Advances in Decision Tree Construction
Johannes Gehrke Cornell University johannes@cs.comell.edu
http://www.cs.cornell.edu/johannes Wei-Yin Loh
University of Wisconsin-Madison <u>loh@stat.wisc.edu</u> <u>http://www.stat.wisc.edu/~loh</u>
KDD 2001 Tutorial: Advances in Decision Trees Gehrke and Loh

Tutorial Overview

- Part I: Classification Trees
 - Introduction
 - Classification tree construction schema
 - Split selection
 - Pruning
 - Data access
 - Missing values
 - Evaluation
 - Bias in split selection

(Short Break)

Part II: Regression Trees
 KDD 2001 Tutorial: Advances in Decision Trees

Tutorial Overview

- Part I: Classification Trees
 - Introduction
 - Classification tree construction schema
 - Split selection
 - Pruning
 - Data access
 - Missing values
 - Evaluation
 - Bias in split selection

(Short Break)

Part II: Regression Trees

Gehrke and Loh

Classification Example

- Example training database
 Two predictor attributes: Age and Car-type (Sport,
 - Minivan and Truck)
 Age is ordered, Car-type is categorical attribute
 - Class label indicates whether person bought product
 - Dependent attribute is categorical

KDD 2001 Tutorial: Advances in Decision Trees

Types of Variables

- *Numerical*: Domain is ordered and can be represented on the real line (e.g., age, income)
- *Nominal* or *categorical*: Domain is a finite set without any natural ordering (e.g., occupation, marital status, race)
- *Ordinal*: Domain is ordered, but absolute differences between values is unknown (e.g., preference scale, severity of an injury)

KDD 2001 Tutorial: Advances in Decision Trees

Definitions

- Random variables X₁, ..., X_k (*predictor variables*) and Y (*dependent variable*)
- X_i has domain dom(X_i), Y has domain dom(Y)
- P is a probability distribution on dom(X₁) x ... x dom(X_k) x dom(Y) Training database D is a random sample from P
- A *predictor* d is a function d: dom(X₁) ... dom(X_k) \rightarrow dom(Y)

KDD 2001 Tutorial: Advances in Decision Trees

Gehrke and Loh

Classification Problem

- C is called the *class label*, d is called a *classifier*.
- Take r be record randomly drawn from P. Define the *misclassification rate* of d: RT(d,P) = P(d(r.X₁, ..., r.X_k) != r.C)
- <u>Problem definition</u>: Given dataset D that is a random sample from probability distribution P, find classifier d such that RT(d,P) is minimized.
- (More on regression problems in the second part of the tutorial.)

KDD 2001 Tutorial: Advances in Decision Trees

Gehrke and Loh

Goals and Requirements

Goals:

- To produce an accurate classifier/regression function
 To understand the structure of the problem
- Requirements on the model:

High accuracy

- Understandable by humans, interpretable
- Fast construction for very large training databases

KDD 2001 Tutorial: Advances in Decision Trees

Decision Trees

- A *decision tree* T encodes d (a classifier or regression function) in form of a tree.
- A node t in T without children is called a *leaf* node. Otherwise t is called an *internal node*.
- Each internal node has an associated *splitting predicate*. Most common are binary predicates. Example splitting predicates:
 - Age <= 20
 - Profession in {student, teacher}
 - 5000*Age + 3*Salary 10000 > 0

KDD 2001 Tutorial: Advances in Decision Trees

Gehrke and Loh

Internal and Leaf Nodes

Internal nodes:

- Binary Univariate splits:
- Numerical or ordered X: X <= c, c in dom(X)
 Categorical X: X in A, A subset dom(X)
- Binary Multivariate splits:
 - Linear combination split on numerical variables: $\Sigma a_i X_i \le c$
- k-ary (k>2) splits analogous

Leaf nodes:

Node t is labeled with one class label c in dom(C)

KDD 2001 Tutorial: Advances in Decision Trees

Evaluation of Misclassification Error

Problem:

- In order to quantify the quality of a classifier d, we need to know its misclassification rate RT(d,P).
- But unless we know P, RT(d,P) is unknown.
- Thus we need to estimate RT(d,P) as good as possible.

