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A data mining algorithm builds a model that captures interesting aspects of
the underlying data. We develop a framework for quantifying the difference,
called the deviation, between two datasets in terms of the models they induce.
In addition to being a quantitative, intuitively interpretable measure of dif-
ference, the deviation between two datasets can also be computed very fast.
Our framework covers a wide variety of models including frequent itemsets,
decision tree classifiers, and clusters, and captures standard measures of
deviation such as the misclassification rate and the chi-squared metric as
special cases. We also show how statistical techniques can be applied to the
deviation measure to assess whether the difference between two models is
significant (i.e., whether the underlying datasets have statistically significant
differences in their characteristics), and discuss several practical applications.
© 2002 Elsevier Science (USA)



1. INTRODUCTION

The goal of data mining is to discover (predictive) models based on the data
maintained in the database [FPSSU96]. Several algorithms have been proposed for
computing novel models [AGGR98, AIS93, AMS+96, MAR96, NH94], for more
efficient model construction [BMUT97, EKX95, GRG98, GGRL99, GKR98,
GRS98, PCY95, RS98, SON95, SAM96, ZRL96], and to deal with new data types
[GRGzz99, GKR98, GRS99, GGR99]. There is, however, no work addressing the
important issue of how to measure the difference, or deviation, between two models.

As a motivating example, consider the following application. A sales analyst who
is monitoring a dataset (e.g., weekly sales for Walmart) may want to analyze the
data thoroughly only if the current snapshot differs significantly from previously
analyzed snapshots. In general, since successive database snapshots overlap con-
siderably, they are quite similar to each other [CHNW96, FAAM97, TBAR97].
Therefore, an algorithm that can quantify deviations can save the analyst consid-
erable time and effort.

As a second example, a marketing analyst may want to analyze if and how data
characteristics differ across several datasets of customer transactions collected from
different stores. The analysis can then be used to decide whether different market-
ing strategies are needed for each store. Further, based on the deviation between
pairs of datasets, a set of stores can be grouped together and earmarked for the
same marketing strategy.

In this paper, we develop the FOCUS framework for computing an interpretable,
qualifiable deviation measure between two datasets to quantify the differences
between ‘‘interesting’’ characteristics in each dataset (as reflected in the model it
induces when a data mining algorithm is applied to it [FPSSU96]). The central
idea is that a broad class of models can be described in terms of a structural com-
ponent and a measure component. The structural component identifies ‘‘interesting
regions,’’ and the measure component summarizes the subset of the data that is
mapped to each region. The FOCUS framework has several desirable features:

• The deviation measure obtained from FOCUS is intuitively interpretable in
terms of the work required to transform one model to the other. It can be com-
puted using a single scan of the underlying datasets; a good upper bound for
frequent itemsets can be computed by simply examining the models.

• The framework allows comparison of specific parts of two models. This
makes it possible to focus attention on interesting changes that might not signifi-
cantly affect the model as a whole.

• The framework covers the models obtained by several mining algorithms,
including frequent itemsets, decision trees, and clusters. It also captures the
misclassification rate (commonly used for evaluating decision trees) and chi-squared
statistic as special cases of the deviation measure. We also show how the
chi-squared statistic can be applied to decision trees, using the bootstrapping
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technique [ET93] to avoid some standard restrictions that would otherwise make it
inapplicable.

We illustrate the power of the framework through these additional contributions:

• We show how FOCUS can be used to interactively identify and explore subsets
of data that lead to interesting changes in the model being studied. We define a set
of operators to discover regions where the differences between the datasets are
interesting. We also instantiate FOCUS to derive a discovery-driven exploratory data
analysis method proposed by Sarawagi et al. [SAM98].

• We apply our measure of deviation to study whether models based on a
sample of the available data differ significantly from the model based on all the
data. Interestingly, even for very large sample sizes, there is a statistically significant
difference between the sample-based models and the model based on all data.
However, the difference diminishes quickly with increasing sample size. In some
situations, it may suffice to use a sample.

The rest of the paper is organized as follows. In Section 2, we illustrate through
examples the concepts and ideas behind the FOCUS framework. In Section 3.1, we
introduce terminology used in the rest of the paper. In Section 3, we describe the
FOCUS framework. In Section 3.4, we describe a bootstrap-based procedure to
qualify deviations. In Section 4, we instantiate FOCUS for the three common classes
of data mining models: set of frequent itemsets, decision tree classifiers, and clus-
ters. In Section 5, we describe how FOCUS can be used to focus deviation computa-
tion. In Section 6, we instantiate a discovery-driven exploratory data analysis
method proposed by Sarawagi et al. [SAM98]. In Section 7, we study the effect of
the size of the sample on its representativeness. In Section 8, we evaluate the per-
formance of some instantiations of FOCUS. We discuss related work in Section 9,
and conclude in Section 10.

2. EXAMPLES ILLUSTRATING DEVIATION

In general, a data mining model constructed from a dataset is designed to capture
the interesting characteristics in the data. Therefore, we use the difference between
data mining models as the measure of deviation between the underlying datasets. In
this paper, we consider several classes of data mining models widely studied in the
data mining literature: lits-models (short form for frequent itemset models), dt-
models (short form for decision tree models), and cluster-models. In this section,
we illustrate the concepts and ideas behind the computation of deviation between
two datasets first through the class of decision tree models and then through the
class of frequent itemsets. In Section 3, we formalize these concepts.

2.1. Classes of Models

Before we discuss the computation of deviation between data mining models, we
informally introduce the classes of models (along with applications) for which we
instantiate the FOCUS framework. For a formal description, we refer the readers to
[AMS+96, BFOS84, DJ80].
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FIG. 1. dt-model.

dt-models: Several application domains that predict, for a new tuple, the value
taken by a specific attribute based on the values taken by a set of predictive attri-
butes build dt-models. The model is learnt from a database of example tuples. For
instance, consider a company that designs and mails catalogs for retail businesses.
The dataset which the company accumulated may, besides other information,
consist of a set of customer tuples that are classified into two classes: people who
responded and people who did not respond to a mail order catalog. Now, consider
a new dataset of tuples containing information about the customers of a retailer. To
reduce the mailing expenses, the retailer wants the catalog to be mailed only to
people who are likely to respond. Therefore, each customer in the new dataset
needs to be classified into one of the two groups: responders and non-responders. A
dt-model is a predictive model used to predict the group of a new customer based
on the classification of the tuples in the dataset. The tuples have several attributes.
One designated attribute is called the dependent attribute, the other attributes are
called predictor attributes. The dependent attribute is a categorical attribute while
the predictor attributes can either be categorical or numerical.5 The goal is to build

5 Attributes with totally ordered domains are called numerical, whereas attributes with unordered
domains are called categorical.

a dt-model that takes as input the values of the predictor attributes and predicts a
value for the dependent attribute.

A dt-model is a graphical model in the form of a tree. The root of the tree does
not have any incoming edges. Every other node has exactly one incoming edge and
zero or more outgoing edges. If a node n does not have any outgoing edges, we call
n a leaf node, otherwise we call n an internal node. Each edge originating from an
internal node is labeled with a splitting predicate. The set of splitting predicates P
on the outgoing edges of an internal node must be non-overlapping and exhaustive.
A set of predicates P is non-overlapping if the conjunction of any two predicates in
P evaluates to false. A set of predicates P is exhaustive if the disjunction of all
predicates in P evaluates to true. An example of a decision tree is shown in Fig. 1

lits-models: The analysis of market basket data typically relies on lits-models.
A market basket is a collection of items purchased by a customer in an individual
transaction, where a transaction is a well-defined business activity, for example a
customer’s visit to a grocery store or an online purchase from a virtual store such as
www.amazon.com. Suppose the mail order catalog company (mentioned earlier) has
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FIG. 2. DT: two component.

access to very large collections of transactions from past business activity, which it
wants to analyze to improve the layout of catalogs. For this purpose, the company
may analyze a database of transactions to find sets of items (short, itemsets) that
appear together in many transactions. Each pattern extracted through the analysis
consists of an itemset and the number of transactions that contain the itemset.
Knowledge of the patterns can then be used to improve the layout of mail order
catalog pages.

Let I={i1, ..., in} be a set of literals called items. A transaction and an itemset
are subsets of I. A transaction T is said to contain an itemset X if X ı T. Let D be
a set of transactions. The support supD(X) of an itemset X in D is the fraction of
the total number of transactions in D that contain X. An itemset whose support is
greater than a user-specified minimum support threshold is said to be frequent. An
example of a lits-model is shown in Fig. 3.

cluster-models: A cluster-model is typically used for identifying hidden or
unknown groups in the data. Suppose, in the mail order case study described
earlier, the retailer does not have a set of example records classified a priori into
responsive or non-responsive groups. In such cases, a cluster-model may be used
to automatically classify customers into groups. In general, the goal of clustering is
to partition the data into several groups, called clusters, such that ‘‘similar’’ objects
are in the same cluster. Each cluster describes a region in the n-dimensional space
where the set of objects in that region are similar to each other. Traditionally, a
cluster-model is used to describe a set of n-dimensional points. More recently,

FIG. 3. lits-model.
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several clustering algorithms have been proposed for clustering new data types
[GKR98, GRS99, GGR99, GRG+99, GS99]. In this paper, we only consider
cluster-models for n-dimensional numerical data. An example of a cluster-model
is shown in Fig. 4.

2.2. dt-models

Let the decision tree constructed from a hypothetical dataset D with two
classes—C1 and C2—be as shown in Fig. 1. The decision tree consists of three leaf
nodes. The class distribution at each leaf node is shown beside it (on the left side)
with the top (bottom) number denoting the fraction of database tuples that belong
to class C1 (C2, respectively). For instance, the fractions of database tuples that
belong to the classes C1 and C2 in the leaf node (1) are 0.0 and 0.3, respectively.
Each leaf node in the decision tree corresponds to two regions (one region for class
C1 and one region for class C2), and each region is associated with the fraction of
tuples in the dataset that map into it; this fraction is called the measure of the
region. Generalizing from this example, each leaf node of a decision tree for k
classes is associated with k regions in the attribute space each of which is associated
with its measure. These k regions differ only in the class label attribute. In fact, the
set of regions associated with all the leaf nodes partition the attribute space.

