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Classification

Goal: Learn a function that assigns a record 
to one of several predefined classes. 
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Classification Example

Example training database
Two predictor attributes:
Age and Car-type (Sport, 
Minivan and Truck)
Age is ordered, Car-type is
categorical attribute
Class label indicates
whether person bought
product
Dependent attribute is 
categorical

Age Car Class
20 M Yes
30 M Yes
25 T No
30 S Yes
40 S Yes
20 T No
30 M Yes
25 M Yes
40 M Yes
20 S No
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Types of Variables

Numerical: Domain is ordered and can be 
represented on the real line (e.g., age, income)
Nominal or categorical: Domain is a finite set 
without any natural ordering (e.g., occupation, 
marital status, race)
Ordinal: Domain is ordered, but absolute 
differences between values is unknown (e.g., 
preference scale, severity of an injury)
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Definitions

Random variables X1, …, Xk (predictor variables) 
and Y (dependent variable)
Xi has domain dom(Xi), Y has domain dom(Y)
P is a probability distribution on 
dom(X1) x … x dom(Xk) x dom(Y)
Training database D is a random sample from P
A predictor d is a function
d: dom(X1) … dom(Xk) dom(Y)
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Classification Problem

C is called the class label, d is called a classifier.
Take r be record randomly drawn from P. 
Define the misclassification rate of d:
RT(d,P) = P(d(r.X1, …, r.Xk) != r.C)

Problem definition: Given dataset D that is a random 
sample from probability distribution P, find classifier d 
such that RT(d,P) is minimized.

(More on regression problems in the second part of the 
tutorial.)
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Goals and Requirements

Goals:
To produce an accurate classifier/regression function
To understand the structure of the problem

Requirements on the model:
High accuracy
Understandable by humans, interpretable
Fast construction for very large training databases
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What are Decision Trees?

Minivan

Age

Car Type

YES NO

YES

<30 >=30

Sports, Truck

0 30 60 Age

YES

YES

NO

Minivan

Sports,
Truck
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Decision Trees

A decision tree T encodes d (a classifier or 
regression function) in form of a tree.
A node t in T without children is called a leaf 
node. Otherwise t is called an internal node.
Each internal node has an associated splitting 
predicate. Most common are binary predicates.
Example splitting predicates:

Age <= 20
Profession in {student, teacher}
5000*Age + 3*Salary – 10000 > 0
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Internal and Leaf Nodes

Internal nodes:
Binary Univariate splits:

Numerical or ordered X: X <= c, c in dom(X)
Categorical X: X in A, A subset dom(X)

Binary Multivariate splits:
Linear combination split on numerical variables:
Σ aiXi <= c

k-ary (k>2) splits analogous
Leaf nodes:

Node t is labeled with one class label c in dom(C)
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Example

Encoded classifier:
If (age<30 and 

carType=Minivan)
Then YES

If (age <30 and
(carType=Sports or 
carType=Truck))
Then NO

If (age >= 30)
Then NO

Minivan

Age

Car Type

YES NO

YES

<30 >=30

Sports, Truck
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Evaluation of Misclassification Error

Problem:
In order to quantify the quality of a classifier d, we need 
to know its misclassification rate RT(d,P).
But unless we know P, RT(d,P) is unknown.
Thus we need to estimate RT(d,P) as good as possible.

Approaches:
Resubstitution estimate
Test sample estimate
V-fold Cross Validation
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Resubstitution Estimate

The Resubstitution estimate R(d,D) estimates 
RT(d,P) of a classifier d using D:
Let D be the training database with N records.
R(d,D) = 1/N Σ I(d(r.X) != r.C))
Intuition: R(d,D) is the proportion of training 
records that is misclassified by d
Problem with resubstitution estimate:
Overly optimistic; classifiers that overfit the 
training dataset will have very low resubstitution
error.
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Test Sample Estimate

Divide D into D1 and D2

Use D1 to construct the classifier d
Then use resubstitution estimate R(d,D2) 
to calculate the estimated misclassification 
error of d
Unbiased and efficient, but removes D2
from training dataset D