Approaches:

- Resubstitution estimate
- Test sample estimate
- V-fold Cross Validation

KDD 2001 Tutorial: Advances in Decision Trees

Gehrke and Loh

Resubstitution Estimate

The *Resubstitution estimate* R(d,D) estimates RT(d,P) of a classifier d using D:

- Let D be the training database with N records.
- R(d,D) = 1/N Σ I(d(r.X) != r.C))
- Intuition: R(d,D) is the proportion of training records that is misclassified by d
- Problem with resubstitution estimate: Overly optimistic; classifiers that overfit the training dataset will have very low resubstitution error.

KDD 2001 Tutorial: Advances in Decision Trees

Test Sample Estimate

- Divide D into D₁ and D₂
- Use D₁ to construct the classifier d
- \bullet Then use resubstitution estimate $R(d,D_2)$ to calculate the estimated misclassification error of d
- Unbiased and efficient, but removes D₂ from training dataset D

KDD 2001 Tutorial: Advances in Decision Trees

Gehrke and Loh

Gehrke and Loh

V-fold Cross Validation

Procedure:

- Construct classifier d from D
- Partition D into V datasets D₁, ..., D_V
- Construct classifier d_i using $D \setminus D_i$
- Calculate the estimated misclassification error $R(d_i, D_i)$ of d_i using test sample D_i Final misclassification estimate:

Final misclassification estimate:

 Weighted combination of individual misclassification errors: R(d,D) = 1/V Σ R(d_i,D_i)

KDD 2001 Tutorial: Advances in Decision Trees

Cross-Validation

- Misclassification estimate obtained through cross-validation is usually nearly unbiased
- Costly computation (we need to compute d, and $d_1, ..., d_v$); computation of d_i is nearly as expensive as computation of d
- Preferred method to estimate quality of learning algorithms in the machine learning literature

KDD 2001 Tutorial: Advances in Decision Trees

Gehrke and Loh

Tutorial Overview

- Part I: Classification Trees
 - Introduction
 - Classification tree construction schema
 - Split selection
 - Pruning
 - Data access
 - Missing values
 - Evaluation
 - Bias in split selection

(Short Break)

Part II: Regression Trees

Decision Tree Construction

- Top-down tree construction schema:
 - Examine training database and find best splitting predicate for the root node
 - Partition training database
 - Recurse on each child node

BuildTree(Node *t*, Training database *D*, Split Selection Method *S*) (1) Apply *S* to *D* to find splitting criterion

- (1) Apply S to D to find spil
 (2) if (t is not a leaf node)
- (2) (*t* is not a lear node)(3) Create children nodes of *t*
- (4) Partition *D* into children partitions
- Partition D into children partitio
 Recurse on each partition
- (5) Re (6) **endif**

KDD 2001 Tutorial: Advances in Decision Trees

Gehrke and Loh

Decision Tree Construction (Contd.)

• Three algorithmic components:

- Split selection (CART, C4.5, QUEST, CHAID, CRUISE, ...)
- Pruning (direct stopping rule, test dataset pruning, cost-complexity pruning, statistical tests, bootstrapping)
- Data access (CLOUDS, SLIQ, SPRINT, RainForest, BOAT, UnPivot operator)

KDD 2001 Tutorial: Advances in Decision Trees

Gehrke and Loh

Split Selection Methods

- Multitude of split selection methods in the literature
- In this tutorial:
 - Impurity-based split selection: CART (most common in today's data mining tools)
 - Model-based split selection: QUEST

KDD 2001 Tutorial: Advances in Decision Trees

Gehrke and Loh

Split Selection Methods: CART

- Classification And Regression Trees (Breiman, Friedman, Ohlson, Stone, 1984; considered "the" reference on decision tree construction)
- Commercial version sold by Salford Systems (<u>www.salford-systems.com</u>)
- Many other, slightly modified implementations exist (e.g., IBM Intelligent Miner implements the CART split selection method)