We call the set of regions associated with all the leaf nodes in the dt-model the
structural component of the model. We call the set of measures associated with each
region in the structural component the measure component of the model. The prop-
erty that a model consists of structural and measure components is called the two-
component property. Figure 2 shows the set of regions in the structural component
of the decision tree in Fig. 1 where the two regions corresponding to a leaf node are
collapsed together for clarity in presentation. The two measures of a leaf node are
shown as an ordered pair, e.g., the ordered pair O0.0, 0.3P consists of the measures
for the two collapsed regions of the leaf node (1) in Fig. 1.

We now illustrate the idea behind the computation of deviation between two
datasets over a set of regions. Let D1 and D2 be two datasets. Given a region and
the measures of that region from the two datasets, the deviation between D1 and D2
with respect to the region is a function (e.g., absolute difference) of the two mea-
sures; we call this function the difference function. A generalization to the deviation

FIG. 4. cluster-model.
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over a set of regions is a ‘‘combination’’ of all their deviations at each region; we
represent this combination of deviations by a function called the aggregate function,
e.g., sum.

If two datasets D1 and D2 induce decision tree models with identical structural
components, we can combine the two ideas—the two-component property and the
deviation with respect to a set of regions—to compute their deviation as follows:
the deviation between D1 and D2 is the deviation between them with respect to the
set of regions in their (identical) structural components.

However, the decision tree models induced by two distinct datasets typically have
different structural components, and hence the simple strategy described above for
computing deviations may not apply. Therefore, we first make their structural
components identical by ‘‘extending’’ them. The extension operation relies on the
structural relationships between models, and involves refining the two structural
components by splitting regions until the two sets become identical. Intuitively, the
refined set of regions is the finer partition obtained by overlaying the two partitions
of the attribute space induced by the structural components of both decision trees.
We call the refined set of regions the greatest common refinement (GCR) of the two
structural components. For instance, in Fig. 5, T3 is the GCR of the two trees T1
(induced by D1) and T2 (induced by D2). In each region of the GCR T3, we show a
hypothetical set of measures (only for class C1) from the datasets D1 and D2. For
instance, the measures for the region salary \ 100K and age < 30 for the class C1
from D1 and D2 are 0.0 and 0.04, respectively. The property that the GCR of two
models always exists, which we establish later for decision tree models, is called the
meet-semilattice property of the class of models.

To summarize, the deviation between two datasets D1 and D2 is computed as
follows. The structural components of the two dt-models are extended to their
GCR. Then, the deviation between D1 and D2 is the deviation between them over
the set of all regions in the GCR. In Fig. 5, if the difference function is the absolute
difference and the aggregate function is the sum then the deviation between D1 and
D2 over the set of all C1 regions is given by the sum of deviations at each region in
T3: |0.0−0.0|+|0.0−0.04|+|0.1−0.14|+|0.0−0.0|+|0.0−0.0|+|0.05−0.1|=0.13.

2.3. lits-models

Paralleling the example computation using the class of decision tree models, we
now illustrate the deviation computation through the class of frequent itemset
models.

Figure 3 shows a simple itemset model where I={a, b}. It has three interesting
regions identified by the frequent itemsets {a}, {b}, and {a, b}. Each itemset (equi-
valently, the corresponding region) is associated with its support: {a} with 0.5, {b}
with 0.4, and {a, b} with 0.25. The measure of a region identified by an itemset is
the support of the itemset. Generalizing from this example, each frequent itemset X
in a lits-model represents a region in the attribute space (where the support is
higher than the threshold) whose measure is the support of X. The set of all
frequent itemsets is the structural component and the set of their supports is the
measure component.
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FIG. 5. dt-model: T3=M(T1, T2).

As in the case of decision trees, if the structural components of two models are
identical we compute the deviation between them to be the aggregate of the devia-
tions between the measures at all regions in either structural component. However,
if the structural components are different, we first make them identical by extending
both models to their greatest common refinement. For the lits-models, the GCR is
the union of the sets of frequent itemsets of both models. For example, Fig. 6 shows
the GCR of two lits-models L1 induced by D1 and L2 induced by D2. The mea-
sures (or supports) obtained by scanning D1 and D2 for each itemset in the
GCR are shown below it. The deviation between the datasets is the deviation
between them over the set of all regions in the GCR. If the difference function is the
absolute difference, and the aggregate function is the sum then the deviation
between D1 and D2 is |0.5−0.1|+|0.4−0.3|+|0.1−0.5|+|0.25−0.05|+|0.05−0.2|
=1.125.

2.4. Focused Deviations

In the above examples, we computed the deviation between two datasets over the
entire attribute space. In cases where an analyst is interactively exploring two data-
sets to find regions where they differ considerably, it is necessary to ‘‘focus’’ the
deviation computation with respect to a specific region R. The FOCUS framework

MEASURING DIFFERENCES IN DATA CHARACTERISTICS 549



FIG. 6. lits-model: L3=M(L1, L2).

covers such requirements. The computation is focussed with respect to region R by
first intersecting each region in the GCR with R and then combining (using the
aggregate function) the deviations over these intersected regions. The intersection
with R ensures that the deviation is computed only over regions contained in R. In
Fig. 5, suppose the analyst is interested only in the difference between T1 and T2
over the region R: age < 30. The regions in the GCR T3 intersected with R are the
three leftmost regions that satisfy the condition age < 30. The deviation between T1
and T2 with respect to R is: |0.0−0.0|+|0.0−0.04|+|0.1−0.14|=0.08.

A complementary approach is to declaratively specify a set of ‘‘interesting’’
regions in terms of the structural components of the two models and then rank the
interesting regions in the order of their deviations. In Section 5, we introduce a set
of structural operators and a ranking operator for declarative specification of
interesting regions and region-ranking, respectively.

2.5. Additional Comments

A cluster-model induced by a dataset identifies a set of non-overlapping
regions. As discussed above, a dt-model is also associated with a set of non-
overlapping regions. The differences between a cluster-model and a dt-model are:
(1) the set of regions associated with a dt-model is exhaustive, and (2) if decision
trees that allow only univariate splits are considered then these regions are hyper-
rectangles in the attribute space. But, since the instantiation of FOCUS for
dt-models did not use these two properties unique to a dt-model, the instantiation
of FOCUS for dt-models will extend directly to cluster-models. Hence, we do not
discuss cluster-models in the rest of the paper.

Note that the derivation of the GCR of two models depends on the class of models
being considered. We formalize this dependence in a later section. The computation
of the deviation requires the measures from D1 and D2 over all the regions in the
GCR to be computed; therefore, both the datasets need to be scanned once.
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Suppose the deviation between D1 and D2 is 0.005, and that between D1 and D3 is
0.01. From just the deviation values, we are able to say the data characteristics of
D1 and D2 are more similar than those of D1 and D3. But, we still do not know
whether they have ‘‘different’’ data characteristics; a deviation of 0.01 may not be
uncommon between two datasets generated by the same process. In other words, is
the deviation value statistically ‘‘significant’’? We answer these questions rigorously
using statistical techniques in Section 3.4.

From the FOCUS framework, we instantiate the misclassification error metric
(from Machine Learning and Statistics) and the chi-squared goodness of fit statistic
(from Statistics). Both metrics have traditionally been considered only in the
context of dt-models. Thus, our FOCUS framework which covers other classes of
models as well is more general than the current approaches in Machine Learning
and Statistics.

3. FOCUS

In this section, we formally describe the FOCUS framework for computing devia-
tions between the ‘‘interesting characteristics’’ of two datasets. FOCUS can be applied
to any class of data mining models that satisfy the two-component and meet-
semilattice properties. (Both these concepts are defined below.) In Section 4, we will
prove that these properties are satisfied by lits-models, dt-models, and cluster-
models.

3.1. Preliminaries

We now introduce our notation, beginning with some standard terms. A partially
ordered set OP; Q P consists of a non-empty set P and a reflexive, antisymmetric,
transitive binary relation Q on P. Let OP; Q P be a partially ordered set and let
H ı P. An element a ¥ P is called a lower bound of H if aQ h for all h ¥H. A lower
bound a of H is the greatest lower bound of H if, for any lower bound b of H, we
have bQ a. We denote the greatest lower bound of H by MH. A partially ordered
set OP; Q P is a meet-semilattice if for all a, b ¥ P, M {a, b} exists. Let I=
{A1, ..., An} be a set of attributes. Let Di be the domain of the attribute Ai,
i ¥ {1, ..., n}.

Definition 3.1. The attribute space A(I) of I is the cross product of the
domains of all attributes: D1× · · · ×Dn. A region c is a subset of the attribute space
A(I). t=Ot1, ..., tnP is an n-tuple on I if t ¥A(I). Each region c has a corre-
sponding predicate Pc such that { Pc(t)=true iff t ¥ c}. A dataset D is a finite set of
n-tuples.

Let I={A1, A2} with domains [1, 10], [1, 10] respectively. A1 [ 5 and
D={O1, 1P, O2, 1P} are examples of a region (defined by the predicate) and a
dataset, respectively.

Definition 3.2. The selectivity s(c, D) of a region c ıA(I) with respect to a
dataset D is the fraction of tuples in D that map into c: s(c, D)=def |{t : t ¥ DNPc(t)}|

|D| .
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3.2. Two-Component, Meet-Semilattice Models

The main idea behind FOCUS is that a model M has a structural component CM
that identifies interesting regions of the attribute space, and that each such region is
summarized by one (or several) measure(s), e.g., a number. If the structural com-
ponent satisfies some properties that allow us to ‘‘refine’’ two models naturally, we
have the basis for an intuitive and quantitative deviation measure.

Consider the illustrative examples in Figures 1, 3, and 4 which show a decision
tree, a set of frequent itemsets, and a set of clusters, respectively. As mentioned
earlier, all three models have one common feature: certain regions in the attribute
space are found to be interesting, and are associated with a measure, which is the
fraction of tuples in the database that are mapped into the region. We use M

generically to denote any one of the three classes.

Definition 3.3. A class of models M is said to have the two component prop-
erty if any M ¥M induced by a dataset D can be expressed as OCM, S(CM, D)P
where CM={c

i
M : 1 [ i [ |CM |} is a set of regions in A(I) and S(CM, D)=

{s(c iM, D) : c
i
M ¥ CM}. We use CM to denote the set of structural components of all

models in M.

