

io
ns

 (
P

 +
 Q

)

Q threshold

ntrans = 10000, avglen = 15, patlen = 10, nitems = 1000, unif dist, support = 0.8%

DualMiner
DualMiner+q

Mafia (only P)

Figure 10. Oracle Calls (EP + EQ) vs Selectivity of Q

Definition 6. Let Q be a predicate on the algebra A. A predicate Q+

is a positive approximation of Q if for any X ∈ A, Q+(X) ⇒ Q(X).
Similarly, Q− is a negative approximation of Q if ¬Q−(X)⇒ ¬Q(X).

Note that our basic algorithm is still correct if we replace Q in
ANTI PRUNE with a monotone, negative approximation Q−, provided
that we post-process the final output with Q. However, if we wish to
use the Dual HUT strategy outlined in Section 4, we need a monotone,
positive approximation of Q as well (in order to use the complete right
chain). Similarly, we could replace P in MONO PRUNE with negative
and positive approximations that are antimonotone.

Many constraints have the form “f(X) ≥ c” for some aggregate
function f . This happens to include constraints of the form “f(X) ≤ c”
since it is equivalent to “−f(X) ≥ −c.” A common example of such a
constraint is “avg(X) ≤ c.”

Han et. al. [12] have implicitly studied approximations for these
types of constraints. They suggested looking at the k smallest elements
(mink). Given a subalgebra with least element B (such that |B| ≥ k)
and greatest element T , if “avg(mink(T)) ≤ c” is false, (i.e. the average
of the k smallest values exceeds c) then “avg(X) ≤ c” is false for
any X in that subalgebra. Thus “avg(mink(T)) ≤ c” is a negative
approximation of “avg(X) ≤ c.”

For technical reasons, k ≤ |B| because “avg(mink(T)) ≤ c” is not a
negative approximation for for sets of size less than k. To see why, let
k = |T |. Then avg(mink(T)) = avg(T). However, we can’t infer much
about the rest of the sets in the algebra (subsets of T) even if we know
“avg(T) ≥ c” or “avg(T) ≤ c.” When we use this approximation to
evaluate the top of the subalgebra (as is the case when we prune with
Q) it acts like a monotone function since it prunes away subsets.

DualMinerJournal.tex; 17/03/2003; 0:53; p.32

33

Note that we do not have to use the same approximation for a con-
straint throughout the algorithm; we can use a different approximation
each time that we call ANTI PRUNE. This is especially useful when
combined with the observation that we do not really need monotone or
antimonotone approximations when τ is not the root node of our tree;
we only need for our approximations to be monotone or antimonotone
on SUBALG(τ).

Definition 7. Let A be a subalgebra of 2M . A constraint Q is A-
monotone if it is monotone when restricted to the sets in A. Similarly,
a constraint P is A-antimonotone if it is antimonotone when restricted
to sets in A.

Thus “avg(mink(T)) ≤ c” is A-monotone for any subalgebra A
whose itemsets have cardinality at least k. Therefore, we can use this
approximation in DualMiner by selecting, at each node τ , the approx-
imation “avg(mink(Tτ)) ≤ c” where k = | IN(τ)| and Tτ is the top of
SUBALG(τ).

8.1. Mean-Like Aggregate Functions

We can generalize the idea above to a larger class of aggregate functions.

Definition 8. An aggregate function f weakly respects union if for any
set A, singleton {x} and number c

1. if f(A), f({x}) ≤ c, then f(A ∪ {x}) ≤ c

2. if f(A), f({x}) ≥ c, then f(A ∪ {x}) ≥ c

An aggregate function f is mean-like if, in addition to weakly preserving
union, for any set A, and elements f(x) ≤ f(y), f(A∪{x}) ≤ f(A∪{y}).