KDD 2001 Tutorial: Advances in Decision Trees

CART Split Selection Method

Motivation: We need a way to choose quantitatively between different splitting predicates

- Idea: Quantify the *impurity* of a node
- Method: Select splitting predicate that generates children nodes with minimum impurity from a space of possible splitting predicates

KDD 2001 Tutorial: Advances in Decision Trees

Gehrke and Loh

Impurity Function Let p(j|t) be the proportion of class j training records at node t. Then the node impurity measure at node t: i(t) = phi(p(1|t), ..., p(J|t)) Properties: • phi is symmetric • phi(1,0,...,0) = ... = phi(0,...,0,1) = 0 The reduction in impurity through splitting predicate s (t splits into children nodes t_L with impurity phi(t_L) and t_R with impurity phi(t_R)) is: $d_{ph}(s,t) = phi(t) - p_L phi(t_L) - p_R phi(t_R)$ MDD 2001 Tubolisi: Advances in Decision Trees

Remedy: Concavity

Concave Impurity Functions

Use impurity functions that are concave: phi'' < 0Example concave impurity functions • Entropy: $phi(t) = -\Sigma p(j|t) \log(p(j|t))$

- Gini index: $phi(t) = \Sigma p(j|t) log$

Nonnegative Decrease in Impurity

$$\label{eq:linear_state} \begin{split} & \underline{\text{Theorem}}: \text{Let } phi(p_1, \ ..., \ p_j) \text{ be a strictly concave function on } j=1, \ ..., \ J, \\ & \overline{\Sigma_j} \ p_j = 1. \end{split}$$
 Then for any split s: $\Delta_{phi}(s,t) >= 0$ With equality if and only if: $p(j|t_i) = p(j|t_k) = p(j|t), \ j = 1, \ ..., \ J$

KDD 2001 Tutorial: Advances in Decision Trees

Gehrke and Loh

CART Univariate Split Selection

- Use gini-index as impurity function
- For each numerical or ordered attribute X, consider all binary splits s of the form X <= x
 - where x in dom(X)
- For each categorical attribute X, consider all binary splits s of the form
- X in A, where A subset dom(X) • At a node t, select split s* such that
 - $\Delta_{\rm nbi}(s^*,t)$ is maximal over all s considered

KDD 2001 Tutorial: Advances in Decision Trees

Gehrke and Loh

CART: Shortcut for Categorical Splits

Computational shortcut if |Y|=2.

• Theorem: Let X be a categorical attribute with dom(X) = {b₁, ..., b_k}, |Y|=2, phi be a concave function, and let

 $p(X=b_1) \le \dots \le p(X=b_k)$. Then the best split is of the form:

X in $\{b_1, b_2, \dots, b_l\}$ for some l < k

 Benefit: We need only to check k-1 subsets of dom(X) instead of 2^(k-1)-1 subsets

KDD 2001 Tutorial: Advances in Decision Trees

Problems with CART Split Selection

- Biased towards variables with more splits (M-category variable has 2^{M-1}-1) possible splits, an M-valued ordered variable has (M-1) possible splits (Explanation and remedy later)
- Computationally expensive for categorical variables with large domains

KDD 2001 Tutorial: Advances in Decision Trees

Gehrke and Loh

QUEST: Model-based split selection

"The purpose of models is not to fit the data but to sharpen the questions." Karlin, Samuel (1923 -)

(11th R A Fisher Memorial Lecture, Royal Society 20, April 1983.)

KDD 2001 Tutorial: Advances in Decision Trees

Gehrke and Loh

Split Selection Methods: QUEST

- Quick, Unbiased, Efficient, Statistical Tree (Loh and Shih, Statistica Sinica, 1997) Freeware, available at <u>www.stat.wisc.edu/~loh</u> Also implemented in SPSS.
- Main new ideas:
 - Separate splitting predicate selection into variable selection and split point selection
 - Use statistical significance tests instead of impurity function

KDD 2001 Tutorial: Advances in Decision Trees

QUEST Variable Selection

- Let $X_1, ..., X_l$ be numerical predictor variables, and let $X_{l+1}, ..., X_k$ be categorical predictor variables.
- 1. Find p-value from ANOVA F-test for each numerical variable.
- 2. Find p-value for each X²-test for each categorical variable.
- 3. Choose variable $X_{k'}$ with overall smallest p-value $p_{k'}$ (Actual algorithm is more complicated.)