We now describe the meet-semilattice property, which captures the structural
relationship between models in a class of models M. Figure 5 illustrates the rela-
tionship between two decision trees T1 and T3. The structure of T3 is ‘‘finer’’ than
that of T1 because we can deduce T1’s measure component with respect to any
dataset D if the measure component of T3 with respect to D is known. Intuitively, T3
captures information at a finer granularity than T1. Similarly, among the two sets of
frequent itemsets L1 and L3 shown in Fig. 6, L3 is ‘‘finer’’ than L1 because we can
deduce the measure component of L1 from that of L3. We capture this relationship
between the structural components of two models in M using a binary relation
called the refinement relation.

For the classes of models we consider, given two modelsM1 andM2, the greatest
lower bound of their structural components CM1 , CM2 under the refinement relation
always exists; we call this the greatest common refinement (GCR) of CM1 and CM2 ,
and denote it by CM (M1, M2). The set of all structural components of models in M

along with the refinement relation thus forms a meet-semilattice.

Definition 3.4. Let CM1 , CM2 ¥ CM. We say that a set of regions {cj1 , ..., cjk}
refines a region ci if for any dataset D, s(ci, D)=;k

i=1 s(cji , D).
6 We say that CM1

6 The summation over s(cji , D) can be replaced by some other function, e.g., average, min, max,
product. As we will show later, summation is sufficient for all three common data mining models that we
discuss in this paper. Therefore, we use this definition for clarity in presentation. In Section 6.2.1, we
revisit this note when we need to generalize summation to other functions.

refines CM2 (denoted CM1 Q CM2 ) if for every region c jM2 ¥ CM2 there exists a set of
regions {c j1M1 , ..., c

jkj
M1
} ı CM1 which refine c jM2 . We call Q a refinement relation.

Lemma 3.1. Let M be any one of the following three classes of models: lits-
models, dt-models, cluster-models. ThenM satisfies the two-component property
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and there exists a refinement relation Q on CM such that OCM; Q P is a meet-
semilattice.

This observation summarizes results in Sections 4.1 and 4.2.

3.3. Measuring Deviations

We now develop our measure of deviation between two models M1 and M2, and
thereby, between the underlying two datasets. Intuitively, the difference between the
models is quantified as the amount of work required to transform one model into
the other, which is small if the two models are ‘‘similar’’ to each other, and high if
they are ‘‘different.’’

When the structural components are identical we can transform the measure
component of one model to the other by making the measure at each region under
the first model agree with that under the second model. Let CM1=CM2 . Then, the
amount of work for transforming S(CM1 , D1) into S(CM2 , D2) is the aggregate of
the differences between s(c iM1 , D1) and s(c iM2 , D2), i=1, ..., |CM1 |. We assume that
the difference, at a region, between the measures of the first and the second models
is given by a difference function f (not necessarily the usual difference operator
‘‘-’’), and that the aggregate of the differences is given by an aggregate function g.
We discuss these functions, which enhance FOCUS’s ability to instantiate deviation
functions for specialized applications, in Section 3.3.2. For now, it suffices to say
that f and g are model-independent parameters of FOCUS with the signatures
f :Z4

+WR+, and g : P(R+)WR+.7

7Z+ and R+ denote the sets of non-negative integers and non-negative real numbers, respectively.

We now formally define the deviation when the structural components of the two
models are identical.

Definition 3.5. Let f be a difference function, g an aggregate function, and
M1, M2 ¥M be two models induced by the datasets D1, D2 respectively, such that
CM1=CM2={c1, ..., cl}. For j ¥ {1, 2}, let o iDj=s(ci, Dj) · |Dj | denote the absolute
number of tuples in Dj that are mapped into c iMj ¥ CMj . The deviation
d1(f, g)(M1, M2) betweenM1 andM2 is defined as

d1(f, g)(M1, M2)=
def g({f(o1D1 , o

1
D2 , |D1 |, |D2 |), ..., f(o

l
D1 , o

l
D2 , |D1 |, |D2 |)}).

In general, two models induced from different datasets have significantly differ-
ent structural components. Therefore we first have to reconcile the differences in
the structural components of two models to make them comparable. To do this, we
rely on the meet-semilattice property exhibited by many classes of data mining
models (see Observation 3.1). The idea is to ‘‘extend’’ both models to the GCR of
their structural components, and then compare the extensions. Intuitively, to extend
a model M to CMŒ(Q CM) we find the measure component S(CMŒ, D) for CMŒ using
the dataset D, i.e., we find the selectivity of each region in CMŒ with respect to D.
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Definition 3.6. LetM1, M2 ¥M be two models induced by D1, D2 respectively.
We define the deviation d(f, g)(M1, M2) betweenM1 andM2 as

d(f, g)(M1, M2)

=def d1(f, g)({OCL (M1, M2), S(CL (M1, M2), D1)P}, {OCL (M1, M2), S(CL (M1, M2), D2)P}).

Usually, we drop f and g because they are clear from the context. The deviation
between two models M1 and M2 computed using the GCR has some attractive
properties. For certain choices of f and g (identified in Sections 4.1 and 4.2), using
the GCR gives the least value for d over all common refinements. This property of
the least deviation then corresponds to the least-work transformation between the
two models.

Summarizing, the instantiation of FOCUS requires:

1. A refinement relation Q .

2. A difference function f and an aggregate function g.

3.3.1. Computational Requirements for d

The computation of d(M1, M2) requires the selectivities of all regions in
CM (M1, M2) to be computed with respect to both the datasets D1 and D2. For the three
classes of data mining models we consider, this requires D1 and D2 to be scanned
once.

3.3.2. Difference and Aggregate Functions

In this section, we motivate the use of parameters f and g in the FOCUS frame-
work. We then present two example instantiations each for f and g.

We first consider f. Let L1 and L2 be two lits-models induced by D1 and D2.
Without loss of generality, let us assume that L1 and L2 have identical structural
components C. (Otherwise, we can extend them to their GCR.) Consider two item-
setsX1 andX2 inC. Supposes(cX1L1 , D1)=0.5, s(c

X1
L2 , D2)=0.55, and s(cX2L1 , D1)=0.0,

s(cX2L2 , D2)=0.05. So, X1 varies between a ‘‘significant’’ 50% and a ‘‘more signifi-
cant’’ 55% whereas X2 varies between a ‘‘non-existent’’ 0% and a ‘‘noticeable’’ 5%.
For some applications, the variation in X2 is more significant than the variation in
X1 because noticing an itemset for the first time is more important than a slight
increase in an already significant itemset. For some other applications which just
concentrate on the absolute changes in support, the variations in X1 and X2 are
equally important. To allow both cases, our first instantiation fa finds the absolute
difference between the supports, while the second instantiation fs ‘‘scales.’’ We now
define the two instantiations.8

8 The signature f : R+×R+WR+ for f where the two arguments correspond to the selectivities of a
region with respect to both datasets suffices for most purposes. However, some functions require
absolute measures. We give one such example in Section 5.2.2. Therefore, we use absolute measures.
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Definition 3.7. Let o1, o2, N1, N2 ¥I+ such that o1 <N1 and o2 <N2. The
absolute difference function fa and the scaled difference function fs are defined as

fa(o1, o2, N1, N2)=
def : o1
N1
−
o2

N2
:

fs(o1, o2, N1, N2)=
def ˛ :

o1

N1
−
o2

N2
:

1 o1
N1
+
o2

N2
2;2
, if (o1+o2) > 0

0, otherwise.

The aggregate function g takes as input a set of values. The two most commonly
used aggregate functions are sum and max. Since the instantiations of f and g are
independent of each other, these example instantiations generate four different
instantiations of d.

3.4. The Qualification Procedure

Is the deviation sufficiently large that it is unlikely that the two datasets are gen-
erated by the same underlying generating process? The availability of a quantitative
deviation measure makes it possible to answer such questions rigorously. If we
assume that the distribution F of deviation values under the hypothesis that the
two datasets are generated by the same process is known, we can use standard sta-
tistical tests to compute the significance sig(d) of the deviation d between two data-
sets. We use bootstrapping techniques from Statistics [ET93] to compute F.

LetM1 andM2 be two models induced by datasets D1 and D2, respectively. Let G
be the hypothetical process that generated D1. Let us assume that we know the dis-
tribution F of deviations between models induced by a randomly selected pair of
datasets generated by G. (We will describe a procedure to compute F.) If D1 and
D2 have the same data characteristics (equivalently, if D2 was also generated by G),
then d=d(M1, M2) would be a value drawn from F. Since we know F, we
compute the probability p̂d of two models induced by datasets generated by G

having a deviation greater than or equal to d. (p̂d equals P(F > d) where F is a
random variable with distribution F.) If p̂d is ‘‘significantly’’ low, then the proba-
bility that D2 was also generated by G is very low, and we can conclude that D1 and
D2 have different data characteristics with confidence 100(1− p̂d)%. Typically, most
statistical methods consider a value less than 0.05 to be significantly low.
100(1− p̂d)% is the percentage significance of the deviation between D1 and D2.
Figure 7 provides the details of the bootstrapping procedure for generating F and
for computing p̂d.
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FIG. 7. Bootstrapping procedure for estimating F

We now discuss the computational requirements of the bootstrapped estimation
of the significance of deviation. The bootstrapping procedure repeatedly computes
(n times, to be precise) the deviation between pairs of samples. To justify the com-
putational cost, we note the following three points regarding the tradeoff between
the cost and the benefit. First, it is much less expensive to construct a model on the
sample than on the entire dataset. Second, the automatic procedure of computing
the significance of deviation between models is many orders of magnitude faster
than a domain expert manually inspecting both datasets and the models they
induce. Third, the bootstrapped estimate of F for a dataset can be reused, if neces-
sary.

We note the following comments on the values taken by the parameters n and m
in the bootstrapping procedure. A value between 50 and 100 for the number n of
bootstrap iterations works well in practice [ET93]. For now, let us assume that
there is an oracle which gives us the right value for m. In Section 7, we describe one
way of empirically determining an appropriate value for m.

4. INSTANTIATIONS

In this section, we instantiate the FOCUS framework for lits-models, dt-models,
and cluster-models. Wherever possible, we analyze the properties of the instanti-
ated deviation functions.

4.1. lits-models

We first show that the class of lits-models exhibits the meet-semilattice prop-
erty. Next, we analyze the deviation functions and discuss interesting characteristics
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that arise due to the use of the GCR. We then derive an upper bound for the
deviation functions d(fa, g) where g ¥ {gsum, gmax}.