Note that this definition implies that the domain of f is composed
of sets, not multisets. This is not true of average. However, in practice,
all of our items have unique identifiers and we are taking the average
of the values of the items, not the items themselves. In this case, our
aggregate function is actually

f(A) =
1
|A|

∑
x∈A

g(x)

where g is the function that maps the unique identifier of an item to
its value. If we consider it in this context, where the ordering on the
identifiers is induced by f ◦ g, then average satisfies this definition. So
does median and any moment aggregate avg(Xk). It is important to
note that mink(X) means the set of the k least elements of X under
this ordering. A similar thing is true for maxk(X).

DualMinerJournal.tex; 17/03/2003; 0:53; p.33

34

Proposition 7. Let f be any aggregate function on A that is mean-
like. Furthermore suppose that every element in A has cardinality at
least k. Then “f(mink(X)) ≥ c” is an A-antimonotone, positive ap-
proximation of “f(X) ≥ c” and “f(maxk(X)) ≥ c” is an A-monotone,
negative approximation of “f(X) ≥ c.” Similarly, “f(maxk(X)) ≤ c”
and “f(mink(X)) ≤ c” are A-antimonotone, positive and A-monotone,
negative approximations of “f(X) ≤ c,” respectively.

Proof. We will only show that “f(maxk(X)) ≥ c” is an A-monotone,
negative approximation of “f(X) ≥ c.” The proofs of the other claims
are analogous. First, we need to prove that it is A-monotone. It is
enough to show that, for any set X and singleton {x}, f(maxk(X ∪
{x})) ≥ f(maxk(X)); the rest then follows by induction.

There is nothing to prove unless f(x) > f(y) for some y ∈ maxk(X).
Choose y from maxk(X) such that f(y) is smallest. Let Z = maxk(X)\
{y}. Then, since f is mean-like,

f(max
k

(X ∪ {x})) = f(Z ∪ {x}) ≥ f(Z ∪ {y}) = f(max
k

(X))

To show that it is a negative approximation, we need only show
that f(X) ≤ f(maxk(X)) for any set X. Let Z = X \ maxk(X). Let
d = f(maxk(X)). Since f weakly preserves union, induction on k shows
that there must be some element y ∈ maxk(X) such that f(y) ≤ d. This
implies that f(x) ≤ d for all x ∈ Z. Another induction on the elements
of Z therefore shows that

f(X) = f(Z ∪max
k

(X)) ≤ d = f(max
k

(X))

Thus if f(maxk(X)) ≥ c is false, so is f(X) ≥ c.

Finally, there are several statistical aggregates, such as variance,
that are not mean-like. However, variance is an algebraic combination
of aggregate functions that are.

Theorem 8. Let p(x0, . . . , xn) be a multinomial. Also, let f0, . . . , fn

be nonnegative, mean-like aggregate functions. Then for any subalgebra
A containing elements with cardinality at least k, we can use mink and
maxk to define A-antimonotone, positive and A-monotone, negative
approximations of the constraint “p(f0(X), . . . , fn(X)) ≥ c.”

Proof. Fix a subalgebra A containing elements with cardinality at least
k. Let N be the number of terms in p. We can express p as

p(f0(X), . . . , fn(X)) =
N∑

j=1

aj

n∏
`=0

[f`(X)]m(j,`)

DualMinerJournal.tex; 17/03/2003; 0:53; p.34

35

where the m(j,`) are nonnegative integers. We construct theA-antimono-
tone, positive approximation g as follows:

g =
∑

j: aj≥0

aj

n∏
`=0

[
f`(min

k
(X))

]m(j,`)

+
∑

j: aj<0

aj

n∏
`=0

[
f`(max

k
(X))

]m(j,`)

Clearly “g(X) ≥ c” is a positive approximation of “p(f0(X), . . . , fn(X))
≥ c,” and since it isdecreasing it is A-antimonotone as well. A similar
argument gives us an A-monotone, negative approximation h of this
constraint as well.

An immediate application of this theorem is that “avg(mink(X2))−
avg(maxk(X))2 ≥ c” and “avg(maxk(X2)) − avg(mink(X))2 ≥ c” are
A-antimonotone, positive and A-monotone, negative approximations,
respectively, for “var(X) ≥ c” when all items have nonnegative values
(this a trivial restriction because variance is translation invariant).
However, of these two, only the negative approximation is useful, as
the positive approximation almost always returns a negative value.