Gehrke and LohKDD 2001 Tutorial: Advances in Decision Trees

V-fold Cross Validation

Procedure:
Construct classifier d from D
Partition D into V datasets D1, …, DV

Construct classifier di using D \ Di

Calculate the estimated misclassification error 
R(di,Di) of di using test sample Di

Final misclassification estimate:
Weighted combination of individual 
misclassification errors:
R(d,D) = 1/V Σ R(di,Di)
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Cross-Validation: Example

d

d1

d2

d3
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Cross-Validation

Misclassification estimate obtained through 
cross-validation is usually nearly unbiased
Costly computation (we need to compute d, and 
d1, …, dV); computation of di is nearly as 
expensive as computation of d
Preferred method to estimate quality of learning 
algorithms in the machine learning literature
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Decision Tree Construction

Top-down tree construction schema:
Examine training database and find best splitting 
predicate for the root node
Partition training database
Recurse on each child node

BuildTree(Node t, Training database D, Split Selection Method S)
(1) Apply S to D to find splitting criterion
(2) if (t is not a leaf node)
(3) Create children nodes of t
(4) Partition D into children partitions
(5) Recurse on each partition
(6) endif
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Decision Tree Construction (Contd.)

Three algorithmic components:
Split selection (CART, C4.5, QUEST, CHAID, 
CRUISE, …)
Pruning (direct stopping rule, test dataset 
pruning, cost-complexity pruning, statistical 
tests, bootstrapping)
Data access (CLOUDS, SLIQ, SPRINT,
RainForest, BOAT, UnPivot operator)
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Split Selection Methods

Multitude of split selection methods in the 
literature
In this tutorial:

Impurity-based split selection: CART (most 
common in today’s data mining tools)
Model-based split selection: QUEST
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Split Selection Methods: CART

Classification And Regression Trees
(Breiman, Friedman, Ohlson, Stone, 1984;
considered “the” reference on decision tree 
construction)
Commercial version sold by Salford Systems
(www.salford-systems.com)
Many other, slightly modified implementations 
exist (e.g., IBM Intelligent Miner implements the 
CART split selection method)
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CART Split Selection Method

Motivation: We need a way to choose 
quantitatively between different splitting 
predicates

Idea: Quantify the impurity of a node
Method: Select splitting predicate that 
generates children nodes with minimum 
impurity from a space of possible splitting 
predicates
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Intuition: Impurity Function
X1 X2 Class 
1 1 Yes 
1 2 Yes 
1 2 Yes 
1 2 Yes 
1 2 Yes 
1 1 No 
2 1 No 
2 1 No 
2 2 No 
2 2 No 

 

X1<=1     (50%,50%)

X2<=1      (50%,50%)

Yes

(83%,17%)

No

(25%,75%)

No

(0%,100%)

Yes

(66%,33%)
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Impurity Function

Let p(j|t) be the proportion of class j training records at 
node t. Then the node impurity measure at node t:
i(t) = phi(p(1|t), …, p(J|t))

Properties:
phi is symmetric
Maximum value at arguments (J-1, …, J-1)
phi(1,0,…,0) = … =phi(0,…,0,1) = 0

The reduction in impurity through splitting predicate s (t splits into 
children nodes tL with impurity phi(tL) and tR with impurity phi(tR)) 
is:
∆phi(s,t) = phi(t) – pL phi(tL) – pR phi(tR)
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Example

Root node t: p(1|t)=0.5; p(2|t)=0.5
Left child node t:

P(1|t)=0.83; p(2|t)=-.17
Impurity of root node: phi(0.5,0.5)
Impurity of left child node:

phi(0.83,0.17)
Impurity of right child node:

phi(0.0,1.0)
Impurity of whole tree:

0.6* phi(0.83,0.17) + 0.4 * phi(0,1)
Impurity reduction:

phi(0.5,0.5) - 0.6*phi(0.83,0.17) - 0.4*phi(0,1)

X1<=1     (50%,50%)

Yes

(83%,17%)

No

(0%,100%)
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Error Reduction as Impurity Function

Possible impurity 
function:
Resubstitution error 
R(T,D).
Example:
R(no tree, D) = 0.5
R(T1,D) = 0.6*0.17
R(T2,D) =
0.4*0.25 + 0.6*0.33

X1<=1     (50%,50%)

X2<=1      (50%,50%)

Yes

(83%,17%)