The refinement relation between the structural components of two sets of
frequent itemsets is defined by the superset relation. Let CM1=L

ms
D1 and CM2=L

ms
D2

be two sets of frequent itemsets.9 Formally, CM1 Q L CM2 if LmsD1 ` L
ms
D2 . The powerset

9 LmsD1 is the set of itemsets in D1 with support greater than ms.

of a set (here, I) of objects along with the superset relation forms a meet-semilat-
tice [GRA70]. (In fact, it forms a lattice.)

Proposition 4.1. The class of lits-models M on the set of items I exhibits the
two-component property and OCM; Q L P is a meet-semilattice.

Once again, consider the example in Figure 2. L3 is the GCR of L1 and L2. The
supports from D1 and D2 for each itemset in the GCR are shown below it.
d(fa, gsum)(L1, L2)=0.4+0.1+0.4+0.2+0.15=1.125, and d(fa, gmax)(L1, L2)=0.4.

We now show that using the GCR of two models rather than any common
refinement gives the least deviation, which reinforces the interpretation of the
notion of work required to transform one model to the other because, as always, we
prefer a transformation of lower cost to a transformation of higher cost.

Theorem 4.1. Let f ¥ {fa, fs} and g ¥ {gsum, gmax}. Let CM be a common
refinement of CM1 and CM2 . Then

d(M1, M2) [ {d
1
(f, g)(OCM, S(CM, D1)P, OCM, S(CM, D2)P)}.

4.1.1. An Upper Bound dg for d

In an exploratory, interactive environment where d is repeatedly computed, we
can typically work with estimates of the actual answers, but require fast responses.
For the case where the difference function is fa, we now derive an upper bound dg

of d that can be computed fast using just the two models (which will probably fit in
main memory, unlike the datasets). Thus, the entire computation uses in-memory
data structures and does not scan either dataset. Using the upper bound dg instead
of d is safe; we will not ignore significant deviations. dg also satisfies the triangle
inequality, and can therefore be used to embed a collection of datasets in a
k-dimensional space for visually comparing their relative differences.

Definition 4.1. Let M be the class of lits-models and M1, M2 ¥M be two
models at minimum support level ms induced by D1 and D2. Let o1, o2 ¥I+. Let

fg(o1, o2, |D1 |, |D2 |)=
def ˛fa(o1, o2, |D1 |, |D2 |), if

o1

|D1 |
,
o2

|D2 |
> ms

fa(o1, 0, |D1 |, |D2 |), if
o1

|D1 |
> ms and

o2

|D2 |
< ms

fa(0, o2, |D1 |, |D2 |), if
o1

|D1 |
< ms and

o2

|D2 |
> ms.

We define dg(g)(M1, M2)=
def
d(fg, g)(M1, M2).
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Theorem 4.2. Let M1, M2 ¥M be two models induced by D1, D2 and let
g ¥ {gsum, gmax}. Then the following properties hold:

(1) dg(g)(M1, M2) \ d(fa, g)(M1, M2)

(2) dg(g) satisfies the triangle inequality.

(3) dg(g) can be computed without scanning D1 or D2.

4.2. dt-models

We now show that the class of dt-models exhibits the meet-semilattice property.
Next, we discuss certain attractive properties that arise due to the use of the
GCR of the two models.

Intuitively, a region c in one model is refined by a set of regions in another model
if they partition c. The idea is extended to the entire structural component below.
We use the predicate representation for regions while formally defining the
refinement relation. For the rest of the section, let M1, M2 ¥M be two
dt-models induced by D1, D2 respectively, and let Pc denote the predicate identifying
a region c.

Definition 4.2. We say that CM1 Q T CM2 if, -c iM2 ¥ CM2 , ,{c
i1
M1
, ..., c iji

M1
} ı CM1 :

{(Pci1M1
K · · · KPciji

M
) iff PciM2 }.

Intuitively, the GCR of the structural components of two dt-models is the finer
partition of A(I) obtained by overlaying the two structural components CM1 and
CM2 . The corresponding set of predicates is obtained by ‘‘anding’’ all possible pairs
of predicates from both the structural components. For example, Fig. 5 shows the
finer partition formed by overlaying the partitions of the models T1 and T2. For the
sake of clarity, we show the measures only for regions of class label C1 in the GCR.
(An identical structure exists for the second class label.) Formally, the
GCR CM (M1, M2) of CM1 and CM2 is

{c: c is identified by Pc1 NPc2 ¦ c1 ¥ CM1 N c2 ¥ CM2}.

Proposition 4.2. LetM be the class of dt-models with refinement relation Q T.
ThenM exhibits the two-component property and OCM; Q T P is a meet-semilattice.

Once again, we consider the example in Fig. 5. T3’s structural component is the
GCR of the structural components of T1 and T2. For the sake of clarity, only the
measures of class C1 from both D1 and D2 are shown in T3. d(fa, gsum)(T1, T2) over
regions corresponding to class C1 is: |0.1−0.14|+|0.0−0.04|+|0−0|+|0−0|+
|0−0|+|0.05−0.1|=0.13.

The following theorem shows that using the greatest common refinement, rather
than any common refinement, gives the least deviation value for the case g=gsum.

Theorem 4.3. Let CM be a common refinement of CM1 and CM2 . Let g=gsum, and
f ¥ {fa, fs}. Then, d(f, g)(M1, M2) [ {d

1
(f, g)(OCM, S(CM, D1)P, OCM, S(CM, D2)P)}

Observe that this theorem is less general than Theorem 4.1 for lits-models. It is
not difficult to generate a counter example for g=gmax that violates the above
statement.
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5. FOCUSED DEVIATIONS

In this section, we illustrate the power of the FOCUS framework by applying it to
two different scenarios: exploratory analysis and change monitoring. The objective in
the first setting is to interactively explore and understand the differences between
two datasets, similar to the drill-down and roll-up strategies in OLAP data-
bases [COD93] and the ad hoc mining approach emphasized in [IM96, NLHP98].
The objective in the second setting is to check how well a model built from an old
dataset fits a new dataset.

For both application scenarios, a very useful property of FOCUS is that we can
compute deviations with respect to a specific region c ıA(I). Each region in the
structural component CM={c

i
M, i=1, ..., |CM |} of the model M can be indepen-

dently focused with respect to c by taking its intersection with c. The measure with
respect to a dataset D for each region c iM focused with respect to c is s(c 5 c iM, D).

Definition 5.1. Let M ¥M be a model induced by the dataset D and
c …A(I) be a region, called the focusing region. Then the focus Mc of M with
respect to c is defined as:

Mc=def OCcM, S(C
c
M, D)P

where CcM={c 5 c iM : c iM ¥ CM}. We use Mc and CcM to denote the sets of all
models in M and structural components in CM focussed with respect to c.

The following theorem shows that the theory we developed for the class of
models M can be applied to Mc as well.

Theorem 5.1. Let M be one of the following three classes of models: lits-
models, dt-models, and cluster-models. Let Q be a refinement relation such that
OCM; Q P forms a meet-semilattice. Let c ıA(I) be a focusing region. Then
OCcM; Q P is a meet-semilattice.

Definition 5.2. Let f be a difference function, g an aggregate function, and
M1, M2 be two models induced by D1, D2, respectively. The deviation
dc(f, g)(M1, M2) between M1 and M2 focused with respect to a region c ıA(I) is
defined as:

dc(f, g)(M1, M2)=
def
d(f, g)(M1

c, M2
c).

We emphasize that the deviation function may not be monotonic, i.e., if c … cŒ
then the deviation over c may not be less than the deviation over cŒ. For example, if
M1 and M2 are two models constructed from D1 and D2 respectively and
g ¥ {gsum, gmax} then

c ı cŒS dc(fa, g)(M1, M2) [ d
c −

(fa, g)
(M1, M2).

However, the same is not true for d(fs, g)(M1, M2).
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The ability to compute region-specific deviations is enhanced by adding operators
to manipulate sets of regions. We now introduce a small collection of such opera-
tors, divided into two groups: structural and rank operators. The basic intuition
behind the structural operators is that the structural components of models can be
viewed as sets of regions. However, the usual set operations like union, intersection,
and difference operations do not completely capture the structural relationships
between the models. We define the structural operators to obviate this shortcoming.
The structural operators take as input two sets of regions C1 and C2 and return as
output a set of regions C such that the result satisfies the model-specific constraints.
Here, we rely on the interpretation of the structural component as a set of regions.
For example, if M is the class of dt-models then each of the sets of regions
C1, C2, C consists of non-overlapping regions. They may not be exhaustive because
we are not dealing with a complete dt-model but only one part of such a model.

1. Structural Union ( c ): The structural union M (C1, C2) of two sets of
regions C1 and C2 is given by their GCR.

2. Structural Intersection ( X ): The structural intersection C1 X C2 of
C1 and C2 is the set of regions C such that each region in C is a member of both C1
and C2. This is identical to the standard intersection operation on sets.

3. Structural Difference ı : Informally, the structural difference C1 ı C2
of C1 and C2 consists of those regions where C1 and C2 differ structurally. Formally,

C1 ı C2=
def (C1 c C2)−(C1 X C2).

4. Predicate p: The predicate region is a subset of the attribute space iden-
tified by p.

Given a set of regions, the rank operator orders them by the ‘‘interestingness’’ of
change between the two datasets. The interestingness of a region is captured by a
deviation function. Later, we will give a few example instantiations of f and g,
which capture a variety of interestingness notions.)

• Rank: Given a set of regions C, two datasets D1, D2, and a deviation func-
tion d(f, g), the rank operator r(C, d(f, g), D1, D2)10 returns as output a list CF of

10 Since D1 and D2 are usually clear from the context, we omit them from the notation.

regions in the decreasing order of interestingness.

• Select: Given a set of regions ordered according to some criterion, the
selection operator selects a subset of the output. For example, top-region , top-n
regions, bottom-region, and bottom-n regions are common selections; we
denote these selections by h top, hn, hbot, and h−n respectively. We expect the select
operator to be typically employed on the output of the rank operator, which orders
a set of regions according to an interestingness criterion.
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5.1. Exploratory Analysis

The objective in exploratory analysis is to find a set of interesting regions in
terms of the differences between the two datasets. Consider the decision trees T1 and
T2 constructed from D1 and D2 shown in Fig. 5. Suppose that deviations above 0.05
are considered significant. D1 and D2 differ considerably in the shaded regions (1)

and (2). If f=fa then these regions have a deviation (with respect to class C1) of
0.08 and 0.05, respectively. Note that region (1) is a leaf node of T1 but region (2)

is a sub-region of a leaf node in T2. Moreover, the sub-regions of (1) in T3 do not
cause significant differences between D1 and D2. Therefore, we have to find regions
that are significantly different at all levels of the tree in addition to the regions of
T3. The following expressions find the regions (1) and (2) respectively:

h top(r(CT1 2 CT2 , d(fa, gsum))), h
top(r(CT1 c CT2 , d(fa, gsum))).