KDD 2001 Tutorial: Advances in Decision Trees

Gehrke and Loh

QUEST Split Point Selection

CRIMCOORD transformation of categorical variables into numerical variables:

- 1. Take categorical variable X with domain dom(X)={x₁, ..., x_l}
- 2. For each record in the training database, create vector $(v_1, ..., v_l)$ where $v_i = I(X=x_i)$
- 3. Find principal components of set of vectors V
- 4. Project the dimensionality-reduced data onto the largest discriminant coordinate $\ensuremath{\mathsf{dx}}_i$
- 5. Replace X with numeral dx_i in the rest of the algorithm

KDD 2001 Tutorial: Advances in Decision Trees

Gehrke and Loh

CRIMCOORDs: Examples

- Values(X|Y=1) = $\{4c_1, c_2, 5c_3\}$, values(X|Y=2) = $\{2c_1, 2c_2, 6c_3\}$ • $dx_1 = 1, dx_2 = -1, dx_3 = -0.3$
- Values(X|Y=1) = $\{5c_1, 5c_3\}$, values(X|Y=2) = $\{5c_1, 5c_3\}$ \Rightarrow dx₁ = 1, dx₂ = 0, dx₃ = 1
- Values(X|Y=1) = { $5c_1, 5c_3$ }, values(X|Y=2) = { $5c_1, c_2, 5c_3$ } $\rightarrow dx_1 = 1, dx_2 = -1, dx_3 = 1$

Advantages

- Avoid exponential subset search from CART
- Each dx_i has the form Σ b_i $I(X=x_i)$ for some $b_1,$..., b_i , thus there is a 1-1 correspondence between subsets of X and a dx_i

KDD 2001 Tutorial: Advances in Decision Trees

- Transform all categorical variables to CRIMCOORDS
- Apply PCA to the correlation matrix of the data
- Drop the smallest principal components, and project the remaining components onto the largest CRIMCOORD
- Group J>2 classes into two superclasses
- Find split on largest CRIMCOORD using ES or QDA

KDD 2001 Tutorial: Advances in Decision Trees

Key Differences CART/QUEST

Feature	QUEST	CART
Variable selection	Statistical tests	ES
Split point selection	QDA or ES	ES
Categorical variables	CRIMCOORDS	ES
Monotone transformations for numerical variables	Not invariant	Invariant
Ordinal Variables	No	Yes
Variables selection bias	No	Yes (No)
KDD 2001 Tutorial: Advances in Decision Trees		Gehrke and Loh

Tutorial Overview

- Part I: Classification Trees
 - Introduction
 - Classification tree construction schema
 - Split selection
 - Pruning
 - Data access
 - Missing values
 - Evaluation
 - Bias in split selection

(Short Break)

Part II: Regression Trees
 KDD 2001 Tutorial: Advances in Decision Trees

Pruning Methods

- Test dataset pruning
- Direct stopping rule
- Cost-complexity pruning (not covered)
- MDL pruning
- Pruning by randomization testing

KDD 2001 Tutorial: Advances in Decision Trees

Gehrke and Loh

Stopping Policies A stopping policy indicates when further growth of the tree at a node t is counterproductive. Al records are of the same class The attribute values of all records are identical All records have missing values At most one class has a number of records larger than a user-specified number All records go to the same child node if t is split (ny possible with some split selection under some solution)

Test Dataset Pruning

- Use an independent test sample D' to estimate the misclassification cost using the resubstitution estimate R(T,D') at each node
- Select the subtree T' of T with the smallest expected cost

KDD 2001 Tutorial: Advances in Decision Trees

Reduced Error Pruning

(Quinlan, C4.5, 1993)

- Assume observed misclassification rate at a node is p
- Replace p (pessimistically) with the upper 75% confidence bound p', assuming a binomial distribution
- Then use p' to estimate error rate of the node

KDD 2001 Tutorial: Advances in Decision Trees

Gehrke and Loh

Pruning Using the MDL Principle

(Mehta, Rissanen, Agrawal, KDD 1996) Also used before by Fayyad, Quinlan, and others.