No

(25%,75%)

No

(0%,100%)

Yes

(66%,33%)

T1

T2

Gehrke and LohKDD 2001 Tutorial: Advances in Decision Trees

Problems with Resubstitution Error

Obvious problem:
There are situations 
where no split can 
decrease impurity
Example:
R(no tree, D) = 0.2
R(T1,D)  
=0.6*0.17+0.4*0.25
=0.2
More subtle problems 
exist

X3<=1     (80%,20%)

Yes

6: (83%,17%)

Yes

4: (75%,25%)
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Remedy: Concavity

Concave Impurity Functions
Use impurity functions that are concave: phi’’ < 0
Example concave impurity functions

Entropy: phi(t) = - Σ p(j|t) log(p(j|t))
Gini index: phi(t) = Σ p(j|t)2

Nonnegative Decrease in Impurity
Theorem: Let phi(p1, …, pJ) be a strictly concave function on j=1, …, J,
Σj pj = 1.

Then for any split s: ∆phi(s,t) >= 0
With equality if and only if: p(j|tL) = p(j|tR) = p(j|t), j = 1, …, J
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CART Univariate Split Selection

Use gini-index as impurity function
For each numerical or ordered attribute X, 
consider all binary splits s of the form

X <= x 
where x in dom(X)
For each categorical attribute X, consider all 
binary splits s of the form

X in A,    where A subset dom(X)
At a node t, select split s* such that
∆phi(s*,t) is maximal over all s considered
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CART: Shortcut for Categorical Splits

Computational shortcut if |Y|=2.
Theorem: Let X be a categorical attribute with 
dom(X) = {b1, …, bk}, |Y|=2, phi be a concave 
function, and let 

p(X=b1) <= … <= p(X=bk).
Then the best split is of the form:
X in {b1, b2, …, bl} for some l < k
Benefit: We need only to check k-1 subsets of 
dom(X) instead of 2(k-1)-1 subsets
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Problems with CART Split Selection

Biased towards variables with more splits 
(M-category variable has 2M-1-1) possible 
splits, an M-valued ordered variable has 
(M-1) possible splits
(Explanation and remedy later)
Computationally expensive for categorical 
variables with large domains
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QUEST: Model-based split selection

“The purpose of models is not to fit the data 
but to sharpen the questions.”
Karlin, Samuel (1923 - )

(11th R A Fisher Memorial Lecture, Royal Society 20, April 1983.)
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Split Selection Methods: QUEST

Quick, Unbiased, Efficient, Statistical Tree
(Loh and Shih, Statistica Sinica, 1997)
Freeware, available at www.stat.wisc.edu/~loh
Also implemented in SPSS.

Main new ideas:
Separate splitting predicate selection into variable 
selection and split point selection
Use statistical significance tests instead of impurity 
function
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QUEST Variable Selection

Let X1, …, Xl be numerical predictor variables, and 
let Xl+1, …, Xk be categorical predictor 
variables.

1. Find p-value from ANOVA F-test for each numerical 
variable.

2. Find p-value for each X2-test for each categorical 
variable.

3. Choose variable Xk’ with overall smallest p-value pk’

(Actual algorithm is more complicated.)

Gehrke and LohKDD 2001 Tutorial: Advances in Decision Trees

QUEST Split Point Selection

CRIMCOORD transformation of categorical 
variables into numerical variables:

1. Take categorical variable X with domain 
dom(X)={x1, …, xl}

2. For each record in the training database, create 
vector (v1, …, vl) where vi = I(X=xi)

3. Find principal components of set of vectors V
4. Project the dimensionality-reduced data onto the 

largest discriminant coordinate dxi

5. Replace X with numeral dxi in the rest of the 
algorithm
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CRIMCOORDs: Examples

Values(X|Y=1) = {4c1,c2,5c3}, values(X|Y=2) = {2c1, 2c2, 6c3} 
dx1 = 1, dx2 = -1, dx3 = -0.3

Values(X|Y=1) = {5c1,5c3}, values(X|Y=2) = {5c1, 5c3}
dx1 = 1, dx2 = 0, dx3 = 1

Values(X|Y=1) = {5c1,5c3}, values(X|Y=2) = {5c1, c2, 5c3}
dx1 = 1, dx2 = -1, dx3 = 1