8.2. Optimization Considerations

If approximations are used, then a new type of optimization heuristic
may be useful.

Function Choice Heuristic When using approximations, we are not
limited to just one approximation. As previously discussed, at each
node (or even at every pruning test) we can choose a new heuristic.
For example, given the constraint “avg(X) ≥ c,” we can use the
monotone, negative approximation “avg(maxk(X)) ≥ c” and we
can keep changing k at every node so that k = | IN(X)|.

It is important to note that the presence of function choice heuristics
adds complications. If Q is a monotone function, calling ANTI PRUNE
twice (or more times) consecutively will have the exact same result
as calling it once. If one uses function choice heuristics in such a
way that the approximation depends on | IN(X)|, consecutive calls
to ANTI PRUNE are likely to use two different approximations and
produce different results than a single call to ANTI PRUNE. It is
important to realize this when designing the control heuristic.

DualMinerJournal.tex; 17/03/2003; 0:53; p.35

36

9. Related Work

Agrawal et al. first introduced the problem of mining frequent itemsets
as a first step in mining association rules [1]. They also considered item
constraints such as an item must or must not be contained in an asso-
ciation rule. Agrawal and Srikant introduced the Apriori algorithm and
some variations of it [3, 2]. Srikant et al. generalized this mining prob-
lem to item constraints over taxonomies[23]. Other types of constraints
were introduced later by Ng et al. [17, 16]. These papers introduced
the concepts of antimonotone and succinct constraints and presented
methods for using them to prune the search space. These classes of con-
straints were also studied in the case of 2-variable constraints [14] and
along with monotone constraints were further generalized and studied
by Pei et al. [20, 18]. Boulicant and Jeudy present algorithms for min-
ing frequent itemsets with both antimonotone and non antimonotone
constraints [6, 7]. However they assume that the minimal itemsets sat-
isfying the monotone constraint are easy to compute, also the minimum
size of such itemsets is one and there is no gap in the sizes of itemsets
that satisfy all the constraints, assumptions that frequently do not hold.
This problem was also given a theoretical treatment by Gunopoulos et
al. [10]. Some recent papers study the problem in the context of multi
attribute data of high dimensionality [21] or take another approach to
the problem, such as not pushing the constraints deeply into the mining
process, but enforcing the constraints in a final phase [13]. Other papers
present specializations of previous algorithms, based on FP-trees [15]
or based on projected databases [19].

10. Conclusions and Future Work

It is clear from our experiments that taking advantage of the structures
of both monotone and antimonotone predicates yields good results.
In the case of constrained frequent itemsets, the use of a monotone
predicate to remove from consideration what can be considered “unin-
teresting” itemsets is beneficial.

The success of DualMiner in exploiting the structures of two classes
of constraints leads to several interesting areas of future work. Can
other similar classes of constraints, such as convertible constraints [20],
be incorporated as well? Can predicates such as “var(X) ≤ c” (which
do not seem to have “nice” structures) also be used efficiently? We
are also interested in what kinds of implications this has for mining
constrained sequential patterns.

DualMinerJournal.tex; 17/03/2003; 0:53; p.36

37

Acknowledgments. This work was sponsored by NSF grants IIS-
0121175 and IIS-0084762, by the Cornell Intelligent Information Sys-
tems Institute, and by generous gifts from Microsoft and Intel. We
thank the anonymous reviewers for helpful comments.

References

1. R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between
sets of items in large databases. In P. Buneman and S. Jajodia, editors, Proceed-
ings of the 1993 ACM SIGMOD International Conference on Management of
Data, Washington, D.C., May 26-28, 1993, pages 207–216. ACM Press, 1993.

2. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast
Discovery of Association Rules. In U. M. Fayyad, G. Piatetsky-Shapiro,
P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery and
Data Mining, chapter 12, pages 307–328. AAAI/MIT Press, 1996.

3. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases. In J. B. Bocca, M. Jarke, and C. Zaniolo, editors, VLDB’94, Pro-
ceedings of 20th International Conference on Very Large Data Bases, September
12-15, 1994, Santiago de Chile, Chile, pages 487–499. Morgan Kaufmann, 1994.

4. R. J. Bayardo. Efficiently mining long patterns from databases. In Haas and
Tiwary [11], pages 85–93.

5. R. J. Bayardo, R. Agrawal, and D. Gunopulos. Constraint-based rule mining in
large, dense databases. Data Mining and Knowledge Discovery, 4(2/3):217–240,
2000.

6. J. Boulicaut and B. Jeudy. Using constraints during set mining: Should we
prune or not, 2000.

7. J.-F. Boulicaut and B. Jeudy. Mining free itemsets under constraints. In
International Database Engineering and Application Symposium, pages 322–
329, 2001.

8. D. Burdick, M. Calimlim, and J. Gehrke. Mafia: A maximal frequent itemset
algorithm for transactional databases. In ICDE 2001. IEEE Computer Society,
2001.

9. A. Delis, C. Faloutsos, and S. Ghandeharizadeh, editors. SIGMOD 1999,
Philadephia, Pennsylvania, USA. ACM Press, 1999.

10. D. Gunopulos, H. Mannila, R. Khardon, and H. Toivonen. Data mining, hyper-
graph transversals, and machine learning. In Proc. PODS 1997, pages 209–216,
1997.

11. L. M. Haas and A. Tiwary, editors. SIGMOD 1998, Proceedings ACM SIGMOD
International Conference on Management of Data, June 2-4, 1998, Seattle,
Washington, USA. ACM Press, 1998.

12. J. Han, J. Pei, G. Dong, and K. Wang. Efficient computation of iceberg cubes
with complex measures. In SIGMOD Conference, 2001.

13. J. Hipp and U. Guntzer. Is pushing constraints deeply into the mining
algorithms really what we want? SIGKDD Explorations, 4(1):50–55, 2002.

14. L. V. S. Lakshmanan, R. T. Ng, J. Han, and A. Pang. Optimization of
constrained frequent set queries with 2-variable constraints. In Delis et al.
[9], pages 157–168.

15. C. K.-S. Leung, L. V. Lakshmanan, and R. T. Ng. Exploiting succinct
constraints using fp-trees. SIGKDD Explorations, 4(1):31–39, 2002.

DualMinerJournal.tex; 17/03/2003; 0:53; p.37

38

16. R. T. Ng, L. V. S. Lakshmanan, J. Han, and T. Mah. Exploratory mining via
constrained frequent set queries. In Delis et al. [9], pages 556–558.

17. R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and
pruning optimizations of constrained association rules. In Haas and Tiwary
[11], pages 13–24.

18. J. Pei and J. Han. Can we push more constraints into frequent pattern mining?
In ACM SIGKDD Conference, pages 350–354, 2000.

19. J. Pei and J. Han. Constrained frequent pattern mining: A pattern-growth
view. SIGKDD Explorations, 4(1):31–39, 2002.

20. J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent item sets with
convertible constraints. In ICDE 2001, pages 433–442. IEEE Computer Society,
2001.

21. C.-S. Perng, H. Wang, S. Ma, and J. L. Hellerstein. Discovery in multi-attribute
data with user-defined constraints. SIGKDD Explorations, 4(1):56–64, 2002.

22. L. D. Raedt and S. Kramer. The levelwise version space algorithm and its
application to molecular fragment finding. In Proceedings of the Seventeenth
International Joint Conference on Artificial Intelligence (IJCAI 2001), pages
853–862, August 2001.

23. R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item con-
straints. In D. Heckerman, H. Mannila, D. Pregibon, and R. Uthurusamy,
editors, Proc. 3rd Int. Conf. Knowledge Discovery and Data Mining, KDD,
pages 67–73. AAAI Press, 14–17 1997.

24. IBM data generator. http://www.almaden.ibm.com/cs/quest/syndata.html.

DualMinerJournal.tex; 17/03/2003; 0:53; p.38