Next, consider an example in the frequent itemset domain. The shoes and clothes
departments in the Walmart super market sell sets of items I1 and I2, respectively.
Suppose D1 and D2 are datasets collected at two different outlets. An analyst com-
pares the top-10 itemsets in each department to see if the popular itemsets are
similar across the two departments. Let L1 and L2 be the sets of frequent itemsets
computed from D1 and D2 respectively. Let f and g be chosen appropriately. The
following expressions return the top-10 lists from each department, and the
combined top-20:

r(h10(r(P(I1) 5 (CL1 c CL2 )), d) 2 h
10(r(P(I2) 5 (CL1 c CL2 ))), d)

h20(r(P(I1) 2P(I2)) 5 (CL1 c CL2 ), d)

5.2. Monitoring Change

The objective in change monitoring is to know how well the model constructed
from the old dataset fits a new dataset. Therefore, the structural component for the
model on the new dataset is expected to be that of the old dataset, and the question
can be cast as ‘‘By how much does the old model misrepresent the new data?’’ For
decision trees, the misclassification error is widely used for this purpose (e.g.,
[BFOS84, LV88, LS97]); as we show, the chi-squared metric can also be adapted
(using bootstrapping) to address this question. We show that these two traditional
measures can be captured as special cases of the FOCUS framework by appropriate
choices of f and g. Thus, FOCUS generalizes change monitoring in two ways: (1) to
models other than decision trees, and (2) to change monitoring over specific
regions.

5.2.1. Misclassification Error

Let T=OCT, S(CT, D1)P be a dt-model constructed on a dataset D1, and let D2
be an independent dataset. For each tuple t ¥ D2, let CŒ=T(t) be the class label
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predicted by T for t. If the true class C of t is different from CŒ then t is said to be
misclassified by T. The misclassification error MET(D2) of T with respect to D2 is
the fraction of the number of tuples in D2 misclassified by T.

MET(D2)=
def |{t ¥ D2 and T misclassifies t}|

|D2 |
.

We define the predicted dataset DT2 of D2 with respect to T to be the set of tuples
formed by replacing the class label of each tuple t ¥ D2 with T’s prediction for t.
Denoting the replacement of the class label of a tuple t with c by t|c,

DT2=
def {tŒ: tŒ=t|T(t), t ¥ D2}.

The following theorem shows that MET(D2) is the deviation between D2 and DT2
at CT.

Theorem 5.2. Let T be a dt-model induced by D1. Let D2 be another dataset.
Then

MET(D2)=
1
2 d(fa, gsum)(OCT, S(CT, D2)P, OCT, S(CT, D

T
2 )P).

5.2.2. Chi-Squared Goodness of Fit Statistic

The computation of the chi-squared statistic X2 assumes that the entire space is
partitioned into cells each of which is associated with ‘‘expected’’ and ‘‘observed’’
measures. (See [DS86] for details.) To apply the chi-squared test to dt-models, we
use the regions associated with a decision tree T as the cells since these regions
partition the entire attribute space. The expected and observed measures are:
E(ci, D2)=s(ci, D1) · |D2 |, O(ci, D2)=s(ci, D2) · |D2 |. The statistic X2 can now be
computed in a straightforward way except for two problems:

(1) For the chi-squared statistic to be well-defined, E(ci, D2) should not be
zero. We follow the standard practice in Statistics and add a small constant c > 0
(0.5 is a common choice) to ensure this [DS86].

(2) At least 80% of the expected counts must be greater than 5 in order to use
the standard X2 tables. In a decision tree, this condition is often violated. For
example, if all tuples in node n are of class i, the expected measures for regions
cnj , j ] i will be zero. The solution to this problem is to use an exact calculation for
the probability distribution of the X2 statistic under the null hypothesis, i.e., the
distribution of X2 values when the new dataset fits the old model [DS86]. The
procedure (see Section 3.4) to estimate the exact distribution using the bootstrap-
ping technique can be used to perform the test.

It is easy to show that chi-squared statistic, adapted as described above, can be
instantiated from FOCUS.
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Proposition 5.1. Let T be the decision tree induced by D1, and let D2 be another
dataset. Let c be a (small) constant. Then the chi-squared statistic X2 is given by

X2=d(f, gsum)(OT, S(T, D1)P, OT, S(T, D2)P) where

f(v1, v2, |D1 |, |D2 |)=˛
|D2 | 1

v1
|D1 |
−
v2
|D2 |
22

v1
|D1 |

, if v1 > 0

c, otherwise.

6. EXPLORATORY ANALYSIS OF OLAP DATA

On-line analytic processing (OLAP) is the interactive exploratory analysis of
relational data, and is commonly used in marketing research and analysis. As a
typical example, consider an analyst who wants to understand the impact of current
marketing strategies and devise new strategies. Since the analysis is interactive,
decision support systems that support on-line analytic processing require fast pro-
cessing of complex aggregate queries on large databases. Several methods to expe-
dite the processing of aggregate queries in the OLAP context have been pro-
posed (e.g., [AAD+96, ZDN97]). However, Sarawagi et al. [SAM98] argue that,
in addition to enhancing the speed of aggregate query processing, it is necessary to
automatically aid an analyst in discovering regions which ‘‘deviate significantly’’
from the anticipated behavior. For instance, if the total profit in the city of
Madison is higher than anticipated, then the analyst needs to be informed.
Sarawagi et al. then propose a method that emulates an analyst’s discovery-driven
exploration to identify regions with anomalous behavior. They capture the notion
of anomalous behavior by constructing a series of predictive statistical models on
the data and comparing the actual behavior with the anticipated behavior. In this
section, we show that the comparison between the actual and the anticipated
behavior can be instantiated from the FOCUS framework. In Section 6.1, we briefly
describe the method of discovery-driven data exploration. In Section 6.2, we illus-
trate its instantiation from the FOCUS framework.

6.1. Discovery-driven Exploration of OLAP Data

OLAP applications analyze relational data whose schema consists of a set of
dimensional attributes and a set of dependent attributes. Some examples for dimen-
sional attributes are product name, store location, and examples for dependent
attributes are sales, profit. The analyst is interested in understanding the influence
of dimensional attributes on dependent attributes through a series of aggregate
queries on subsets of dimensional attributes. Each aggregate query is associated
with a set S of grouping attributes over which it groups by, and a measure function
m to compute the value for each group. The functions sum, average, min, and max
are some examples of measure functions typically used in the analysis.11

11 The measure function is sometimes referred to as the aggregate function. To avoid the confusion
between the aggregate function used in deviation computation, we use the term measure function.
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Consider a relation R, in the database of a retail grocery chain, with dimensional
attributes city and product type, and a dependent attribute profit. Let the sum
function be the measure function of interest. There are four possible sets of group-
ing attributes each corresponding to a subset of the set {city, profit}. Some
example aggregate queries on R are shown below.

Q1: select sum(profit) Q2: select city, sum(profit) Q3: select city, product type, sum(profit)

from R; from R from R

group by city; group by city, product type;

Assuming that a technique to identify tuples with unusual measures in the answer
to an aggregate query exists, Sarawagi et al. argue that a typical session of an
analyst discovering exceptions proceeds as follows. The analyst starts by looking at
the profit aggregated over all of R, then the profits aggregated over each city to
isolate a city that behaves unusually. Then, the analyst looks at profits aggregated
over each product type for this city. Suppose the profit for the city of Madison
aggregated over all product types is exceptional (compared with the overall profit),
then the aggregate profits for all product types in Madison will be analyzed to
understand the reason for the exception. Since the number of dimensional attributes
in R is two, the downward path from the most summarized information to the most
detailed information stops here. The analyst may also start by isolating a product
type (instead of a city) that behaves unusually.

Sarawagi et al. annotate the downward path—most summarized grouping to the
most detailed grouping—with ‘‘indicators’’ of exceptions to aid the analyst’s search
for regions of unusual behavior. Each tuple in an answer to an aggregate query is
associated with an exception value, which is computed as the deviation of the actual
measure value from a measure value predicted using a statistical model. For the
purpose of instantiating the discovery-driven analysis method from the FOCUS

framework, it is sufficient to say that the exception value is a function of the actual
measure value y and the predicted value ŷ, where a statistical model predicts ŷ. For
instance, the predicted measure for the pair { Madison, coffee} (where coffee is a
product type) in the illustrative session discussed above uses the overall profit for R
and the total profit from Madison. We skip the details of the statistical model
employed. (Interested readers are referred to [SAM98].) Given y and ŷ, the actual
and predicted measure values, of a tuple t the function f for computing the excep-
tion value of t is (y− ŷ)

2

ŷr
where r is a constant (derived from a likelihood model of

the data).

6.2. Instantiation of the Discovery-Driven Exploration

For the above method of discovering exceptions to be instantiated from the
FOCUS framework, we need to show the following two properties. First, the answers
to aggregate queries are two-component models and the set of answers to all pos-
sible aggregate queries associated with a measure function m forms a meet-semilat-
tice. Second, the most exceptional tuple in the answer to an aggregate query can be
identified. The following two sections discuss each step in detail.
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FIG. 8. An example lattice of answers to aggregate queries.

6.2.1. Meet-Semilattice Induced by Aggregate Queries

In this section, we show that the answer to an aggregate query is a two-compo-
nent model and the set of answers to all possible aggregate queries associated with
the measure function m on R forms a meet-semilattice. We first illustrate the
observation through an example before formalizing it. Consider the relation R
mentioned in the previous section. Let the sum function be the measure function.
The answer to the aggregate query Q2 consists of a set of tuples—one for each city
in R—each of which is associated with a measure, the total profit, for that city. In
this example, the set of cities is the structural component and the corresponding set
of per-city profit sums is the measure component. Generalizing, the set of tuples in
the answer to an aggregate query constitutes the structural component and the cor-
responding set of per-tuple measures constitutes the measure component.