Advantages
Avoid exponential subset search from CART
Each dxi has the form Σ bi I(X=xi) for some b1, …, bl, 
thus there is a 1-1 correspondence between subsets of 
X and a dxi
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QUEST Split Point Selection

Assume X is the selected variable (either numerical, or categorical 
transformed to CRIMCOORDS)
Group J>2 classes into two superclasses
Now problem is reduced to one-dimensional two-class problem

Use exhaustive search for the best split point (like in CART)
Use quadratic discriminant analysis (QDA, next few bullets)

QUEST Split Point Selection: QDA
Let x1, x2 and s1

2, s2
2 the means and variances for the two

superclasses
Make normal distribution assumption, and find intersections of the 
two normal distributions N(x1,s1

2) and N(x2,s2
2)

QDA splits the X-axis into three intervals
Select as split point the root that is closer to the sample means
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Illustration: QDA Splits

0

0.1

0.2

0.3

0.4

0.5

-1.5 -0.5 0.5 1.5 2.5 3.5

N(0,1) N(2,2.25)
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QUEST Linear Combination Splits

Transform all categorical variables to 
CRIMCOORDS
Apply PCA to the correlation matrix of the data
Drop the smallest principal components, and 
project the remaining components onto the 
largest CRIMCOORD
Group J>2 classes into two superclasses
Find split on largest CRIMCOORD using ES or 
QDA
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Key Differences CART/QUEST

Feature QUEST CART

Variable selection Statistical tests ES
Split point selection QDA or ES ES
Categorical variables CRIMCOORDS ES
Monotone transformations 

for numerical variables Not invariant Invariant
Ordinal Variables No Yes
Variables selection bias No Yes (No)
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Pruning Methods

Test dataset pruning
Direct stopping rule
Cost-complexity pruning (not covered)
MDL pruning
Pruning by randomization testing
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Stopping Policies

A stopping policy indicates when further growth of 
the tree at a node t is counterproductive.
All records are of the same class
The attribute values of all records are identical
All records have missing values
At most one class has a number of records 
larger than a user-specified number
All records go to the same child node if t is split 
(only possible with some split selection 
methods)
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Test Dataset Pruning

Use an independent test sample D’ to 
estimate the misclassification cost using 
the resubstitution estimate R(T,D’) at 
each node
Select the subtree T’ of T with the 
smallest expected cost
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Reduced Error Pruning

(Quinlan, C4.5, 1993)
Assume observed misclassification rate at 
a node is p
Replace p (pessimistically) with the upper 
75% confidence bound p’, assuming a 
binomial distribution
Then use p’ to estimate error rate of the 
node
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Pruning Using the MDL Principle

(Mehta, Rissanen, Agrawal, KDD 1996)
Also used before by Fayyad, Quinlan, and others.

MDL: Minimum Description Length Principle
Idea: Think of the decision tree as encoding the 
class labels of the records in the training 
database
MDL Principle: The best tree is the tree that 
encodes the records using the fewest bits
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How To Encode a Node

Given a node t, we need to encode the following:
Nodetype: One bit to encode the type of each node 
(leaf or internal node)

For an internal node:
Cost(P(t)): The cost of encoding the splitting 
predicate P(t) at node t

For a leaf node:
n*E(t): The cost of encoding the records in leaf node 
t with n records from the training database (E(t) is 
the entropy of t)
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How To Encode a Tree

Recursive definition of the minimal cost of a node:
Node t is a leaf node:

cost(t)= n*E(t)
Node t is an internal node with children nodes t1
and t2. Choice: Either make t a leaf node, or 
take the best subtrees, whatever is cheaper:

cost(t) =
min( n*E(t), 1+cost(P(t))+cost(t1)+cost(t2))
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How to Prune

1. Construct decision tree to its maximum 
size

2. Compute the MDL cost for each node of 
the tree bottom-up

3. Prune the tree bottom-up:
If cost(t)=n*E(t), make t a leaf node.
Resulting tree is the final tree output by 
the pruning algorithm.
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Performance Improvements: PUBLIC

(Shim and Rastogi, VLDB 1998)
MDL bottom-up pruning requires construction of 
a complete tree before the bottom-up pruning 
can start
Idea: Prune the tree during (not after) the tree 
construction phase
Why is this possible?