- MDL: Minimum Description Length Principle
- Idea: Think of the decision tree as encoding the class labels of the records in the training database
- MDL Principle: The best tree is the tree that encodes the records using the fewest bits

KDD 2001 Tutorial: Advances in Decision Trees

Gehrke and Loh

How To Encode a Node

Given a node t, we need to encode the following: • Nodetype: One bit to encode the type of each node (leaf or internal node)

- For an internal node:
 - Cost(P(t)): The cost of encoding the splitting predicate P(t) at node t

For a leaf node:

 n*E(t): The cost of encoding the records in leaf node t with n records from the training database (E(t) is the entropy of t)

KDD 2001 Tutorial: Advances in Decision Trees

Gehrke and Loh

How To Encode a Tree

Recursive definition of the minimal cost of a node:

Node t is a leaf node:

cost(t) = n*E(t)

 Node t is an internal node with children nodes t₁ and t₂. Choice: Either make t a leaf node, or take the best subtrees, whatever is cheaper:

 $cost(t) = min(n*E(t), 1+cost(P(t))+cost(t_1)+cost(t_2))$

KDD 2001 Tutorial: Advances in Decision Trees

How to Prune

- 1. Construct decision tree to its maximum size
- 2. Compute the MDL cost for each node of the tree bottom-up
- Prune the tree bottom-up: If cost(t)=n*E(t), make t a leaf node. Resulting tree is the final tree output by the pruning algorithm.

KDD 2001 Tutorial: Advances in Decision Trees

Gehrke and Loh

Performance Improvements: PUBLIC

(Shim and Rastogi, VLDB 1998)

- MDL bottom-up pruning requires construction of a complete tree before the bottom-up pruning can start
- Idea: Prune the tree during (not after) the tree construction phase
- Why is this possible?
 - \bullet Calculate a lower bound on cost(t) and compare it with n*E(t)

KDD 2001 Tutorial: Advances in Decision Trees

Gehrke and Loh

PUBLIC Lower Bound Theorem

• <u>Theorem</u>: Consider a classification problem with k predictor attributes and J classes. Let T_t be a subtree with s internal nodes, rooted at node t, let n_i be the number of records with class label i. Then

 $cost(T_t) >= 2*s+1+s*log k + \Sigma n_i$

- Lower bound on $\text{cost}(\mathsf{T}_t)$ is thus the minimum of:
 - n*E+1 (t becomes a leaf node)
 - $2*s+1+s*\log k + \Sigma n_i$ (subtree at t remains)

KDD 2001 Tutorial: Advances in Decision Trees

Pruning By Randomization Testing

Reduce pruning decision at each node to a hypothesis test
 Generate empirical distribution of the hypothesis under the null hypothesis for a node

Node n with subtree $\mathsf{T}(n)$ and pruning statistic $\mathsf{S}(n)$

- For (i=0; i<K; i++)
 - 1. Randomize class labels of the data at n
 - 2. Build and prune a tree rooted at n
 - 3. Calculate pruning statistic S_i(n)
- Compare S(n) to empirical distribution of $S_i(n)$ to estimate significance of S(n)
- If S(n) is not significant enough compared to a significance level alpha, then prune T(n) to n

KDD 2001 Tutorial: Advances in Decision Trees

Gehrke and Loh

Tutorial Overview

- Part I: Classification Trees
 - Introduction
 - Classification tree construction schema
 - Split selection
 - Pruning
 - Data access
 - Missing values
 - Evaluation
 - Bias in split selection

(Short Break)