Consider the queries Q2 and Q3. It can easily be seen that the answer to Q2 can be
computed from the answer to Q3. That is, the profit of every tuple in the answer to
Q2 is the sum of the measures (here, profit sums) of a set of tuples in the answer to
Q3.12 Thus, the answer to Q3 is a refinement of the answer to Q2.

12 Note that if the measure function is different from sum, then the definition of refinement needs to be
changed so that the measure of a tuple in the answer to Q2 can be computed from a set of tuples in the
answer to Q3. (Recall the footnote in Definition 3.4.) However, deriving such functions for the common
measure functions (average, min, max) is straight-forward. Therefore, we assume that the measure func-
tion is sum.

In general, the refinement relation is defined by the superset relation on the sets
of attributes involved in the group by operator. The answer to a query Q1 grouping
on the set S1 of attributes is a refinement of an answer to a query Q2 grouping on
the set S2 of attributes if S1 ` S2. For instance, the grouping set of attributes
{city} of Q2 is a superset of the corresponding set f for Q3. It was already shown in
Section 4.1 that the superset relation induces a meet-semilattice. The following
theorem formalizes the above discussion.

Theorem 6.1. Let S={A1, ..., An} be the set of dimensional attributes, and Y be
a dependent attribute of a relation R.13 Let the measure function m be one of sum,

13 We only consider one dependent attribute. If R has more than one dependent attribute, we analyze
them one at a time.

average, min, max, and Qm be the set of aggregate queries associated with the
measure function m on R. The answer A(Q) to any query Q ¥ Qm is a two-compo-
nent model. The set of answers A(Qm) to all queries in Qm forms a meet-semilattice.
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As an illustration, the lattice formed by the answers to aggregate queries is shown
in Fig. 8. An answer to a query is represented by a vertex labelled by the grouping
attributes. For instance, the answer to a query grouping on the attribute city is
represented by a vertex labelled {city}. If the answer A(Q1) to a query Q1 refines
that of another query Q2 then there is a directed edge from the vertex representing
A(Q1) to the vertex representing A(Q2).

Finally, note that queries with non-trivial where clauses correspond to models
focussed with respect to the where clause predicate. From Section 5, we know that
models restricted using predicates are still two-component models, and that they
form a meet-semilattice. Therefore, the above instantiation extends in a straight-
forward manner to a set of aggregate queries, each of which consists of a specific
where-clause predicate.

6.2.2. Identifying Exceptional Regions

In this section, we show that an expression formed from the operators discussed
in Section 5 identifies the most exceptional tuple in the answer to an aggregate
query. Informally, the expression merely picks the tuple associated with the highest
exception value.

Let Q be an aggregate query on a relation R. Let the set of tuples (also, structural
component) in the answer to Q be CQ. Let S(CQ, R) and S(CQ, R)Œ be the measure
component and the (statistically) predicted measure component of Q, respectively.
Let r be a constant. Let f be the difference function for computing the exception
value of a tuple; the input to f consists of the actual measure value and the pre-
dicted measure value of a tuple. Formally,

f(y, ŷ)=
(y−ŷ)2

ŷr

Let g be any aggregate function (e.g., sum, max). The functions f and g instan-
tiate a deviation function d(f, g). The following expression identifies the most excep-
tional tuple in CQ whose actual and predicted measure components are S(CQ, R)
and S(CQ, R)Œ, respectively.

h top(r(CQ, d(f, g)))

Replacing the h top operator with the hn operator yields the n most exceptional
tuples. The analyst can choose one of these n tuples for further exploration.

7. EFFECT OF SAMPLE SIZE

A popular solution to improve the speed and scalability of data mining algo-
rithms is to induce models from a random sample instead of the entire dataset. The
argument here is that a random sample captures most of the characteristics of the
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underlying dataset. In this section, we address this issue and quantitatively answer
the following question. While constructing a model using a random sample drawn
from the dataset, do bigger sample sizes necessarily yield better models? We apply
FOCUS to quantify the notion of ‘‘representativeness’’ of a random sample in induc-
ing the ‘‘true’’ model, that is, the model induced by the entire dataset. We believe
that the quantification of the representativeness of a sample is a first step in the
direction of determining the correct sample size for constructing a data mining
model.

The intuition behind our approach is as follows. The deviation obtained from an
instantiation of FOCUS quantifies the difference between the models induced by two
datasets. If one of the datasets is a sample randomly drawn from the other, the
deviation between the models they induce is then a measure of the representative-
ness of the sample in inducing the true model.

Let M be the model induced by D, and MS the model induced by a random
sample S drawn from D. We define the sample deviation (SD) of S to be d(M, MS).
The smaller the SD of S, the more representative S is of D. This definition gives us
a handle to study the influence of the size of the sample on its representativeness.

Using SD, we now address two questions. Does increasing the size of the sample
decrease its SD? If so, is the decrease significant or is it merely an artifact of
random fluctuation? If the answer to the first question is affirmative, then the SDs
of two sample sizes can be compared to answer the second question; in Sec-
tions 7.1.1 and 7.1.2, we carry out this comparison for a wide variety of datasets
and models. If the answer to the first question is negative, then the second question
is irrelevant. We now describe a procedure that returns the statistical significance of
the decrease in SD due to an increase in the sample size. The significance is the
percentage confidence 100(1−a)% with which the null hypothesis that the two
sample sizes are equally representative is rejected.

The basic intuition behind the procedure is as follows. Consider two sets of
random samples where the first set S1 contains samples of size si+1, and the second
set S2 contains samples of size si( < si+1). If the SD measures for size si+1 are
smaller than that for si( < si+1) then we expect a large number of SD values for S1
to be smaller than those for S2. We use the Wilcoxon two-sample test to check the
significance of this hypothesis [BD76].

7.1. Empirical Study

In this section, we present an empirical study of the representativeness of a
sample versus its size for lits-models and dt-models.

TABLE 1

lits-models: % Significance of Decrease in SD with SF from si to si+1

Sample fraction 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Significance 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 —
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TABLE 2

dt-models: % Significance of Decrease in SD with SF from si to si+1

Sample fraction 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Significance 99.99 99.99 99.99 99.97 99.69 79 99.22 99.93 95.25 —

7.1.1. lits-models

We used the synthetic data generator from the IBM Quest Data Mining group.
(The data generator can be downloaded from http://www.almaden.ibm.
com/cs/quest/syndata.html.) We use NM.tlL.|I|I.Nppats.pplen to refer to a
dataset with N million transactions, average transaction length tl, |I| thousand
items, Np thousand patterns, and average pattern length p. We used the Apriori
algorithm [AS94] to compute the set of frequent itemsets from a dataset.

FIG. 9. SD vs SF.

FIG. 10. SD vs SF.

FIG. 11. SD vs SF.

568 GANTI ET AL.



We studied all four combinations of f and g. In this section, we only present the
results of d(fa, gsum); the trends for the remaining experiments are similar. (They are
discussed in Section 8.3 in the context of sensitivity of the deviation functions.) We
varied two parameters: the size of the dataset and the minimum support level. The
datasets used for this study have three different sizes: 1 million, 0.75 million, and
0.5 million transactions. All other parameters to the data generator are set as
follows: |I|=1000, tl=20, Np=4000, p=4. Figures 9, 10, and 11 show the sample
deviation (SD) versus the sample fraction (SF) values. We draw the following
conclusions. (1) As the minimum support level decreases, the size of the sample
required to achieve a certain level of representativeness increases. This is to be
expected because the lower the minimum support level the more difficult it is to
estimate the model. (2) For a given SF value, the representativeness of samples of a
fixed size increases with the dataset size. This observation confirms the common
perception in Statistics that the absolute size of the sample is more important than
its relative size (with respect to the dataset).

Table 1 shows the significance of the decrease in SD as we increase the size of the
sample drawn from the dataset 1M.20L.1I.4pats.4plen. We measured the signi-
ficance using the Wilcoxon test on sets of 50 sample deviation values for each size.
We conclude that the representativeness of samples increases with the size of the
sample. However, from Figs. 9, 10, and 11 we see that the decrease in the SD values
is not large when sample fraction values are larger than 30%.

7.1.2. dt-models

We use the synthetic generator introduced in [AIS93]. It has several classifica-
tion functions to generate datasets with different characteristics. We selected four
functions (Functions F1, F2, F3, and F4) for our performance study. We use
NM.Fnum to denote a dataset with N million tuples generated using classification
function num. We used a scalable version of the widely studied CART [BFOS84]
algorithm implemented in the RainForest framework [GRG98] to construct deci-
sion tree models. We used d(fa, gsum) to compute the deviation between two models.

Table 2 shows the significance of the decrease in sample deviations for the dataset
1M.F1 as the sample size is increased. The significance is measured using the
Wilcoxon test on sets of 50 sample deviation values for each sample size. The
decrease in sample deviation values is quite significant even at SF=70%.

Figures 12, 13, and 14 show the plots for different classification functions (F1,
F2, F3, and F4) in the IBM data generator and for varying dataset sizes.

7.1.3. Conclusions from this Study

For both classes of models, based on the significance values from the Wilcoxon
tests, we conclude that it is better to use larger samples because the decrease in
sample deviations is statistically significant even for sample sizes as large as
70–80%. On the other hand, the SD versus SF plots suggest that the rate of addi-
tional information obtained decreases with increasing sample size, and for many
applications, it may be sufficient to take a sample of size 20–30% of the original
dataset.
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FIG. 12. SD vs SF.

FIG. 13. SD vs SF.

FIG. 14. SD vs SF.

8. EXPERIMENTAL EVALUATION

In this section, we evaluate the deviation computation in terms of its speed and
ability to detect significant deviations. We first consider lits-models and then dt-
models. We also study the sensitivity of some deviation functions, and the con-
sequent applications. The datasets we used for this study are also generated from
the IBM data generators described in Section 7.1, and the naming conventions are
the same as in Section 7.1.

8.1. Set of Frequent Itemsets

In this section, through controlled experiments on synthetic datasets, we first
evaluate the procedure for detecting significant deviations. We then evaluate the
quality and speed of the upper bound of the deviation function dg.
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FIG. 15. Deviation with D: 1M.20L.1I.4pats.4plen.