Calculate a lower bound on cost(t) and compare it 
with n*E(t)

Gehrke and LohKDD 2001 Tutorial: Advances in Decision Trees

PUBLIC Lower Bound Theorem

Theorem: Consider a classification problem with 
k predictor attributes and J classes. Let Tt be a
subtree with s internal nodes, rooted at node t, 
let ni be the number of records with class label i. 
Then

cost(Tt) >= 2*s+1+s*log k + Σ ni

Lower bound on cost(Tt) is thus the minimum 
of:

n*E+1 (t becomes a leaf node)
2*s+1+s*log k + Σ ni (subtree at t remains)
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Large Datasets Lead to Large Trees

Oates and Jensen (KDD 1998)
Problem: Constant probability distribution P, 
datasets D1, D2, …, Dk with
|D1| < |D2| < … < |Dk|
|Dk| = c |Dk-1| = … = ck |D1|
Observation: Trees grow
|T1| < |T2| < … < |Tk|
|Tk| = c’ |Tk-1| = … = c’k |T1|
But: No gain in accuracy due to larger trees
R(T1,D1) ~ R(T2,D2) ~ … ~ R(Tk, Dk)
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Pruning By Randomization Testing

Reduce pruning decision at each node to a hypothesis test
Generate empirical distribution of the hypothesis under the null
hypothesis for a node

Node n with subtree T(n) and pruning statistic S(n)
For (i=0; i<K; i++) 

1. Randomize class labels of the data at n
2. Build and prune a tree rooted at n
3. Calculate pruning statistic Si(n)

Compare S(n) to empirical distribution of Si(n) to estimate significance 
of S(n)

If S(n) is not significant enough compared to a significance level alpha, 
then prune T(n) to n
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Tutorial Overview

Part I: Classification Trees
Introduction
Classification tree construction schema
Split selection
Pruning
Data access
Missing values
Evaluation
Bias in split selection
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SLIQ

Shafer, Agrawal, Mehta (EDBT 1996)
Motivation:

Scalable data access method for CART
To find the best split we need to evaluate the impurity function
at all possible split points for each numerical attribute, at each 
node of the tree
Idea: Avoids re-sorting at each node of the three through pre-
sorting and maintenance of sort orders

Ideas:
Uses vertical partitioning to avoid re-sorting
Main-memory resident data structure with schema (class label, 
leaf node index)
Very likely to fit in-memory for nearly all training databases
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SLIQ: Pre-Sorting

Age Car Class
20 M Yes
30 M Yes
25 T No
30 S Yes
40 S Yes
20 T No
30 M Yes
25 M Yes
40 M Yes
20 S No

Age Ind 
20 1 
20 6 
20 10 
25 3 
25 8 
30 2 
30 4 
30 7 
40 5 
40 9 

 

Ind Class Leaf 
1 Yes 1 
2 Yes 1 
3 No 1 
4 Yes 1 
5 Yes 1 
6 No 1 
7 Yes 1 
8 Yes 1 
9 Yes 1 

10 No 1 
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SLIQ: Evaluation of Splits

Age Ind 
20 1 
20 6 
20 10 
25 3 
25 8 
30 2 
30 4 
30 7 
40 5 
40 9 

 

Ind Class Leaf 
1 Yes 2 
2 Yes 2 
3 No 2 
4 Yes 3 
5 Yes 3 
6 No 2 
7 Yes 2 
8 Yes 2 
9 Yes 2 

10 No 3 
 

Node2 Yes No
Left 2 0 

Right 3 2 
 

Node3 Yes No
Left 0 1 

Right 2 0 
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SLIQ: Splitting of a Node

Ind Class Leaf 
1 Yes 4 
2 Yes 5 
3 No 5 
4 Yes 7 
5 Yes 7 
6 No 4 
7 Yes 7 
8 Yes 7 
9 Yes 7 

10 No 6 
 

Age Ind 
20 1 
20 6 
20 10 
25 3 
25 8 
30 2 
30 4 
30 7 
40 5 
40 9 

 