Part II: Regression Trees

SLIQ

Shafer, Agrawal, Mehta (EDBT 1996)

Motivation:

- Scalable data access method for CART
- To find the best split we need to evaluate the impurity function at all possible split points for each numerical attribute, at each node of the tree
- Idea: Avoids re-sorting at each node of the three through presorting and maintenance of sort orders
- Ideas:
 - Uses vertical partitioning to avoid re-sorting
 - Main-memory resident data structure with schema (class label, leaf node index)
 Very likely to fit in-memory for nearly all training databases

Gehrke and Loh

KDD 2001 Tutorial: Advances in Decision Trees

	ι : Ρ	re-So	rting					
Age	Car	Class	Age	Ind]	Ind	Class	Leaf
20	М	Yes	20	1		1	Yes	1
30	Μ	Yes	20	6		2	Yes	1
25	Т	No	20	10		3	No	1
30	S	Yes	25	3		4	Yes	1
40	S	Yes	25	8		5	Yes	1
20	Т	No	30	2		6	No	1
30	М	Yes	30	4		7	Yes	1
25	М	Yes	30	7		8	Yes	1
40	М	Yes	40	5	1	9	Yes	1
20	S	No	40	9	1	10	No	1

		aiuu		i Spii	ເຣ			
Age	Ind	Ind	Class	Leaf	l r	N- 4-2	V	N.
20	1	1	Yes	2		Node2	res	INO
20	6	2	Yes	2		Left	2	0
20	10	3	No	2		Right	3	2
25	3	4	Yes	3			1	-
25	8	5	Yes	3		Node3	Yes	No
30	2	6	No	2		Left	0	1
30	4	7	Yes	2		Right	2	0
30	7	8	Yes	2				
40	5	9	Yes	2				
40	0	10	No	3				

SLIQ: Summary

- Uses vertical partitioning to avoid resorting
- Main-memory resident data structure with schema (class label, leaf node index)
 Very likely to fit in-memory for nearly all training databases

KDD 2001 Tutorial: Advances in Decision Trees

Gehrke and Loh

SPRINT

Shafer, Agrawal, Mehta (VLDB 1996) • Motivation:

- Scalable data access method for CART
- Improvement over SLIQ to avoid main-memory data structure
- Ideas:
 - Create vertical partitions called attribute lists for each attribute
 Pre-sort the attribute lists

Recursive tree construction:

KDD 2001 Tutorial: Advances in Decision Trees

- 1. Scan all attribute lists at node t to find the best split
- Partition current attribute lists over children nodes while maintaining sort orders
 Pagureo

3. Recurse

SPRINT Attribute Lists

Age	Car	Class		Age	Class	Ind		Car	Class	Ind
20	М	Yes	Ì	20	Yes	1		М	Yes	1
30	М	Yes		20	No	6		Μ	Yes	2
25	Т	No		20	No	10		Т	No	3
30	S	Yes	1	25	No	3		S	Yes	4
40	S	Yes	1	25	Yes	8		S	Yes	5
20	Т	No		30	Yes	2		Т	No	6
30	Μ	Yes	Ì	30	Yes	4		М	Yes	7
25	Μ	Yes		30	Yes	7		Μ	Yes	8
40	Μ	Yes	ĺ	40	Yes	5		М	Yes	9
20	S	No	1	40	Yes	9		S	No	10
KDD 200	KDD 2001 Tutorial: Advances in Decision Trees								Gehrk	e and Loh

- 1. Scan all attribute lists to find the best split
- 2. Partition the attribute list of the splitting attribute X
- 3. For each attribute $X_i != X$
- Perform the partitioning step of a hash-join between the attribute list of X and the attribute list of X_i

KDD 2001 Tutorial: Advances in Decision Trees

SPRINT: Summary

- Scalable data access method for CART split selection method
- Completely scalable, can be (and has been) implemented "inside" a database system
- Hash-join partitioning step expensive (each attribute, at each node of the tree)