Let D=1M.20L.1I.4pats.4plen. We compute deviations between D and a
variety of datasets. All datasets D1−D7 are generated with an average transaction
length 20 and 1000 items; D1 consists of 500K transactions, D2−D4 consist of a
million transactions each, and d5−d7 consist of 50K transactions each. The number
of patterns and the average pattern length for each dataset is as follows. D1: (4K,4);
D2, d5: (6K,4); D3, d6: (4K,5); D4, d7: (5K,5). In each case, we set the minimum
support level to 1% to compute the set of frequent itemsets from both datasets.
Figure 15 shows the deviation values and their significance. The deviation value
d(fa, gsum) and its significance in row (1) reflect the fact that D1 has the same distri-
bution as that of D. As expected, D2, D3, D4 differ significantly from D. Moreover,
the deviation values suggest that the parameter patlen has a large influence on
data characteristics. The addition of d5 and d6 to D (rows (6),(7)) cause signifi-
cant deviations because they differ in the patlen parameter whereas the addition of
d7 which differs only in the parameter pats does not cause a significant deviation
(row (5)).

The last three columns in Fig. 15 show that dg delivers a good estimate instanta-
neously. The equality of the times in the row (1) is due to the fact that D and D1
have identical distributions. Therefore, the sets of frequent itemsets were identical;
so all the measures necessary to compute the deviation are obtained directly from
the models.

8.2. Decision Tree Classifiers

We evaluate the significance detection procedure (see Section 3.4) for dt-models
using the same experimental framework as in Section 7.1.2. In this experiment, we
compute the deviations using d(fa, gsum) and their significance values between
D=1M.F1 and a variety of datasets. Figure 16 shows the deviation values and their
significance. The datasets for the first four rows are generated using the functions
F1, F2, F3, and F4 respectively. The datasets used for the last three rows are
obtained by extending D with a new block of 50000 tuples generated using F2, F3,
and F4. D1=0.5M.F1, D2=1M.F2, D3=1M.F3, D4=1M.F4, D5=D+d5=D+
0.05M.F2, D6=D+d6=D+0.05M.F3, and D7=D+d7=D+0.05M.F4.

MEASURING DIFFERENCES IN DATA CHARACTERISTICS 571



FIG. 16. Deviation with D: 1M.F1.

The significance of the deviation for D1 in row (1) is low because it has the same
distribution as that of D. The significance of deviations in rows (2),(3),(4) are
high, as expected. From rows (5),(6),(7), we see that even the addition of new
blocks of size 50K to D causes significant deviations.

In Fig. 17, we plot the misclassification error (ME) for the tree constructed from
D with respect to a second dataset (chosen from d5-d7 and D2−D4) against the
deviation between the two datasets. We see that they exhibit a strong positive cor-
relation.

8.3. Sensitivity of Deviation Functions

In this section, we analyze the deviation functions instantiated by some more
combinations of the difference function f and the aggregate function g. We study
the sample deviation versus sample fraction plots for each deviation function. The
intuition is that the behavior of these plots—smooth or choppy—indicates the sen-
sitivity of the deviation function to the variability in the datasets.

First, we study the deviation functions for dt-models. Figures 18, 19, and 20
show the plots of sample deviation versus sample fraction on datasets generated
using classification functions F1, F2, F3, and F4 for the following deviation func-
tions: d(fa, gmax), d(fs, gsum), and d(fs, gmax). All plots exhibit a general downward trend as
the sample fraction is increased. However, the plots involving the difference func-
tion fs are not as smooth as those for fa.

FIG. 17. Deviation vs. ME
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FIG. 18. SD vs SF.

FIG. 19. SD vs SF.

FIG. 20. SD vs SF.

Why is the sensitivity of the deviation functions derived from fs for decision tree
models so high? Consider two decision tree modelsM1 andM2 induced by D1 and D2
respectively. Let c be a region with measures v1 in D1 and v2 in D2. If the structural
components CM1 and CM2 are different, it is possible that v1 > 0 and v2=0 in which
case fs(v1, v2, |D1|, |D2|)=2. (Recall that the motivation behind fs was to recognize
such differences.) This case occurs often, as illustrated by Figs. 19 and 20, because the
decision tree model induced from the sample almost always has a slightly different
structural component. When gmax is used, the sensitivity is extremely pronounced. Thus
fs is not a good function to use when quantifying the representativeness of a sample. In
contrast, if the application wants to detect ‘‘exceptions’’ while monitoring changes in a
dataset that evolves with time, then fs is a good function to use.

In Figs. 19 and 20, note that the sample deviation values for the classification
function F2 are much smaller and smoother than the sample deviation values of the
other classification functions. (The plot almost coincides with the x-axis.) The
reason for this difference is as follows. The structural component of the classifica-
tion tree models constructed using datasets from F2 involve only categorical attri-
butes. Due to the small domains of the categorical attributes, the exact structural
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FIG. 21. SD vs SF.

FIG. 22. SD vs SF.

FIG. 23. SD vs SF.

component of the classification tree model for F2 is recognized even with a very small
sample. Datasets from other classification functions induce classification tree models
with numerical attributes in their structural component. Due to random fluctuations,
the structural components of models induced by a sample differ slightly from the
structural component of the model induced by the entire dataset. When f=fa, this
difference is very small (see Figure 18) whereas it is pronounced when fs is used (see
Figures 19 and 20). The plots involving fs illustrate its sensitivity to even minor differ-
ences in the structural component between two decision tree models.

We now look at the deviation functions for lits-models. Figures 21, 22, and 23
show the plots of sample deviation versus sample fraction on the dataset
1M.20L.1I.4pats.4plen for the following deviation functions: d(fa, gmax), d(fs, gsum),
and d(fs, gmax). We see that the conclusions drawn from the plot for f=fa, g=gsum
hold even for these deviation functions. Also, the sensitivity is not as pronounced
for lits-models because an itemset X appears in the GCR of two models only if X
has the required minimum support in either the sample or the entire dataset. Also,
the measures v1 and v2 for such itemsets are fairly close. Thus the case described in
the previous paragraph (v1 > 0 and v2=0 or cases where v1 and v2 differ a lot) is
extremely rare. Therefore, the deviation functions are smoother for lits-models.
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9. RELATED WORK

We now review related work spanning Statistics and data mining. The general
approach in Statistics for detecting significant differences relies on the goodness of
fit tests (e.g., [DS86]) which try to measure how well a dataset fits a model or a
hypothesis. The chi-squared test is a commonly used goodness of fit test. Similar
approaches are employed in the context of time series analysis (e.g., [AND71]).
Our framework generalizes these approaches in two ways. First, we consider
popular classes of data mining models instead of traditional statistical models.
Second, our bootstrapping-based procedure for computing the significance of
deviation is a generalization of traditional methods which assume that the test sta-
tistic follows a known distribution (say, chi-squared or normal).

A lot of research on clustering concentrated on detecting ‘‘outliers’’ within the
dataset as noise and devised special strategies to handle them [EKX95, GRS98,
NH94, SD90, ZRL96]. In contrast to the work on clustering, [AAR96, GMV96,
KN98] concentrated primarily on discovering outliers in a dataset. They charac-
terized outliers in the data and proposed algorithms for discovering them. None of
this work, however, addressed the quantification of differences between datasets.

Interestingness measures to monitor variation in a single pattern were proposed
in [ST96]. A similar problem of monitoring the support of an individual itemset
was addressed in [AP95, CSD98]. Given a pattern (or itemset) their algorithms
propose to track its variation over a temporally ordered set of transactions.
However, they do not detect variations at levels higher than that of a single pattern.

The issue of sampling from a population to determine the characteristics of the
population has been studied extensively within the field of sample survey in Statis-
tics [Coc77, Dem60]. However, none of these addresses the particular issue, we
discuss in this paper: how data characteristics, as captured by data mining models,
vary with sample size.

10. CONCLUSIONS

In this paper, we proposed the FOCUS framework for quantifying and qualifying
changes between datasets. We instantiated the framework for lits-models, dt-
models, and cluster-models. We also applied FOCUS to two very interesting
applications: (1) interactive, exploratory paradigm for finding differences between
two datasets, and (2) studying representativeness of a sample.

1. Our framework can instantiate intuitively interpretable deviation measures
for several classes of data mining models. The deviation measures can be computed
using a single scan of the underlying datasets. The framework allows deviation
computation to be focussed to specific parts of the model.

2. We described a procedure to qualify the statistical significance of the
deviation measure.

3. We instantiated the framework for the commonly studied classes of data
mining models in the database literature: frequent itemsets, decision tree classifiers,
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and clusters. We also instantiated the misclassification error and the chi-squared
goodness of fit statistics.

4. We showed how our framework can support a set of operators to interac-
tively explore the structural components of two models to understand the differ-
ences between the datasets inducing the models. We also illustrate the instantiation
of the discovery-driven exploration of OLAP data proposed by Sarawagi et al.
[SAM98].

5. We applied our framework to study the impact of sample size on its repre-
sentativeness for both frequent itemsets and decision tree classifiers. Our conclusion
is that it is better to use all the data to extract all the information from the data.
However, in many cases models constructed from a sample of size between 20-30%
of the dataset size are quite close to that constructed from the entire dataset.

REFERENCES

[AAD+96] S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan,
and S. Sarawagi, On the computation of multidimensional aggregates, in ‘‘Proc. of the
22nd Int’l Conference on Very Large Databases,’’ Mumbai (Bombay), India, pp. 506–521,
Sept. 1996.

[AAR96] A. Arning, R. Agrawal, and P. Raghavan, A linear method for deviation detection in
large databases, in ‘‘Proc. of the 2nd Int’l Conference on Knowledge Discovery in
Databases and Data Mining,’’ Portland, Oregon, Aug. 1996.

[AGGR98] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, Automatic subspace clustering
of high dimensional data for data mining, in ‘‘Proceedings of the ACM SIGMOD
Conference on Management of Data,’’ 1998.

[AIS93] R. Agrawal, T. Imielinski, and A. Swami, Database mining: A performance perspective,
IEEE Trans. Knowledge Data Engrg. 5 (1993), 914–925.

[AMS+96] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Inkeri Verkamo, Fast disco-
very of association rules, in ‘‘Advances in Knowledge Discovery and Data Mining’’
(U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Eds.), Chap. 12,
pp. 307–328, AAAI/MIT Press, Cambridge, MA, 1996.

[AND71] T. W. Anderson, ‘‘The Statistical Analysis of Time Series,’’ Wiley, New York, 1971.

[AP95] R. Agrawal and G. Psaila, Active data mining, in ‘‘Proceedings of the First International
Conference on Knowledge Discovery and Data Mining,’’ 1995.