1

2 3

4 5 6 7
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SLIQ: Summary

Uses vertical partitioning to avoid re-
sorting
Main-memory resident data structure with 
schema (class label, leaf node index)
Very likely to fit in-memory for nearly all 
training databases
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SPRINT

Shafer, Agrawal, Mehta (VLDB 1996)
Motivation:

Scalable data access method for CART
Improvement over SLIQ to avoid main-memory data structure

Ideas:
Create vertical partitions called attribute lists for each attribute
Pre-sort the attribute lists

Recursive tree construction:
1. Scan all attribute lists at node t to find the best split
2. Partition current attribute lists over children nodes while 

maintaining sort orders
3. Recurse
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SPRINT Attribute Lists

Age Car Class
20 M Yes
30 M Yes
25 T No
30 S Yes
40 S Yes
20 T No
30 M Yes
25 M Yes
40 M Yes
20 S No

Age Class Ind 
20 Yes 1 
20 No 6 
20 No 10 
25 No 3 
25 Yes 8 
30 Yes 2 
30 Yes 4 
30 Yes 7 
40 Yes 5 
40 Yes 9 

 

Car Class Ind 
M Yes 1 
M Yes 2 
T No 3 
S Yes 4 
S Yes 5 
T No 6 
M Yes 7 
M Yes 8 
M Yes 9 
S No 10 
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SPRINT: Evaluation of Splits

Node1 Yes No
Left 1 2 

Right 6 1 
 

Age Class Ind 
20 Yes 1 
20 No 6 
20 No 10 
25 No 3 
25 Yes 8 
30 Yes 2 
30 Yes 4 
30 Yes 7 
40 Yes 5 
40 Yes 9 

 

Gehrke and LohKDD 2001 Tutorial: Advances in Decision Trees

SPRINT: Splitting of a Node

1. Scan all attribute lists to find the best 
split

2. Partition the attribute list of the splitting 
attribute X

3. For each attribute Xi != X
Perform the partitioning step of a hash-join 

between the attribute list of X and the 
attribute list of Xi
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SPRINT: Hash-Join Partitioning

Age Class Ind 
20 Yes 1 
20 No 6 
20 No 10 
25 No 3 
25 Yes 8 
30 Yes 2 
30 Yes 4 
30 Yes 7 
40 Yes 5 
40 Yes 9 

 

Car Class Ind 
M Yes 1 
M Yes 2 
M Yes 7 
M Yes 8 
M Yes 9 

 

Right Child
Right Child
R

R

R
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SPRINT: Summary

Scalable data access method for CART 
split selection method
Completely scalable, can be (and has 
been) implemented “inside” a database 
system
Hash-join partitioning step expensive 
(each attribute, at each node of the tree)
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RainForest
(Gehrke, Ramakrishnan, Ganti, VLDB 1998)

Age Yes No
20 1 2
25 1 1
30 3 0
40 2 0

Car Yes No
Sport 2 1
Truck 0 2

Minivan 5 0

Age Car Class
20 M Yes
30 M Yes
25 T No
30 S Yes
40 S Yes
20 T No
30 M Yes
25 M Yes
40 M Yes
20 S No

Training Database AVC-Sets
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Refined RainForest Top-Down Schema
BuildTree(Node n, Training database D,

Split Selection Method S)

[ (1)  Apply S to D to find splitting criterion ]
(1a) for each predictor attribute X
(1b) Call S.findSplit(AVC-set of X)
(1c) endfor
(1d) S.chooseBest();
(2)   if (n is not a leaf node) ...

S: C4.5, CART, CHAID, FACT, ID3, GID3, QUEST, etc.
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RainForest Data Access Method

Assume datapartition at a node is D. Then the 
following steps are carried out:

1. Construct AVC-group of the node
2. Choose splitting attribute and splitting predicate
3. Partition D across the children
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Main Memory

RainForest Algorithms: RF-Write

First scan: 

Database
AVC-Sets
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RainForest Algorithms: RF-Write

Second Scan:

Main Memory

Database

Partition 1 Partition 2

Age<30?
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RainForest Algorithms: RF-Write

Analysis:
Assumes that the AVC-group of the root node fits into main 
memory
Two database scans per level of the tree
Usually more main memory available than one single AVC-
group needs

Main Memory

Database

Main Memory

Database

Partition 1 Partition 2

Age<30?