KDD 2001 Tutorial: Advances in Decision Trees

Rai (Ge	nFore hrke,	st Ram	akrish	nan, Gan	ti, VLDB	1998	3)	
Frai	ning D	atab	ase		AVC-S	Sets		
	Age	Car	Class		Age	Yes	No	
	20	М	Yes		20	1	2	
	30	М	Yes		25	1	1	
	25	Т	No		30	3	0	
	30	S	Yes		40	2	0	
	40	S	Yes					
	20	Т	No		Car	Yes	No	
	30	М	Yes		Sport	2	1	
	25	М	Yes		Truck	0	2	
	40	Μ	Yes		Minivan	5	0	
	20	S	No				5	
KDD 20	01 Tutorial: A	dvances in	Decision Tree	s			Gehrke a	ind Loh

RainForest Data Access Method

Assume datapartition at a node is D. Then the following steps are carried out:

- 1. Construct AVC-group of the node
- 2. Choose splitting attribute and splitting predicate
- 3. Partition D across the children

KDD 2001 Tutorial: Advances in Decision Trees

RainForest Algorithms: RF-Write

Analysis:

- Assumes that the AVC-group of the root node fits into main memory
- Two database scans per level of the tree
- Usually more main memory available than one single AVCgroup needs

Missing Values

- What is the problem?
 - During computation of the splitting predicate, we can selectively ignore records with missing values (note that this has some problems)
 - But if a record r misses the value of the variable in the splitting attribute, r can not participate further in tree construction

Algorithms for missing values address this problem.

KDD 2001 Tutorial: Advances in Decision Trees

Gehrke and Loh

Mean and Mode Imputation

- Assume record r has missing value r.X, and splitting variable is X.
- Simplest algorithm:
 - If X is numerical (categorical), impute the overall mean (mode)
- Improved algorithm:
 - If X is numerical (categorical), impute the mean(X|t.C) (the mode(X|t.C))

KDD 2001 Tutorial: Advances in Decision Trees

Gehrke and Loh

Surrogate Splits (CART)

Assume record r has missing value r.X, and splitting predicate is P_{χ} .

- Idea: Find splitting predicate Q_{X'} involving another variable X' != X that is most similar to P_X.
 - Similarity sim(Q,P|D) between splits Q and P: Sim(Q,P|D) = |{r in D: P(r) and Q(r)}|/|D|
 - 0 <= sim(Q,P|D) <= 1
 - Sim(P,P) = 1

KDD 2001 Tutorial: Advances in Decision Trees

Surrogate Splits: Example

Consider splitting predicate	X1	X2	Class	
X1 <= 1.	1	1	Yes	
$Sim(X1 \le 1)$	1	1	Yes	
(X2 <= 1)/D =	1	1	Yes	
(3+4)/10	1	2	Yes	
Sim((X1 <= 1),	1	2	Yes	
$(X2 \le 2) D) =$	1	2	No	
(6+3)/10	2	2	No	
$(X2 \le 2)$ is the preferred	2	3	No	
surrogate split.	2	3	No	
	2	3	No	
KDD 2001 Tutorial: Advances in Decision Trees			Gehrke an	d Loh

Tutorial Overview

- Part I: Classification Trees
 - Introduction
 - Classification tree construction schema
 - Split selection
 - Pruning
 - Data access
 - Missing Values
 - Evaluation
 - Bias in split selection

(Short Break)

Part II: Regression Trees
 KDD 2001 Tutorial: Advances in Decision Trees

Choice of Classification Algorithm?

- Example study: (Lim, Loh, and Shih, Machine Learning 2000)
 - 33 classification algorithms
 - 16 (small) data sets (UC Irvine ML Repository)
 - Each algorithm applied to each data set
- Experimental measurements:
 - Classification accuracy
 - Computational speed
 - Classifier complexity

KDD 2001 Tutorial: Advances in Decision Trees

Gehrke and Loh

Experimental Setup

Algorithms:

- Tree-structure classifiers (IND, S-Plus Trees, C4.5, FACT, QUEST, CART, OC1, LMDT, CAL5, T1)
- Statistical methods (LDA, QDA, NN, LOG, FDA, PDA, MDA, POL)
- Neural networks (LVQ, RBF)