[AS94] R. Agrawal and R. Srikant, Fast algorithms for mining association rules, in ‘‘Proc. of the
20th Int’l Conference on Very Large Databases,’’ Santiago, Chile, Sept. 1994.

[BD76] P. J. Bickel and K. A. Doksum, ‘‘Classification Statistics: Basic Ideas and Selected
Topics,’’ Prentice–Hall, Englewood Cliffs, NJ, 1976.

[BFOS84] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, ‘‘Classification and Regres-
sion Trees,’’ Wadsworth, Belmont, CA, 1984.

[BMUT97] S; Brin, R. Motwani, J. D. Ullman, and S. Tsur, Dynamic itemset counting and implica-
tion rules for market basket data, in ‘‘Proc. of the ACM SIGMOD Conference on
Management of Data,’’ May 1997.

[CHNW96] D. Cheung, J. Han, V. Ng, and C. Y. Wong, Maintenance of discovered association
rules in large databases: An incremental updating techniques, in ‘‘Proc. of 1996 Int’l
Conference on Data Engineering,’’ New Orleans, LA, Feb. 1996.

576 GANTI ET AL.



[Coc77] W. G. Cochran, ‘‘Sampling Techniques,’’ Wiley, New York, 1977.

[COD93] E. F. Codd, Providing OLAP (on-line analytical processing) to user-analysts: An IT
mandate, Technical report, E. F. Codd and Associates, 1993.

[CSD98] S. Chakrabarti, S. Sarawagi, and B. Dom, Mining surprising patterns using temporal
description length, in ‘‘Proceedings of the 24th International Conference on Very Large
Databases,’’ pp. 606–617, Aug. 1998.

[Dem60] W. E. Deming, ‘‘Sample Design in Business Research,’’ Wiley, New York, 1960.

[DJ80] R. Dubes and A. K. Jain, Clustering methodologies in exploratory data analysis, Adv.
Comput. 1 (1980), 113–228.

[DS86] R. B. D’Agostino and M. A. Stephens, ‘‘Goodness-of-Fit Techniques,’’ Dekker, New
York, 1986.

[EKX95] M. Ester, H.-P. Kriegel, and X. Xu, A database interface for clustering in large spatial
databases, in ‘‘Proc. of the 1st Int’l Conference on Knowledge Discovery in Databases
and Data Mining,’’ Montreal, Canada, Aug. 1995.

[ET93] B. Efron and R. J. Tibshirani, ‘‘An Introduction to the Bootstrap,’’ Chapman and Hall,
London, 1993.

[FAAM97] R. Feldman, Y. Aumann, A. Amir, and H. Mannila, Efficient algorithms for discovering
frequent sets in incremental databases, in ‘‘Workshop on Research Issues on Data
Mining and Knowledge Discovery,’’ 1997.

[FPSSU96] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (Eds), ‘‘Advances in
Knowledge Discovery and Data Mining,’’ AAAI/MIT Press, Cambridge, MA, 1996.

[GGR99] V. Ganti, J. Gehrke, and R. Ramakrishnan, Cactus-clustering categorical data using
summaries, in ‘‘Proceedings of the ACM SIGKDD Fifth International Conference on
Knowledge Discovery in Databases,’’ pp. 73–83, Aug. 15–18, 1999.

[GGRL99] J. Gehrke, V. Ganti, R. Ramakrishnan, and W.-Y. Loh, BOAT-optimistic decision tree
construction, in ‘‘Proceedings of the ACM SIGMOD International Conference on
Management of Data,’’ June 1999.

[GKR98] D. Gibson, J. Kleinberg, and P. Raghavan, Clustering categorical data: An approach
based on dynamical systems, in ‘‘Proceedings of the 24th International Conference on
Very Large Databases,’’ New York City, New York, pp. 311–323, Aug. 24–27, 1998.

[GMV96] I. Guyon, N. Matic, and V. Vapnik, Discovering informative patterns and data cleaning,
in ‘‘Advances in Knowledge Discovery and Data Mining’’ (U. M. Fayyad, G. Piatetsky-
Shapiro, P. Smyth, and R. Uthurusamy, Eds.), pp. 181–204, AAAI Press, Menlo Park,
CA, 1996.

[GRa70] G. Gratzer, ‘‘Lattice Theory: First Concepts and Distributive Lattices,’’ W. H. Freeman,
San Francisco, 1970.

[GRG98] J. Gehrke, R. Ramakrishnan, and V. Ganti, Rainforest—A framework for fast decision
tree construction of large datasets, in ‘‘Proceedings of the 24th International Conference
on Very Large Databases,’’ pp. 416–427, Morgan Kaufmann, San Mateo, CA, 1998.

[GRG+99] V. Ganti, R. Ramakrishnan, J. Gehrke, A. Powell, and J. French, Clustering large data-
sets in arbitrary metric spaces, in ‘‘Proceedings of the 15th International Conference on
Data Engineering,’’ Sydney, pp. 502–511, Mar. 1999.

[GRS98] S. Guha, R. Rastogi, and K. Shim, Cure: An efficient clustering algorithm for large
databases, in ‘‘Proceedings of the ACM SIGMOD Conference on Management of
Data,’’ June 1998.

[GRS99] S. Guha, R. Rastogi, and K. Shim, Rock: A robust clustering algorithm for categorical
attributes, in ‘‘Proceedings of the IEEE International Conference on Data Engineering,’’
Sydney, Mar. 1999.

[GS99] S. Gaffney and P. Smyth, Trajectory clustering, in ‘‘Proceedings of the ACM SIGKDD
Fifth International Conference on Knowledge Discovery in Databases,’’ pp. 63–72, Aug.
15–19, 1999.

MEASURING DIFFERENCES IN DATA CHARACTERISTICS 577



[IM96] T. Imielinski and Heikki Mannila, A database perspective on knowledge discovery,
Commun. ACM 39 (1996), 58–64.

[KN98] E. M. Knorr and R. T. Ng, Algorithms for distance-based outliers in large databases,
in ‘‘Proceedings of the 24th International Conference on Very Large Databases,’’
pp. 392–403, Aug. 1998.

[LS97] W.-Y. Loh and Y.-S. Shih, Split selection methods for classification trees, Statist. Sinica
7 (1997).

[LV88] W.-Y. Loh and N. Vanichsetakul, Tree-structured classification via generalized discri-
minant analysis (with discussion), J. Amer. Statist. Assoc. 83 (1998), 715–728.

[MAR96] M. Mehta, R. Agrawal, and J. Rissanen, SLIQ: A fast scalable classifier for data mining,
in ‘‘Proc. of the Fifth Int’l Conference on Extending Database Technology (EDBT),’’
Avignon, France, Mar. 1996.

[NH94] R. T. Ng and J. Han, Efficient and effective clustering methods for spatial data mining,
in ‘‘Proc. of the VLDB Conference,’’ Santiago, Chile, September 1994.

[NLHP98] R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang, Exploratory mining and pruning
optimizations of constrained association rules, in ‘‘Proceedings of the 1998 ACM
SIGMOD International Conference on Management of Data’’ (L. Hass and A. Tiwary,
Eds.), pp. 13–24, June 1998.

[PCY95] J. S. Park, M.-S. Chen, and P. S. Yu, An effective hash based algorithm for rmining
association rules, in ‘‘Proc. of the ACM-SIGMOD Conference on Management of
Data,’’ San Jose, CA, May 1995.

[RS98] R. Rastogi and K. Shim, PUBLIC: A decision tree classifier that integrates building and
pruning, in ‘‘Proceedings of the 24th International Conference on Very Large Data-
bases,’’ New York City, New York, pp. 404–415, Aug. 24–27, 1998.

[SAM96] J. Shafer, R. Agrawal, and M. Mehta, SPRINT: A scalable parallel classifier for data
mining, in ‘‘Proc. of the 22nd Int’l Conference on Very Large Databases,’’ Bombay,
India, Sept. 1996.

[SAM98] S. Sarawagi, R. Agrawal, and N. Megiddo, Discovery-driven exploration of olap data
cubes, in ‘‘Proceedings of the 6th International Conference on Extending Database
Technology,’’ Valencia, Spain, 1998.

[SD90] J. W. Shavlik and T. G. Dietterich, ‘‘Readings in Machine Learning,’’ Morgan Kauf-
mann, San Mateo, CA, 1990.

[SON95] A. Savasere, E. Omiecinski, and S. Navathe, An efficient algorithm for mining associa-
tion rules in large databases, in ‘‘Proc. of the VLDB Conference,’’ Zurich, Switzerland,
Sept. 1995.

[ST96] A. Silbershatz and A. Tuzhilin, What makes patterns interesting in knowledge discovery
systems, IEEE Trans. Knowledge Data Engrg. 8 (1996).

[TBAR97] S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka, An efficient algorithm for the
incremental updation of association rules in large databases, in ‘‘Proceedings of 3rd
International Conference on Knowledge Discovery in Databases,’’ 1997.

[ZDN97] Y. Zhao, P. M. Deshpande, and J. F. Naughton, An array-based algorithm for simulta-
neous multidimensional aggregates, in ‘‘Sigmod,’’ 1997.

[ZRL96] T. Zhang, R. Ramakrishnan, and M. Livny, BIRCH: An efficient data clustering method
for very large databases, in ‘‘Proc. of the ACM SIGMOD Conference on Management
of Data,’’ Montreal, Canada, June 1996.

578 GANTI ET AL.


	1. INTRODUCTION
	2. EXAMPLES ILLUSTRATING DEVIATION
	FIG. 1
	FIG. 2
	FIG. 3
	FIG. 4
	FIG. 5
	FIG. 6

	3. FOCUS
	FIG. 7

	4. INSTANTIATIONS
	5. FOCUSED DEVIATIONS
	6. EXPLORATORY ANALYSIS OF OLAP DATA
	FIG. 8

	7. EFFECT OF SAMPLE SIZE
	Table 1
	Table 2
	FIG. 9
	FIG. 10
	FIG. 11
	FIG. 12
	FIG. 13
	FIG. 14

	8. EXPERIMENTAL EVALUATION
	FIG. 15
	FIG. 16
	FIG. 17
	FIG. 18
	FIG. 19
	FIG. 20
	FIG. 21
	FIG. 22
	FIG. 23

	9. RELATED WORK
	10. CONCLUSIONS
	REFERENCES