? ?
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Main Memory

RainForest Algorithms: RF-Read

First scan: 

Database
AVC-Sets
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RainForest Algorithms: RF-Read

Second Scan:

Main Memory

Database

AVC-Sets

Age<30
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RainForest Algorithms: RF-Read

Third Scan:

Main Memory

Database

Age<30

Sal<20k Car==S
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RainForest Algorithms: RF-Hybrid

First scan:

Main Memory

Database
AVC-Sets
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RainForest Algorithms: RF-Hybrid

Second Scan:

Main Memory

Database

AVC-Sets

Age<30
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RainForest Algorithms: RF-Hybrid

Third Scan:

Main Memory

DatabaseAge<30

Sal<20k Car==S

Partition 1 Partition 2 Partition 3 Partition 4
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RainForest Algorithms: RF-Hybrid

Further optimization: While writing partitions, 
concurrently build AVC-groups of as many nodes 
as possible in-memory

Main Memory

DatabaseAge<30

Sal<20k Car==S

Partition 1 Partition 2 Partition 3 Partition 4
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BOAT

(Gehrke, Ganti, Ramakrishnan, Loh; SIGMOD 1999)

Training Database
Age

<30 >=30

Left Partition Right Partition
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BOAT: Algorithm Overview 

In-memory 
Sample

Approximate tree  
with bounds

Sampling Phase Cleanup Phase

Approximate 
tree, bounds

Final tree

All the 
data
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Tutorial Overview

Part I: Classification Trees
Introduction
Classification tree construction schema
Split selection
Pruning
Data access
Missing Values
Evaluation
Bias in split selection

(Short Break)
Part II: Regression Trees
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Missing Values

What is the problem?
During computation of the splitting predicate, 
we can selectively ignore records with missing 
values (note that this has some problems)
But if a record r misses the value of the 
variable in the splitting attribute, r can not 
participate further in tree construction

Algorithms for missing values address this 
problem.
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Mean and Mode Imputation

Assume record r has missing value r.X, and 
splitting variable is X.
Simplest algorithm:

If X is numerical (categorical), impute the 
overall mean (mode) 

Improved algorithm:
If X is numerical (categorical), impute  the 
mean(X|t.C) (the mode(X|t.C))
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Surrogate Splits (CART)

Assume record r has missing value r.X, and 
splitting predicate is PX.
Idea: Find splitting predicate QX’ involving 
another variable X’ != X that is most similar to 
PX.

Similarity sim(Q,P|D) between splits Q and P:
Sim(Q,P|D) = |{r in D: P(r) and Q(r)}|/|D|

0 <= sim(Q,P|D) <= 1
Sim(P,P) = 1
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Surrogate Splits: Example

Consider splitting predicate 
X1 <= 1.

Sim((X1 <= 1),
(X2 <= 1)|D) = 

(3+4)/10
Sim((X1 <= 1),

(X2 <= 2)|D) = 
(6+3)/10

(X2 <= 2) is the preferred 
surrogate split.

X1 X2 Class 
1 1 Yes 
1 1 Yes 
1 1 Yes 
1 2 Yes 
1 2 Yes 
1 2 No 
2 2 No 
2 3 No 
2 3 No 
2 3 No 
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Tutorial Overview

Part I: Classification Trees
Introduction
Classification tree construction schema
Split selection
Pruning
Data access
Missing Values
Evaluation
Bias in split selection

(Short Break)
Part II: Regression Trees
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Choice of Classification Algorithm?

Example study: (Lim, Loh, and Shih, Machine 
Learning 2000)

33 classification algorithms
16 (small) data sets (UC Irvine ML Repository)
Each algorithm applied to each data set

Experimental measurements:
Classification accuracy
Computational speed
Classifier complexity
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Experimental Setup

Algorithms:
Tree-structure classifiers (IND, S-Plus Trees, C4.5, FACT, 
QUEST, CART, OC1, LMDT, CAL5, T1)
Statistical methods (LDA, QDA, NN, LOG, FDA, PDA, MDA, POL)
Neural networks (LVQ, RBF)