Setup:

- 16 primary data sets, created 16 more data sets by adding noise
- Converted categorical predictor variables to 0-1 dummy variables if necessary
- Error rates for 6 data sets estimated from supplied test sets, 10fold cross-validation used for the other data sets

KDD 2001 Tutorial: Advances in Decision Trees

Gehrke and Loh

Results

Ranl	c Algorithm	Mean Error	Time			
1	Polyclass	0.195	3 hours			
2	Quest Multivariate	0.202	4 min			
3	Logistic Regression	0.204	4 min			
6	LDA	0.208	10 s			
8	IND CART	0.215	47 s			
12	C4.5 Rules	0.220	20 s			
16	Quest Univariate	0.221	40 s			
•	Number of leaves for tree-based classifiers varied widely (median number of leaves between 5 and 32 (removing some outliers)) Mean misclassification rates for top 26 algorithms are not statistically significantly different, bottom 7 algorithms have significantly lower error rates					

KDD 2001 Tutorial: Advances in Decision Trees

Gehrke and Loh

Description Part I: Classification Trees Introduction Classification tree construction schema Split selection Split selection Parting Data access Sinsing Values Split selection Bias in split selection Chort Break) Part II: Regression Trees

T3-31

One Explanation

Theorem: (Expected Value of the Gini Gain) Assume:

- Two classlabels
- n: number of categories
- N: number of records
- p1: probability of having classlabel "Yes"

Then: E(ginigain) = 2p(1-p)*(n-1)/N

Expected ginigain increases linearly with number KDD OF1 Categories Gehrke and Loh

Bias Correction: Intuition

- Value of the splitting criteria is biased under the Null Hypothesis.
- Idea: Use p-value of the criterion: Probability that the value of the criterion under the Null Case is as extreme as the observed value

Method:

- 1. Compute criterion (gini, entropy, etc.)
- 2. Compute p-value
- 3. Choose splitting variable KDD 2001 Tutorial: Advances in Decision Trace
- Gehrke and Loh

Correction Through P-Value

- New p-value criterion:
 - Maintains "good" properties of your favorite splitting criterion
 - Theorem: The correction through the p-value is nearly unbiased.

Computation:

- Exact (randomization statistic; very expensive to compute) 1.
- Bootstrapping (Monte Carlo simulations; computationally 2. expensive; works only for small p-values)
- Asymptotic approximations (G² for entropy, Chi² distribution for Chi^2 test; don't work well in boundary conditions) 3.

Gehrke and Loh

- Tight approximations (cheap, often work well in practice) 4.

KDD 2001 Tutorial: Advances in Decision Trees

Tight Approximation 0.3 0.25 0.15 0.05 -0.05 -0.05 -0.10 • Experimental evidence shows that Gamma distribution approximates gini-gain very well. • We can calculate: 100 -5 -45 -4 -35 -3 -25 -2 100 -5 -45 -4 -35 -3 -25 -2 • Expected gain: E(gain) = 2p(1-p)*(n-1)/N• Variance of gain: Var(gain) = $4p(1-p)/N^2[(1-6p-6p^2) * (sum 1/N_i - (2n-1))]$ 1)/N) + 2(n-1)p(1-p)]KDD 2001 Tutorial: Advances in Decision Trees

Problem: ES and Missing Value

Consider a training database with the following schema: (X₁, ..., X_k, C)

• Assume the projection onto (X₁, C) is the following:

{(1, Class1), (2, Class2), (NULL, Class₁₃), ..., (NULL, Class_{1N})} $(X_1 has missing values except for the first two$ records)

 Exhaustive search will very likely split on X₁! KDD 2001 Tutorial: Advances in Decision Trees Gehrke and Loh

Concluding Remarks Part I

- There are many algorithms available for:
 - Split selection
 - Pruning
 - Data access
 - Handling missing values
- Challenges: Performance, getting the "right" model, data streams, new applications

KDD 2001 Tutorial: Advances in Decision Trees