Setup:
16 primary data sets, created 16 more data sets by adding noise
Converted categorical predictor variables to 0-1 dummy 
variables if necessary
Error rates for 6 data sets estimated from supplied test sets, 10-
fold cross-validation used for the other data sets
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Results

Rank Algorithm Mean Error Time
1 Polyclass 0.195 3 hours
2 Quest Multivariate 0.202 4 min
3 Logistic Regression 0.204 4 min
6 LDA 0.208 10 s
8 IND CART 0.215 47 s
12 C4.5 Rules 0.220 20 s
16 Quest Univariate 0.221 40 s
…

Number of leaves for tree-based classifiers varied widely (median 
number of leaves between 5 and 32 (removing some outliers))
Mean misclassification rates for top 26 algorithms are not 
statistically significantly different, bottom 7 algorithms have 
significantly lower error rates
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Tutorial Overview

Part I: Classification Trees
Introduction
Classification tree construction schema
Split selection
Pruning
Data access
Missing Values
Evaluation
Bias in split selection

(Short Break)
Part II: Regression Trees
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Bias in Split Selection for ES

Assume: No correlation 
with the class label.

Question: Should we 
choose Age or Car?
Answer: We should 
choose both of them 
equally likely!

Age Yes No 
20 15 15 
25 15 15 
30 15 15 
40 15 15 

 
Car Yes No 

Sport 20 20 
Truck 20 20 

Minivan 20 20 
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Formal Definition of the Bias

Bias: “Odds of choosing X1 and X2 as split 
variable when neither X1 nor X2 is correlated 
with the class label”

Formally:
Bias(X1,X2) = Log10(P(X1,X2)/(1-P(X1,X2)),
P(X1,X2): probability of choosing variable X1 over X2

We would like: Bias(X1,X2) = 0 in the Null Case
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Formal Definition of the Bias (Contd.)

Example: Synthetic 
data with two 
categorical predictor 
variables

X1: 10 categories
X2: 2 categories

For each category: 
Same probability of 
choosing “Yes” (no 
correlation)

Car Yes No 
Car1   
Car2   
Car3   
…   

Car10   
 

State Yes No 
CA   
NY   
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Evidence of the Bias

Gini Entropy

Gain Ratio
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One Explanation

Theorem: (Expected Value of the Gini Gain)
Assume:

Two classlabels
n: number of categories
N: number of records
p1: probability of having classlabel “Yes”

Then: E(ginigain) = 2p(1-p)*(n-1)/N

Expected ginigain increases linearly with number 
of categories!
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Bias Correction: Intuition

Value of the splitting criteria is biased under 
the Null Hypothesis.
Idea: Use p-value of the criterion:
Probability that the value of the criterion under 
the Null Case is as extreme as the observed 
value

Method:
1. Compute criterion (gini, entropy, etc.)
2. Compute p-value
3. Choose splitting variable
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Correction Through P-Value

New p-value criterion:
Maintains “good” properties of your favorite 
splitting criterion
Theorem: The correction through the p-value is 
nearly unbiased.

Computation:
1. Exact (randomization statistic; very expensive to compute)
2. Bootstrapping (Monte Carlo simulations; computationally 

expensive; works only for small p-values)
3. Asymptotic approximations (G2 for entropy, Chi2 distribution for 

Chi2 test; don’t work well in boundary conditions)
4. Tight approximations (cheap, often work well in practice)
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Tight Approximation

Experimental evidence 
shows that Gamma 
distribution approximates 
gini-gain very well.
We can calculate:

Expected gain:
E(gain) = 2p(1-p)*(n-1)/N
Variance of gain:
Var(gain) = 4p(1-p)/N2[(1-
6p-6p2) *  (sum 1/Ni – (2n-
1)/N) + 2(n-1)p(1-p)]
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Problem: ES and Missing Value

Consider a training database with the following 
schema: (X1, …, Xk, C)
Assume the projection onto (X1, C) is the 
following:

{(1, Class1), (2, Class2), (NULL, Class13), …,
(NULL, Class1N)}

(X1 has missing values except for the first two 
records)

Exhaustive search will very likely split on X1!
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Concluding Remarks Part I

There are many algorithms available for:
Split selection
Pruning
Data access
Handling missing values

Challenges: Performance, getting the “right” model, 
data streams, new applications


